
Loyalty-based Selection: Retrieving Objects That
Persistently Satisfy Criteria

Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin
The University of New South Wales, Australia
{shenz,macheema,lxue}@cse.unsw.edu.au

ABSTRACT
A traditional query returns a set of objects that satisfy user defined
criteria at the time query was issued. The results are based on the
values of objects at query time and may be affected by outliers. In-
tuitively, an object better meets the user’s needs if it persistently
satisfies the criteria, i.e., it satisfies the criteria for majority of the
time in the past T time units. In this paper, we propose a measure
named loyalty that reflects how persistently an object satisfies the
criteria. Formally, the loyalty of an object is the total time (in past
T time units) it satisfies the query criteria. In this paper, we study
top-k loyalty queries over sliding windows that continuously report
k objects with the highest loyalties. Each object issues an update
when it starts satisfying the criteria or when it stops satisfying the
criteria. We show that the lower bound cost of updating the re-
sults of a top-k loyalty query is O(logN), for each object update,
where N is the number of updates issued in last T time units. We
conduct a detailed complexity analysis and show that our proposed
algorithm is optimal. Moreover, effective pruning techniques are
proposed to improve the efficiency. We experimentally verify the
effectiveness of the proposed approach by comparing it with a clas-
sic sweep line algorithm.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous

General Terms
Algorithms,Performance,Experimentation

Keywords
Data Streams, Loyalty Queries, Temporal Data

1. INTRODUCTION
A traditional query Q returns every object that satisfies the query

criteria at the time t query was issued. The traditional queries do
not consider the history of the objects’ values, i.e., the values of ob-
jects in the recent past. Hence, the traditional queries fail to capture
how persistently an object satisfies the query criteria. Consider the
example of a stock broker who issues a query at time t to retrieve
the profitable stocks. He may define a set of criterions to denote the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

profitability. A traditional query returns every stock s that satisfies
the criterions at time t. Although a returned stock s meets the cri-
teria at time t, the history of the stock s may indicate that it usually
does not satisfy the criteria and is not a good choice for investment.
Hence, a query that does not take into account the history of stock
items is not suitable.

To address the above mentioned problem, in this paper, we pro-
pose a new query operator called loyalty queries. A loyalty query
considers how persistently the objects satisfy the query criteria.
Consider a traditional query Q that defines a set of criterions. Let
Q(o, t) denote whether an object o satisfies the criteria of query Q
at time t or not. More specifically, Q(o, t) is true if and only if
the object o satisfies the query criteria at time t. Let T be a user
defined parameter. The loyalty of an object o is the total time dura-
tion for which Q(o, t) is true within last T time units. The measure
is called “loyalty" because it signifies how persistently the object o
meets the criteria in the recent past. In this paper, we study contin-
uous top-k loyalty queries that continuously report k objects with
the highest loyalties.

Loyalty queries have many interesting applications in different
areas such as location based services, wireless sensor network, stock
market, traffic monitoring, and internet applications, etc. For in-
stance, in the example of the stocks, the stock broker may retrieve
top-k loyal objects to retrieve better options for investment. Con-
sider another example of a paid parking system that notifies the
nearby cars of its availability, i.e., the cars that are in its influence
zone [4] or the cars that are within 1 Km of the parking space [3].
At a given time t, the system may send SMS to some cars that sat-
isfy the criteria (e.g. a car that lies within 1Km at time t). However,
most of such cars may just be passing through that area and may
not be interested in parking. On the other hand, a car that satisfies
the criteria for majority of the time in recent past may actually be
looking for the parking. Hence, the system may use top-k loyalty
queries to send notifications to such cars.

We next summarize our contributions in this paper.
Novel query operator. To the best of our knowledge, we are the
first to study continuous loyalty queries. In this paper, we formal-
ize the definition of loyalty queries and present a framework that
efficiently solves the loyalty queries.
Continuous updates. We study the problem in a continuous time
domain where the updated results are reported as soon as the results
change as opposed to the time-stamp model where the results are
updated after every u time units. Note that the time-stamp model
suffers from either high computational cost or low accuracy. More
specifically, if u is small, the computation cost increases because
the results are to be updated more often. On the other hand, if u
is large, the accuracy is reduced because the results may have be-
come invalid between two successive time-stamps. The continuous
updates provided by our algorithm do not have these limitations.
Optimal computation cost. An object issues an update if it starts
satisfying the query criteria or if it stops satisfying the query cri-

Figure 1: Example of Loyalty Queries
teria. Note that the top-k loyal objects may change whenever an
object issues an update. Let N be the total number of object up-
dates issued in the last T time units. Upon receiving an object
update, our algorithm updates the top-k loyal objects in O(logN).
We prove that this is the lower bound update cost for top-k loyalty
queries, hence our algorithm is optimal.
Extensive evaluation and analysis. We theoretically analyse the
complexity of our algorithm and prove that it meets the lower bound
cost. We also conduct experiments to show the effectiveness and
the efficiency of our proposed approach. We compare our algo-
rithm with the Bentley-Ottmann sweep line algorithm [2]. For N
object updates, the total cost of the Bentley-Ottmann algorithm is
O(N2 logN) in the worst case. In contrast, the total worst case
cost of our algorithm is O(N logN). Extensive experiments con-
ducted on both real and synthetic data sets demonstrate that our
proposed approach is an order of magnitude faster than the Bentley-
Ottmann algorithm.

Due to the space limits, we do not include all the technical details
and experimental results in the paper. See our technical report [9]
for the further details.

2. PROBLEM DEFINITION
Traditional queries. A traditional query Q defines a set of crite-
ria. Given an object o and a timestamp t, we use Q(o, t) to denote
whether o satisfies the query criteria of Q at t. For ease of presen-
tation we define Q(o, t) using a step function.

Q(o, t) =

{
1 if o satisfies the query critera of Q at t;
0 if o does not satisfy the query critera of Q at t.

Consider an application for monitoring the cars around the park-
ing space and the parking system notifies the cars with high loy-
alties in Figure 1. Given two moving objects(cars) o1 and o2, o1
enters the space at time 5 and leaves at time 8. o2 enters at time 10
and leaves at time 18. Therefore, Q(o1, 6) = 1 and Q(o2, 6) = 0.
Sliding windows. Usually users are not interested in the entire
past history of the data stream but rather the recent data over slid-
ing windows. In this paper, we consider a data stream model in
the continuous time domain. For a fixed length of time period T ,
a sliding window contains all the objects and the corresponding at-
tributes within last T time units.
Loyalty of an object. Given a traditional query Q and a sliding
window size T , we define the loyalty of an object o at time t,
loyalty(o, t) =

∫ t

t−T
Q(o, x)dx

The loyalty of an object o shows how long o is a query result of
Q during the last T time units. Without loss of generality, in this
paper we prefer the objects with higher loyalties.

Consider a sliding window of size 10 (T = 10) in Figure 1.
Then, loyalty(o1, 8) (the loyalty of o1 at time 8) is 3 because o
has been around the parking space for 3 time units. Note that the
coordinates in Figure 1 present the loyalties of o1 and o2 as the time
t changes. Similarly, we can see that loyalty(o2, 13) = 3.
Top-k loyalty queries. Consider a set of objects O, a traditional
query Q, a sliding window size T and a parameter k. The top-k
loyalty query at time t returns an answer set from O that consists
of k objects such that for every object o in the answer set and for
any other o′ ∈ O, loyalty(o, t) ≥ loyalty(o′, t).

Consider the example in Figure 1. If we monitor the top-1 loyal

object and the window size T is 10, o1 is the result of the top-1
loyalty query from 5 to 13 and o2 is the result from 13 to 28.
Continuous queries. In this paper, we study the continuous loyalty
queries, namely, we issue the query once and it monitors the query
results continuously. Since we solve the queries in the continuous
time domain, it is impossible to compute the results for an infinite
number of time snapshots. In this paper we shows that although the
loyalty of an object is changing over time, we do not need to update
the loyalty and the query results for every time snapshot.

3. FRAMEWORK
In real world scenarios, given a set of objects of observation O,

the objects may be distributed and users may want to know the
global results of a loyalty query. Thus, we present a general frame-
work that aims to handle the loyalty queries in both various envi-
ronments. Our framework consists of two main components: the
traditional query module and the loyalty query module.
Traditional query module. Given a traditional query Q (e.g., a
range query), each object issues an update when it starts satisfying
the query criteria or when it stops satisfying the criteria. More
specifically, traditional query module reports whenever the value
of Q(o, t) is changed for any object o.
Object updates. Given a query Q and an object o, we say there is
an update u of o at time t if the derivative of Q at t is infinity, i.e.,
d
dt
Q(o, t) = ∞. In other words, Q(o, t) changes at time t.
In figure 1, a moving object issues the update only when it enters

or exits the monitoring space. Therefore, o1 reports two updates at
time 5 and 8, and o2 reports two updates at time 10 and 18.

Basically we adopt existing techniques for continuously moni-
toring the results of the traditional queries. A straightforward way
is to continuously monitor the traditional query result and report
once the update occurs. However, since most state-of-art tech-
niques for continuous monitoring queries compute and output their
results incrementally, it is seamless to report updates based on these
online algorithms. For instance, the techniques in the papers [3, 4]
can work as a traditional query module to find the loyal objects
within the query range or the influence zone for a majority of the
recent time. As this part of work has already been done and our
aim is to support a variety of traditional queries in our loyalty query
framework, in this paper we focus on efficiently processing of the
loyalty queries.
Loyalty query module. If we assume the attributes of an object
is varying continuously such as a moving object, the number of
updates during a time period is finite. For a specified loyalty query,
it receives updates from the traditional query module in the form of
an update stream U = {u1, u2, u3, ..., un}. The updates arrive in
the time order. We process the updates continuously in the loyalty
query module and output the results to users.

Our query algorithm is triggered only when the update arrives or
a possible result change of the loyalty query happens. Therefore,
we can output updated results of the loyalty queries when the result
changes. In other words, we report which object is newly added in
the answer set or which object is removed from the set.

4. TOP-K LOYALTY QUERIES

4.1 Algorithm and Data Structures
Consider a top-1 loyalty query. If we draw the loyalty changes

in a loyalty-time plane (see Figure 1), intuitively this problem is
similar to finding the upper envelop in this plane. Similarly the
top-k query is to retrieve kth upper envelops. This problem can
be solved by the line sweep algorithm in computational geometry.
Given N line segments in the plane, the Bentley-Ottmann sweep
algorithm [2] maintains the exact vertical ordering of the intersec-
tions of the line segments, when the vertical line sweeps the plane

from left to right. The total cost is O((N +M) logN) where M is
the number of intersections of the line segments. In the worst case,
the number of intersections M can be O(N2) and the overall com-
plexity can be O(N2 log(N)). In our problem, we use N to denote
the number of updates issued in the last T time units. Then, the
amortized cost of the Bentley-Ottmann algorithm is O(N logN)
for each update. In this paper we present an algorithm to answer
the top-k loyalty queries in O(logN) time for each update. The
space requirement of our algorithm is O(N).

Before we describe the algorithm, we show the observation for
handling updates to enable the efficient computation.
States of objects. The state of an object o denotes whether the
loyalty of o is increasing, stationary or decreasing. The state of o
can be derived by computing the derivative of loyalty(o, t). There-
fore, state(o, t) = d

dt
loyalty(o, t) = Q(o, t) − Q(o, t − T) We

can see that state(o, t) depends on the traditional query result at
the current time Q(o, t) and the result T time before the current
time Q(o, t − T). Moreover, there are only three types of states:
increasing (1), stationary (0) and decreasing (-1).
Echo updates. As soon as an original update arrives from the tra-
ditional query module, we know the traditional query result at the
current time Q(o, t) changes. Moreover, these updates will expire
from the sliding window after T time, which will affect Q(o, t−T).
Therefore, we clone a series of original updates and make them
take effect after T time. These updates are annotated as echo up-
dates. For example, in Figure 1, we retrieve an original update at
time 5. Given T = 10, the echo update is created at time 15. The
updates stand for both original and echo updates in the rest of the
paper, unless mentioned otherwise.
Determining states. When we receive an original update u from a
traditional query, we update the current query result Q(o, t). Then
we create an echo update u′. The timestamp of u′ is t + T and
we also attach the new query result. Therefore, state(o, t) can be
computed by maintaining Q(o, t) and Q(o, t− T) correctly.
Data structures. In order to efficiently maintain the top-k loyal
objects over sliding windows and the sequence of future updates
and events, our algorithm maintains the following data structures:
Update queue U (a FIFO data structure) is utilized to maintain
a sequence of echo updates. Each update is associated with the
timestamp t4 when it will be issued, the object o and the updated
traditional query result Q(o, t). The echo updates are created in the
sequence of the original updates. Therefore, we can simply use a
FIFO to organize the echo updates.
Border object BO is denoted as the (k+ 1)th loyal object at time
t. We set BO empty if the number of objects is less than k+1. We
define the border line indicating the (k + 1)th line segment which
divides the top-k lines and the remaining lines in the loyalty-time
plane. In our algorithm only the line intersections related to the
border line are processed. Consider a more complicated example
of the top-2 loyalty query in Figure 2. The object o3 is the 3rd loyal
object from t1 to t3. Hence, BO = o3 from t1 to t3. We mark the
border line with a bold polyline in Figure 2.
Event queue E (a priority queue) is utilized to maintain a sequence
of potential future events. Events denote the potential future result
changes of the loyalty queries. The result changes occur only when
the border object swap its order of the loyalty with another object.
In the loyalty-time plane, the event is created when one line will
potentially intersect the border line in the future. If an event is
created at time t, each event is associated with the signatures of
the border object BO and another o at time t. A signature is the
identification of the last update of an object. The signature of o
will be changed if any update or event related to o is processed. An
event is invalid and will not be processed if the signature of BO or
o of the event is not up-to-date. The event is inserted into the event
queue with the timestamp t′ where t′ is the potential intersecting
time. Consider the example in Figure 2. We can predict that the

Figure 2: Example of Top-2 Loyalty Queries
line segment of o1 will potentially intersect the border line at t3.
Therefore, an event is created to handle the intersection.
Top-k sets A = A+ ∪ A= ∪ A− maintain the objects geometri-
cally above the border object, namely the top-k loyal objects. A
is divided into three subsets according to the states of the objects.
A+, A= and A− are the subsets of the top-k objects with increas-
ing, stationary and decreasing states respectively. Each subsets is
organized in a binary search tree and the elements in the subset are
sorted in the decreasing order of their loyalties. Consider the exam-
ple of Figure 2. A contains two objects o1 and o2 at t1. A+ = {o2}
and A= = {o1}.
Bottom sets B = B+ ∪B= ∪B− maintain the remaining objects
below the border object. B is also divided into B+, B= and B−
according to the states. Note that unlike other subsets, B− can
be organized just in a list without sorting their loyalties. B+ and
B= are represented explicitly in the binary search trees with the
decreasing order of loyalties. Consider the example of Figure 2. B
contains one object o4 at t4 and B+ = {o4}.
Solution overview. Before we present the details of our algorithm
for processing top-k loyalty queries, we show the main idea of our
algorithm. The algorithm uses a sweep line approach to process
updates and create events for handling the possible result changes.
The algorithm is triggered when 1) an original update arrives from
traditional query module, or 2) an echo update arrives from the
update queue, or 3) an event arrives from the event queue. We
make sure that our algorithm correctly maintains the border object
and the objects in top-k set. An event is created if a possible result
change of the loyalty query will occur in the future.

Algorithm 1 ProcessUpdate(u)
1: Determine state(o, t) and update loyalty(o, t).
2: if o ∈ A then /* o is in the top-k set */
3: Remove o from the subset Ai
4: Add o into the corresponding subset Aj
5: else if o ∈ B then /* o is in the bottom set */
6: Remove o from the subset Bi
7: Add o into the corresponding subset Bj
8: else if o /∈ BO then /* o is a new comer */
9: if |A| < k then /* # of objects less than k */

10: Add o into A+

11: else if BO = ∅ then /* # of objects is k */
12: BO = o
13: else
14: Add o into B+

15: HandleSetVariation(BO, A, B)
16: Update the signature of o.

Processing updates. When a new update arrives from the update
queue, we first recompute the state and loyalty of the corresponding
object. Then, the object is moved to the correct subset. As the
position of the object in a subset may be changed, we check the
subsets and the border object and create the possible events.

Algorithm 1 shows our algorithm for processing a newly arriv-
ing update. First we determine the state of the object o based on
the query results on both slides of the sliding window (see line 1).
If the update is original, we create an echo update by cloning the
original update and insert it into the update queue P . Since the state
of the object o changes, we move o into the corresponding subset
based on its state and current position(lines 2–8). As the orders of
elements in the subsets may change, we check the variation related
to the border line and create new events to handle the future inter-

section(line 15). Finally we update the signature of o (line 16) as
the state of o changes.
Handling set variations. We observe that any intersection related
to the border line is associated with the line segment immediately
above or below the border line in each subset. Another important
observation is that the two line segments with the same state(in
the same subset) will not intersect each other. Therefore, we only
check the last elements(objects with the minimal loyalty) in A=

and A−, and the first elements(objects with the maximal loyalty) in
B+ and B=, which are the only potential line segments (objects) to
first intersect the border line without considering the new updates
in the future In Figure 2, A= contains two objects o2 and o3 at
t6, and the last element in A= is o2. Then, we consider the state
change of the border object BO. Based on the state of the border
line, two events are created to handle the possible intersections.
Creating events. To create a new event, we first compute the in-
tersecting time t′ of the two lines segments. Then, the event e is
created and inserted into the event queue E with t′. Note that it
is important for us to store the signature information of o and BO
with event e. The change of the signature of o indicates that the
state or position of the object has been updated before the event
occurs. Therefore, the event is invalid and will not be processed.
Processing events. When an event e arrives from the event queue
E, we first check the validity of the line intersection by verifying
the signatures. If it is valid, we swap the positions of BO and
o. Since the subsets and BO are changed, we again check the set
variations and create the possible intersections.
Handling objects with zero or maximum loyalty. Note that in the
above algorithms we do not especially handle the objects with zero
loyalties or maximum loyalties(the loyalty is T). Here, we show
that these objects can be processed more efficiently. For an object
o with loyalty(o, t) = 0 and state(o, t) = 0, we simply remove
o from the subsets. For the objects with loyalty(o, t) = T and
state(o, t) = 0, we maintain a list F to store the objects instead of
placing them in A=. We can save the cost because maintaining the
list is constant in time.

Example 1: Consider the top-2 loyalty query shown in Figure 2.
Initially, there are two objects o1 and o2 with non-zero loyalties.
An update of o3 arrives at t1. o3 becomes the border line ob-
ject(line 11 in Algorithm 1). We mark the border line with a bold
line in Figure 2. Then, we check the set variation. Since BO has
been changed, we create an event e1 with the last element in A=

(o1) for possible order swapping at t3. We mark the created event
with a star. Note that we only create and process the events (inter-
sections) related to BO. An update of o4 arrives at t2. We check
subsets variation and no event is created. Event e1 is processed at
t3. o3 is moved into A+ and o1 becomes the border object. We
check the set variation and create an event e2 with o4 at t6. Af-
ter that o4 issues another update at t5 and the signature of o4 is
changed. Therefore, e2 is invalid and is not processed at t6. At t7,
o4 issues an update and the state of BO is changed. After checking
the variation, e3 is created similarly.

4.2 Analysis
Proof of Correctness. In the proposed algorithm, we make the
border object BO present the (k + 1)th loyal object correctly. All
the potential events (intersections) related to BO are created and
processed. Therefore, we always make maxo∈B {loyalty(o, t)} ≤
loyalty(BO, t) ≤ mino∈A {loyalty(o, t)} and |A| ≤ k. In our
algorithm the objects in top-k set cannot be changed unless BO is
changed. As a consequence, our algorithm correctly determines the
top-k loyal objects.
Query performance analysis. We first analyze the time complex-
ity of our algorithm. As we use binary search trees to maintain the
subsets, the cost of inserting or removing an object in a subset of A
is O(log k) and the corresponding cost in a subset of B is O(logL)

where L is the number of objects which have updates in the last T
time unit. The cost of insertion in the update queue is O(1) be-
cause the update queue is a FIFO. Let M be the number of events
processed in the last T time units and M ′ be the number of events
created in the last T time units. Note that some created events may
become invalid and will not be processed in the future. As the event
queue is organized by a priority queue, the cost of insertion in the
event queue is O(logM ′), where M ′ is also the size of the event
queue. Let N be the number of updates issued in the last T time
units. For each processed update and event, the algorithm creates
constant number of events. Therefore, M ′ = O(N + M). Then,
the total cost in the last T time units is O((N + M)(logM ′ +
log k + logL) = O((N + M)(log (N +M) + log k + logL).
Note that k ≤ L and L is usually much smaller than the total num-
ber of objects n. Therefore, the total cost in the last T time units
is O((N + M)(log (N +M) + logL). In Theorem 1 we prove
that the number of processed events is at most twice of the number
of updates, i.e., M ≤ 2N . The theorem is non-trivial, because two
other events will be created when processing the event.

THEOREM 1. Given N updates, our algorithm processes at most
2N events. M ≤ 2N .

PROOF. Consider the loyalty-time plane and assume that each
line segment presents an update in the plane (see Figure 2). The
border line is actually one of the connected line segments that go
through the plane from left to right. For an increasing line or de-
creasing line, it appears in the border line at most once, while a
horizontal line may appear in the border line multiple times. The
horizontal lines are only connected with the increasing and decreas-
ing lines in the plane. Assume that the border line has at least two
line segments. One horizontal line on the border line must connect
with one increasing line or decreasing line. Let P be the number of
line segments on the border line and Q be the number of increasing
and decreasing lines. In the worst case, every horizontal line seg-
ment is associated with one increasing or decreasing line. There-
fore, P ≤ 2Q. Each connected vertex on the border line presents a
processed event. Consequently, we prove that M ≤ 2N .

Theorem 1 indicates that the number of processed events is at most
twice of the number of updates. We can derive that M = O(N).
Moreover, L ≤ N because the number of objects which have up-
dates will not larger than the number of updates. Therefore, the
total cost of our algorithm in the last T time units is O(N(logN)).
The cost for each update is O(logN).
Proof of Optimality. We prove that our algorithm is optimal in the
worst case by showing that the complexity of our algorithm meets
the lower bound cost of the problem [9].
Space analysis Next, we investigate the space requirement of our
algorithm. The space of the update queue is O(N) where N is the
number of updates issued in the last T time units. The size of the
event queue is O(M ′). According to the above analysis, M ′ =
O(N). The size of each subset is O(L). If we do not consider the
objects with maximum loyalties, then L ≤ N . Therefore, for each
top-k loyalty query, our algorithm uses O(N) space.

4.3 Pruning
Although the algorithm is already optimal for solving the top-

k loyalty queries in terms of time complexity, in this subsection
we show that we can further prune some of the updates from the
computation of the final results according to the following theorem.

THEOREM 2. Let ok be the object with the minimal loyalty in
A and o be any object in O. o will not be a result of top-k loyalty
query in the next (loyalty(ok, t) − loyalty(o, t)/2 time, where t
is the current timestamp.

PROOF. Consider that ok becomes decreasing and o becomes
increasing at t. Let d = (loyalty(ok, t)− loyalty(o, t))/2. o will
be always below ok in the time period [t, t+d). Thus, loyalty(ok, t+
∆t) > loyalty(o, t +∆t) where 0 ≤ ∆t < d. Consequently, we
prove Theorem 2.

Based on the theorem, it is not difficult to ignore the update com-
putation of o ∈ O in time period [t, t+ d). The detail of the algo-
rithm can be found in our technical report [9].

5. RELATED WORK
The problem is related to the kth upper envelope (also known

as k-level arrangement) problem [2] in computational geometry.
However, the current techniques [6, 1, 8] can only solve the prob-
lem for k = 1. In database community, processing aggregate
queries over data stream [7, 12, 10] has been extensively stud-
ied. The difference is that it can only solve the problem by sam-
pling in the discrete time domain, which limits the precision and
efficiency. Also, the existing work of continuously processing the
spatial-temporal queries [5, 3, 4, 11] can be used as the traditional
queries module in our framework.

6. EXPERIMENTS
In the experiments, we focus on evaluating the performance of

the proposed algorithm for answering top-k loyalty queries. There-
fore, we do not count the cost of computing traditional query re-
sults and assume that all the inputs are in the form of object up-
dates. Synthetic data is generated by a two state Markov chain
model, which has many applications as statistical models of real-
world processes. For each object oi,
Pr(Q(oi, t+ 1) = 1|Q(oi, t) = 0) = pi
Pr(Q(oi, t+ 1) = 0|Q(oi, t) = 0) = 1− pi
Pr(Q(oi, t+ 1) = 0|Q(oi, t) = 1) = p′i
Pr(Q(oi, t+ 1) = 1|Q(oi, t) = 1) = 1− p′i
pi and p′i are uniformly chosen from [0,m] for each object. The

data set consists of 10 million random updates with n objects.

Table 1: Experimental parameters. (Default values in bold)
Parameter Range
Sliding window size T (× 1000) 10, 25, 50, 75, 100
of objects n (× 1000) 1, 5, 10, 15, 20
of results k 1, 10, 20, 50, 100, 150, 200
Probability parameter m 0.0001, 0.001, 0.01, 0.1, 1

To the best of our knowledge, we are the first to study the prob-
lem of top-k loyalty queries. Therefore, we use the Bentley-Ottmann
algorithm as our competitor called BO below. Our base loyalty
query processing algorithm is called LQ. The loyalty query pro-
cessing algorithm optimized by using the pruning rule is called
LQPR. Note that all the figures are in the logarithmic scale.

In Figure 3, we perform experiments on syntectic data sets to
conduct a more detailed evaluation. We study the effect of varying
k and T in Figure 3(a) and Figure 3(b). The similar tendency can
be observed on the synthetic data set. Figure 3(a) shows that the
pruning rule does not work well when the sliding window size T
is small. The reason is that the number of updates generated with
certain probability in a small sliding window is small. Therefore,
not many updates can be pruned according to the pruning rule.

In Figure 3(c) and Figure 3(d), we vary the number of objects n
and the probability m used in generated synthetic data and study
the effect on the algorithms. Figure 3(c) shows that the processing
time of our algorithms increases with increase in n. This is because
the number of objects which have updates in the sliding window L
increases with larger n. Figure 3(d) shows that the performance of
our algorithms remains unaffected with increase in the frequency
of updates, although we vary m in a very large scale. LQPR does
not show a good pruning power when m = 0.0001 because the

number of updates in the sliding window is too small so that few
updates can be pruned.

 1

 10

 100

1 20 50 100 150 200

T
im

e
(in

 s
ec

)

BO LQ LQPR

(a) Varying k

 1

 10

 100

1 10 25 50 75 100

T
im

e
(in

 s
ec

)

BO LQ LQPR

(b) Varying T (in thousands)

 10

 100

 1000

1 5 10 15 20

T
im

e
(in

 s
ec

)

BO LQ LQPR

(c) # of objects n (in thousands)

 1

 10

 100

10-4 10-3 10-2 10-1 100

T
im

e
(in

 s
ec

)

BO LQ LQPR

(d) Probability parameter m

Figure 3: Performance evaluation on the synthetic data

7. CONCLUSION
We introduce the loyalty queries for a variety of applications.

We present efficient algorithms to answer the top-k loyalty queries.
We prove the lower bound cost of the problem and present a de-
tailed complexity analysis to show that our algorithm is optimal.
We verify this by an experimental evaluation and demonstrate the
efficiency of our approach.
Acknowledgments: The third author is partially supported by
ARC DP0987557, ARC DP110102937, ARC DP120104168 and
NSFC61021004.

8. REFERENCES
[1] Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile

data. J. Algorithms 31(1), 1–28 (1999)
[2] Bentley, J.L., Ottmann, T.: Algorithms for reporting and counting

geometric intersections. IEEE Trans. Computers 28(9) (1979)
[3] Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.:

Multi-guarded safe zone: An effective technique to monitor moving
circular range queries. In: ICDE. pp. 189–200 (2010)

[4] Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence zone:
Efficiently processing reverse k nearest neighbors queries. In: ICDE.
pp. 577–588 (2011)

[5] Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: Processing moving queries
over moving objects using motion-adaptive indexes. IEEE Trans.
Knowl. Data Eng. 18(5), 651–668 (2006)

[6] Hershberger, J.: Finding the upper envelope of n line segments in o(n
log n) time. Inf. Process. Lett. 33(4), 169–174 (1989)

[7] Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: Semantics
and evaluation techniques for window aggregates in data streams. In:
SIGMOD Conference. pp. 311–322 (2005)

[8] Russel, D., Karavelas, M.I., Guibas, L.J., Guibas, L.J.: A package for
exact kinetic data structures and sweepline algorithms. (2007)

[9] Shen, Z., Cheema, M.A., Lin, X.: Loyalty-based retrieval of objects
that satisfy criteria persistently. In: UNSW Technical Report, 2012.
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201224.pdf

[10] Wang, S., Rundensteiner, E.A., Ganguly, S., Bhatnagar, S.,
Bhatnagar, S.: State-slice: New paradigm of multi-query
optimization of window-based stream queries. In: VLDB. pp.
619–630 (2006)

[11] Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing
of continuous k-nearest neighbor queries in spatio-temporal
databases. In: ICDE. pp. 643–654 (2005)

[12] Zhang, R., Koudas, N., Ooi, B.C., Srivastava, D.: Multiple
aggregations over data streams. In: SIGMOD Conference. pp.
299–310 (2005)

