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Abstract. Continuous monitoring of spatial queries has gained signif-
icant research attention in the past few years. Although numerous al-
gorithms have been proposed to solve specific queries, there does not
exist a unified algorithm that solves a broad class of spatial queries. In
this paper, we first define a versatile top-k query and show that vari-
ous important spatial queries can be modeled to a versatile top-k query
by defining a suitable scoring function. Then, we propose an efficient
algorithm to continuously monitor the versatile top-k queries. To show
the effectiveness of our proposed approach, we model various inherently
different spatial queries to the versatile top-k query and conduct exper-
iments to show the efficiency of our unified algorithm. The extensive
experimental results demonstrate that our unified algorithm is several
times faster than the existing best known algorithms for monitoring con-
strained k nearest neighbors queries, furthest k neighbors queries and
aggregate k nearest neighbors queries.

1 Introduction

With the availability of inexpensive mobile devices, position locators and cheap
wireless networks, location based services are gaining increasing popularity. Some
examples of the location based services include fleet management, geo-social
networking (also called location-based networking), traffic monitoring, location-
based games, location based advertisement and strategic planning etc. Due to
the popularity of these services, various applications have been developed that
require continuous monitoring of spatial queries. For example, a person driving a
car may issue k nearest neighbors (kNN) query to continuously monitor k closest
restaurants. Similarly, a taxi driver might issue a query to continuously monitor
the passengers that are within 5 Km of his location. Cabspotting1 and Zhiing2

are two examples of such applications.
Driven by such applications, continuous monitoring of spatial queries has re-

ceived significant research attention in the past few years. For example, several al-
gorithms have been proposed to answer kNN queries [14, 22, 20], range queries [8,
12, 18, 3], constrained kNN queries [7, 9] and aggregate kNN queries [14]. Al-
though various algorithms have been proposed to solve each of these spatial

1 http://cabspotting.org/faq.html
2 http://www.zhiing.com/how.php



queries, to the best of our knowledge, there does not exist a unified algorithm
that solves all the above mentioned queries. In this paper, we propose a uni-
fied algorithm to monitor a broad class of spatial queries including the above
mentioned spatial queries.

In Section 3.1, we first define a versatile top-k query and then show that
various spatial queries can be modeled to the versatile top-k query (Section 3.2).
Given a set of objects, a versatile top-k query reports k objects with the lowest
scores. The score of each object is computed by using a versatile scoring func-
tion vsf() (the properties of a versatile scoring function are formally defined in
Section 3). Various spatial queries can be modeled to the problem of a versatile
top-k query by choosing a suitable scoring function. For example, a kNN query
can be modeled to a versatile top-k query by choosing a scoring function such
that vsf(o) = dist(o, q) where dist(o, q) returns the Euclidean distance between
the object o and a reference point q (called query point in spatial queries).

We present an efficient algorithm to continuously monitor versatile top-k
queries. Our unified algorithm can efficiently monitor any spatial query that can
be modeled to versatile top-k queries by defining a suitable scoring function. To
monitor any of these spatial queries, the only change we need to make in the
implementation is to add a new scoring function for that specific spatial query.
The unified algorithm then uses this scoring function to monitor the spatial
query.

To show the effectiveness of our approach, we choose various inherently dif-
ferent spatial queries and model these queries to versatile top-k queries. Then,
we conduct experiments to show the efficiency of our unified algorithm. More
specifically, we show the performance of our algorithm for monitoring constrained
kNN queries, furthest k neighbor queries and aggregate kNN queries.

Below we summarize our contributions in this paper.

– We define versatile top-k queries and show that various spatial queries can
be modeled to a versatile top-k query by choosing a suitable scoring function.

– To the best of our knowledge, we are first to present a unified algorithm to
efficiently monitor various spatial queries. We prove that our algorithm is
optimal in number of grid cells it visits to monitor the spatial queries.

– We conduct extensive experiments to study the performance of our unified
algorithm for monitoring various inherently different spatial queries. The
experimental results show that our unified algorithm outperforms existing
best known algorithms for these specific queries.

2 Background

2.1 Preliminaries

In this sectiom, we formally define few inherently different spatial queries.
k nearest neighbors query. A kNN [10, 16, 11, 14, 22, 20] query returns the k
closest objects from the query point q. Given a set of objects O and a query



point q, the kNN query returns a set N of k objects such that for each ni ∈ N
the dist(ni, q) ≤ dist(o′, q) where o′ ∈ O −N .

kNN queries have a wide range of applications. For example, a person may
issue a kNN queries to find k closest restaurants to his location.
Constrained k nearest neighbors query. A constrained kNN query [7, 9]
returns k objects closest to the query point q among the objects that lie inside
a constrained region CR. Given a set of objects O, a query point q and a con-
strained region CR, the constrained kNN query returns a set N containing k
objects such that for each ni ∈ N , dist(ni, q) ≤ dist(o′, q) where o′ ∈ O−N and
both o′ and ni lie in the constrained region CR.

Consider that a user wants to find k post offices closest to his location from
a suburb named Randwick. He may issue a constrained kNN query where the
constrained region corresponds to the suburb Randwick.
Furthest k neighbors query. A furthest k neighbors query [17, 6, 1] returns k
furthest objects from the query point q. Given a set of objects O and a query
point q, the furthest k neighbors query returns an answer set N containing k
objects such that for each ni ∈ N , dist(ni, q) ≥ dist(o′, q) where o′ ∈ O −N .

Consider that a town planner wants to establish a service center in a town.
Before establishing this service center, the town planner may need to find the
furthest service user to identify the maximum range the service would need to
cover.
Aggregate k nearest neighbors query. Given a set of objects O and a query
set Q with m numbers of instances {q1, ..., qm}, the aggregate kNN query[21,
15, 13] returns k objects with the minimum aggregate distance from Q. Let
aggdist(o,Q) be the aggregate distance of an object o from Q. An aggregate
kNN query returns an answer set N containing k objects such that for each
ni ∈ N , aggdist(ni, Q) ≤ aggdist(o′, Q) where o′ ∈ O −N . Below we define the
aggregate distance functions for some common aggregate kNN queries.

1. Sum-aggregate kNN query uses aggdist(o,Q) =
∑

qi∈Q dist(o, qi).
2. Max-aggregate kNN query uses aggdist(o,Q) = maxqi∈Q(dist(o, qi)).
3. Min-aggregate kNN query uses aggdist(o,Q) = minqi∈Q(dist(o, qi)).

Consider that a group of friends wants to meet at a restaurant such that
the total distance traveled by them to reach the restaurant is minimum. A sum-
aggregate kNN query (k = 1) returns the location of such a restaurant.

2.2 Related Work

[22, 20, 14] are some notable techniques that use grid-based index to monitor
spatial queries. Conceptual Partitioning Monitoring (CPM ) technique [14] or-
ganizes the grid cells into conceptual rectangles and assigns each rectangle a
direction and a level number. The direction is R, D, L, U (for right, down, left,
up) and the level number is the number of cells in between the rectangle and q
as shown in Fig. 1.



CPM first initializes an empty min-heap H . It inserts the query cell cq with
key set to zero and the level zero rectangles (R0, D0, L0, U0) with the keys set to
minimum distances between the query q and the rectangles into H . The entries
are de-heaped iteratively. If a de-heaped entry e is a cell then it checks all its
objects and updates q.kNN (the set of kNN for the query q) and q.distk (the
distance of current ktℎNN from q). If e is a rectangle, it inserts all the cells inside
the rectangle and the next level rectangle in the same direction into the heap
H . The algorithm stops when the heap becomes empty or when e’s distance is
greater than q.distk.

The update of each object is handled as follows. (1) Incoming update: CPM
removes the ktℎ NN and inserts the object in q.kNN . (2) Outgoing update:
CPM removes the object from q.kNN and finds the next NN by visiting the
remaining entries in the heap. In case the query moves, CPM starts from the
scratch. CPM outperforms both YPK-CNN [22] and SEA-CNN [20]. CPM can
also be extended to solve few other spatial queries.
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CPM can be used to answer continuous constrained kNN queries by making
a small change. More specifically, the algorithm inserts only the rectangles and
the cells that intersect the constrained region into the heap. Figure 1 shows an
example where the constrained region is a polygon R. The constrained NN is o2
and the rectangles/cells shown shaded are inserted into the heap by CPM.

CPM can also be extended to answer Aggregate kNN queries. In case of a con-
ventional kNN query, the algorithm starts with the query cell cq. For aggregate
kNN query, the algorithm computes a rectangle M such that all query instances
lie in M . At the initial phase, the algorithm inserts the rectangle M and the zero
level rectangles in the heap with their aggregated distance aggdist(e,Q) (e.g.,
minqi∈Q dist(e, qi)) from the query set Q. For instance, in the Fig. 2 the min-
aggregate NN is o3 and all rectangles shown in solid lines are inserted in the heap
to compute o3. Please note that the algorithm inserts all the shaded cells into the
heap. Note that CPM inserts many un-necessary cells into the heap. Fig. 3 shows
the minimum number of cells (shown shaded) that are needed to be inserted in



heap by an optimal algorithms. We show that our approach significantly reduces
the number of cells inserted in the heap.

CircularTrip [5] and iSEE [19] also efficiently monitor kNN queries. Circu-
larTrip visits the cells around query point round by round until all NNs are
retrieved. On the other hand iSEE computes a visit order list around the query
point to efficiently answer the kNN query. However, extension of these algorithms
for other spatial queries (e.g., aggregate kNN query) is non-trivial.

3 Problem definition

Let p be a point and R and Rc be two hyper-rectangles in a d-dimensional space
ℝ

d. If R contains Rc (i.e., Rc is inside the hyper-rectangle R) then Rc is called
the child of R. Consider a function f(p) that returns the score of a given point
p. An upper bound score SU (R) of a hyper-rectangle R is defined as,

SU (R) = max
p∈R

(f(p))

where, p ∈ R denotes a p that lies in the hyper-rectangle R. Similarly, the lower
bound score SL(R) is defined as,

SL(R) = min
p∈R

(f(p))

Versatile Scoring function: A function f() is called a versatile scoring func-
tion iff SU (R) ≥ SU (Rc) and SL(R) ≤ SL(Rc) for any R and Rc where Rc is
a child rectangle of R. We denote the versatile scoring function as vsf(). The
versatile score of a given point p is denoted as vsf(p).

Consider a function f(p) = dist(p, q) where dist(p, q) is the Euclidean dis-
tance3 between the point p and a given point q. Hence, the upper bound score
SU (R) is the maximum Euclidean distance between the rectangle R and the fixed
point q. Similarly, the lower-bound score SL(R) is the minimum Euclidean dis-
tance between the rectangle R and the fixed point q. Note that f(p) = dist(p, q)
is a versatile scoring function.

3.1 Versatile top-k queries

Consider a set of objects O = {o1, . . . , oN} where oi denotes the spatial location
of ith object. Also, consider a versatile scoring function vsf() to compute the
score of the objects. A top-k query returns a set of k objects N = {n1, . . . , nk}
such that vsf(ni) ≤ vsf(o′) for any ni ∈ N and any o′ ∈ O −N . Hence, top-k
query returns k objects having smallest scores.

In this paper we study the continuous monitoring of top-k query where the
top-k results are updated with the changes in the datasets. We follow timestamp
model where the results are required to be updated after every t time units.

3 Other Lp distance metrics can also be used.



3.2 Modeling spatial query to top-k query

We can model various spatial queries to a versatile top-k query by defining
a suitable versatile scoring function. The versatile scoring functions for some
popular spatial queries are given below.
k nearest neighbors queries:

vsf(o) = dist(o, q)

Here, the dist(o, q) is the Euclidean distance between an object o and the query
point q.
Furthest k neighbors queries:

vsf(o) = −dist(o, q)

Please not that the object furthest from the query q has the smallest score.
Hence, the further objects are preferred in this case.
Aggregate k nearest neighbors queries:

Below we define the scoring functions for Sum, Max and Min aggregate k
nearest neighbors queries, respectively.
i) Sum-Aggregate k nearest neighbors queries: vsf(o) =

∑

qi∈Q dist(o, qi)
ii) Max-Aggregate k nearest neighbors queries:vsf(o) = maxqi ∈ Q(dist(o, qi))
iii) Min-Aggregate k nearest neighbors queries: vsf(o) = minqi ∈ Q(dist(o, qi))
Constrained kNNs queries:

vsf(o) =

{

dist(o, q), if o lies inside the constrained region CR;

∞, otherwise.

Note that we can also define the versatile scoring functions for other queries
like constrained furthest neighbors query and constrained aggregate kNNs query
etc.

Next, we define the versatile scoring function to model another spatial query
which is not essentially a top-k query. This demonstrates that our proposed
unified algorithm can be applied to answer several other queries that are not
top-k queries.
Circular Range queries: Given a set of objects O, a query point q and a
positive value r. A circular range query [8, 12, 3] returns every object n ∈ O
that lies within distance r of the query location q (i.e., every object such that
dist(n, q) ≤ r). We call such query a circular range query because the search
space is a circle around the query point q with the radius r. Below we define the
versatile scoring function for the circular range query.

vsf(o) =

{

1, if dist(o, q) ≤ r;

∞, otherwise.

Here, r is the radius of the circular range query.
To model the circular range query to a versatile top-k query we need to make

the following small changes: i) every object with score equal to kth object’s score



must also be reported: ii) an object with score ∞ must not be reported. Note
that we if the range contains more than k objects then all the objects inside the
range are reported. On the other hand, if the range contains less than k objects
then objects outside the range are not reported.

4 Technique

4.1 Conceptual Grid Tree

In this section, we briefly describe the conceptual grid tree which we introduced
in [4] and later used to answer other spatial queries in [3, 9]. The conceptual grid
tree is the backbone of our approach. First, we briefly describe the grid index
and then we describe the conceptual grid tree which is a conceptual visualization
of the grid index.

In a grid based index ,the whole space4 is divided into a number of cells,
where the size of each cell is �× �. Hence, the extent of each cell in a dimension
is �. A particular cell is denoted as c[i, j] where i is the column number and j
is the row number. The lower left cell of the grid is c[0, 0]. An object o with the
position (x, y) is located into the cell c[⌊x/�⌋, ⌊y/�⌋]. I.e., a cell c[i, j] contains
all the objects with x-coordinate in the range i.� to (i + 1).� and y-coordinate
in the range j.� to (j + 1).�.

In our proposed conceptual grid tree structure we assume a grid that consists
of 2n×2n cells5. The grid is treated as a conceptual tree where the root contains
all 2n × 2n grid cells. Each intermediate entry e in a level l (for root l = 0) is
recursively divided into four children of equal sized rectangles such that each
child of an entry e contains x/4 cells where x is the number of cells contained by
the intermediate entry e. I.e., if an entry e at level l contains 2n−l × 2n−l cells
then each child of the entry e will contain 2n−l−1× 2n−l−1 cells. Every leaf level
entry contains four grid cells.

The root, intermediate entries and the grid cells are shown in Fig. 4. In Fig. 4
the grid size is 4× 4 (i.e., 22× 22 grid cells). Hence, the root contains all 22 × 22

cells. An intermediate entry with level 1 contains 22−1 × 22−1 cells (i.e., four
cells).

Please note that the Grid-tree is just a conceptual visualization of the grid
and it does not exist physically (i.e., we do not need pointers to store entries
and its children). In Fig. 4 the rectangles with dotted lines are considered as
conceptual structure and the rest are physical structure. Therefore, root and the
intermediate entries are conceptual only and they are not stored in the memory.
To retrieve the children of an entry (or root), we divide its rectangle into four
equal sized rectangles such that each child has side length d/2 where d is the

4 For the ease of demonstration of our algorithm we use two dimensional space, al-
though our technique can be applied to higher dimensional space.

5 If the grid size is not 2n × 2n, it can be divided into several smaller grids such that
each grid is 2i×2i for i > 0. For example, a 8×10 grid can be divided into 5 smaller
grids (i.e., one 8× 8 grid and four 2× 2 grids)
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side length of its parent. A rectangle with side length equal to � (the width of a
grid cell) refers to a cell c[i, j] of the grid.

4.2 Unified Algorithm

Initial computation Most of the spatial queries algorithms that can be applied
on other tree structure (e.g., R-tree) can easily be applied on the conceptual grid
tree. The advantage of using this grid tree over previously used grid based access
methods is that if an intermediate entry of the tree lies in the pruned region then
none of its cells are accessed.

Algorithm 1 CGTree-based Unified Initial Computation

Input: q: query point with the versatile scoring function(vsf()); k: an integer
Output: top-k query results
1: q.scorek=∞; q.kA = �; H = �

2: Initialize a min-heap H with root entry of the conceptual grid tree
3: while H ∕= � do

4: de-heap an entry e

5: if SL(e) ≥ q.scorek then

6: return q.kA

7: if e is a cell in the grid then

8: update q.kA and q.scorek by the objects in e

9: else

10: for each of the four children c do

11: if SL(c) ≤ q.scorek then

12: insert c into H with key SL(c)
13: return q.kA

The initial computation of the unified algorithm using the Conceptual Grid-
Tree is presented in Algorithm 1. The main idea is similar to that of applying
BFS search [11] on R-tree based data structure. Specifically, the algorithm starts
by inserting the root of the Grid-tree into a min-heap. The algorithm iteratively



de-heaps the entries. If a de-heaped entry e is a grid cell then it visits the cell
and updates q.kA and q.scorek where q.kA is the answer set and q.scorek is the
kth smallest score of objects in q.kA (line 8). If ∣q.kA∣ < k (i.e, the size of the
answer set is less then k) then q.scorek is set to infinity. Please recall that the
width of a cell is �. So, the algorithm checks the width of each entry e to identify
whether e is a grid cell or not (line 7).

If the de-heaped entry e is not a grid cell, then the algorithm inserts its
children into the heap H with their lower bound scores (lines 10 to 12). The
algorithm terminates when the heap becomes empty (line 3) or when a de-heaped
entry e has its lower bound score SL(e) ≥ q.scorek (line 5). This guarantees the
correctness of the algorithm. This is because any cell c for which SL(c) ≥ q.scorek
cannot contain an object that has a score smaller than q.scorek (and cannot be
the answer for this reason). When the de-heaped entry e has its lower bound
score SL(e) ≥ q.scorek, every remaining entry e′ in the heap H has its lower
bound score SL(e′) ≥ q.scorek because the entries are accessed in ascending
order of their lower bound scores.

Continuous Monitoring Before we present the continuous monitoring algo-
rithm, we introduce the data structure that is used for efficient update of the
results.

The system stores a query table and an object table to record the information
about the queries and the objects. An object table stores the id and location of
all objects. The query table stores the query id, query location, the answer set
q.kA and the cellList (cells that the query has visited to retrieve all objects in
the answer set q.kA).

Each cell of the grid stores two lists namely object list and query list. The
object list of a cell c contains the object id of every object that lies in c. The
query list of a cell c contains the id of every query q that has visited c (by
visiting c we mean that it has considered the objects that lie inside it (line 8 of
Algorithm 1)). The query list is used to quickly identify the queries that might
have been affected by the object movement in a cell c.

Handling a single update: Assume that an object o reports a location
update and oold and onew correspond to its old and new locations, respectively.
The object update can affect the results of a query q in the following three ways;

1. internal update: vsf(oold) ≤ q.scorek and vsf(onew) ≤ q.scorek; clearly,
only the order of the answer set may have been affected, so we update the
order of q.kA accordingly.

2. incoming update: vsf(oold) > q.scorek and vsf(onew) ≤ q.scorek; this means
that o is now a part of q.kA. Hence, o is inserted in q.kA.

3. outgoing update: vsf(oold) ≤ q.scorek and vsf(onew) > q.scorek; i.e., o is
not part of the answer set anymore. Therefore, we delete o from q.kA.

The complete update handling module: The update handling module
consists of two phases. In the first phase, we receive the object updates. For each
object update, we reflect its effect on the results according to the three scenarios



Algorithm 2 Continuous Monitoring

Input: location updates
Output: q.kA

Phase 1: receive updates

1: for each object update o do

2: Affected queries Qaff = coold .q list ∪ conew
.q list

3: for each query q in (Qaff ) do
4: if internal update; update the order of q.kA
5: if incoming update; insert o in q.kA

6: if outgoing update; remove o from q.kA

Phase 2: update results

7: for each query q do

8: if ∣q.kA∣ ≥ k; keep top k objects in q.kA and update q.scorek
9: if ∣q.kA∣ < k; expand q.kA

10: return q.kA

described earlier. In the second phase, we compute the final results. Algorithm 2
presents the details.
Phase 1: First, we receive the object updates and for each object update, we
identify the queries that might have been affected by this update. It can be
immediately verified that only the queries in the query lists of cold and cnew
may have been affected where cold and cnew denote the old and new cells of
the object, respectively. For each affected query q, the update is handled (lines 3
to 6) as mentioned previously (e.g., internal update, incoming update or outgoing
update).
Phase 2: After all the updates are received, the results of the queries are updated
as follows; if q.kA contains more than k objects in it (more incoming updates than
the outgoing updates), the results are updated by keeping only the top k objects.
Otherwise, if q.kA contains less than k objects, we expand the search region
so that q.kA contains k objects. The expansion is similar to the Algorithm 1
except the following changes. Any entry e that has SU (e) ≤ q.scorek are not
inserted into the heap. This is because such entries have already been explored.
The stopping criteria is same as the initial computation i.e., we stop when a
de-heaped entry e has SL(e) ≥ q.scorek.

If a query changes its location the versatile score become invalid. Hence, the
results are computed by calling the Algorithm 1 (i.e., we compute the result for
the query from the scratch).

Proof of optimality and correctness Before we prove the optimality, we
define two terms; accessing and visiting a cell. We say that a cell has been
accessed if the algorithm inserts it in the heap (e.g., line 12 of Algorithm 1).
If a cell is de-heaped from the heap and the algorithm retrieves the objects in
this cell, we say that the cell has been visited by the algorithm (e.g., line 8 of
Algorithm 1). Please note that the cost of visiting a cell is usually significantly
higher than the cost of accessing a cell.



We prove that our algorithm is opitmal in number of visited cells (i.e., it does
not visit any unnecessary cell to answer the query). To prove the correctness, we
show that our algorithm visits all the cells that must be visited to compute the
correct results.

Proof. Let qold.scorek and qnew .scorek be the scores of ktℎ object before and
after the update, respectively. Consider the case when qold.scorek ≥ qnew .scorek
(i.e., the number of incoming updates is at least equal to the number of outgoing
updates). This implies ∣q.kA∣ ≥ k (line 8 of Algortihm 2) and we do not need to
visit any new cell to update the result. Therefore, we only need to consider the
case when qold.scorek < qnew .scorek (line 9 of Algorithm 2). Below, we prove
the optimality and correctness of our algorithm for this case.

Let C be the set of minimum cells that have to be visited in order to guarantee
the correct results. First, we identify C and show that our algorithm does not
visit any unnecessary cell c′ such that c′ /∈ C. A cell c′ for which SU (c′) ≤
qold.scorek is not required to be visited. This is because all the objects in this cell
have been considered earlier. Similarly, a cell c′ for which SL(c′) ≤ qnew .scorek
is not required to be visited. This is because every object in such cell has score
at least equal to qnew .scorek. Therefore, the set C of minimum cells consists of
every cell c that satisfies the following two inequalities.

SU (c) > qold.scorek (1)
SL(c) < qnew.scorek (2)

Please note that in our update handling algorithm, we ignore the cells that
have SU (c) ≤ qold.scorek and terminate the algorithm when SL(c) ≥ qnew .scorek
(see Section 4.2 Phase 2). Thus, we satisfy both of the above inequalities. There-
fore, our algorithm does not visit any un-necessary cell and is optimal in the
number of visited cells.

Please note that the initial computation can be considered as a special case
of update handling where qold.scorek is set to zero.

As a proof of correctness, we show that our algorithm visits all the cells
in the set C. Recall that we maintain the cells in a heap based on their lower
bound scores. Therefore, the cells are visited in the ascending order of their lower
bound scores and it guarantees that every cell c for which SL(c) < qnew .scorek
is visited.

5 Experiments

We choose three inherently different spatial queries and run experiments to eval-
uate the efficiency of our unified algorithm. More specifically, we run the exper-
iments for the constrained kNN queries, the aggregate kNN queries and the
furthest k neighbors queries. Since our algorithm is based on the Conceptual
Grid Tree, we refer to it as CGT.

We compare our algorithm with CPM [14]. As mentioned by the authors,
it can be modified to answer constrained kNN and aggregate kNN queries. We



extend CPM to answer furthest k neighbors query as follow. We compute the
furthest conceptual rectangles from the query cell cq in all four directions (i.e.,
right, down, left, up). Initially, we insert the furthest rectangles in the heap with
their keys set to the maximum distances between the query and the rectangles.
After de-heaping a rectangle, the previous level (closer to the query cell) rect-
angle in the same direction is inserted in the heap. We use a max heap and thus
retrieve the rectangles in descending order of their maximum distances from the
query.

Parameter Range

Number of objects (×1000) 20, 40, 60, 80, 100

Number of queries 100, 500, 1000, 2500, 5000

Value of k 2, 4, 8, 16, 32, 64, 128

Object/query agility (in %) 10, 30, 50, 70, 90

Aggregate function (for aggregate queries only) sum, max, min

Number of query instances (for aggregate queries only) 5, 10, 25, 50, 100
Table 1. System Parameters

Our experiment settings are similar to those used in [14]. More specifically,
we use Brinkhoff data generator [2] to generate objects moving on the road
network of Oldenburg, a German city. The queries are generated similarly. Each
query is monitored for 100 time stamps and the experiment figures show the
total computation time for a single query for the duration of 100 time stamps.
Table 1 shows the parameters used in our experiments and the default values
are shown in bold. Agility corresponds to the percentage of objects and queries
that issue location updates at a given timestamp.
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Fig. 5. Effect of grid cardinality

First we study the effect of grid cardinality.We vary the grid size and compare
the algorithms for each of the three queries in Fig. 5. In accordance with previous
work that use grid based approach, the performance degrades if the grid size is
too small or too large. More specifically, if the grid has too low cardinality, the
cost of the queries increases because each cell contains larger number of objects.
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Fig. 6. Effect of the value of k
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Fig. 7. Effect of number of objects

On the other hand, if the grid cardinality is too high then most of the cells are
empty and the cost increases because the number of visited cells becomes large.

Based on Fig. 5, we choose the default grid sizes for both of the algorithms.
More specifically, the default grid size selected for CPM is 64× 64 and for CGT
is 128 × 128. In the remaining experiments, we choose these default grid sizes
for both of the algorithms.

In Fig. 6, Fig. 7, Fig. 8 and Fig. 9, we study the effect of k, the number of
data objects, the number of queries and the agility of the datasets, respectively.
Although our algorithm is unified and does not require modification for different
queries, it outperforms CPM for all different settings.
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Fig. 8. Effect of number of queries

Since aggregate kNN queries has two extra parameters (the number of query
instances and the aggregate function), we conduct more experiments to evaluate
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Fig. 9. Effect of data agility

the performance of our algorithm for these parameters. Fig. 10(a) shows the effect
of number of query instances. As expected, the cost of each algorithm increases
when the number of query instances is large. This is because the cost of aggregate
function increases with the increase in the number of query instances.
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Fig. 10. Aggregate kNN effect

Fig. 10(b) studies the effect of different aggregate functions (i.e., Sum, Max
and Min). Our algorithm outperforms CPM for each of the aggregate functions.
The percentage on top of each group represents the percentage of the time taken
by our unified algorithm with respect to CPM.

6 Conclusion

We are first to present a unified algorithm to answer a broad class of spatial
queries. Our proposed algorithm is optimal in the sense that it visits minimum
number of cells throughout the life of a continuous query. Our extensive experi-
mental results demonstrate that for each inherently different spatial queries our
unified algorithm significantly outperforms existing best known algorithm.
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