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Abstract. Finding the most accessible locations has a number of appli-
cations. For example, a user may want to find an accommodation that is
close to different amenities such as schools, supermarkets, and hospitals
etc. In this paper, we study the problem of finding the most accessible
locations among a set of possible sites. The task is converted to a top-k
query that returns k points from a set of sites R with the best accessi-
bilities. Two R-tree based algorithms are proposed to answer the query
efficiently. Experimental results show that our proposed algorithms are
several times faster than a baseline algorithm on large-scale real datasets
under a wide range of parameter settings.

1 Introduction

Optimal location problems have received significant research attention in the
past[9, 21]. In this paper, we study a new problem that finds the sites with the
best accessibilities to amenities. Consider the example of a person who wants
to rent an apartment. He may be interested in finding an apartment such that
different amenities are close to it (e.g., it has a restaurant, a bus stop and a
super market nearby). The person may specify different types of amenities that
are of his interest. The accessibility of an apartment can be defined based on
its closest amenity of each type. Furthermore, the person may define a scoring
function such that it gives higher priority to certain types of amenities (e.g., a
nearby bus stop may be more important than a nearby restaurant). We allow
the users to define a monotonic scoring function to set such preferences. Formal
definition is given in Section 2.

Similar to the existing work on the other versions of facility location problems
[9, 21], our focus is on solving the problem in Euclidean space. Also, we focus on
the case where the accessibility of a site depends on the closest amenity of each
type. Nevertheless, we remark that the pruning rules presented in this paper can
be extended to the case where the accessibility depends on m-closest amenities
of each type.

Several approaches have been proposed to solve the all nearest neighbors prob-
lem (ANN) [22, 7, 10] and aggregate nearest neighbor problem [15, 14, 16]. How-
ever, these techniques only consider one type of amenity and cannot be efficiently



applied to our problem. Nevertheless, we use these techniques to design a baseline
algorithm and show that our proposed algorithms perform significantly better
than the baseline algorithm.

We propose two efficient R-tree based algorithms. The first algorithm con-
structs indexes for different types of amenities in separate R-trees, and traverses
the R-trees in parallel to progressively output top-k query results. The second
algorithm indexes the different types of amenities in a single R-tree and demon-
strates better performance in most of the settings. Both algorithms carefully
exploit the lower bound of the accessibility scores with several non-trivial opti-
mizations applied.

Another important feature of our algorithms is that we progressively report
the best sites in an order of their accessibility scores. Such progressive/incre-
mental answer may be useful in many interactive applications and a user may
terminate the algorithm if he is satisfied with first j results (where j < k).

Below we summarize our contributions.

– We proposed two algorithms to find top-k accessible sites among a set of
possible locations. Unlike traditional algorithms, our algorithms are able to
compute the results progressively.

– We developed several non-trivial pruning and optimization techniques that
can be integrated into the two proposed algorithms in order to reduce the I/O
cost and running time.

– We performed experiments on several real datasets. Our proposed algorithms
are shown to outperform the baseline algorithm in all settings.

The rest of the paper is organized as follows: Section 2 gives the problem
definition and introduces a baseline algorithm to the problem. We propose two
main algorithms in Section 3. Several optimizations to the main algorithms are
presented in Section 4. We present and analyze experimental results in Section 5,
and survey related work in Section 6. Section 7 concludes the paper.

2 Preliminaries

In this section, we define the problem and introduce a baseline algorithm based
on R-trees.

2.1 Problem Definition

We define R and S as two spatial datasets, and each point s in S is assigned
a type i. Let |T | be the total number of types. A distance metric d(r, s) mea-
sures the Euclidean distance between two points r and s. For a point r ∈ R, let
NN(r, Si) be the nearest point of type i from r. The accessibility cost cr of r is
given by the formula below;

cr = f(d(r, NN(r, S1)), · · · , d(r, NN(r, S|T |)). (1)



where f() is a monotonic scoring function that takes |T | values as parameters
and returns a single value1. Our goal is to find k points from R, such that their
accessibility costs are the smallest among all the points in R.

2.2 All Nearest Neighbor Algorithm

An immediate solution to the proposed top-k problem is to borrow the tech-
niques from all nearest neighbor queries [10, 22, 7, 12, 2, 8]. For each point r in
R, we enumerate its nearest neighbors of each type in S, compute the accessibil-
ity cost for r, and then output the k points with the smallest accessibility costs.
Existing algorithms for computing all nearest neighbor queries presume the data
points are indexed by an R-tree [11] and use various optimizations to reduce the
search space.

First, we build an R-tree IR on the points in R, and for each type of points
in S, we build a separate R-tree ISi

. Hence there are |T | + 1 R-trees. We then
probe these R-trees, starting from their roots.

In order to determine the access order of the nodes, we employ the following
two data structures:

Local Priority Queue (LPQ) Each node u in IR owns exactly one LPQ, a
min-heap that maps its entries to the nodes in ISi

. Each entry v in the priority
queue has two values mind and maxd, indicating the minimum distance from
u’s MBR to v’s MBR, and the maximum distance from u’s MBR to v’s MBR.
Figure 1 shows an example of two MBRs and their mind and maxd. The pri-
ority queue orders its entries by increasing mind values, while maxd values are
used for pruning unpromising entries. An LPQ also keeps two values minmind
and minmaxd, representing the smallest of the mind values among its entries,
and the smallest of the maxd values among its entries, respectively.

Global Priority Queue (GPQ) A min-heap maintains all the LPQs that are
generated when accessing the R-trees, ordered by increasing minmind. minmaxd
is used for pruning the LPQs that are guaranteed not to produce any nearest
neighbors.

LPQ and GPQ allow us to access the nodes with smallest lower bound of dis-
tance first, which are the most promising nodes. Additionally, we apply pruning
techniques to avoid accessing the nodes that cannot generate nearest neighbors
to the points in R. We only allow one LPQ for each node in IR, so that accessing
duplicate nodes in IR can be avoided.

The all nearest neighbor algorithm iterates through all the types in S. Within
each iteration for a type i, it starts with the root of IR and ISi

, and expands the
nodes in a bi-directional fashion [7, 19]. 2 The nearest neighbors are returned

1 For sake of simplicity, in rest of the paper, we consider that the monotonic
scoring function returns the sum of these |T | values. However, we remark that our
algorithms can be applied on any monotonic scoring function.

2 Although there exist alternative ways to expand nodes in R-trees, we choose
bi-directional expansion because it is shown to outperform others in extensive
experiments [7].



Fig. 1. Illustration of mind anx maxd

if the point level is reached in both IR and ISi
. After finish the tree expanding

for all the types in S, the k points with smallest accessibility costs are output
as final results to the top-k query.

The all nearest neighbor algorithm sequentially processes the points in S ac-
cording to types. The drawback is that IR will be traversed |T | times, and we
cannot obtain any results until all the types are processed. In addition, the algo-
rithm does not exploit the abundant information provided by the top-k results,
and hence the pruning power is very limited. In Section 3, we will show how
to traverse the R-trees simultaneously and output top-k results progressively, as
well as exploit the inherent information contained in these results.

3 Main Algorithm Frameworks

In this section, we give two basic algorithms to compute the k locations with
the smallest accessibility cost.

3.1 Separate-tree Method

The first algorithm is to choose the same indexes as the all nearest neighbor
algorithm, but traverse these trees in a parallel fashion. Since different types of
points in S are indexed in separate R-trees, we call this approach separate-tree

algorithm.
We still choose LPQ and GPQ as the data structures in separate-tree algo-

rithm. However, each entry u in IR owns |T | LPQs in separate-tree algorithm
because we expand the entries in R-trees in a parallel way. We call these LPQs
u’s LPQ group, still denoted LPQu, with which we are able to estimate the lower
bound of the accessibility costs for the points indexed in u. In u’s LPQ group,
we denote LPQu[i] the LPQ that maintains entries from ISi

, and calculate the
lower bound as

LBc =

|T |∑

i=1

LPQu[i].minmind.

A major difference from the all nearest neighbor method is that we arrange the
LPQs pushed to GPQ by increasing order of LBc. A fixed sized min-heap M is



used to keep the top-k results seen so far, and M [k] gives the temporary result
with k-th smallest accessibility cost. Before expanding entries to form new LPQ
groups, we compare the new LPQ groups’ LBc with M [k]’s accessibility cost,
and allow only those whose LBc are smaller than M [k]’s accessibility cost. Oth-
erwise they are guaranteed not to produce any results that can beat the current
temporary results.

Algorithm 1: SeparateTree (IR, IS)

for each point r in R do1

cr ← 0;2

M ← InitializeTempResults ; /* Store any k points as initial results */3

GPQ← ∅;4

for i = 1 to |T | do5

u← IR.root; v ← ISi
.root;6

LPQu[i]← ∅;7

LPQu[i].minmind ← +∞; LPQu[i].minmaxd ← +∞;8

SepTreePushAndUpdate(LPQu[i], v);9

GPQ.push(LPQu);10

while GPQ 6= ∅ do11

LPQu ← GPQ.pop();12

SepTreeExpandTrees(LPQu, GPQ);13

Algorithm 1 describes this parallel algorithm. We initialize the min-heap M

by choosing any k points as initial temporary results. These points are computed
for their all type nearest neighbors and accessibility costs. Like the all nearest
neighbor algorithm, the separate tree algorithm starts with the roots of IR and
all ISi

, and then expands the nodes in a bi-directional fashion. The first LPQ
group formed is owned by IR’s root, and the root of ISi

is inserted into priority
queues (Line 6 – 9). Then this LPQ group is pushed into a GPQ (Line 10).
We iteratively select an LPQ group from the GPQ, and expand nodes in both
R-trees IR and ISi

.

Algorithm 2: SepTreePushAndUpdate (LPQu[i], v)

if mind(u, v) < LPQu[i].minmaxd then1

LPQu[i].push(v);2

LPQu[i].minmind ← min(LPQu[i].minmind, mind(u, v));3

LPQu[i].minmaxd ← min(LPQu[i].minmaxd, maxd(u, v));4

LPQu.LBc ←
∑|T |

i=1
LPQu[i].minmind5

; /* update lower bound of accessibility cost */



Algorithm 3: SepTreeExpandTrees (LPQu, GPQ)

if u is a point then1

for i = 1 to |T | do2

while LPQu[i] 6= ∅ do3

v ← LPQu[i].pop();4

if v is a point then5

cu ← cu + d(u, v);6

if u’s NNs of all types are found and cu < M [k].cost then7

M.add(u, cu) ; /* update temp results */8

return9

else10

for each v′ ∈ v do11

SepTreePushAndUpdate(LPQu[i], v′);12

if LPQu.LBc < M [k].cost then GPQ.push(LPQu);13

else14

for each u′ ∈ u do15

LPQu[i]′ ← ∅; LPQu[i]′.minmind ← +∞; LPQu[i]′.minmaxd← +∞;16

for i = 1 to |T | do17

while LPQu[i] 6= ∅ do18

v ← LPQu[i].pop();19

if v is a point then20

for each u′ ∈ u do21

SepTreePushAndUpdate(LPQ′
u[i], v);22

else23

for each v′ ∈ v do24

for each u′ ∈ u do25

SepTreePushAndUpdate(LPQ′
u[i], v′);26

for each u′ ∈ u do27

if LPQu.LBc < M [k].cost then GPQ.push(LPQu);28

The expansion algorithm is shown in Algorithm 3. Given a node u in IR, the
entries in u’s LPQ group are popped, according to the order of mind. We identify
the nearest neighbor, add the distance to the the accessibility cost, and update
temporary results when point level is reached in both IR and ISi

(Line 8). Oth-
erwise, the children of both u and popped entry v paired to form new LPQ
groups. Specifically, for each type, we expand u and create a group for each of
its children u′, and the children of v is then inserted to the LPQ of u′. To avoid
accessing the nodes that cannot generate any nearest neighbors for the points in
u, we compare the nodes’ mind to u′ with the minmaxd of u′. Only if its mind is
smaller than u′’s minmaxd, we insert this node to u′’s LPQ (Line 1, Algorithm 2).
The values of minmind and minmaxd of the LPQ are updated once an entry is



inserted, and finally we check the LBc of new formed LPQ group before inserting
it into the GPQ (Line 13 and 28), since the temporary results in M can be used
to prune unnecessary LPQ groups. In addition, a temporary result is confirmed
as a final result if its accessibility cost is smaller than the LBc of the LPQ group
popped from GPQ. The results are progressively output with the execution of
the algorithm.

3.2 One-tree Method

The above separate-tree method adopts the same indexing scheme as the all near-
est neighbor algorithm. Here, we consider building indexes for the various types
of points in S in one tree. Although the estimation of LBc will be looser due to
multiple types indexed in the nodes of R-trees, we are able to achieve a more
efficient node expansion and hence better runtime performance.

We call this method one-tree algorithm. To record the type information, we add
an attribute to the nodes of the R-tree built on S. This new attribute maintained
in each node of IS is a type bitmap B of length |T | that indicates which types
of points are contained in (the descendants of) the node. The bit i is set to 1 if
the node or its descendants contain at least one point of type i, or 0 otherwise.

The one-tree algorithm follows the separate-tree algorithm framework, but dif-
fers in the generation of LPQs and lower bound estimations of accessibility costs.
Now we allow an LPQ to store entries of various types. In order not to miss any
real results due to abuse of types, the values of minmaxd are broken down into
specific types. We use the notation minmaxd[i] to capture the smallest of the
maxd values among its entries that contain points of type i. Before inserting an
entry to the LPQ, we check the type bitmap of the entry, and allow only the
entries whose mind is smaller than minmaxd[i] on at least one type i.

Similarly, minmind[i] stores the smallest of the mind among the entries that
contain points of type i. This is to estimate the lower bound of accessibility cost,
as given by the following equation:

LBc =

|T |∑

i=1

LPQu.minmind[i].

Algorithm 4 captures the pseudo-code of forming new LPQs and updating
LBc in the one-tree algorithm. Before inserting entry v into u’s LPQ, we check
the types contained in v. If the pair (u, v) can produce final top-k results, there
must be at least one type i such that v’s mind is smaller than LPQu’s minmaxd
[i]. We use a boolean variable flag to capture whether such type can be found.
If it is set to true, we insert v into u’s LPQ, and make necessary updates.

4 Optimizations on Existing Algorithms

In this section, we introduce several pruning and optimization techniques that
can be integrated into the two basic algorithm frameworks proposed in Section 3.



Algorithm 4: OneTreePushAndUpdate (LPQu, v)

flag ← false;1

for each type i in Bv do2

if mind(u, v) < LPQu.minmaxd[i] then flag ← true;3

if flag = true then4

LPQu.push(v);5

for each type i in Bv do6

LPQu.minmind[i]← min(LPQu.minmind[i], mind(u, v));7

LPQu.minmaxd[i]← min(LPQu.minmaxd[i], maxd(u, v));8

LPQu.LBc ←
∑|T |

i=1
LPQu.minmind[i];9

4.1 Break Ties in Priority Queues

In both separate-tree and one-tree algorithms, the entries in LPQs are arranged by
increasing order of mind. Consider a node u in IR, and an entry in its LPQ, v. If
u’s and v’s MBRs are overlapped, the value of mind will become zero. This often
happens for the high-level nodes in R-trees. To alleviate this problem, we break
ties by choosing the one with the smaller maxd if two entries have the same mind.

The same problem may occur in GPQ. We compute the upper bound of the
accessibility costs for the points indexed in u:

UBc =

|T |∑

i=1

LPQu.minmaxd[i].

The LPQ with the smaller UBc is chosen to break ties if there exist multiple
LPQs that have the equal value of LBc in GPQ.

4.2 Early Check to Avoid Unnecessary Expansion

In the basic separate-tree and one-tree algorithm, an entry v′ is checked for its
mind before it is inserted to u′’s LPQ. The LPQ admits only the entries whose
mind is smaller than the LPQ’s current minmaxd.

Since the entry v′ is expanded from its parent node v, we can check the mind

between u′ and v, and safely prune v′ from u′’s LPQ given that the mind(u′, v)
is larger than or equal to the minmaxd of u′. This is because mind(u′, v) ≤
mind(u′, v′).

We apply this optimization before expanding v by calculating the mind be-
tween u′ and v, so that the access to v’s children can be avoided if the minimum
distance between the two MBRs is too large.

4.3 Pre-update Temporary Results

The third major optimization is based on the observation that all the points
indexed in a node u may have smaller accessibility cost than the temporary



result M , and the number of points indexed in u exceeds k. We can verify this by
comparing UBc, the upper bound of the accessibility costs for the points indexed
in u, and the k-th temporary result’s cost. If the upper bound is smaller, the top-
k temporary results are to be updated in future expansions. In this case, the k-th
temporary result’s cost is updated beforehand, although the expansions are not
done yet. We assign the value of UBc to the k-th temporary result’s accessibility
cost, because the cost of the final k-th result is at most as large as UBc.

5 Experiments

In this section, we report our experimental results and analysis.

5.1 Experiment Setup

The following algorithms are compared in the experiment.

ANN is the all nearest neighbor algorithm described in Section 2.
Sep-Tree is separate-tree top-k search algorithm proposed in Section 3.
One-Tree is one-tree top-k search algorithm proposed in Section 3.

All optimizations described in Section 4 are applied to separate-tree and one-tree

unless specified otherwise.
All algorithms are implemented as in-memory algorithms. They are imple-

mented in C++ and performed on a PC with Pentium D 3.00GHz CPU and
2GB RAM. The operating system is Debian 4.1. The algorithms are complied
using GCC 4.1.2 with -O3 flag. We used two publicly available real datasets in

Dataset |S| |R|
NA 174,956 17,000
SF 175,813 17,000

Table 1. Statistics of Datasets

the experiment, San Francisco Road Network (SF) and Road Network of North
America (NA). 3 Some important statistics and data distribution are shown in
Table 5.1 and Figure 5.1. We split each dataset into |T | types, and the default
|T | is set to 20 unless specified otherwise. For each data point in the dataset, a
random type is assigned.

To generate the set of possible locations R, we choose 10% of the points from
the original dataset, and shift the x and y coordinates by a random number in
the range of [−5, 5].

We measure the number of internal nodes expanded and the number of leaf
nodes expanded in the R-trees, as well as the processing time. The processing
time measured does not include the time for constructing R-tree indexes.

3 http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm



(a) San Francisco Road Network
(SF)

(b) Road Network of North America
(NA)

Fig. 2. Data Distribution

5.2 Effect of Optimization

We first study the effect of optimizations, and run the two proposed algorithms
on both NA and SF datasets with several optimization techniques applied. We
compare four optimizations:

No-Opt The basic separate-tree (one-tree) algorithm with no optimization tech-
niques applied.

Break-Tie-PQ The above algorithm equipped with the “break ties in priority
queues” optimization. In LPQs, we arrange entries by increasing order of mind,
and then maxd. In GPQs, we arrange entries by increasing order of LBc, and
break ties by UBc.

Early-Check The above algorithm equipped with the “early check” optimization
technique to avoid redundant node expansions. Before expanding a node v in
IS , we check the mind between the LPQ owner u′ and v, and prune v if the
value of mind is no smaller than the minmaxd of u′’s LPQ.

Preupdate-Temp-Result The above algorithm equipped with the “preupdate
temporary result” technique. If a node u in IR contains at least k points in
R, and its LPQ (group)’s UBc is smaller than the current k-th temporary
result’s accessibility cost, we then regard UBc as the k-th temporary result’s
accessibility cost so as to improve the algorithm’s pruning power.

Figures 5.2(a) – 5.2(c) show the processing time, the number of internal node
expansions, and the number of leaf node expansions using separate-tree on NA
dataset. The performance on SF dataset displays similar trends and thus is not
shown here in the interest of space. It can be observed that Early-Check is the
most effective optimization for separate-tree algorithm. It reduces the processing
time by 57%. The main reason is that the number of internal nodes is reduced by
50%, and the number of leaf nodes expanded is reduced by 63% after applying
Early-Check. The other two optimization techniques exhibit minor improvements
to the separate-tree algorithm.

Figures 5.2(d) – 5.2(f) show the processing time, number of internal node and
leaf node expansions using one-tree algorithm on NA dataset. Break-Tie-PQ is
the most significant optimization technique for one-tree algorithm. It reduces the
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Fig. 3. Effect of Optimization (NA)

processing time by about 10% when k is small and about 20% when k is large.
The other two optimizations can further reduce the processing time. The reason
why the effect of Break-Tie-PQ is more remarkable on one-tree algorithm than on
separate-tree algorithm is that one-tree algorithm constructs indexes by putting
the points with various types in one node, and therefore yields looser estimation
of lower bound of accessibility cost. There are more LPQs sharing equal values
of LBc, and therefore it is necessary to break them by introducing the upper
bound of accessibility cost.

5.3 Comparison with All Nearest Neighbor Algorithm

We run the three algorithms with various numbers of returned objects (k) and
types of points (|T |). Figures 5.3(a) – 5.3(c) show the performance on SF dataset
with respect to different k. The general trend is that running time of both
separate-tree and one-tree algorithm slightly increases when we move k towards
larger values; the running time of ANN algorithm is irrelevant to the change of k

because it always computes the nearest neighbors for all the possible locations.
The result shows that separate-tree algorithm is 1.5 times as fast as the ANN



algorithm, and the speed-up of one-tree algorithm can be up to 5.7x. The speed-
up is mainly due to more efficient internal node and leaf node expansion. As
can be seen, separate-tree reduces the the number of internal nodes by 48%, and
one-tree reduces the number by additional 23%. In terms of leaf node expansion,
separate-tree and one-tree display similar performance, and the reduction can be
up to 61%, compared to the ANN algorithm.
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Fig. 4. Comparison with ANN

We study the performance of the algorithms with respect to varying number
of types |T |, and plot the results on NA dataset in Figures 5.3(d) – 5.3(f). k is
set to 500 in this set of experiments. As shown in the figures, the processing time
and the node expansion grow linearly while the number of types |T | is increasing.
Both separate-tree and one-tree have slower increasing rates than ANN.

5.4 Scalability against Data Sizes

We study how the proposed algorithms perform on different size of datasets. Fig-
ure 5.4 shows the performance on NA dataset with respect to different number
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Fig. 5. Scalability (NA)

of data points. The number of points in R is fixed at 17,000, and k is set to 500
for this set of experiments. We observe that when data size grows, the processing
time of the algorithm grows linearly, When data size is 20% of the original S, one-

tree algorithm is about twice as fast as separate-tree algorithm. When data size is
100%, one-tree algorithm is more than three times as fast. Although separate-tree

expands three times fewer nodes than one-tree when data size is small, one-tree

is still faster under this scenario. This is because one-tree accesses less number of
entries in the point level of R-trees, while separate-tree needs to access |T | times
for each point to create its LPQ group and compute the accessibility cost.

5.5 Index Sizes

Dataset ANN separate-tree one-tree Original Dataset

NA 11.36MB 11.36MB 12.80MB 4.35MB
SF 11.34MB 11.34MB 12.69MB 4.33MB

Table 2. Index Size

Table 5.5 shows the size of index on the two datasets using different algo-
rithms, and the size of the original datasets. separate-tree algorithm uses the
same amount of disk memory as ANN algorithm, which is 2.6 times as large
as the original datasets. one-tree uses about 13% more disk space to store the
R-trees because it needs to keep an additional bitmap in each node to indicate
what types are assigned to the points indexed by this node and its descendants.



Summary. Considering the runtime performance and the space usage of the
three algorithms, we find that one-tree algorithm achieves the best runtime per-
formance while occupying similar amount of space with the other two. We rec-
ommend users to select the highest accessible locations using one-tree algorithm.

6 Related Work

Facility location problem, also known as location analysis, is to find optimal
placement of facilities respective to cost to a given set S. The problem we pro-
pose in this paper is one of the variations.

Another variation is Minsum facility location [9]. It is to seek a location that
minimizes the sum of distances from a set of points to the selected location. [9]
proposed three tree-based algorithm to solve it. Among these three proposed
algorithms, Virtual OL-tree is the most efficient algorithm. Virtual OL-tree is
an extension of k-d-B tree [17]. In [21], an variant of the Minsum facility loca-
tion problem was studied. This paper proposed a partition-based algorithm. It
recursively partitions candidate cell of the query region to smaller cells.

Other related studies include [4, 3, 20]. In [4, 3], the optimization problem is
defined as: Given two sets S and P , find the point s in S that satisfies: 1) number
of bichromatic reverse nearest neighbours (BRNN) of s in P is maximum; 2) the
maximum distance of the BRNN of s is minimum; 3) the minimum distance of
the BRNN of s is maximum. [20] solves the problem to find a region Q such that
when placing s in Q, its BRNN size is maximum.

The problem we propose is related to k nearest neighbor (NN) query as well.
kNN query has been extensively studied by spatial database community and
many spatial indexes were proposed to solve this problem [18, 13, 5]. Among
these indexes, R-tree [11] and its variations [1] are most popular ones. Two vari-
ations of NN query, group nearest neighbor queries and all nearest neighbor,
have been recently studied. [6] provided a detailed survey of work related to
these two types of queries.

7 Conclusion

In this paper, we study the problem finding k best locations that are close to var-
ious types of facilities. We focus on Euclidean space and measure the accessibility
using the sum of distances to nearest neighbors. Two algorithms are proposed to
efficiently find the top-k answers, with several non-trivial optimizations applied
to reduce the number of node expansion and improve runtime performance. The
separate-tree algorithm creates indexes for different types of points in separate
R-trees, while the one-tree algorithm indexes all the points in a single R-tree. The
experiment results show that both proposed algorithms outperform the baseline
algorithm with a speed-up up to 5.7 times.
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20. R. C.-W. Wong, M. T. Özsu, P. S. Yu, A. W.-C. Fu, and L. Liu. Efficient method for

maximizing bichromatic reverse nearest neighbor. PVLDB, 2(1):1126–1137, 2009.
21. D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive computation of the min-dist

optimal-location query. In VLDB, pages 643–654, 2006.
22. J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao. All-nearest-neighbors queries

in spatial databases. In SSDBM, pages 297–306, 2004.


