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Abstract. Continuous monitoring of spatial queries has received signif-
icant research attention in the past few years. In this paper, we propose
two efficient algorithms for the continuous monitoring of the constrained
k nearest neighbor (kNN) queries. In contrast to the conventional k near-
est neighbors (kNN) queries, a constrained kNN query considers only the
objects that lie within a region specified by some user defined constraints
(e.g., a polygon). Similar to the previous works, we also use grid-based
data structure and propose two novel grid access methods. Our pro-
posed algorithms are based on these access methods and guarantee that
the number of cells that are accessed to compute the constrained kNNs
is minimal. Extensive experiments demonstrate that our algorithms are
several times faster than the previous algorithm and use considerably
less memory.

1 Introduction

With the availability of inexpensive position locators and mobile devices, contin-
uous monitoring of spatial queries has gained significant research attention. For
this reason, several algorithms have been proposed to continuously monitor the
k nearest neighbor (kNN) queries [1–3], range queries [13, 4] and reverse nearest
neighbor queries [5, 6] etc.

A k nearest neighbors (kNN) query retrieves k objects closest to the query.
A continuous kNN query is to update the kNNs continuously in real-time when
the underlying data issues updates. Continuous monitoring of kNN queries has
many applications such as fleet management, geo-social networking (also called
location-based networking), traffic monitoring, enhanced 911 services, location-
based games and strategic planning etc. Consider the example of a fleet man-
agement company. A driver might issue a kNN query to monitor their k closest
vehicles and may contact them from time to time to seek or provide assistance.
Consider another example of the location based reality game BotFighter in which
the players are rewarded for shooting the other nearby players. To be able to
earn more points, the players might issue a continuous kNN query to monitor
their k closest players.

We are often required to focus on the objects within some specific region. For
example, a user might be interested in finding the k closest gas stations in North-
East from his location. Constrained kNN queries [7] consider only the objects



that lie within a specified region (also called constrained region). We formally
define the constrained kNN queries in Section 2.1. In this paper, we study the
problem of continuous monitoring of constrained kNN queries.

The applications of the continuous constrained kNN queries are similar to the
applications of kNN queries. Consider the example of the fleet management com-
pany where a driver is heading towards the downtown area. The driver might
only be interested in k closest vehicles that are within the downtown area. Con-
sider the example of BotFighter game, the players might only be interested in
the k closest players within their colleges so that they could eliminate their
fellow students. Continuous constrained kNN queries are also used to contin-
uously monitor reverse kNN queries. For example, six continuous constrained
kNN queries are issued in [5, 8] to monitor the set of candidate objects. Simi-
larly, constrained NNs are retrieved in [6] to prune the search space.

Although previous algorithms can be extended to continuously monitor con-
strained kNN queries, they are not very efficient because no previous algorithm
has been specifically designed for monitoring constrained kNN queries. In this
paper, we design two simple and efficient algorithms for continuous monitoring
of constrained kNN queries. Our algorithms significantly reduce the computation
time as well as the memory usage. The algorithms are applicable to any arbitrary
shape of constrained region as long as a function is provided that checks whether
a point or a rectangle intersects the constrained region or not. Our contributions
in this paper are as follows;

– We introduce two novel grid access methods named Conceptual Grid-tree and
ArcTrip. The proposed access methods can be used to return the grid cells
that lie within any constrained region in order (ascending or descending) of
their proximity to the query point.

– We propose two efficient algorithms to continuously monitor constrained kNN
queries based on the above mentioned grid access methods. It can be proved
that both the algorithms visit minimum number of cells to monitor the con-
strained kNN queries. Our algorithms significantly reduce the computational
time and the memory consumption.

– Our extensive experiments demonstrate significant improvement over previous
algorithms in terms of computation time and memory usage.

2 Background Information

2.1 Preliminaries

Definition 1. Let O be a set of objects, q be a query point and R be a constrained
region. Let OR ⊆ O be a set of objects that lie within the constrained region R,
a constrained kNN query returns an answer set A ⊆ OR that contains k objects
such that for any o ∈ A and any o′ ∈ (OR − A), dist(o, q) ≤ dist(o′, q) where
dist is a distance metric assumed Euclidean in this paper.

Please note that a conventional kNN query is a special case of the constrained
kNN queries where the constrained region is the whole data space.

In dynamic environment, the objects and queries issue updates frequently. The
problem of continuous monitoring of constrained kNN queries is to continuously
update the constrained kNNs of the query.



Like many existing algorithms, we use time stamp model. In time stamp model,
the objects and queries report their locations at every time stamp (i.e., after ev-
ery t time units) and the server updates the results and reports to the client who
issued the query. Our algorithm consists of two phases: 1) In initial computation,
the initial results of the queries are computed; 2) In continuous monitoring, the
results of the queries are updated continuously at each time stamp.

Grid data structure is preferred [1] for the dynamic data sets because it can be
efficiently updated in contrast to the more complex data structures (e.g., R-trees,
Quad-trees etc). For this reason, we use an in-memory grid data structure where
entire space is partitioned into equal sized cells. The cell width in any direction
is denoted by δ. A cell c[i,j] denotes the cell at column i and row j. Clearly, an
object o lies into the cell c[⌊o.x/δ⌋, ⌊o.y/δ⌋] where o.x and o.y represent x and y
co-ordinate values of the object location.

Let q be a query, R be the constrained region and rec be a rectangle. Below,
we define minimum and maximum constrained distances.

Definition 2. Minimum constrained distance MinConstDist(rec, q) is the min-
imum distance of q to the part of the rectangle rec that lies in the constrained
region R. If rec completely lies outside the constrained region R then the mini-
mum constrained distance is infinity. The maximum constrained distance Max
ConstDist(rec, q) is defined in a similar way.

Please note that if the constrained region is a complex shape, computing the
minimum (maximum) constrained distance might be expensive or not possible.
In such cases, we use mindist(rec, q) and maxdist(rec, q) which denote mini-
mum and maximum distances of q from the rectangle rec, respectively. Fig. 1
shows examples of minimum and maximum constrained distances for two rect-
angles rec1 and rec2 where the constrained region is a rectangular region and
is shown shaded. We use these distances to avoid visiting un-necessary rectan-
gles. Please note that minimum and maximum constrained distances give better
bounds compared to minimum and maximum distances and hence we prefer to
use constrained distances if available.

Table 1 defines the notations used throughout this paper.
Notation Definition

o, q an object, a query
o.x, o.y, q.x, q.y the coordinates (x-axis, y-axis) of o and q

c, c[i, j] a cell c (at ith column and jth row)
dist(x, y) the distance between two points x and y
q.CkNN the set of constrained k nearest neighbors of q

δ the side length of a cell
R the constrained region

q.distk the distance between the kthNN and the query q

mindist(c, q), maxdist(c, q) minimum, maximum distance between q and the cell c
MinConstDist(c, q), minimum, maximum distance between q and the part
MaxConstDist(c, q) of cell c that lies in the constrained region

Table 1. Notations

2.2 Related Work

Ferhatosmanoglu et al. [7] are first to introduce the constrained kNN queries.
They solve the problem for static data objects and static queries. Their proposed
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solution traverses R-tree [9] in best-first [10] manner and prune the intermediate
entries by using several interesting pruning rules. They show that their technique
is optimal in terms of I/O. Gao et. al [11] studied the problem of finding k-nearest
trajectories in a constrained region.

Now, we focus on the related work on continuous nearest neighbor queries [12,
2, 3, 1, 5] where the queries and/or objects change their locations frequently and
the results are to be updated continuously. Voronoi diagram based approaches
(e.g., [13]) have also been proposed for the conventional kNN queries but they
are mainly designed for the case when only the queries are moving.

Grid data structures are preferred when the underlying datasets issue frequent
updates. This is because more complex structures (e.g., R-tree) are expensive
to update [1]. For this reason, several algorithms [2, 3, 1, 5] have been proposed
that use grid-based data structure to continuously monitor kNN queries. .

Most of the grid-based kNN algorithms [2, 3, 1, 14] iteratively access the cells
that are close to the query location. Below, we briefly introduce CPM [1] because
it is a well-known algorithm for continuously monitoring kNN queries. Also,
to the best of our knowledge, this is the only work for which an extension to
continuous constrained kNN queries has been presented.

CPM [1] organizes the cells into conceptual rectangles and assigns each rect-
angle a direction (right, down, left, up) and a level number (the number of cells
in between the rectangle and q as shown in Fig. 2). CPM first initializes an
empty min-heap H . It inserts the query cell cq and the level zero rectangles (R0,
D0, L0, U0) with the keys set to minimum distances between the query and
the rectangles/cell into H . The entries are de-heaped iteratively. If a de-heaped
entry e is a cell then it checks all the objects inside the cell and updates q.kNN
(the set of kNNs) and q.distk (the distance of current kthNN from q). If e is a
rectangle, it inserts all the cells inside the rectangle and the next level rectangle
in the same direction into the heap. The algorithm stops when the heap becomes
empty or when e has minimum distance from query not less than q.distk. The
Fig. 2 shows 1NN query where the NN is o1. The algorithm accesses the shaded
cells. For more details, please see [1].

CPM can also be used to answer continuous constrained kNN queries by mak-
ing a small change. More specifically, only the rectangles and cells that intersect
the constrained region are inserted in the heap. Fig. 3 shows an example where
the constrained region is a polygon. The constrained NN is o2 and the rectangles
shown shaded are inserted into the heap.



2.3 Motivation

At the end of Section 2.2, we briefly introduced how CPM can be used to an-
swer continuous constrained kNN queries. Fig. 3 shows the computation of a
constrained kNN query and the rectangles that were inserted into the heap are
shown shaded. Recall that whenever CPM de-heaps a rectangle, it inserts all
the cells into the heap. In the case of a constrained kNN queries, it inserts only
the cells that intersect the constrained region. Please note that it may require
to check a large number of cells to see if they intersect the constrained region
or not. In the example of Fig. 3, for every shaded cell, CPM checks whether it
intersects the constrained region or not.

The problem mentioned above motivates us to find a more natural grid access
method. In this paper, we present two novel access methods called Conceptual
Grid-tree and ArcTrip. Then, we introduce our algorithms based on these access
methods which significantly perform better than CPM.

3 Grid-Tree Based Algorithm

In this section, first we revisit the Conceptual Grid-tree we briefly introduced
in [6] to address a different problem. Then, we present Grid-tree based algorithm
to continuously monitor the constrained kNN queries.

3.1 The Conceptual Grid-tree

Consider a grid that consists of 2n × 2n cells (Fig. 4 shows an example of a 4× 4
grid). The grid is treated as a conceptual tree where the root contains 2n × 2n

grid cells1. Each entry e (and root) is recursively divided into four children of
equal sized rectangles such that each child of an entry e contains x/4 cells where
x is the number of cells contained in e. The leaf level entries contain four cells
each (the root, intermediate entries and the grid cells are shown in Fig. 4).

Please note that the Grid-tree is just a conceptual visualization of the grid
and it does not exist physically (i.e., we do not need pointers to store entries and
its children). More specifically, the root is a rectangle with each side of length 1
(we assume unit space). To retrieve the children of an entry (or root), we divide
its rectangle into four equal sized rectangles such that each child has side length
l/2 where l is the side length of its parent. A rectangle with side length equal to
δ (the width of a gird cell) refers to a cell c[i, j] of the grid. The cell c[i, j] can
be identified by the coordinates of the rectangle. More specifically, let a be the
center of the rectangle, then the cell c[i, j] is c[⌊a.x/δ⌋, ⌊a.y/δ⌋].

3.2 Initial Computation

Algorithm 1 presents the technique to compute the initial results of a constrained
kNN query using the Conceptual Grid-tree. The basic idea is similar to that of
applying BFS search [10] on R-tree based data structure. More specifically, the
algorithm starts by inserting the root of the Grid-tree into a min-heap H (root

1 If the grid size is not 2n × 2n, it can be divided into several smaller grids such that
each grid is 2i ×2i for i > 0. For example, a 8×10 grid can be divided into 5 smaller
grids (i.e., one 8 × 8 grid and four 2 × 2 grids).



is a rectangle with side length 1). The algorithm iteratively de-heaps the entries.
If a de-heaped entry e is a grid cell then it looks in this cell and update q.CkNN
and q.distk where q.CkNN is the set of constrained kNNs and q.distk is the
distance of kth nearest neighbor from q (lines 7 and 8). If q.CkNN contains less
than k objects, then q.distk is set to infinity. Recall that to check whether an
entry e is a grid cell or not, the algorithm only needs to check if its side width
is δ.

Algorithm 1 Grid-based Initial Computation

Input: q: query point; k: an integer
Output: q.CkNN
1: q.distk=∞; q.CkNN = φ; H = φ
2: Initialize the H with root entry of Grid-Tree
3: while H 6= φ do
4: de-heap an entry e
5: if MinConstDist(e, q) ≥ q.distk then
6: return q.CkNN
7: if e is a cell in the grid then
8: update q.CkNN and q.distk by the objects in e
9: else

10: for each of the four children c do
11: if c intersects the constrained region then
12: insert c into H with key MinConstDist(c, q)
13: return q.CkNN

If the de-heaped entry e is not a grid cell, then the algorithm inserts its children
into the heap H according to their minimum constrained distances2 from q. A
child c that does not intersect the constrained region is not inserted (lines 10
to 13). The algorithm terminates when the heap becomes empty or when a de-
heaped entry e has MinConstDist(e, q) ≥ q.distk (line 5). This is because any
cell c for which MinConstDist(c, q) ≥ q.distk cannot contain an object that lies
in the constrained region and is closer than the kth nearest neighbor. Since the
de-heaped entry e has MinConstdist(e, q) ≥ q.distk, every remaining entry e′

has MinConstDist(e′, q) ≥ q.distk because the entries are accessed in ascending
order of their minimum constrained distances.

root

Grid cells

Intermediate entries

Fig. 4. The Conceptual
Grid-tree

Fig. 5. Illustration of Al-
gorithm 1

Fig. 6. Illustration of the
pruned entries

2 Recall that we use minimum distance in case the constrained region is a complex
shape such that minimum constrained distance computation is either complicated
or not possible.



Example 1. Fig. 5 shows an example of a constrained kNN (k = 1) query q and
the constrained region is a polygon (we assume that the function to compute
minimum constrained distance is not available, so we use minimum distance). To
illustrate the working of our algorithm, the entries of the Grid-tree are shown in
Fig. 6. An entry C[i→j] refers to the rectangle that encloses the cells ci, ci+1, ..., cj .
For example, C[9→12] refers to the top-left small rectangle that contains the cells
c9, c10, c11 and c12. To further improve the illustration, we show the steps of the
execution in Table 1. Please refer to Fig. 5, 6 and Table 1 for rest of the example.
Below, we explain the execution of the algorithm for some of the steps.
1. The root of the tree is inserted in the heap. The set of q.CkNN is set to
empty and q.distk is set to infinity.
2. Root is de-heaped. Its children R1, R2 and R4 are not inserted into the heap
because they do not intersect the constrained region. The only child that is
inserted is C[1→16].
3. C[1→16] is de-heaped and all four children are inserted in the heap because
they intersect the constrained region.
4. C[5→8] is de-heaped and its children (cells c5, c6, c7 and c8) are inserted in
the heap.
5-8. The cells c6, c5, c7 and c8 are de-heaped in this order and the algorithm
looks for the objects that lie inside it. Only one object o1 is found (in cell c7)
but it lies outside the constrained region so it is ignored.

The algorithm continues in this way.

Step Deheaped Entries Heap content q.CkNN q.distk

1 φ root φ ∞
2 root C[1→16] φ ∞
3 C[1→16] C[5→8], C[1→4], C[13→16], C[9→12] φ ∞
4 C[5→8] c6, c5, c7, c8, C[1→4], C[13→16], C[9→12] φ ∞
5-8 c6, c5, c7, c8, C[1→4], C[13→16], C[9→12] φ ∞
9 C[1→4] c2, C[13→16], c3, c1, C[9→12], c4 φ ∞
10 c2 C[13→16], c3, c1, C[9→12], c4 φ ∞
11 C[13→16] c14, c3, c13, c15, c1, C[9→12], c16, c4 φ ∞
12 c14 c3, c13, c15, c1, C[9→12], c16, c4 φ ∞
13 c3 c13, c15, c1, C9−12, c16, c4 o3 dist(o3, q)
14 c13 c15, c1, C[9→12], c16, c4 o2 dist(o2, q)
15 c15 c1, C[9→12], c16, c4 o2 dist(o2, q)

Table 2. Grid-tree access

13. At step 13, the cell c3 is de-heaped and an object o3 is found that lies in the
constrained region. q.CkNN is updated to o3 and q.distk is set to dist(o3, q).
14. c13 is de-heaped and an object o2 is found. Since o2 is closer to q than o3,
o3 is deleted from q.CkNN and o2 is inserted. q.distk is set to dist(o2, q).
15. The next de-heaped cell c15 has mindist(c15, q) ≥ dist(o2, q) so the algorithm
terminates and o2 is returned as the answer.

3.3 Continuous Monitoring

Data Structure: The system stores a query table and an object table to record
the information about the queries and the objects. More specifically, an object
table stores the object id and location of every object. The query table stores
the query id, query location and the set of its constrained kNNs.



Each cell of the grid stores two lists namely object list and influence list. The
object list of a cell c contains the object id of every object that lies in c. The
influence list of a cell c contains the id of every query q that has visited c (by
visiting c we mean that it has considered the objects that lie inside it (line 8
of Algorithm 1)). The influence list is used to quickly identify the queries that
might have been affected by the object movement in a cell c.
Handling a single update: In the timestamp model, the objects report their
locations at every timestamp (i.e., after every t time units). Assume that an
object o reports a location update and oold and onew correspond to its old and
new locations, respectively. The object update can affect the results of a query
q in the following three ways;

1. internal update: dist(oold, q) ≤ q.distk and dist(onew, q) ≤ q.distk; clearly,
only the order of the constrained kNNs may have been affected, so we update
q.CkNN accordingly.

2. incoming update: dist(oold, q) > q.distk and dist(onew , q) ≤ q.distk; o is in-
serted in q.CkNN

3. outgoing update: dist(oold, q) ≤ q.distk and dist(onew, q) > q.distk; o is not a
constrained kNN anymore, so we delete it from q.CkNN .

It is important to note that dist(o, q) is considered infinity if o lies outside the
constrained region. Now, we present our complete update handling module.
The complete update handling module: The update handling module con-
sists of two phases. In first phase, we receive the query and object updates and
reflect their effect on the results. In the second phase, we compute the final
results. Algorithm 2 presents the details.

Algorithm 2 Continuous Monitoring

Input: location updates
Output: q.CkNN
Phase 1: receive updates
1: for each query update q do
2: insert q in Qmoved

3: for each object update o do
4: Qaffected = coold

.Influence list ∪ conew
.Influence list

5: for each query q in (Qaffected − Qmoved) do
6: if internal update; update the order of q.CkNN
7: if incoming update; insert o in q.CkNN
8: if outgoing update; remove o from q.CkNN

Phase 2: update results
9: for each query q do

10: if q ∈ Qmoved; call initial computation module
11: if |q.CkNN | ≥ k; keep top k objects in q.CkNN and update q.distk

12: if |q.CkNN | < k; expand q.CkNN

Phase 1: First, we receive the query updates and mark all the queries that have
moved (line 1 to 2 ). For such queries, we will compute the results from scratch
(similar to CPM). Then, for each object update, we identify the queries that
might have been affected by this update. It can be immediately verified that
only the queries in the influence lists of cold and cnew may have been affected
where cold and cnew denote the old and new cells of the object, respectively.
For each affected query q, the update is handled (lines 5 to 8) as mentioned
previously (e.g., internal update, incoming update or outgoing update).



Phase 2: After all the updates are received, the results of the queries are updated
as follows; If a query is marked as moved, its results are computed by calling
the initial computation algorithm. If q.CkNN contains more than k objects in
it (more incoming updates than the outgoing updates), the results are updated
by keeping only the top k objects. Otherwise, if q.CkNN contains less than k
objects, we expand the q.CkNN so that it contains k objects.

The expansion is similar to the initial computation algorithm except the fol-
lowing change. The cells that have MaxConstDist(c, q) ≤ q.distk are not in-
serted into the heap. This is because such cells are already visited.

3.4 Remarks

A cell c is called visited if the algorithm retrieves the objects that lie inside it. The
number of visited cells has direct impact on the performance of the algorithm.
Our algorithm is optimal3 in the sense that it visits minimum number of cells
(i.e., if any of these cells are not visited, the algorithm may report incorrect
results). Moreover, the correctness of the algorithm follows from the fact that it
visits all such cells. Due to space limitations, we omit the proof of correctness
and the optimality. However, the proof is very similar to the proof for a slightly
different problem (please see Chapter 4.5 of [15]).

We would like to remark that the Conceptual Grid-tree provides a robust
access method that can be used to access cells in order of any preference function.
For example, it can be naturally extended to access cells in decreasing order of
their minimum L1 distances from the query point. As another example, in [4]
we use grid-tree to access the cells in order of their minimum distances to the
boundary of a given circle.

4 ArcTrip Based Algorithm

In this section, we first present a grid access method called ArcTrip. Then,
we present the algorithm to continuously monitor the constrained kNN queries
based on the ArcTrip.

4.1 ArcTrip

ArcTrip is a more general case of our previous work CircularTrip [16]. Given a
query point q and a radius r, the CircularTrip returns the cells that intersect the
circle centered at query location q and has radius r. More specifically, it returns
every cell c for which mindist(c, q) ≤ r and maxdist(c, q) > r. Fig. 7 shows the
CircularTrip where the shaded cells are returned by the algorithm.

The algorithm maintains two directions called Dcur and Dnext (Fig. 7 shows
the directions for the cells in different quadrants based on the location of q). The
main observation is that if a cell c intersects the circle then at least one of the
cells in either direction Dcur or Dnext also intersects the circle. The algorithm
starts with any cell that intersects the circle. It always checks the cell in the

3 The proof assumes that the functions to compute minimum and maximum con-
strained distances are available. Moreover, the case when the query changes its loca-
tion is exception to the claim of optimality (we choose to compute the results from
scratch when the query moves).



direction Dcur and returns the cell if it intersects the circle. Otherwise, the cell
in the direction Dnext is returned. The algorithm stops when it reaches the cell
from where it had started the CircularTrip.
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Given a query point q, radius r and angle range〈θst, θend〉, ArcTrip returns
every cell c that i) intersects the circle of radius r with center at q and ii) lies
within the angle range 〈θst, θend〉. Note that when the angle range is 〈0, 2π〉,
ArcTrip is same as the CircularTrip. In Fig. 8, ArcT rip(q, r, 〈θst, θend〉) returns
the shaded cells. ArcTrip works similar to the CircularTrip except that it starts
with a cell cstart that intersects the circle at angle θst and stops when the next
cell to be returned is outside the angle range.

4.2 Initial Computation

Let 〈θst, θend〉 be the angle range that covers the constrained region and the
minimum distance of the constrained region from the query q is mindist(q, R)
(as shown in Fig. 9). The basic idea of the ArcTrip based algorithm is to call
ArcTrip with the angle range 〈θst, θend〉 and radius r set to mindist(q, R). The
radius is iteratively increased by δ (the cell width) and the returned cells are
visited in ascending order of their minimum distances from the query unless k
constrained NNs are found. It can be guaranteed that the algorithm does not
miss any cell if the radius is iteratively increased by δ [16].

Algorithm 3 shows the details of the initial computation. The radius r of the
ArcTrip is set to mindist(q, R). The algorithm inserts the cells returned by the
ArcTrip(q, r, 〈θst, θend〉) into a min-heap if they intersect the constrained region
(lines 4 and 5).

The cells are de-heaped iteratively and q.CkNN and q.distk are updated
accordingly (line 9). When the heap becomes empty, the algorithm calls ArcTrip
by increasing the radius (i.e., r = min{r + δ, q.distk}). The returned cells are
again inserted in the heap (lines 10 to 13). Note that the ArcTrip may returns
some cells that were visited before, so such cells are not inserted in the heap
(line 13).

The algorithm stops when the heap becomes empty or when the next de-
heaped entry has MinConstDist(e, q) ≥ q.distk (line 8). The proof of correct-
ness and the proof that the algorithm visits minimum possible cells is similar to
Theorem 1 in [16].

Example 2. Fig. 9 shows the computation of a constrained NN query. Initially,
the ArcTrip is called with radius r set to mindist(q, R) and the light shaded



Algorithm 3 ArcTrip Based Initial Computation

Input: q: query point; k: an integer
Output: q.CkNN
1: q.distk=∞; q.CkNN = φ; H = φ
2: compute mindist(q, R) and 〈θst, θstart〉
3: r = mindist(q, R)
4: for each cell c returned by ArcTrip(q, r, 〈θst, θend〉) do
5: insert c in H with key MinConstDist(c, q) if it intersects the constrained region
6: while H 6= φ do
7: de-heap an entry e
8: If MinConstDist(e, q) ≥ q.distk; return q.CkNN
9: update q.CkNN and q.distk by the objects in e

10: if H = φ then
11: r = min{r + δ,q.distk}
12: for each cell c returned by ArcTrip(q, r, 〈θst, θend〉) do
13: insert c into H with key MinConstDist(c, q) if the cell is not visited before

and intersects the constrained region
14: return q.CkNN

cells are returned. The dotted cells are not inserted in the heap because they
do not intersect the constrained region. Other light shaded cells are visited in
ascending order but no valid object is found. ArcTrip is now called with the
radius increased by δ and the dark shaded cells are returned. Upon visiting these
cells, the object o2 and o3 are found. Since o2 is closer, it is kept in q.CkNN
and q.distk is set to dist(o2, q). Finally, ArcTrip with radius q.distk is called to
guarantee the correctness. No cell is inserted in the heap because all the cells
returned by ArcTrip have been visited. The algorithm terminates and reports o2

as the result.

4.3 Continuous Monitoring

The continuous monitoring algorithm (and the data structure) is similar to the
continuous monitoring of Grid-based algorithm (Algorithm 2) except the way
q.CkNN is expanded at line 12. The set of constrained kNNs is expanded in a
similar way to the initial computation module described above except that the
starting radius of ArcTrip is set to r = q.distk.

4.4 Remarks

Similar to the Grid-tree based algorithm, ArcTrip based algorithm is optimal in
number of visited cells. The proof of optimality and correctness is also similar
(due to space limits, we do not present the proofs and refer the readers to [15]).

ArcTrip is expected to check lesser number of cells that intersect the con-
strained region as compared to the Grid-tree based access method. However,
retrieving the cells that intersect the circle is more complex than the Grid-tree
based access method. In our experiments, we found that both the algorithms
have similar overall performance. Similar to the grid-based access method, Arc-
Trip can be used to access cells in increasing or decreasing order of minimum or
maximum Euclidean distance of the cells from q.

We remark that although we observed in our experiments that the grid-tree
based algorithm and ArcTrip-based algorithm demonstrate very similar perfor-
mance, they are two substantially different grid access methods. The proposed



Parameter Range

Grid Size 162, 322, 642,1282, 2562, 5122

Number of objects (×1000) 20, 40, 60, 80, 100

Number of queries 100, 200, 500, 1000, 2500, 5000
Value of k 2, 4, 8, 16, 32, 64, 128
Object/query Speed slow, medium, fast
Object/query agility (in %) 10, 30, 50, 70, 90

Table 3. System Parameters

grid access methods can be applied to several other types of queries (e.g., fur-
thest neighbor queries). It would be interesting to compare the performance of
both proposed access methods for different types of queries and we leave it as
our future work.

5 Experiments

In this section, we compare our algorithms GTree (Grid-tree algorithm) and
ARC (ArcTrip algorithm) with CPM [1] which is the only known algorithm
for continuous monitoring of the constrained kNN queries. In accordance with
the experiment settings in [1], we use Brinkhoff data generator [17] to generate
objects moving on the road network of Oldenburg, a German city. The agility of
object data sets corresponds to the percentage of objects that reports location
updates at a given time stamp. The default speeds of generator (slow, medium
and fast) are used to generate the data sets. If the data universe is unit, the
objects with slow speed travel the unit distance in 250 time stamps. The medium
and fast speeds are 5 and 25 times faster, respectively. The queries are generated
similarly. Each query is monitored for 100 time stamps and the total time is
reported in the experiments. In accordance with [7], for each query, a random
constrained region is generated with random selectivity (i.e., a rectangle at a
random location with randomly selected length and width). Table 3 shows the
parameters used in our experiments and the default values are shown in bold.

Effect of grid size Since we use grid structure, we first study the effect of grid
cardinality in Fig. 10. Fig. 10(a) shows the performance of each algorithm on
different grid sizes with other parameters set to default values. In accordance
with previous work that use grid based approach, the performance degrades
if the grid size is too small or too large. More specifically, if the grid has too
low cardinality, the cost of constrained kNN queries increase because each cell
contains larger number of objects. On the other hand, if the grid cardinality is
too high then many of the cells are empty and the number of visited cells is
increased.

We compare the initial computation costs of the three algorithms in Fig. 10(b).
The initial computation costs of our algorithms are several times better than
CPM.

In Section 2.3, we showed an example that CPM may process a large number of
entries (rectangles, cells and objects) to see if they intersect with the constrained
region. Although several other factors contribute to the query execution cost, the
number of entries for which the intersection is checked is one of the major factors
that affect the query cost.
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Fig. 10. Effect of Grid Size

Fig. 10(c) shows the number of entries (rectangles, cells and objects) for which
the intersection with the constrained region is checked. As expected, the number
is large if the cells are too large or too small. If the cells are large, the number
of objects for which the intersection is checked is large. On the other hand, if
the cells are small, the number of cells (and conceptual rectangles) for which
the intersection is checked is large. When grid cardinality is low, all three algo-
rithms process similar number of entries. This is because most of the entries are
objects inside the cells. Since each algorithm visits similar number of cells when
cardinality is low, all the objects within each cell are checked for the intersection.
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Fig. 11 compares the memory usage of the three algorithms. GTree and Arc-
Trip based algorithm both store the same data structure and hence have same
memory usage. To efficiently update the results, for each query, the CPM stores
the heap and a visit list (the visit list contains the cells that have been visited
by the query). The percentage on top of the bars represents the ratio of the
memory usage of the algorithms (e.g., 62% means that our algorithms require
62% of the total memory used by CPM).

Effect of k values Fig. 12 studies the effect of k on all the algorithms. Clearly,
our algorithms outperform CPM for all k values. Interestingly, both of our algo-
rithms show very similar performances and trends for most of the data settings.
We carefully conducted the experiments and observed that the initial computa-
tion cost and the cost for expanding q.CkNN (line 12 of Algorithm 2) of both
algorithms is similar. The way queries are updated is also similar. Hence, for
most of the data settings, they have similar performances and trends.

We observe that all three algorithms are less sensitive for small values of k.
This is because each cell contains around 30 objects on average for the default
grid size. For small k values, a small number of cells are visited to compute the
results. Hence, the main cost for small k values is identifying the cells that lie
in the constrained region.



Fig. 13 shows the memory usage of each algorithm for different k values.
The memory usage is increased with k. As explained earlier, the change is less
significant for small k values because the number of cells visited is almost same
when k is small.

Effect of data size We study the performance of each algorithm for different
object and query data sets. More specifically, Fig. 14 shows the total query
execution time for data sets with different number of objects. The cost of all
algorithms increase because the algorithms need to handle more location updates
for larger data sets.
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Fig. 15 shows the time for each algorithm for the data sets with different
number of queries. Both of our algorithms show similar performance and scale
better than CPM. CPM is up to around 4 times slower than our algorithms.

Effect of speed In this Section, we study the effect of object and query speed
on the computation time. Fig. 16 and 17 show the effect of object and query
speed, respectively. As noted in [1] for kNN queries, we observe that the speed
does not affect any of the three constrained kNN algorithms
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Fig. 19. Query agility

Effect of agility As described earlier, agility corresponds to the percentage of
objects (or queries) that issues location updates at a given time stamp. Fig. 18
studies the effect of data agility. As expected, the costs of all algorithms increase.
This is because the algorithms need to handle more object updates as the agility
increases.

Fig. 19 shows the effect of query agility. The cost of CPM increases with in-
crease in query agility because whenever a query changes the location the results
are computed from scratch. Interestingly, the query agility does not have a sig-
nificant effect on our algorithms. This is mainly because the initial computation
cost (the case when a query moves) is not significantly higher than the update
cost.



6 Conclusion

We propose two continuous constrained kNN algorithms based on two novel
grid access methods. The proposed algorithms are optimal in the sense that
they visit minimum number of cells to monitor the queries. Moreover, they use
significantly less memory compared to the previous algorithm. Extensive experi-
ments demonstrate that our algorithms are several times faster than the previous
algorithm.
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