
Efficient Landmark-Based Candidate Generation
for kNN Queries on Road Networks

Tenindra Abeywickrama and Muhammad Aamir Cheema

Monash University, Melbourne, Australia
tenindra.abeywickrama,aamir.cheema@monash.edu

Abstract. The k nearest neighbor (kNN) query on road networks finds
the k closest points of interest (POIs) by network distance from a query
point. A past study showed that a kNN technique using a simple Eu-
clidean distance heuristic to generate candidate POIs significantly out-
performs more complex techniques. While Euclidean distance is an ef-
fective lower bound when network distances represent physical distance,
its accuracy degrades greatly for metrics such as travel time. Landmarks
have been used to compute tighter lower bounds in such cases, however
past attempts to use them in kNN querying failed to retrieve candidates
efficiently. We present two techniques to address this problem, one using
ordered Object Lists for each landmark and another using a combination
of landmarks and Network Voronoi Diagrams (NVDs) to only compute
lower bounds to a small subset of objects that may be kNNs. Our ex-
tensive experimental study shows these techniques (particularly NVDs)
significantly improve on the previous best techniques in terms of both
heuristic and query time performance.
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1 Introduction

The k nearest neighbor (kNN) query on road networks finds the k closest points
of interest (POIs) by their shortest path distances in the road network from
a query point. Incremental Euclidean Restriction (IER) [10] is a kNN method
that uses a simple Euclidean distance heuristic. IER retrieves Euclidean kNNs
as candidates and computes network distances to each one using a shortest path
algorithm (e.g., Dijkstra). The kth furthest candidate implies an upper bound
network distance to the kth NN. IER then iteratively retrieves further Euclidean
NNs, computes network distances and updates the k candidates if closer POIs
are found. Since Euclidean distance is a lower bound on network distance, IER
terminates when the distance to the next Euclidean NN is larger than the net-
work distance to the kth candidate. In a recent PVLDB experimental study [1],
when IER was combined with a fast shortest path technique (instead of Dijkstra)
it was found to be significantly faster than the state-of-the-art kNN methods.
Inspired by the observation of a simple heuristic being so effective, our study
seeks to improve on this by employing better heuristics.



Euclidean distance is a lower bound on the network distance between vertices
in road network graphs with travel distance edge weights. It can also be adapted
for use when edge weights represent other metrics. For example when they rep-
resent travel time, we can divide the Euclidean distance by the maximum speed
for any edge to obtain the minimum possible travel time. However a lower bound
obtained in this way is looser and IER is likely to retrieve far more candidates
that are not real kNNs (false hits) on travel times. This was evident as IER’s
advantage was smaller in several travel time experiments in [1]. This identifies
the need for improvement by using better heuristics.

A popular alternative lower bounding technique is based on using landmarks,
which Goldberg et al. [4] employed to improve the A* shortest path algorithm.
By using distances to landmark vertices and the triangle inequality, they were
able to compute more accurate lower bounds leading to a significant speed-up
of A* search. Naturally, as the shortest path problem is closely related to the
kNN problem, this raises the question whether these Landmark Lower Bounds
(LLBs) can be used to similarly improve IER’s kNN query performance. Until
our study, the answer to this question has been “no”.

Past attempts to use landmarks [7, 8] computed lower bounds for all POIs
and stored them in a sorted list. This is necessary for every query as LLBs depend
on the query vertex. Candidates with the next smallest lower bound are retrieved
iteratively from the list. This approach may be reasonable for small numbers of
POIs as computing lower bounds is a relatively fast operation. However it will not
scale well with increasing numbers of POIs. Some POI sets number in the tens
of thousands e.g., the 25,000 fast food outlets in the US [1]. In such scenarios,
it is desirable to incrementally retrieve POIs in order of their LLBs without
computing LLBs for all POIs. For example, Euclidean NNs can be incrementally
retrieved quite efficiently using an R-tree or similar structure.

Figure 1 demonstrates this problem using the US travel time road network.
In Figure 1(a) the LLB-based method is orders of magnitude worse on query
time (left y-axis) despite producing fewer false hits (right y-axis). This is due
to there being more POIs in total with increasing density (i.e., ratio of POIs to
vertices), requiring more LLBs to be computed. The query time in Figure 1(b)
is constant as it is dominated by the computation of LLBs irrespective of k. In
both figures we clearly see that (1) LLB-based methods provide better lower
bounds as evident from the fewer false hits and (2) LLB-based methods perform
very poorly without the ability to retrieve candidates incrementally.

Inspired by the performance of Euclidean heuristics in the PVLDB study
and using the observation that landmark lower bounds appreciably reduce false
hits over Euclidean distance, we investigate how to efficiently employ landmarks
to improve kNN query performance. To summarise our contributions:

– We present two techniques to generate kNN candidates using landmarks.
The first, Object Lists, demonstrates the difficulties in using LLBs and is
efficient in several scenarios. We further improve on this and present another
technique which, using a novel combination of Network Voronoi Diagrams
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Fig. 1. Euclidean kNN vs. Landmark kNN (US, d=0.001, k=10, uniform)

and landmarks, provides significant improvement over existing techniques on
both heuristic and running time performance.

– LLBs are expected to be more accurate than Euclidean distance, especially
for edge weights such as travel times. However, to the best of our knowledge,
they have not been empirically compared for kNN queries. In addition to
other experimental results, we present a detailed study into the number of
“false hits” (i.e., candidates which are not real kNNs). This machine inde-
pendent metric is applicable to any experimental setting or shortest path
technique, allowing a better understanding of the usefulness of LLBs.

2 Preliminaries

We consider a road network graph G = (V,E) where V is a vertex set and E is an
edge set. Edge (u, v) ∈ E connects two adjacent vertices with weight w(u, v) ∈
R>0 representing any real positive metric such as distance or travel time. The
shortest path P (u, v) with network distance d(u, v) represents the minimum sum
of weights connecting any two vertices u and v. Similar to almost all existing
studies we consider POIs (objects) and query points located on vertices in V .
So, given a query vertex q and a set of object vertices O, a kNN query retrieves
the k closest objects in O based on their network distances from q in G.

2.1 Landmark Lower Bounds

To compute a Landmark Lower Bound (LLB), firstly a set of m landmark vertices
L = {l1, . . . , lm} ⊆ V is selected. From each landmark li ∈ L we compute the
distances to all vertices in V . Now given a source vertex q and destination vertex
o, we can compute a lower bound LBli on the network distance d(q, o) using the
distances to landmark li and the triangle inequality as defined in (1). We obtain
the “tightest” lower bound (i.e., closest to d(q, o)) by choosing the maximum
lower bound LBmax over all m landmarks as defined in (2).



LBli(q, o) = |d(li, q)− d(li, o)| ≤ d(q, o) (1)

LBmax(q, o) = max
li∈L

(|d(li, q)− d(li, o)|) (2)

First applied to road networks by Goldberg et. al [4], there now exists a
large body of work utilising this concept. Two considerations arising from LLBs
are (a) the vertices to select as landmarks and (b) the number of landmarks.
Intuitively vertices whose shortest path trees cover longer shortest paths (e.g.,
those appearing at fringes of the graph [4]) have a higher probability of giving
tighter lower bounds. A larger number of landmarks similarly increases this
probability, but at the expense of higher space cost and computing more lower
bounds to find the tightest overall. Since our study is concerned with using
LLBs efficiently for kNNs rather than improving them, we refer the reader to
past studies [4, 5] for discussion on these choices. Note that (1) and (2) are only
applicable on undirected graphs, but the idea can easily be extended to directed
graphs by computing distances to and from landmarks.

3 Techniques

As detailed in Section 1, Incremental Euclidean Restriction (IER) is a kNN tech-
nique that computes network distances to candidate objects retrieved by their
Euclidean distance until the k candidates cannot be improved. This technique
can be generalized to consider any lower bounding technique, such as Landmark
Lower Bounds (LLBs) discussed earlier. Let us refer to the equivalent kNN al-
gorithm to IER using LLBs as Incremental Lower Bound Restriction (ILBR).
ILBR works in exactly the same way as IER except we retrieve the candidate
with the smallest LLB. IER can incrementally retrieve candidates by Euclidean
NN search on an R-tree, avoiding computing Euclidean distances to all objects.
But there is no efficient analogous method for LLBs and past studies [7, 8] resort
to computing LBmax for all objects which is not practicable. Here we present
two techniques that incrementally retrieve candidates for ILBR.

3.1 ILBR by Landmark Object Lists

By computing LLBs for all objects as in past studies more LLBs are computed
than necessary. We introduce the pre-computed Object List (OL) index that
enables LLBs to be computed more optimistically. The OL approach solves
the same underlying problem, i.e., to find the object p ∈ O with the smallest
LBmax(q, o) as defined by (3). p is then returned to ILBR as a candidate.

p = min
p∈O

(max
li∈L

(|d(li, q)− d(li, p)|)) (3)

Pre-Processing: Given object set O, we pre-compute an Object List OLi

for each landmark li ∈ L as shown in Figure 2. The list OLi contains an element



OL1 o1, d(o1, l1) o2, d(o2, l1) . . . o|O|, d(o|O|, l1)

...

OLm o1, d(o1, lm) o2, d(o2, lm) . . . o|O|, d(o|O|, lm)

Fig. 2. Unsorted Object Lists for m Landmarks

for every object o ∈ O, with each element consisting of o and its distance from
the landmark d(li, o). Finally each list is sorted on d(li, o). Since the Object List
index only depends on the object set O, which is known beforehand, it is created
and sorted entirely in the pre-processing stage.

OLq o6, 1 o2, 2 o4, 3 o5, 4 o7, 7 o1, 8 o3, 9

Index 0 1 2 3 4 5 6

Fig. 3. Sample Query Object List OLq

Query Algorithm: Given a query vertex q and its nearest landmark lq,
we use object list OLq of lq to populate a set of potential candidates. The first
potential candidate is the object that will minimise (1) for lq. This object can be
found by binary search on OLq for the object p whose distance d(lq, p) is closest
to d(lq, q). For example Figure 3 depicts OLq for a set of 7 objects o1, ..., o7 with
distances from lq. Let us say d(lq, q) = 4, then the binary search will find the
element at index 3 (shaded) as closest to 4. Therefore p = o5 minimises (1) with
LBlq (q, o5) = |4 − 4| = 0. Finally p is inserted into a minimum priority queue
Q keyed by LBmax(q, p) computed using the ALT index [4]. For each vertex in
V , ALT contains a list with its distances to each landmark. LBmax(q, p) can be
efficiently computed by iterating over the lists for q and p.

Lemma 1. Given an object p and a landmark lq, any object o with LBlq (q, o) <
LBmax(q, p) may also have LBmax(q, o) < LBmax(q, p).

Lemma 1 is trivially true when LBmax(q, o) = LBlq (q, o). Now object pn with
the next smallest lower bound by lq is immediately to the left or right of p (found
above by binary search in OLq). If LBlq (q, pn) < Top(Q) then by Lemma 1, pn
may have smaller LBmax than any object in Q. While LBlq (q, pn) < Top(Q), we
search left or right from p. When an object satisfies the condition we compute
LBmax and insert it into Q. When neither the next left or right object satisfies
the condition, the algorithm terminates, and the top element in Q is returned as
the object that minimises (3). This is correct as any object further left or right
must have LBlq (q, pn) ≥ Top(Q) and cannot satisfy Lemma 1.
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Let us say in our example LBmax(q, o5) = 2 so Top(Q) = 2 after inserting
o5. In Figure 3, the objects to the left and right of o5 are o4 and o7, with lower
bounds LBlq (q, o4) = |4− 3| = 1 and LBlq (q, o7) = |4− 7| = 3 respectively. By
Lemma 1, o4 may be a better candidate so we compute LBmax(q, o4) and insert
it into Q. Let us say Top(Q) = 2 after inserting o4. For the next element to the
left, o2, we have LBlq (q, o2) = |4− 2| = 2. In that case neither lower bounds for
the object to the left or right is less than Top(Q) and therefore cannot improve on
the objects in Q and the search terminates. By saving Q and the indices in OLq

of the last left and right elements evaluated, we can continue to incrementally
retrieve the object with the next smallest LBmax.

We choose lq as the landmark closest to query vertex q. This heuristic in-
creases the probability that objects are found further from lq than q, thus pro-
ducing a higher lower bound by (1). For example Figure 4 shows the landmark
distances for two landmarks, q and two objects. q, o1 and o2 are equally close
to l1, so LBl1(q, o1) = 0 and LBl1(q, o2) = 0 even though o1 is further away.
The closer landmark l2 gives LBl2(q, o1) = 13 and LBl2(q, o2) = 7, correctly
distinguishing the objects. Object Lists produce fewer false hits than IER on all
datasets and is more efficient on low density datasets. However, this problem
still occurs on datasets with higher density as landmarks are sparse, and IER is
faster on these datasets. We now present a further improved technique.

3.2 ILBR by Network Voronoi Diagrams

Our second technique employs a Network Voronoi Diagram (NVD) [9] of the
object set O to improve on Object Lists. Unlike its Euclidean counterpart, NVD
generators are limited to the network and shortest paths represent distances.

We define Vns(oi) as the Voronoi node set by (4), which identifies the vertices
in V for which oi is the nearest neighbor by their network distances to oi.

Vns(oi) = {v|v ∈ V, d(v, oi) ≤ d(v, oj)∀oj ∈ O \ oi} (4)

For any edge (u, v) where u ∈ Vns(oi) and v ∈ Vns(oj), then Vns(oi) and
Vns(oj) are adjacent. The Network Voronoi Diagram for object set O is the



Algorithm 1: GetNearestCandidateByNVD(q,cl,NVD,ALT ,Q,H)

Input : q: a query vertex, cl: candidate returned by last call (or 1NN from
NVD if first call), NVD: Network Voronoi Diagram for object set O,
ALT : index to compute maximum lower bounds, Q: priority queue
with potential candidates, H: hash-table containing IDs of all
Voronoi node sets previously evaluated

Output : c: candidate object, LBmax(q, c): lower bound distance to c over L
1 GenerateAdjacentCandidates(q, cl, NV D,ALT,Q,H);
2 (c, LBmax(q, c))← Dequeue(Q);
3 return (c, LBmax(q, c));
4

5 Function GenerateAdjacentCandidates(q, cl, NV D,ALT,Q,H)
6 Vns(cl)← GetV oronoiNodeSet(cl, NV D);
7 for each Vns(p) ∈ AdjacentV oronoiSets(Vns(cl)) do
8 if !H.contains(Vns(p)) then
9 Enqueue(Q, (p,ALT.ComputeLBMax(q, p)));

10 H.insert(Vns(p));

collection of Voronoi node sets for all objects in O. Figure 5 shows an example
NVD for a graph with unit edge weights and four objects. Each Voronoi node
set is surrounded by a dotted container and arrows indicate adjacency.

NVDs are not new in the context of kNNs [6, 15]. VN3 [6] utilises an NVD
to retrieve candidates using the observation that the next NN is contained in
a Voronoi node set adjacent to the sets of NNs found so far. VN3 also pre-
computes certain network distances. For each Voronoi node set this includes the
distance from each border vertex to every other border and from each border to
every contained vertex in the set. This allows VN3 to also compute the network
distance to retrieved candidates, but entails huge pre-processing and query cost.
We instead relax the original observation to consider candidate NNs rather than
NNs, which allows us to incrementally retrieve candidates for computing cheap
LLBs. Through this novel combination of the standard NVD and landmarks we
are able to consider significantly fewer candidates than Object Lists and avoid
the large pre-processing overhead of VN3.

Pre-Processing: An NVD can be computed optimally in O(|V | log |V |) time
with O(|V |) space [3] using simultaneous Dijkstra’s searches from all objects
using a single priority queue. When a vertex vd inserted by the search from oi is
dequeued and vd is not assigned to a Voronoi node set, it is assigned to Vns(oi).
This is correct as vd is the minimum element in the queue and so cannot be closer
to another object. However if vd is assigned to another Voronoi node set Vns(oj),
then Vns(oj) is added to the list of adjacent sets for Vns(oi) (the search from oj
creates the reciprocal entry). The search from oi is pruned at vd, i.e., neighbor
vertices are not inserted into the queue as they cannot belong to Vns(oi).

Query Algorithm: Algorithm 1 describes how to use NVDs to retrieve
candidates. By their definition, an NVD can quickly return the 1NN by looking
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up the Voronoi node set (and hence the associated object) containing the query
vertex. If k > 1, Algorithm 1 returns the next candidate by first retrieving the
adjacent Voronoi node sets of the last candidate object. Note that in the first
call to Algorithm 1 the last candidate is the 1NN. Each adjacent set generates
a new potential candidate, to which we compute its LBmax by (2) using the
ALT index and insert it into priority queue Q. We use hash-table H to avoid
repeated computations for previously evaluated adjacent Voronoi node sets. Once
all adjacent sets are processed in this way, we return the element in Q with the
minimum LBmax as the next candidate.

Figure 6 shows a simplified NVD, assume the dotted containers capture the
Voronoi node sets of each object and when containers share an edge they are
adjacent. So for query vertex q in the figure, we can retrieve the 1NN o1 as q
is contained in Vns(o1). Then the adjacent Voronoi node sets of Vns(o1) (lightly
shaded) are used to retrieve potential candidates, which are inserted into Q by
their LBmax values. Let us say the candidate with the minimum key is now o7,
then o7 would be returned by the algorithm. In the next call to the algorithm,
the Voronoi node sets adjacent to Vns(o7) would be retrieved and, for sets not
already evaluated, new potential candidates inserted into Q.

Recall that ILBR (like IER) terminates when the network distance to the
kth candidate is less than the lower bound distance to the next candidate. We
propose Theorem 1 to show that Algorithm 1 is correct when this occurs.

Theorem 1. When ILBR terminates the following are true (1) priority queue
Q does not contain any objects with distance smaller than the kth candidate (2)
there are no objects outside the Voronoi node sets visited so far (i.e., for objects
in Q or returned as candidates) with distance smaller than the kth candidate.

Proof. Let Dk be the network distance to the kth candidate. We now prove each
case of Theorem 1 individually as follows:

Case 1: When ILBR terminates we have Dk ≤ Top(Q). We also have
Top(Q) ≤ d(q, c) for any object c in Q as they are inserted using a lower bound



distance and Q is a minimum priority queue. Thus we also have Dk ≤ d(q, c)
and no object c in Q has a network distance smaller than the kth candidate.

Case 2: Let C ⊆ O be the set of objects inserted into Q and let S =
{Vns(o)|o ∈ C} be the set of associated Voronoi node sets. We prove Case 2 by
contradiction in a similar but simpler manner to [6]. Let us assume there exists an
object pk /∈ C such that d(q, pk) < Dk. Algorithm 1 inserts objects into Q from
adjacent Voronoi node sets beginning with the set containing q, thus all Voronoi
node sets in S are adjacent to at least one other set in S. So the shortest path
P (q, pk) must pass through some Voronoi node set Vns(x) ∈ S since pk /∈ C.
Thus P (q, pk) must contain at least one vertex vx ∈ Vns(x), as illustrated in
Figure 6 with x = o2 and pk = o8. By the definition of an NVD we have
d(vx, x) ≤ d(vx, pk) as all vertices in Vns(x) are closer to x than any other object.
Adding d(q, vx) to both sides results in d(q, vx) + d(vx, x) ≤ d(q, vx) + d(vx, pk).
This simplifies to d(q, x) ≤ d(q, pk) as vx is on the shortest path P (q, pk) and
d(q, x) ≤ d(q, vx)+d(vx, x). Since x is in Q, we have Top(Q) ≤ d(q, x), so we must
have Dk ≤ d(q, x). This implies Dk ≤ d(q, pk), contradicting our assumption.

NVD Lower Bound Optimisation: When parallel Dijkstra’s searches
meet during NVD construction, we naturally compute an upper bound distance
between objects of adjacent Voronoi node sets. This is an upper bound and not
an exact distance because searches are pruned (e.g., shorter paths may exist
through other adjacent Voronoi node sets). A lower bound distance to an adja-
cent object can be computed by applying the triangle inequality to the network
distance (computed by ILBR) from q to the last candidate object and this upper
bound distance. For example in Figure 7, let o2 be the last candidate returned
with network distance d(q, o2). While evaluating the adjacent set Vns(o8), we
use the pre-computed upper bound distance UB(o2, o8) between o2 and o8 to
compute a lower bound LBnvd(q, o8) = d(q, o2)−UB(o2, o8). Note that it is not
an absolute value due to the upper bound. In Algorithm 1, we insert o8 into
Q keyed by LBnvd(q, o8) if LBnvd(q, o8) > LBmax(q, o8). The new lower bound
may be tighter than the one computed using ALT especially when objects are
further away from q and comes at a cheap pre-processing and query time cost.

4 Experiments

4.1 Experimental Setup

Environment: All experiments were run on a 3.2GHz Intel Core i5-4570 CPU
and 32GB RAM running 64-bit Linux (kernel 4.2). Code was written in single-
threaded C++ and compiled using g++ 5.2 with the O3 flag. We implemented
ILBR, ALT and the candidate generation techniques ourselves. We obtained
implementations of existing techniques, experimental scripts and datasets from
[1]. All queries were executed in-memory for fast performance.

Datasets: We use 10 travel time road networks as in Table 1 with the largest US
the default. We use a combination of synthetic and real object sets. We choose



Region |V | |E|
DE 48,812 119,004

VT 95,672 209,288

ME 187,315 412,352

CO 435,666 1,042,400

NW-US 1,089,933 2,545,844

CA 1,890,815 4,630,444

E-US 3,598,623 8,708,058

W-US 6,262,104 15,119,284

C-US 14,081,816 33,866,826

US 23,947,347 57,708,624

Table 1. Road Networks

Type Size Density

Schools 160,525 0.007

Parks 69,338 0.003

Fast Food 25,069 0.0011

Post Offices 21,319 0.0009

Hospitals 11,417 0.0005

Hotels 8,742 0.0004

Universities 3,954 0.0002

Courthouses 2,161 0.00009

Table 2. Real POI Sets (US)

synthetic objects uniformly at random based on density d where d=|O|/|V |. In
addition we use 8 real POI sets extracted from OSM1 as in Table 2.

Parameters: We vary object set density from 0.0001 to 1 and k from 1 to
50. We use the same default parameters as [1] with default density d = 0.001
and k = 10. We generate 25 uniform object sets and execute methods for 200
randomly selected query vertices, averaging running time over 5000 queries.

Techniques: Like IER, ILBR uses a different road network index to compute
network distances. We combine ILBR with Pruned Highway Labelling (PHL) [2]
as it is one of the fastest techniques. We use an ALT [4] index with 16 random
landmarks to compute lower bounds and construct Object Lists. Finally we
compare our techniques against the current fastest state-of-the-art technique,
IER (similarly using PHL) [1]. For real-world object sets we also compare against
two other techniques G-tree [16] and INE [10] for comparison with [1].

Road Network PHL G-tree
ALT OL NVD R-tree

(m=16) (d=0.1%) (d=0.1%) (d=0.1%)

NW
Time 16s 47s 2s 0.8ms 264ms 0.2MS

Space 325MB 104MB 67MB 136KB 4.2MB 44KB

US
Time 30m 71m 60s 15ms 12s 4ms

Space 15.8GB 2.9GB 1.43GB 1.8MB 92MB 0.9MB

Table 3. Index Statistics

4.2 Index Pre-Processing

Table 3 details the index pre-processing time and space. PHL and ALT are
the road network indexes employed by ILBR and IER. While PHL is faster to
construct for travel time road networks, G-tree consumes less space making it
more appropriate with limited memory. The index size of ALT is small, but this
is dependent on m the number of landmarks used (16 in our case). It can be
reduced by using fewer landmarks at the expense of looser lower bounds. We
also observe the performance of object indexes used by ILBR (Object Lists and
Network Voronoi Diagrams) and IER (R-trees) for the default density d = 0.001.

1 http://www.openstreetmap.org



Object Lists and R-trees are fast to construct and their index sizes are small.
However since the space cost is a function of object set size we expect it to
increase with density. NVDs take longer and occupy more space as the time and
space complexity are functions of |V |. But both costs are still significantly smaller
than road network indexes making it feasible to compute an NVD for each object
set. NVDs may also be compressed using the geometric area of Voronoi node sets
to capture vertex containment. For example it may be stored as a polygon in an
R-tree [6] or as merged cells in a Quadtree [12].

4.3 Query Performance

We evaluate query performance of each technique on two metrics, namely run-
ning time and false hits per query. A false hit occurs when a candidate NN is not
a real kNN. The greater the number of false hits, the more unnecessary network
distance computations ILBR must perform. Thus false hits are an indication
of a heuristic’s performance irrespective of the experimental setting (disk based
or main memory) or the network distance technique used. We refer to the two
ILBR methods as NVD-X and OL-X as variants employing Network Voronoi
Diagrams and Object Lists respectively (and X is the road network index used).
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Fig. 8. Effect of Network Size |V | (d=0.001, k=10, uniform)

Effect of Network Size: Figure 8 shows query performance as the number
of road network vertices |V | increases. In Figure 8(a), NVD-PHL is consistently
the best performing method and is 2-3× faster than IER-PHL. OL-PHL is com-
parable to NVD-PHL for the first few datasets after which its advantage over
IER-PHL narrows until being on par with it for the largest dataset. With in-
creasing |V | the total number of objects increases for the same density causing
Object Lists to become larger. E.g., we expect there to be more fast food outlets
in larger regions. OL is susceptible to objects that appear close when they are
similar distances from the landmark as the query vertex. When |V | increases,
landmarks become more distant from query vertices on average (as the number
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Fig. 9. Effect of k (US, d=0.001, uniform)

of landmarks m is constant), so the probability of such objects appearing in-
creases. While these are only potential candidates and are not reflected in false
hits, OL must still compute their LBmax values. This is evident in Figure 8(b)
as the number of false hits for OL is still lower than Euclidean distance.

Effect of k: Figure 9 shows the query performance with increasing k. For
k=1, NVD-based methods are essentially optimal as only a single look-up oper-
ation is needed. NVD-PHL once again outperforms all other methods, being at
least 2-3× faster than IER-PHL over all k, again showing that it is possible to
efficiently use landmarks for kNNs. Landmarks display significant improvement
on false hits over Euclidean distance in Figure 9(b). But earlier trends are also
seen here and OL-PHL’s query time does not improve on IER-PHL.
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Fig. 10. Effect of Density (US, k=10, uniform)

Effect of Density: We observe query performance with increasing object
set density in Figure 10. As density increases, the average distance between
objects decreases. This makes kNNs appear closer to the query vertex and they
should be easier to find. IER-PHL is an exception, as objects become closer
and more numerous they become more difficult to differentiate using Euclidean
distance. NVD-PHL shows this problem can be remedied using landmarks as it is
an order of magnitude better than IER-PHL in Figure 10(a). OL-PHL however
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degrades with increasing density to the point that its running time is an order of
magnitude worse than IER-PHL. With more objects, more of them will produce
inaccurate lower bounds similar to the scenario depicted in Figure 4, making
distant objects appear close to the query vertex. NVD-PHL does not suffer from
this as using adjacent Voronoi node sets acts as a filter avoiding objects that
“seem” close by inaccurate lower bounds. As a result NVD-PHL experiences far
fewer false hits in Figure 10(b).

Lower Bounds Computed: Figure 10(b) showed that with increasing den-
sity, OL experiences fewer false hits than Euclidean distance even at its worst.
This suggests that the poor running time of OL for high densities in Figure 10(a)
is not caused by ILBR making additional network distance computations due to
false hits. It is actually due to the number of lower bounds computed by OL,
which increases with density, as illustrated in Figure 11(a). NVD computes very
few lower bounds thanks to its filtering property. The final evidence of this is the
behaviour of OL on the two datasets in Figure 11. The US road network with 24
million vertices requires more lower bounds to be computed than the smaller NW
dataset with 1 million vertices. The US has more objects for the same density,
resulting in a larger Object List and hence a larger search space to find the best
object. We note however, computing all lower bounds would require significantly
more computations than OL. While OL is a substantial improvement, its utility
is still dependent on the number of objects.

Real-World Object Sets: We verify our observations on real-world POIs
in Figure 12 with increasing object set sizes from left to right. Trends seen in
previous figures are also observed for real-world POIs. NVD-PHL is the overall
best performing method, while OL-PHL is competitive except on larger object
sets like parks and schools. For small object sets like courts, IER-PHL remains
competitive as there are so few objects that Euclidean distance has a smaller
probability of making a false hit. A more typical object set such as fast food
outlets demonstrates the significant superiority of NVD-PHL.
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5 Related Work

A recent experimental study [1] on the kNN problem provided an in-depth review
of the state-of-the-art. The main outcomes of this study were the surprising
performance of IER and the implications this had on heuristics used in kNN.
We refer the reader to this paper for a detailed review of kNN techniques, while
in this section we discuss the work most relevant to our study.

VN3 [6] uses Network Voronoi Diagrams to answer kNN queries as explained
in Section 3.2. Landmarks have been used to answer kNN queries by Kriegal et al.
[7, 8] based on the multi-step kNN paradigm [13] that we refer to as ILBR. These
studies propose interesting improvements to using landmarks. But in both cases
the kNN algorithms require creating a ranking by computing landmark lower
bounds to all objects. As discussed this approach is not scalable with object set
size and not competitive with existing approaches in practice.

Road Network Embedding (RNE) [14] involves transforming the road net-
work into higher dimensional space and using Minkowski metrics to estimate
network distance. However the proposed kNN method is approximate. Qiao et
al. also propose an approximate technique [11] using shortest path trees to com-
pute distance estimates based on tree distance, but their solution applies to the
k nearest keyword problem where objects are not split into sets.

There is a wide body of work on utilising landmarks for shortest path queries.
As previously discussed, ALT [4] was among the first. [8] proposes a hierarchical
landmark scheme to reduce index space cost. Other work [5] has focussed on
improving lower bounds for example through better landmark selection. These
compliment our work, e.g., better lower bounds reduce the number of false hits.

6 Conclusion

In this paper we present two techniques to efficiently retrieve kNN candidates by
landmark-based lower bounds in an incremental manner for effective integration
with the ILBR framework. We empirically compare the heuristic performance
of landmark lower bounds and Euclidean distance on kNN search for the first
time. We show that both methods significantly improve on the number of false
hits (by up to an order of magnitude) incurred in candidate generation than the
Euclidean distance heuristic used by IER. In our experimental investigation on



travel time road networks, the Object List technique demonstrates the difficulties
in using landmarks but outperforms IER for smaller object sets. The second
technique employing a Network Voronoi Diagram outperforms IER by at least
2-3× on query time across all datasets and parameters. Thus we show that it is
indeed possible to use landmark-based lower bounds to improve kNN search.
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