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Abstract. Given a set of objects and a query q, a point p is q’s reverse
k nearest neighbour (RkNN) if q is one of p’s k-closest objects. RkNN
queries have received significant research attention in the past few years.
However, we realise that the state-of-the-art algorithm, SLICE, accesses
many objects that do not contribute to its RkNN results when running
the filtering phase, which deteriorates the query performance. In this
paper, we propose a novel RkNN algorithm with pre-computation by
partitioning the data space into disjoint rectangular regions and con-
structing the guardian set for each region R. We guarantee that, for
each q that lies in R, its Rk′NN results are only affected by the objects
in R’s guardian set, where k′ ≤ k. The advantage of this approach is
that the results of a query q ∈ R can be computed by using SLICE on
only the objects in its guardian set instead of using the whole dataset.
Our comprehensive experimental study on synthetic and real datasets
demonstrates the proposed approach is the most efficient algorithm for
RkNN.
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1 Introduction

Reverse k nearest neighbour queries (RkNN) are classified into bichromatic
RkNN and monochromatic RkNN.

Bichromatic RkNN Given a set of facilities F , a set of users U and a query
q ∈ F , the Bichromatic RkNN (denoted as biRkNN) returns every user u ∈ U
for which q is one of its k-closest facilities.

Example : For a given McDonald’s q, the people for which q is one of their
k-closest McDonald’s restaurants are its biRkNN . These people are its potential
customers and can be attracted by targeted marketing. In this paper, the objects
providing some service (e.g., McDonald’s, supermarkets) are called facilities and
the objects that use the facilities (e.g., residents, customers) are called users.

Monochromatic RkNN Given a set of facilities F and a query q ∈ F ,
the Monochromatic RkNN (denoted as monoRkNN) returns every facility f for
which q is one of its k-closest facilities.
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Example : Consider the example of hospitals. Given a hospital q, itsmonoRkNN
are the ones for which q is one of their k nearest hospitals. Such hospitals may
seek assistance (e.g., blood, staff) from q in case of emergencies.

Like most of the existing work on RkNN, we address the problem in a Eu-
clidean space. Our proposed algorithm can by applied to both monoRkNN and
biRkNN . For clear presentation, we focus on the biRkNN unless mentioned
specifically.

As shown in a recent experimental study [15], SLICE is the state-of-the-
art RkNN algorithm. Like most other RkNN algorithms, SLICE consists of two
phases namely filtering phase and verification phase. SLICE’s filtering phase
dominates the total query processing cost [3]. We observe that SLICE needs to
access many unnecessary facilities in its filtering phase and this adversely affects
the query performance.

Motivated by the above observation, in this paper, we propose a solution
based on pre-computation that divides the whole data space into a set of disjoint
rectangular regions. Given a value k, for each rectangular region R, we compute
a set of objects Fg ⊆ F such that the results of every Rk′NN query q that lies
in R (and k′ ≤ k) can be computed using only the facilities in Fg. The set of
objects Fg is called the guardian set of R and a facility f ∈ Fg is called a guardian
facility of R. During the query processing time, we determine the region R that
contains q and then use SLICE on its guardian set instead of the whole dataset
to compute the results. Since the size of guardian set is significantly smaller
than the whole dataset, this approach significantly improves the performance as
demonstrated in our experimental study.

We remark that although there exists other pre-computation based approaches,
our approach is unique in that its pre-computation does not depend on the set
of users. For example, the technique proposed in [7] pre-computes, for each user
ui, its k-th closest facility fk and creates a circle Ci centred at ui with radius
dist(ui, fk). All such circles are indexed by an R-tree and a Rk′NN query q for
which k′ ≤ k is answered using the circles that contain q. A disadvantage of
such approach is that any change in the set of users U requires updating or
reconstructing the index. On the other hand, our guardian sets do not depend
on the set of users U and do not require update with the change in U . This is
a desirable property especially because in many real world applications the up-
dates in the locations of facilities (e.g., restaurants, fuel stations) is less common
as compared to the locations of users (e.g., people, cars).

Next, we summarise our contributions.

– To the best of our knowledge, we are the first to propose a pre-computation
based approach that does not depend on the set of users. Our pre-computation
significantly reduces the number of facilities to be accessed for SLICE and
improves the query processing cost. The proposed index can be used to an-
swer any Rk′NN query for which k′ ≤ k.

– Our comprehensive experimental study on real and synthetic datasets demon-
strates that our algorithm significantly improves SLICE in query processing
cost and outperforms all existing RkNN algorithms.
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The rest of the paper is organized as follows. We introduce related works
in section 2. Section 3 presents our techniques constructing rectangular region
based guardian set Fg. We also present our method partitioning universe to
many small regions and prove each region’s guardian set Fg can be used flexibly
for any k′ s.t. k′ ≤ k. Section 4 briefly recalls SLICE to do the experimental
study in section 5. We conclude this paper in section 6.

2 Related works

(a) Six regions (b) Influence zone

Fig. 1. Related works

Six-Regions[2] is a region-based technique proposed for RkNN. It consists
of two phases, namely Filtering phase and Verification phase. In filtering
phase, Six-Regions centres at query q partitioning universe into six regions, each
of which has a subtending angle of 60◦. In each region, it computes q’s k-th
nearest neighbour NNk and construct an arc by centering at q with a radius of
dist(q,NNk). In verification phase, each u locates above the arc in its region as
shown u in P2 (Fig. 1(a)) cannot be a result and only users lie under the arc of
its region can be returned as candidates to be verified.

Influence Zone[1] is a half-space based technique proposed for RkNN, de-
notes InfZone. It keeps constructing perpendicular bisector between each fa-
cility fi and q and halving the universe to two parts. The half where fi locates
is pruned by fi as any u in this area must have closer distance to fi than to q.
For areas pruned by at least k facilities (shaded area in Fig. 1(b)) cannot return
any result. InfZone guarantees every u in the unpruned area is a result. Such
unpruned area is called Influence Zone.

SLICE[3] is the most efficient algorithm before our work for RkNN, which is
integrated in our query processing algorithm in this paper. We introduce SLICE
in detail in section 4.

3 Techniques

As motivated by [1] that given a query q and a k, we may compute a set of
facilities that q’s RkNN is only affected by such facilities. Similarly, given a
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rectangular region R and k, we compute such a set Fg of facilities that for any
q ∈ R, all facilities affecting q’s RkNN are contained in Fg and the rest facilities
f /∈ Fg cannot affect any q’s RkNN. As for any q ∈ R, whose RkNN results are
only guarded by R’s Fg. We define Fg guardian set and fg ∈ Fg guardian
facility w.r.t. rectangular region R.

Therefore, by partitioning U into many small rectangular regions R s.t for
any two Ri, Rj(i 6=j) ∈ U , we have Ri ∩ Rj = ∅ and

⋃
Ri=1...n = U , we can

compute and obtain every guardian set Fgi of Ri.
Next, we present our techniques to compute R’s guardian set Fg w.r.t.the

value of k.

3.1 Computing Guardian Set of a Rectangular Region

First, we give some definitions and Lemmas.

Definition 1 Given a set F of facility f , a rectangular region R and k, the
guardian set Fg of R consists of a few facilities that for any q ∈ R, q’s RkNN
results are only affected by f ∈ Fg. For any facility f /∈ Fg, it does not affect q’s
RkNN result. Such f ∈ Fg is guardian facility, denote fg.

Definition 2 For any f locates outside R, we draw the line segment with min-
imum distance from f to R joining R at v. We define f is owned by its nearest
side L of R and f is in the range of L if v lies on L. If v is a vertex of R, we
define f is owned by R’s two sides intersecting at v and f is out of range of any
R’s side. As shown f1, f2 in Fig 2(a).

(a) Facility ownership (b) Lemma1 proof1 (c) Lemma1 proof2

Fig. 2. Definition 2 & Lemma 1 proof

Lemma 1 For any f locates outside R and owned by only one side L of R, we
construct a combined curve C consists of: (i) sub-curve1: A partial parabola
in the range of L constructed by f as the focus and L as the directrix; (ii) sub-
curve2: Two radials that are parts of perpendicular bisectors between f and two
vertices of L respectively toward directions that are out of L’s range. C divides
universe into two parts, for any user locates in the same area A with f , it has a
closer distance to f than to any point in R and we define: f prunes A.
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Proof (Lemma 1). We prove Lemma 1 by considering two cases:
Case 1: For any p lies on L, any u locates in the same area A with f has

smaller distance to f than to p:
Case 1.1: For any u lies in A within the range of L (as shown in Fig. 2(b)), we

set the min distance mindist(u, L) = |up|, where up is the line segment passing
c2 at i and p is the intersection between up and L. According to the property of
parabola, |pi| = |if |, then |up| = |ui|+ |if |. By triangle inequality, |up| > |uf | .

Case 1.2: For u lies in A but is out of L’s range (shown in Fig. 2(c)), the
minimum distance from u to L is |uv1|, where v1 is the vertex of L locates at the
same side with u w.r.t.f . As u is in the half dominated by f , |uf | < |uv1| ≤ |up|.

Case 2: For any p lies in R or on R’s sides (exclude L), any u locates in A
has smaller distance to f than to p:

Case 2.1: It is easy to show for any u lies in A within the range of L the
triangle inequality still holds by changing |pi| = |if | to |pi| > |if |, then |up| >
|uf |.

Case 2.2: For u inA locates out of range of L (in Fig. 2(c)), asmindist(u,R) =
|v1u| < |up|, and |uf | < |v1u|, we have |up| > |uf |.

Lemma 2 For any f locates outside R and owned by R’s two sides L1, L2,
we construct its combined curve C consists of: (i) Sub-curve1: Two partial
parabolas in the range of L1 and L2 constructed by f as the focus and L1,L2 as
directrixes, respectively; (ii) Sub-curve2: Three partial perpendicular bisectors
between f and three vertices of L1,L2 respectively toward directions that are out
of range of L1,L2. C divides universe into two parts, for any u lies in the same
area A with f , u has a closer distance to f than to any point p in R and we
define: f prunes A (Fig. 3(a)). (note that two perpendicular bisector radials at
the two ends of C do not necessary both exist due to location between R and f .)

(a) Lemma2 (b) Pruning rule 1

Fig. 3. Lemma 2 and pruning rule 1

With Lemma 1 and 2, we compute R’s guardian set Fg by traversing all
f ∈ F and keep fg whose pruning area is pruned by other facilities at most k−1
times as a guardian facility.

Apparently, this algorithm is costly that every accessed facility f will be
checked by every existed facility, costing a time complexity of O(|N |2), where
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|N | is the total number of facilities. To avoid such problem, we propose two
pruning rules to improve the efficiency.

Pruning Rule 1 For any f ∈ F owned by only one side L of R and locates
outside R, we find the vertex vg on the combined curve Cfgi of current guardian
facility fgi s.t. vg

– is an intersection between other guardian facility’s combined curve and Cfgi

or between Cfgi and universe boundary;
– lies at the same side with f w.r.t. L;
– is pruned exactly k-1 times and has the farthest distance to L or L’s extension

if vg is out of L’s range;
if dist(L, f) > 2dist(vg, L), f has no influence on constructing R’s guardian
set and can be pruned.

Proof. As Fig. 3(b) shows, with f1 and f2 existed, the shaded area has been
pruned by f1 and f2 jointly and v2 is the vertex described in pruning rule 1. As
dist(L, f3) > 2dist(v2, L), it guarantees the area pruned by f3 is pruned by f1

and f2 jointly, therefore, f3 is pruned.

Pruning Rule 2 For facility f fails meeting pruning rule 1 , we compute its
combined curve Cf and keep each intersection on Cf that is:

– intersection between Cf and combined curves of other guardian facilities;
– intersection between Cf and universe boundaries;
– intersection that is joint point between different sub-curves of Cf .

If all such intersections on the Cf have been pruned by other facilities for at least
k times, f has no effect on constructing R’s guardian set and can be pruned.

Proof. We prove it by contradiction. Assume f and its combined curve Cf meet
statement of pruning rule 2 but cannot be pruned, it has at least a part Ci on
Cf cannot be pruned and at least existing two intersections that are two vertices
of Ci pruned by other facilities for at most k-1 times, which contradicts with the
statement of pruning rule 2. Therefore, pruning rule 2 holds.

Algorithm We compute R’s guardian set by indexing all facilities in a R-
tree and accessing each node in an ascending order of its minimum distance to
R. For each f that is not pruned by pruning rule 1, its combined curve Cf is
created. Then we compute intersections between Cf and existed combined curves
and apply pruning rule 2 to prune more existed guardian facilities. We update
the temporary guardian set by removing facilities that meet pruning rule 2 and
adding f if it is not pruned. The algorithm finishes when all nodes are accessed.

3.2 Partition Universe

Before the computation in Section 3.1, we partition the universe U to small
rectangular regions R. It is not avoidable that each R contains facilities. However,
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Algorithm 1: ConstructGuardianSet(R,F, k)

Input: Rectangular region R, a set F of facilities, value k
Output: R’s Guardian set

1 initialise Fg as ∅;
2 insert root of R-tree in a min-heap h; /* we access f in an ascending order

of mindist(R,f) */;
3 while h is not empty do
4 deheap an entry e;
5 if e is not a facility then
6 Put e’s child entry in h;
7 else
8 if f cannot be pruned by pruning 1 then
9 Compute Cf w.r.t. R;

10 UpdateExistedGuardianSet(Fg,f ,k,Cf );

11 Return Fg;

with more facilities contained inside, more guardian facilities locate outside of R
are likely to be pruned when q is given. Therefore, we set a threshold Tf as the
maximum number of facilities each R contains when partitioning to reduce the
number of such guardian facilities that are possibly pruned in query process.

We partition U in a kd-tree [6] liked manner. Specifically, a big region Ru is
split into four disjoint child regions Rl if Ru contains more than Tf facilities. For
each region partitioned, we first find the median x-coordinate of all facilities in
Ru and partition Ru into two smaller intermediate regions by the median. Then
we partition two intermediate regions into four smallest ones following the same
way by focusing on their y coordinates instead. Such procedure is conducted
recursively until every region meets the threshold.

As we do not consider those facilities locate inside R when computing Fg of
R in Section 3.1 and they are likely to affect q’s RkNN. Therefore, we add all of
them to R’s guardian set after computing guardian facilities of R in case miss-
ing facilities that may affect q’s RkNN results. Such facilities are also guardian
facilities w.r.t.R.

Theoretical Analysis : [How many regions to be computed for
guardian sets] As each time a region Ru is split into four smaller regions Rl if
it contains at least |Tf |+ 1 facilities. Therefore the whole universe has at most

log4( |N |
|Tf |+1 ) + 1 level, where |N | is the total number of facilities. At the lowest

level that is level log4( |N |
|Tf |+1 )+1, there is no more region to be split. As a result,

the total number of regions to be computed for guardian sets is 4
log4(

|N|
|Tf |+1

)+1
,

which is 4 |N |
|Tf |+1 .
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Algorithm 2: UpdateExistedGuardianSet(Fg, f, k, Cf )

Input: Existing Guardian Set Fg, new facility f , value k, combined curve Cf

Output: Updated Guardian Set Fg

1 for each fg ∈ Fg do
2 compute and keep intersections between Cf and Cfg ;

3 for each fg ∈ Fg do
4 update pruned times of intersections on Cf and Cfg;
5 if fg can be pruned by pruning rule 2 then
6 remove fg from Fg;

7 if f is not pruned by pruning rule 2 then
8 Put f in Fg;

9 Return Fg;

3.3 Region R’s guardian set w.r.t k is compatible for k′ s.t. k′ ≤ k

Next, we prove R’s guardian set of k can be used flexibly on any Rk′NN s.t.
k′ < k.

Lemma 3 Given a rectangle region R, R’s guardian set Fgk′ of k′ is a subset
of its guardian set Fgk of k, where k′ < k.

Proof. We prove Lemma 3 by contradiction. Assume there is at least one facility
foutside excluded from Fg that is R’s guardian facility of k′, where k′ < k.
Therefore, the area pruned by foutside ( denote Afoutside ) holds:

((
⋃
Afgk) ∩Afoutside) ⊂ Afoutside (1)

where fgk is the guardian facility of R and whose partial combined curve con-
tributes to the boundary of unpruned area of R w.r.t.k. However, as foutside is
excluded from Fg of R, according to lemma 1 and 2, ((

⋃
Afgk) ∩ Afoutside) =

Afoutside, which contradicts with equation 1, then Lemma 3 holds.

By Lemma 3, we mark facilities to each R’s Rk′NN guardian set they are in-
cluded. When given q, we retrieve R’s guardian set w.r.t. k′ (k′ ≤ k) to avoid
accessing more facilities that have no influence on R, then start processing query
by SLICE.

4 Query Processing

With guardian sets, given a query q and k, we locate the region R where q locates
and retrieve its guardian set w.r.t. k. Then SLICE starts processing query.

Filtering phase Given a query q and k, SLICE partitions the universe U
into several regions, each of which has same subtending angle. In [3], the best



Pre-computed Region Guardian Sets Based Reverse kNN Queries 9

partition number is 12 but it is 9 in our algorithm according to our preliminary
experimental study.

Fig. 4 shows an example where the space is divided into 9 regions. Consider
the perpendicular bisector between f1 and q in region P , f1 contributes two
arcs in P , namely upper arc U1(with radius rU ) and lower arc L1 (with radius
rL). Normally, every f constructs at least a lower arc to each region that its
perpendicular bisector Lfq passes and it will contribute an upper arc for each
region that Lfq passes and the max subtending angle between Lfq and such
region is smaller than 90◦.

In filtering phase, each partitioned region maintains a k-th lower arc and a
k-th upper arc dynamically, for each f whose lower arcs are lower than k-th
upper arcs in corresponding regions will be kept as a significant facility of such
regions to verify users, otherwise it is discarded (like f2 is discarded in P in
Fig. 4). After all facilities are accessed, the filtering phase finishes.

Fig. 4. SLICE filtering

Verification phase All users u are indexed in a R-tree and accessed in the
ascending order of their distances to q. For u lies above the k-th upper arc of
its region is discarded and every u lies under the k-th lower arc is returned. The
remain users will be checked by significant facilities of this region.

Algorithm 3: RkNN(IndexFile, q, k)

Input: IndexFile, query point q,value k
Output: RkNN results

1 locate q’s region R;
2 retrieve R’s guardian set Fgw.r.t. k;
3 invoke SLICE with Fg;
4 return RkNN results;
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5 Experimental Study

5.1 Experimental Setup

We compare our algorithm with InfZone [1] and SLICE [3] which are the latest
algorithms for RkNN and SLICE is also the most efficient algorithm before our
pre-computed one. All algorithms are implemented in C++ and the experiments
are run on a 64-bit PC with Intel Xeon 2.66GHz quad CPU and 4GB memory
running Linux.

We use the synthetic and real datasets in experiments. The real dataset
consists of 175,812 points in North America and we randomly divide it into
two sets of equal size. One of them is facility set, the other one is user set. For
synthetic datasets, each dataset consists of 50,000, 100,000, 150,000, 200,000
points following either Uniform or Normal distribution and the facility sets, user
sets are obtained like real dataset. The default synthetic dataset contains 100,000
points following Normal distribution unless mentioned otherwise. For k, we set
it from 1 to 25 and make 10 at the default value. The page size for R-tree used
in our experiment is 4096 bytes.

As big indices are kept in disk practically, I/O cost cannot be avoided when
processing query. Therefore a penalty of I/O will be charged for each communi-
cation between disk and CPU. In our study, we estimate the I/O cost [16], [17]
by 0.1ms which is the lowest time cost at the moment. We calculate the total
time cost of each query in experiments by:

T = CostI/O ∗ PI/O + CostCPU (2)

where CostI/O, CostCPU are I/O cost, CPU time cost and PI/O is the I/O
penalty. Through experimental study, our algorithm runs times faster than In-
fZone and improves SLICE performance significantly. Although [15] claims the
I/O cost is highly system specific, we will prove our algorithm is the most effi-
cient whatever I/O penalty charged and our algorithm outperforms others much
more largely when higher I/O cost charged.

5.2 Evaluating Query Performance

In this section, we compare performance of three algorithms on bothmonoRkNN
and biRkNN . Three algorithms InfZone, SLICE and our pre-computed one
are shown as INF,SLICE and PRE respectively. The number of partition for
SLICE and PRE are 12 and 9 based on [3] and our preliminary experiments (see
Fig. 11(a)). The experimental results shown in this sub-section is an average cost
for one query in terms of total time (in millisecond) and I/O.

Effect of data size: In Fig. 5 and 6, we study the effect of data size for
both monoRkNN and biRkNN . For monoRkNN , Fig. 5(a) and 5(b) show the
average total time and I/O cost. In biRkNN , Fig. 6(a) and 6(b) show average
total time and I/O cost for both filtering and verification phases.

In Fig. 5(a), PRE performs best as only guardian facilities fg of the region R
where query locates are accessed. SLICE starts with considering all facilities in
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Fig. 5. Monochromatic Queries: Effect of data set size (Normal Distribution)

filtering phase, costing more time. InfZone costs the most time as every facility
to be pruned needs to compute with every vertex of Influence Zone, which is
time-consuming.

Fig. 5(b) demonstrates PRE costs least I/O as all guardian facilities of a
region can be indexed in one disk page and can be located by a small constant
number of I/Os. As expected, the I/O cost of SLICE is slightly larger than
InfZone’s as InfZone prunes a larger area.
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Fig. 6. Bichromatic Queries: Effect of data set size (Normal Distribution)

Fig. 6 shows results for biRkNN . For INF and SLICE, the major cost in
Fig 6(a) is filtering phase whereas PRE which improves the filtering phase by
one time faster by pre-computing guardian sets narrows the difference between
two phases.
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Fig. 7. Monochromatic Queries: Effect of k

Due to space limitations, in the rest part, we focus on the total time cost
(I/O cost included) of algorithms. The numbers displayed above the bars
correspond to the number of I/Os unless mentioned otherwise.
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Effect of k In Fig. 7 and 8, we study the effect of k on monoRkNN and
biRkNN . The performance of InfZone deteriorates rapidly with the increasing
k as time complexity is O(km2) and m increases as k increases, where m is the
number of influence zone’s vertices. PRE still performs best with least cost on
both total time and I/O.
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Fig. 8. Bichromatic Queries: Effect of k

Fig. 8(b) shows results for normal distribution using lines to demonstrate
clearly how algorithms scale with the increasing k. Under our experimental set-
ting, with accessing less facilities in filtering phase, PRE absolutely outperforms
other algorithms.
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Fig. 9. Effect of Data Distribution

Effect of data distribution: In Fig. 9, we study the effect of data distribu-
tion on algorithms. Distribution of the facilities and users is shown as (Df ,Du)
where Df and Du correspond to distributions of facilities and users. U, R and N
correspond to Uniform, Real and Normal distribution respectively. In this exper-
iment, the synthetic datasets contain the same number of points as real dataset.
Fig. 9 demonstrates our algorithm outperforms others whatever combination of
data distributions used.

Effect of number of users relative to number of facilities: In this
experiment, we fix the number of facilities to 100,000 and change the number of
users to see the effect of change in the relative size of the two data sets. Fig. 10
shows that all three algorithms’ verification phases cost more with increasing
number of users. PRE’s filtering phase is much efficient making its total time
cost dominated by verification phase. For the rest two, filtering phase dominates
the total time cost as it is still costly. Overall, PRE cost least I/O and runs much
faster than InfZone and SLICE.
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Fig. 11. Evaluation on Pre-computation

Total Time Cost and I/Os To clearly demonstrate our pre-computation
algorithm change under different partitions, we process 500 queries and collect
the total I/O and total time cost. Fig. 11(a) shows the total I/O cost for 500
queries and the number above each bar is the total time cost in second. We con-
clude that when partition number is 9, our algorithm reaches a best performance
as when partition number is smaller than 9, verification phase takes much time
due to only a small area pruned by filtering phase. Although its pruning power
becomes stronger with larger partition number, the filtering phase is still costly
and affects the performance.
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5.3 Evaluating Pre-Computation Algorithm

Number of pre-computed rectangular regions Fig. 11(b) shows the num-
ber of regions computed practically. Experimental results are under our theo-
retical analysis in section 3.2, demonstrating the number of regions computed
practically is bounded by our theoretical analysis. The number inside each bar
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is the average number of guardian facilities in the guardian set followed by the
size of index file in MB.

5.4 PRE is efficient whatever I/O penalty charged:

Following equation 2, let total time of PRE : TPRE = CostPRE.I/O ∗ PI/O +
CostPRE.CPU . T ′ denotes total time cost of any other algorithm : T ′ = Cost′I/O∗
PI/O + Cost′CPU . The total time difference between other algorithm and PRE
is δ = T ′ − TPRE :

δ = (Cost′I/O − CostPRE.I/O) ∗ PI/O + (Cost′CPU − CostPRE.CPU ) (3)

Then we prove PRE is the most efficient algorithm processing RkNN whatever
I/O penalty charged.

Proof : Proving PRE is the most efficient is equivalent to prove δ > 0, i.e.

PI/O >
CostPRE.CPU − Cost′CPU

Cost′I/O − CostPRE.I/O
(4)

Fig. 12(a) shows CPU time cost difference and Fig. 12(b) shows I/O difference by
using corresponding cost of other algorithm minus ours. To clearly show results,
we collect data by processing 500 queries.

As shown in Fig. 12(a) and 12(b), PRE cost least I/O and CPU time, which
makes right part of inequality 4 become small than 0, as the I/O penalty is
positive, the inequality always holds whatever is the I/O cost. As a result, PRE
outperforms other RkNN algorithms no matter what I/O penalty charged.

Total time difference with larger PI/O As equation 3 is a δ’s function
of PI/O, which increases monotonically with the increasing I/O penalty. Thus,
PRE will outperform other algorithm by a larger margin with larger I/O penalty
charged.

According to [15]’s claim that SLICE is the most efficient RkNN algorithm
before us, we conclude that PRE outperforms all existed RkNN algorithms.

6 Conclusion

In this paper, we propose a novel pre-computed RkNN algorithm by computing
guardian set for each disjoint rectangular region R in universe and guarantee that
for each possible query q in R, all its Rk′NN results are only affected by those
facilities in guardian set, where k′ ≤ k. Through pre-computation, we reduce the
number of facilities to be accessed from the whole facility set to only tens before
processing query by SLICE. The extensive experimental study demonstrates our
algorithm outperforms all existed algorithms on both total time and I/O cost.
Acknowledgements. Research of Wei Wang is supported by ARC DP130103401
and DP130103405. Muhammad Aamir Cheema is supported by ARC DE130101002
and DP130103405.
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