
A Safe Zone Based Approach for Monitoring
Moving Skyline Queries

Muhammad Aamir Cheema†, Xuemin Lin‡†
∗

, Wenjie Zhang†, Ying Zhang†

†The University of New South Wales, Australia ‡East China Normal University, China
{macheema,lxue,zhangw,yingz}@cse.unsw.edu.au

ABSTRACT
Given a set of criterions, an object o dominates another ob-
ject o′ if o is more preferable than o′ according to every
criterion. A skyline query returns every object that is not
dominated by any other object. In this paper, we study the
problem of continuously monitoring a moving skyline query
where one of the criterions is the distance between the ob-
jects and the moving query. We propose a safe zone based
approach to address the challenge of efficiently updating the
results as the query moves. A safe zone is the area such that
the results of a query remain unchanged as long as the query
lies inside this area. Hence, the results are required to be
updated only when the query leaves its safe zone. Although
the main focus of this paper is to present the techniques for
Euclidean distance metric, the proposed techniques are ap-
plicable to any metric distance (e.g., Manhattan distance,
road network distance). We present several non-trivial op-
timizations and propose an efficient algorithm for safe zone
construction. Our experiments demonstrate that the cost of
our safe zone based approach is reasonably close to a lower
bound cost and is three orders of magnitude lower than the
cost of a näıve algorithm.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

General Terms
Algorithms

1. INTRODUCTION
Due to the exponential increase in the usage of smart

phones, availability of inexpensive position locators and cheap
network bandwidth, location-based services are becoming
increasingly popular. Skyhook reported that the number
of location-based applications being developed each month
is increasing exponentially. Consequently, in the past few

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

years, significant research attention has been given to con-
tinuously monitor various spatial queries such as k nearest
neighbors (kNN) queries [27, 18], range queries [27, 4] and
reverse k nearest neighbors queries [13, 26].

Each of the above mentioned spatial queries retrieves the
objects based on their distances from the query location.
However, in many real world applications, distance is not
usually the only criterion desired by the users. In this pa-
per, we focus on continuously monitoring the spatial queries
that involve multiple criterions (distance being one of the
criterions). Since skyline is a natural and popular choice for
the applications involving multi-criteria decision making [2,
24, 14, 20, 21, 22, 8], in this paper, we study the problem of
continuously monitoring skyline for a moving query where
distance between the objects and the query is one of the
criterions.

Consider the example of a car driver who is looking for
restaurants. He may be interested in the restaurants that
are close to his location, have good reputations and are
cheap, i.e., distance, rank and price are the three criteri-
ons. A traditional continuous kNN query monitors the k
closest restaurants regardless of their reputations and food
prices. On the other hand, a skyline query returns every
restaurant that is not dominated by any other restaurant
(i.e., for every returned restaurant o, there does not exist
any other restaurant that is closer to the query, has a bet-
ter reputation and is cheaper). Since the distances between
the car and the restaurants change as the car moves, the
skyline is needed to be updated continuously. In this paper,
we present efficient techniques to continuously monitor the
moving skyline queries.

Note that some users may want to define additional con-
straints on skyline objects so that the result size is reduced
and it is easier for them to make the final choice. For in-
stance, a user may want to continuously monitor k-closest
skyline objects or only the skyline objects that lie within
a certain distance range. In Section 5.2, we show that our
proposed techniques can be easily adopted to continuously
monitor such filtered skyline objects.

1.1 Solution Highlights
In the past few years, several safe zone based approaches

[27, 4, 18] have been proposed to monitor various continu-
ous spatial queries. Such algorithms do not only return the
current results but also a safe zone which is an area such
that the results remain unchanged as long as the query re-
mains inside the safe zone. Hence, the results of the query
are not required to be updated unless the query leaves its
safe zone. Due to the effectiveness and popularity of the
safe zone based approaches, we also propose an efficient safe

zone based solution.
Fig. 1 shows an example of four restaurants (o1 to o4)

and a query q. Fig. 1(a) depicts the rank and average food
price of each restaurant and Fig. 1(b) shows the locations of
the restaurants and the query q. Assume that a lower rank
indicates a better reputation. A restaurant o is a skyline
object if there does not exist a restaurant o′ that is more
preferable than o according to every criterion (i.e., price,
rank and distance). Note that o2 and o3 are the skyline
objects because there does not exist a restaurant that has
a lower price and a lower rank. o1 is also a skyline object.
This is because although o2 and o3 have lower ranks and
lower prices than o1, the restaurant o1 is closer to q than o2
and o3 (see Fig. 1(b)). o4 is not a skyline object because o2
has a lower rank, a lower price and is closer to q than o4.
Safe zone is the area shown shaded in Fig. 1(b). The results
do not change as long as q lies in the safe zone.

(a) Price and rank (b) Location coordinates

Figure 1: Skyline objects are o1, o2 and o3 and safe
zone is the shaded area

We formalize the safe zone by introducing a novel concept
of impact region. Impact region of an object o is the area
such that o is one of the skyline objects of a query q if and
only if q lies in this area. In Fig. 1(b), the impact region of
o1 is the triangle. The impact region does not only help in
computing the safe zone but it can also be used for market
analysis and targeted marketing. For instance, a person that
is present in the impact region of a restaurant is likely to be
influenced by an advertisement because the restaurant is one
of its skyline objects. Similarly, demographics of the impact
region of a restaurant can be used by the market researchers
to analyse its business.
We show that the safe zone can be constructed if the im-

pact region of every object is known. More specifically, we
show that the safe zone consists of every point that lies in-
side the impact region of every skyline object and lies outside
the impact region of every non-skyline object. In Fig. 1, safe
zone is the shaded area. After formalizing the safe zone, we
present a basic algorithm to construct the safe zone.
We note that the basic algorithm is quite expensive mainly

because the computation of the impact region of an object is
not cheap as it requires considering all other objects. Based
on several non-trivial observations, we show that the safe
zone can be constructed accurately even if partially com-
puted impact regions are used. More specifically, we show
that the safe zone can be constructed accurately even when
only the skyline objects are considered for the impact region
construction. This significantly improves the performance of
the basic algorithm because the number of skyline objects is
usually much smaller than the total number of objects. Fur-
thermore, we present effective pruning rules to prune the
objects that do not affect the safe zone construction. These
optimizations improve the performance up to three orders
of magnitude and enable us to compute the safe zone with
a cost quite close to the lower bound cost.

1.2 Contributions
Our proposed approach has the following features.

Efficiency. A safe zone computation algorithm returns the

current results of a query as well as a safe zone and guar-
antees that the results remain valid unless the query leaves
the safe zone. Hence, the lower bound cost of computing
the safe zone is the cost of computing the skyline objects.
IO and CPU cost of our safe zone construction algorithm
is close to the IO and CPU cost of BBS [20] which is an
IO optimal skyline algorithm, i.e., IO cost of our safe zone
construction algorithm is close to the lower bound IO cost.
This also implies that while the overhead of computing the
safe zone is small as compared to the cost of computing the
skyline objects, the benefit is large because the results are
not required to be updated as long as the query remains
inside the safe zone. This enables our algorithm to monitor
the skyline quite efficiently.
Applicability to arbitrary distance metric. Although
the focus of this paper is to present the techniques for the
case where the distances between objects and query are com-
puted using Euclidean distance metric in 2d space, the core
ideas (Section 3 and 4) can be used to efficiently construct
the safe zone for arbitrary distance metric (e.g., Manhattan
distance in 3d space, network distance in road networks).
Empirically evaluated. For a strict evaluation, we com-
pare our algorithm with a specially designed algorithm called
supreme algorithm. The supreme algorithm assumes the ex-
istence of an oracle and meets the lower bound IO cost for
safe zone construction. More specifically, the supreme algo-
rithm computes the skyline objects using BBS [20] which is
an IO optimal skyline algorithm. We assume that the oracle
computes the safe zone without incurring any IO or CPU
cost and returns it to the supreme algorithm. Our exten-
sive experimental study demonstrates that the cost of our
algorithm is reasonably close to the cost of the supreme al-
gorithm. Moreover, our algorithm performs three orders of
magnitude better than a näıve algorithm.

The rest of the paper is organized as follows. We discuss
the related work in section 2. In Section 3, we formally de-
fine the problem, formalize the safe zone and present a basic
algorithm. Section 4 presents several novel optimizations
that significantly improve the basic algorithm and are ap-
plicable to arbitrary metric spaces. Section 5 presents our
branch and bound algorithm specifically designed for Eu-
clidean space. An extensive experimental study is presented
in Section 6. Section 7 concludes the paper.

2. RELATED WORK

2.1 Skyline Queries
Snapshot Queries. A snapshot skyline query retrieves the
set of skyline objects only once and the results are not re-
quired to be updated. Some of the notable snapshot skyline
algorithms include block-nested loop (BNL) [2], divide and
conquer (D&C) [2], bitmap [24], index [24], nearest neighbor
(NN) [14] and branch and bound search (BBS) [20]. BBS
is superior to the other algorithms and is IO optimal, i.e.,
it does not access any node of R-tree that cannot contain a
skyline object.
Continuous Queries. Continuous skyline queries have
been studied under various settings, e.g., updating skyline
in data streams [16, 17], skyline maintenance due to dele-
tions [25] and skyline monitoring for dynamically changing
points [12, 15, 11]. Below, we describe the most closely re-
lated work and discuss why these techniques are not suitable
to solve the problem studied in this paper.

The work that is most closely related to our work is done
by Huang et. al [12] who propose a kinetic-based data struc-

ture to update the skyline results. Lee et. al [15] also study
a similar problem. However, both of these works rely on
the assumption that the velocities of the moving points are
known. Unfortunately, this assumption does not hold in
many real world applications where the points (e.g., cars)
frequently change their motion pattern (e.g., speed and di-
rection). Furthermore, the extension of their techniques is
non-trivial for the scenarios where velocities are unknown.
Hsueh et. al [11] present an algorithm to update the sky-

line when the data objects change their attribute values.
They use a pre-computed second skyline to efficiently update
the skyline. The proposed technique is specifically designed
for the scenario where the update ratio is small and per-
forms well under such scenarios. However, it is not suitable
when a large number of objects continuously issue updates.
Note that in our problem setting, due to the change in query
location, the distance attributes of all the objects change.
This is equivalent to the scenario where all of the objects is-
sue updates and this makes the pre-computed second skyline
useless.

2.2 Voronoi Cell Computation
Our proposed approach requires computing Voronoi cells

of the objects. Voronoi cell of an object o1 consists of every
point x for which dist(x, o1) is smaller than the distance of
x from any other object in the data set. In other words, o1
is the nearest neighbor of any point x if and only if x lies
inside the Voronoi cell of o1. In Fig. 2(b), the shaded triangle
is the Voronoi cell of o1. In the past few years, several
approaches [6, 27, 23] have been proposed to compute the
Voronoi cell of an object. Below, we discuss the techniques
proposed in [6, 7] because we use it in our algorithm.
A perpendicular bisector between two points o1 and o2

divides the space into two halves. Let the half-space that
contains o2 be denoted as Ho2:o1 (see the white area in
Fig. 2(a)). The half-space Ho2:o1 has the property that ev-
ery point x that lies in Ho2:o1 is closer to o2 than o1, i.e.,
dist(x, o2) < dist(x, o1). Note that Ho2:o1 cannot be a part
of the Voronoi cell of o1 because o1 cannot be the nearest
neighbor of any point x in Ho2:o1 .

(a) (b) (c)

Figure 2: Computing Voronoi cell of o1

Based on the property of half-space, the Voronoi cell of
o1 can be constructed as follows. Initially, the Voronoi
cell is set to the whole data universe (e.g., the rectangle in
Fig. 2). Then, each object oi is considered iteratively, and
the Voronoi cell is updated by removing Hoi:o1 . For exam-
ple, in Fig. 2(a), the Voronoi cell is updated to the shaded
area when o2 is considered. Fig. 2(b) shows the Voronoi
cell of o1 (the shaded area) after all the objects have been
considered.
Cheema et. al [6] present an efficient branch and bound

approach to compute the Voronoi cell. They observe that an
object o′ cannot affect the shape of the Voronoi cell of o if,
for every vertex v of the current Voronoi cell V , dist(o, v) <
dist(o′, v). In Fig. 2(c), suppose that the current Voronoi

cell is the shaded area. The half-space Ho5:o1 (denoted by
broken line) between o1 and o5 does not remove any part of
the shaded area because, for every vertex v of the Voronoi
cell, dist(o1, v) < dist(o5, v) (i.e., o5 does not lie in any of
the circles shown in Fig. 2(c)). Hence, Voronoi cell of o1 can
be computed correctly even if o5 is pruned.

Algorithm 1 Compute Voronoi Cell

Input: a set of objects O, an object o ∈ O
Output: Voronoi cell of o
1: initialize V as the whole data universe
2: insert root of R-tree in a min-heap h
3: while h is not empty do
4: deheap an entry e
5: for each vertex v of V do
6: if mindist(v, e) < dist(v, o) then
7: mark e as valid; break
8: if e is valid then
9: if e is an intermediate node or leaf then
10: insert every child c in h with key mindist(o, c)
11: else if e is an object then
12: update V by removing every point x from V for which

dist(e, x) < dist(o, x)

The authors propose a branch and bound algorithm where
the data objects are assumed to be indexed by an R-tree.
Algorithm 1 shows the details. A de-heaped entry e can be
ignored if, for every vertex v of V , mindist(v, e) ≥ dist(v, o).
Otherwise, it is considered valid (lines 5 to 7). If the entry is
valid and is an intermediate node or a leaf node, its children
are inserted in the heap (lines 8 to 10). Otherwise, if the
entry e is valid and is a data object, the Voronoi cell V is
updated by removing He:o (line 12). The algorithm stops
when the heap becomes empty.

We remark that Algorithm 1 can be modified to compute
Voronoi cell for general metric spaces. The lines 5 to 7 are
not applicable because, in general metric spaces, Voronoi cell
may not be a polygon. However, the entries can be pruned
using Lemma 10 presented in [6] which uses the triangle
inequality for pruning.

3. GETTING STARTED

3.1 Problem Definition
Let O be a set of objects. In addition to location coordi-

nates, each object has d attributes (dimensions). The i-th
attribute value of an object o is denoted as o[i]. The distance
between a query q and an object o is denoted as dist(q, o)
and is considered the (d+1)-th dimension of the object, i.e.,
o[d+1] = dist(q, o). Hence, each object is considered to have
(d+1) dimensions. Since dist(q, o) changes with the change
in query location, the distance is called the dynamic dimen-
sion of o. Other attributes of the objects are not affected by
the query movement and are called static dimensions of the
objects.
Complete Dominance. An object o is completely domi-
nated by another object o′ if for every dimension 1 ≤ i ≤
(d + 1), o′[i] ≤ o[i] and for at least one dimension 1 ≤
j ≤ (d + 1), o′[j] < o[j]. This dominance relationship is
called complete dominance because it involves all dimensions
(static and dynamic) in contrast to the static dominance re-
lationship (defined in Section 3.2) that considers only the
static dimensions of the objects.
Skyline Query. A skyline query returns every object o that
is not completely dominated by any other object. Since the
value of (d + 1)-th dimension (i.e., dist(q, o)) of every ob-
ject o changes as the query changes its location, the skyline
is needed to be continuously updated. In this paper, we

study the problem of continuously monitoring the skyline of
a moving query.

Table 1: Notations
Notation Definition

o =s o′ o statically equals o′ (Section 3.2)
o≺so

′ o statically dominates o′ (Section 3.2)
o�so

′ o≺so
′ or o =s o′

A(o) Affecting set of o (Definition 1)
IR(o) Impact region of o (Definition 2)
PA(o) Pseudo-affecting set of o (Definition 4)
PIR(o) Pseudo-impact region of o (Definition 5)
Z Safe zone
NN(x, S) Nearest neighbor of x among a set of objects S

3.2 Formalizing Safe Zone
Throughout this section, we use Fig. 3 to explain the con-

cepts. Fig. 3(a) shows 5 objects according to their static
dimensions (price and rank) and Fig. 3(b) shows the same
objects according to their location coordinates. We remark
that although Fig. 3(b) shows the objects in two dimensional
Euclidean space, the proposed ideas are immediately appli-
cable to general metric spaces (e.g., road network distance,
Manhattan distance in 3d space). For the ease of presenta-
tion, we first introduce some terms and notations.
Static equality. An object o is statically equal to o′ if, for
every static dimension i (i.e., 1 ≤ i ≤ d), o[i] = o′[i]. We
denote the static equality as o =s o′.
Static dominance. An object o is statically dominated
by another object o′ if o is not statically equal to o′ and for
every static dimension i, o′[i] ≤ o[i]. We use o′≺so to denote
that o′ statically dominates o. We use o′�so to denote that
o′ either statically dominates o or is statically equal to o. In
Fig. 3(a), o2�so4 and o1�so4.
For the ease of presentation, we assume that for any two

objects o and o′, dist(q, o) 6= dist(q, o′). We remark that
this assumption is made only for the ease of presentation
(by avoiding the boundary conditions) and our techniques
can be applied even when this assumption does not hold.
Complete dominance revisited. To assist us in explain-
ing our techniques, we define complete dominance using
the notations defined above. Specifically, an object o is
completely dominated by another object o′ if o′�so and
dist(q, o′) < dist(q, o). In other words, o′ completely domi-
nates o if o′ is at least as good as o on static dimensions and
is closer to the query than o. In Fig. 3, o2 completely dom-
inates o4 because o2�so4 (see Fig. 3(a)) and dist(q, o2) <
dist(q, o4) (see Fig. 3(b)). On the other hand, o2 does not
completely dominate o1. This is because, although o2�so1,
dist(q, o2) ≮ dist(q, o1).
Condition for skyline membership. Note that an object
o′ cannot completely dominate o if o′�so no matter whether
dist(q, o′) < dist(q, o) or not. This implies that only the
objects that statically dominate or equal o can completely
dominate o. Based on this, Lemma 1 defines the condition
that an object o must satisfy in order to be a skyline object.

Lemma 1 : An object o is a skyline object if and only if for
every other object o′ for which o′�so, dist(q, o

′) > dist(q, o).

Proof is straightforward and is omitted. Intuitively, Lemma 1
states that o is a skyline object if o is closer to q than every
object o′ that is at least as good as o on static dimensions
(i.e., o′�so). Otherwise, o′ completely dominates o and o is
not a skyline object.
In Fig. 3, o4 is not a skyline object because there exists

an object o2 such that o2�so4 and dist(q, o2) < dist(q, o4).

On the other hand, o1 is a skyline object because o1 is closer
to q than o2, o3 and o5.

According to the condition specified by Lemma 1, the lo-
cations of only the objects that statically dominate or are
equal to o are important in deciding whether o is a skyline
object or not. The set consisting of such objects is called
affecting set of o. Below, we give a formal definition.

Definition 1 : Affecting set. Affecting set A(o) of an
object o consists of every object o′ ∈ O for which o′�so.

By definition, the affecting set A(o) of o always includes
o. In the example of Fig. 3(a), the affecting set of o1 is
A(o1) = {o1, o2, o3, o5}. Similarly, A(o2) = {o2}, A(o3) =
{o3}, A(o4) = {o2, o3, o4} and A(o5) = {o5}.

Let x be a point and S be a set of objects. NN(x, S)
denotes the nearest neighbor (closest object) of x among
the objects in S.

Lemma 2 : An object o is a skyline object if and only if
NN(x,A(o)) = o.

The proof is straight forward because, according to Lemma 1,
an object o is a skyline object if and only if o is closer to q
than every object o′ for which o′�so. In Fig. 3, NN(q,A(o1))
= o1 and NN(q,A(o4)) = o2. Hence, o1 is a skyline object
whereas o4 is not.

Now, we introduce the concept of impact region. Impact
region IR(o) of an object o is the area such that o is a skyline
object of q if and only if q lies inside IR(o). Below, we give
a formal definition.

Definition 2 : Impact region. The impact region IR(o)
of an object o consists of every point x in the space for which
NN(x,A(o)) = o, i.e., every point x for which o is the closest
object in A(o).

(a) Static dimensions (b) Location coordinates

Figure 3: Illustration of safe zone

Assume that we draw a Voronoi diagram on the locations
of objects in A(o). Let V or(o,A(o)) be the Voronoi cell in
this Voronoi diagram related to the object o. As stated in
Section 2.2, a Voronoi cell V or(o,A(o)) has the property
that o is the nearest object (among the objects in A(o)) of a
point x if and only if x lies inside V or(o,A(o)). This implies
that the impact region of an object o is its Voronoi cell con-
structed using the set of objects A(o). We remark that the
concept of Voronoi diagram and Voronoi cell is applicable to
arbitrary metric spaces (e.g., network Voronoi diagram and
weighted distance Voronoi diagram [19]).

Example 1 : Recall that Fig. 3(a) shows that A(o1) =
{o1, o2, o3, o5}. Voronoi cell of o1 constructed using these
objects is the triangle △ABC (see Fig. 3(b)). Note that o1
remains the closest object of q among the objects in A(o1)

as long as q remains in △ABC. Hence, the impact region
of o1 is V or(o1, A(o1)) = △ABC. The impact region of o4
is the Voronoi cell V or(o4, A(o4)) (the polygon DEFG in
Fig. 3(b)) where A(o4) = {o2, o3, o4}. Note that o4 becomes
the skyline object only when q enters in DEFG. �

Note that any object o for which A(o) = o (i.e., no other ob-
ject o′ exists s.t. o′�s o) is always a skyline object regardless
of the location of the query or other objects. In other words,
the impact region of such an object is the whole data space.
For instance, in Fig. 3, o2, o3 and o5 are always the skyline
objects and their impact regions correspond to the whole
data space.
Safe Zone. Now, we formalize the safe zone. By the defini-
tion of impact region, an object o remains a skyline object
as long as q remains inside its impact region. Similarly,
an object o′ remains a non-skyline object as long as q re-
mains outside its impact region. For example, in Fig. 3(b),
o1 remains a skyline object as long as q remains inside the
triangle ABC and o4 remains a non-skyline object as long
as q remains outside the polygon DEFG. This implies that
the results of the query q remain unchanged as long as q
remains inside the impact region of every skyline object and
remains outside the impact region of every non-skyline ob-
ject. Hence, the safe zone can be defined using the impact
regions of the objects.

Definition 3 : Safe Zone. Let IRc(o) denote the com-
plement of the impact region of an object o, i.e., the area
outside the impact region of o. Let S denote the set of
skyline objects of q. The safe zone of the query q is Z =
∩oi∈SIR(oi)

⋂
∩oj∈O−SIR

c(oj).

In plain words, the safe zone consists of every point that
lies inside the impact region of every skyline object and lies
outside the impact region of every non-skyline object.

Example 2 : Consider the example of Fig. 3. Note that
o1, o2, o3 and o5 are the skyline objects because their im-
pact regions contain q. The object o4 is a non-skyline ob-
ject because its impact region does not contain q. The safe
zone is the area shown shaded in Fig. 3(b) and is defined by
IR(o1)∩ IR(o2)∩ IR(o3)∩ IR(o5)∩ IR

c(o4). As mentioned
earlier, the impact regions IR(o2), IR(o3) and IR(o5) corre-
spond to the whole data space. Hence, the safe zone can also
be obtained by Z = IR(o1)∩ IR

c(o4) = IR(o1)− IR(o4). �

3.3 A Basic Algorithm
A straightforward approach to compute the safe zone is

shown in Algorithm 2. The safe zone is initialized as the
whole data universe, e.g., in Euclidean space, we initialize
the safe zone as a rectangle that covers the whole data space.
Since the safe zone is being constructed and is not the final
safe zone, we call it evolving safe zone and denote it as Ze.
For each object o, we compute its impact region (lines 3
and 4). The Voronoi cell is constructed using Algorithm 1
as we described in Section 2.2. If the object o is a skyline
object (i.e., q lies in IR(o)) then the evolving safe zone is
updated by taking its intersection with the impact region of
o (line 6). Otherwise if o is a non-skyline object, the evolving
safe zone must be updated by taking its intersection with
IRc(o) (the complement of the impact region of o). Note
that Ze ∩ IRc(o) = Ze − IR(o) which implies that we can
update the safe zone by subtracting IR(o) from it (line 9).
Possibility of a materialized approach. A possible ap-
proach to continuously monitor the skyline queries is to ma-
terialize the impact regions or to materialize all possible safe

Algorithm 2 A Basic Algorithm

Input: q: the query point, O: the set of objects
Output: S: the set of skyline objects, Z: the safe zone
Description:
1: initialize safe zone Ze as the whole data universe
2: for each object o ∈ O do
3: A(o)← the set consisting of every o′ ∈ O s.t. o′�so
4: IR(o) = V or(o,A(o)) /* Algorithm 1 */
5: if q ∈ IR(o) then /* o is a skyline object */
6: Ze ← Ze ∩ IR(o)
7: add o in S
8: else /* o is a non-skyline object */
9: Ze ← Ze − IR(o)
10: return set of skyline objects S and safe zone Z = Ze

zones using the impact regions of the objects. However,
these materialized techniques have the following limitations:
i) the materialized approach cannot efficiently deal with the
data updates, e.g., a deletion or insertion may change the af-
fecting sets of a large number of objects which may invalidate
a large number of materialized impact regions; ii) the mate-
rialized approach does not work if a user intends to monitor
skyline queries on a subset of data (e.g., on restaurants that
lie in a constrained region, or on the restaurants that sell
Chinese food); iii) spatial indexes such as R-trees are use-
ful for several spatial queries in contrast to the materialized
approach that is useful only for the skyline queries. We also
remark that a pre-built Voronoi diagram (constructed us-
ing all data objects) is not useful in computing the impact
regions. This is because the impact region of each object
corresponds to a Voronoi cell constructed using a different
set of objects, i.e., its affecting set.

4. OPTIMIZATIONS
Algorithm 2 has the following two major limitations: i)

at line 2, the algorithm considers every object regardless of
whether its impact region affects the shape of the evolving
safe zone or not; ii) at line 3, the algorithm computes the af-
fecting set of an object o by considering all the objects in O
which requires traversing the whole data set O for each ob-
ject. In this section, we present optimizations that address
several limitations of the basic algorithm including the two
major limitations mentioned above.

4.1 Using Pseudo-Impact Regions
First, we address the second limitation discussed above.

Let S be the set of skyline objects of the query q. We prove
that the safe zone can be correctly computed even if, at
line 3 of Algorithm 2, the affecting set A(o) is created us-
ing only the skyline objects, i.e., the set consisting of every
object o′ ∈ S for which o′�so. This optimization signifi-
cantly improves the performance mainly because the size of
S is significantly smaller than the size of O. More analytical
details of its advantages are presented later in Section 4.1.3.

Before we present the details and proof of correctness of
this novel optimization, we define few terms and notations.

Definition 4 : Pseudo-affecting set. Let S be the set
consisting of all skyline objects. Pseudo-affecting set PA(o)
of an object o is a set consisting of o and every object o′ ∈ S
for which o′�so. Note that PA(o) always includes o regard-
less of whether o is a skyline object or not.

Example 3 : Consider the example of Fig. 4(a) where four
objects are shown according to their static dimensions (price
and rank). Assume that we know that the set of skyline ob-
jects is S = {o1, o2} (the skyline objects are shown as filled
circles and non-skyline objects are shown as hollow circles).

While the affecting set of o4 is A(o4) = {o1, o2, o3, o4}, its
pseudo-affecting set is PA(o4) = {o1, o2, o4}. For other ob-
jects, A(o1) = PA(o1) = {o1, o2}, A(o2) = PA(o2) = {o2}
and A(o3) = PA(o3) = {o2, o3}. �

(a) (b) (c)

Figure 4: Pseudo Impact Region

Definition 5 : Pseudo-impact region. Pseudo-impact
region PIR(o) of an object o consists of every point x for
which NN(x, PA(o)) = o. In other words, PIR(o) corre-
sponds to the Voronoi cell V or(o, PA(o)) of o constructed
using the objects in pseudo-affecting set PA(o).

Example 4 : Consider the example of Fig. 4(b). The im-
pact region of o4 is the shaded area and it corresponds to the
Voronoi cell of o4 constructed using A(o4) = {o1, o2, o3, o4}.
On the other hand, the pseudo-impact region of o4 is the
polygon ABCD that corresponds to the Voronoi cell of o4
constructed using PA(o4) = {o1, o2, o4}. Note that the
pseudo-impact region of an object always contains the im-
pact region of the object, i.e., IR(o) ⊆ PIR(o). As shown in
Example 3, the pseudo-affecting sets of other objects are the
same as their corresponding affecting sets. Hence, for those
objects their impact regions are the same as their pseudo-
impact regions. Fig. 4(c) shows the impact regions of all
the objects. More specifically, the impact region of o2 corre-
sponds to the whole data space and IR(o2) = PIR(o2).
Moreover, IR(o3) = PIR(o3) = HECJ and IR(o1) =
PIR(o1) = GFCJ . �

Definition 6 : Pseudo-safe zone. The pseudo-safe zone
ZP is the area that consists of every point x that lies in-
side the pseudo-impact region of every skyline object and
lies outside the pseudo-impact region of every non-skyline
object. Formally, ZP = ∩oi∈SPIR(oi)

⋂
∩oj∈O−SPIRc(oj)

where PIRc(oj) denotes the complement of PIR(oj).

Hereafter, the safe zone Z that we defined in previous
section is called original safe zone if not clear by context.

Example 5 : Consider the example of Fig. 4(c). In Exam-
ple 4, we listed the impact region and pseudo-impact region
of every object. The pseudo-safe zone ZP is the area shown
shaded in Fig. 4(c). This is obtained by PIR(o1)∩PIR(o2)∩
PIRc(o3) ∩ PIRc(o4). Note that the original safe zone Z
can be obtained as Z = IR(o1)∩IR(o2)∩IR

c(o3)∩IR
c(o4)

and it also corresponds to the shaded area of Fig. 4(c). �

Note that the original safe zone Z is constructed using
the impact regions whereas the pseudo-safe zone ZP is com-
puted using the pseudo-impact regions. Although the im-
pact region of an object is always smaller than or equal to
its pseudo-impact region (i.e., IR(o) ⊆ PIR(o)), we prove
that the pseudo-safe zone is always equal to the original safe
zone, i.e., Z = ZP .

4.1.1 Proof of correctness (Z = ZP)
For the ease of presentation, we break the proof into sev-

eral lemmas and the main theorem (Theorem 1) is built on
these lemmas.

Lemma 3 : Let o and o′ be two objects. If o′ ∈ A(o) (i.e.,
o′�so) then A(o′) ⊆ A(o).

Proof is straightforward and is omitted.

Lemma 4 : Let x be a point that lies in Z or ZP . For every
object o, NN(x,A(o)) = NN(x, PA(o)).

Proof. We prove this by contradiction. Assume that
NN(x,A(o)) 6= NN(x, PA(o)). According to the definition
of pseudo-affecting set, PA(o) ⊆ A(o). Hence, the inequal-
ity implies that there exists an object o′ ∈ A(o) such that
NN(x,A(o)) = o′ and o′ /∈ PA(o). This implies that o′

is a non-skyline object (otherwise o′ ∈ PA(o)). Below, we
prove that NN(x,A(o)) cannot be a non-skyline object o′

for every x that lies in Z or ZP .
By definition of original safe zone Z, if x lies in Z then

x lies outside the impact region of every non-skyline ob-
ject o′, i.e., NN(x,A(o′)) 6= o′. According to Lemma 3,
A(o′) ⊆ A(o) because o′ ∈ A(o). Since NN(x,A(o′)) 6= o′,
NN(x,A(o)) 6= o′.

By definition of pseudo-safe zone ZP , if x lies in ZP then x
lies outside pseudo-impact region of every non-skyline object
o′, i.e., NN(x, PA(o′)) 6= o′. Note that PA(o′) ⊆ A(o′) and
A(o′) ⊆ A(o). This implies that NN(x,A(o)) 6= o′.

Lemma 5 : Let x be a point that lies in Z or ZP . For every
object o, x lies in PIR(o) if and only if x lies in IR(o).

Proof. As per the definition of impact region IR(o), x is
a point in IR(o) if and only if NN(x,A(o)) = o. According
to the definition of pseudo-impact region PIR(o), x is a
point in PIR(o) if and only if NN(x, PA(o)) = o. Since x
is a point in Z or ZP , Lemma 4 implies that NN(x,A(o)) =
NN(x, PA(o)). Hence, it immediately follows that x lies in
PIR(o) if and only if it lies in IR(o).

theorem 1 : Z = ZP .

Proof. We prove that every point x ∈ Z satisfies x ∈ ZP

and every point y ∈ ZP satisfies y ∈ Z. By definition of the
original safe zone Z, x lies inside IR(oi) of every skyline
object oi and lies outside IR(oj) of every non-skyline object
oj . Since x is a point in Z, according to Lemma 5, x lies
inside PIR(o) of any object o if and only if x lies inside
IR(o). This implies that x lies inside every PIR(oi) and
lies outside every PIR(oj). Hence, x lies in the pseudo-safe
zone ZP . Following the similar arguments, it can also be
proved that every point y ∈ ZP satisfies y ∈ Z.

4.1.2 Computing pseudo-affecting set
Recall that we compute the pseudo-affecting set PA(o) by

selecting every object o′ ∈ S for which o′�so where S con-
sists of all skyline objects. However, this requires computing
S which may not be known. In this section, we solve this
issue as follows: We propose an access order that guarantees
that, for each object o, all the objects in PA(o) are accessed
before o (Lemma 6). Furthermore, for each accessed object,
we show that we can determine whether it is a skyline object
or not by using its pseudo-impact region (Lemma 7).

Proposed access order. Assume that
∑d

i=1
o[i] is called

the static score of an object o and is denoted as o.score.
We access the objects in ascending order of o.score. If two
objects have the same static score then we prefer the object
that is closer to the query q.

Lemma 6 : The above access order guarantees that, for ev-
ery accessed object o, there does not exist any skyline object
o′ that satisfies o′�so but has not been accessed before o.

Proof. For every object o′ accessed after o, o.score ≤
o′.score. It immediately follows that o′ cannot statically
dominate o (i.e., o′⊀so). Hence, o′ may only satisfy o′ =s

o. However, if o′ =s o then o′ cannot be a skyline object
because o satisfies o�so

′ and dist(q, o) < dist(q, o′). This is
because, according to the proposed access order, dist(q, o) <
dist(q, o′) if o.score = o′.score.

The next issue is how to determine whether an object o is a
skyline object or not. In the basic algorithm, o is guaranteed
to be a skyline object if and only if q lies in IR(o) (line 5 of
Algorithm 2). Although PIR(o) is always at least as large as
IR(o), Lemma 7 shows that such guarantee can be provided
even if PIR(o) is used instead of IR(o).

Lemma 7 : An object o is a skyline object if and only if q
lies in the pseudo-impact region PIR(o) of o.

Proof. By definition of the safe zone Z, q lies in the safe
zone Z. Since q is a point in the safe zone Z, q lies in PIR(o)
if and only if q ∈ IR(o) (see Lemma 5). Since o is a skyline
object if and only if q ∈ IR(o), it immediately follows that
o is a skyline object if and only if q ∈ PIR(o).

Remark: We remark that although our proposed access or-
der is similar to the order used in BBS [20], it is not the
same. Let o.score+ dist(q, o) be the overall score of an ob-
ject. BBS accesses the objects in ascending order of their
overall scores. The example below shows that this access
order is not useful for our problem, i.e., Lemma 6 does not
hold if this access order is used. Consider the example of
Fig. 4 and assume that dist(q, o1) = 1 and dist(q, o2) = 10.
Assume that the domain range for both price and rank is
from 0 to 1. Clearly, o1 will be accessed before o2 because
the overall score of o1 is smaller. However, note that o2 is a
skyline object and statically dominates o1 (see Fig. 4(a)).

Algorithm 3 An Improved Algorithm

1: initialize safe zone Ze as the whole data universe
2: S = φ
3: for each object o ∈ O in ascending order of o.score (break

ties on dist(q, o)) do
4: PA(o)← set containing o and every o′ ∈ S s.t. o′�so
5: PIR(o) = V or(o, PA(o))
6: if q ∈ PIR(o) then /* o is a skyline object */
7: Ze ← Ze ∩ PIR(o)
8: add o in S
9: else /* o is a non-skyline object */
10: Ze ← Ze − PIR(o)
11: return set of skyline objects S and safe zone Z = Ze

An improved algorithm. To summarize the ideas pre-
sented so far, Algorithm 3 presents an improved approach
to construct the safe zone. The set of skyline object S is ini-
tially empty (line 2). At line 3, we access the objects in the
proposed order. An object o is added to S if q lies inside its
pseudo-impact region (line 8). The pseudo-affecting set of
each object is constructed using S (line 4). For each object
o, the evolving safe zone Ze is updated by an intersection
or difference operation depending on whether o is a skyline
object or a non-skyline object (line 7 and 10).

4.1.3 Discussion
Now, we analyse the impact of the optimization used in

Algorithm 3. Assuming that the values of objects in one

dimension are independent to their values in the other di-
mensions, it is well known (e.g., see [20]) that the expected
number of skyline objects is O(logd N) when the total num-
ber of objects is N and the total number of criterions is
d+ 1 (dynamic and static dimensions). In other words, the
expected size of S is O(logd N). This reduces the cost of
line 4 from O(N) to O(logd N). Furthermore, since the ex-
pected size of S is significantly smaller, we may store S in a
main memory data structure (e.g., a main-memory R-tree)
to speed up the computation of pseudo-affecting set PA(o).

The optimization presented in this section also signifi-
cantly improves the cost of computing Voronoi cell at line 5.
This is because the expected size of pseudo-affecting set is
significantly smaller than the size of affecting set as stated
in the lemma below.

Lemma 8 : For any object o, let n be the number of objects
in its affecting set A(o). The expected number of objects in
its pseudo-affecting set PA(o) is O(logd n).

Proof. Assume that a skyline query is issued on only the
objects in A(o) and the returned skyline objects are called
sub-skyline objects. Clearly, the expected number of sub-
skyline objects is O(logd n) assuming that the values are
independent to dimensions. Next, we show that an object
o′ ∈ A(o) is a skyline object (i.e., o′ ∈ S) if and only if o′

is a sub-skyline object. This implies that o′ ∈ PA(o) if and
only if o′ is a sub-skyline object and completes the proof.

Assume that ox is an object that completely dominates
o′, i.e., ox�so

′ and dist(q, ox) < dist(q, o′). Since ox�so
′,

ox ∈ A(o′) which implies that ox ∈ A(o). Hence, each object
o′ ∈ A(o) can be completely dominated by only the objects
in A(o). Hence, o′ ∈ A(o) is a skyline object if and only if
o′ is a sub-skyline object.

We remark that the intersection and difference operations
between Ze and PIR(o) can be conducted cheaply. This is
because PIR(o) is a Voronoi cell and the average number
of edges of Voronoi cell is at most 6 [19]. Furthermore, our
experiments demonstrate that the average number of edges
of the safe zone is around 5 for all data sets.

4.2 Pruning Irrelevant Objects
In this section, we present techniques to prune the ob-

jects that do not affect the shape of the evolving safe zone.
Furthermore, we present techniques to efficiently update the
safe zone using the pseudo-impact regions.

Lemma 9 : An object o does not affect the shape of evolv-
ing safe zone Ze if its pseudo-impact region PIR(o) does not
intersect Ze.

Proof. By definition of safe zone Z, q lies in Z. Since
Z ⊆ Ze, q lies in Ze. Since PIR(o) does not intersect Ze,
it implies that PIR(o) does not contain q. Hence o is a
non-skyline object (see Lemma 7). Since o is a non-skyline
object, the updated safe zone Ze − PIR(o) is the same as
Ze. Hence, o does not change the shape of Ze.

Letmindist(x, Ze) andmaxdist(x, Ze) denote minimum and
maximum distance of a point x from Ze, respectively. The
following two lemmas identify the objects that can be pruned.

Lemma 10 : Let o′ be a skyline object such that o′�so
(i.e., o′ ∈ PA(o)). If maxdist(o′, Ze) < mindist(o, Ze) then
o does not affect shape of the safe zone and can be pruned.

Proof. We prove that PIR(o) does not intersect with
Ze, i.e., PIR(o) does not contain any point of Ze. Let x
be a point in Ze. Since maxdist(o′, Ze) < mindist(o, Ze),
dist(o′, x) < dist(o, x). This implies that for every point
x ∈ Ze, NN(x, PA(o)) 6= o. Hence, by the definition of
pseudo-impact region, x cannot be a point in PIR(o).

At line 4 of Algorithm 3, an object o can be pruned if there
exist an object o′ ∈ S that satisfies the above condition.

Lemma 11 : An object o can be pruned if, for every point
x ∈ Ze, there exists a skyline object o′ such that o′�so and
dist(x, o′) < dist(x, o).

Proof. We prove that PIR(o) does not contain any point
of Ze. It can be immediately verified that for every point
x ∈ Ze, NN(x, PA(o)) 6= o because there exists an object
o′ ∈ PA(o) that is closer to x. Hence, x cannot be a point
in PIR(o) (by definition of PIR(o)).

In Section 4.2.1 (see Advantage 2), we show that this prun-
ing rule can be applied during the computation of pseudo-
impact region of an object o (at line 5 of Algorithm 3).

4.2.1 Updating safe zone using PIR(o)

In this section, we show that the safe zone can be effi-
ciently updated even if exact pseudo-impact region PIR(o)
is not computed. Recall that the evolving safe zone is up-
dated either by Ze ← Ze ∩ PIR(o) or Ze ← Ze − PIR(o)
depending on whether o is a skyline object or a non-skyline
object. Let A, B and C be three sets such that C = A ∩B.
It can be easily verified that A∩B = C and A−B = A−C.
This essentially means that, to update the evolving safe zone
Ze, we are not required to compute the exact PIR(o). In-
stead, if we correctly compute C = Ze ∩ PIR(o) (i.e., C
is the part of PIR(o) that overlaps with Ze) then we can
correctly update Ze either by Ze ← Ze ∩ PIR(o) ← C or
Ze ← Ze − PIR(o)← Ze − C.

Example 6 : Consider the example of Fig. 5(a) where the
evolving safe zone Ze is the tilted rectangle and PIR(o1)
corresponds to the triangle. Let C = Ze ∩ PIR(o1) (the
shaded area of Fig. 5(a)). Regardless of whether o1 is a
skyline object or a non-skyline object, Ze can be updated
using C. More specifically, if o1 is a skyline object Ze = C
(the shaded area of Ze). Otherwise, Ze ← Ze−C (the white
area of the rectangle). �

We utilize the above observation to improve the perfor-
mance. To construct C = Ze ∩PIR(o), we call Algorithm 1
with a minor modification. More specifically, at line 1 of
Algorithm 1, the Voronoi cell is initialized to the evolving
safe zone Ze instead of initializing it to the whole data uni-
verse. Note that Algorithm 1 iteratively removes the part
that cannot be a part of the Voronoi cell of o (see line 12).
Hence, with this modification, Algorithm 1 returns only the
part of Voronoi cell that overlaps with the evolving safe zone
Ze, i.e., it returns C = Ze ∩ PIR(o). This modification has
the following advantages.
Advantage 1. Voronoi cell V is initialized to Ze (a smaller
area as compared to the whole data universe). Moreover,
at any stage during the execution of Algorithm 1, V is at
most as large as it would be without the above modification.
Hence, pruning of entries (lines 5 to 7 of Algorithm 1) is
significantly more effective.

Example 7 : Consider Fig. 5(a) and assume that we call
Algorithm 1 and initialize V to the evolving safe zone Ze

(a) (b)

Figure 5: Updating safe zone using PIR(o)

(the tilted rectangle). Assume that the algorithm considers
the object o4 and updates V using the half-space between
o1 and o4 (the broken line). In effect, V is updated to the
shaded area of Fig. 5(a). The algorithm can now ignore all
remaining objects by applying the pruning condition men-
tioned in Section 2.2. Hence, we only need to access o4 to
update Ze. In contrast, computing exact PIR(o1) (the tri-
angle) requires accessing o2, o3 and o4 (see Section 2.2). �

Advantage 2. At any stage during the execution of Algo-
rithm 1, if the updated Voronoi cell V (at line 12) becomes
empty, we can terminate the algorithm because this essen-
tially means that Ze ∩ PIR(o) = φ. Note that this is an in-
direct application of the pruning rule implied by Lemma 11.

Example 8 : Consider the example of Fig. 5(b) and as-
sume that we have to update the evolving safe zone Ze us-
ing the pseudo-impact region of a non-skyline object o3. If
Algorithm 1 initializes V to the whole data universe then
the algorithm accesses all the objects and returns PIR(o3)
(the shaded area of Fig. 5(b)). Note that PIR(o3) does not
affect Ze. Now assume that Algorithm 1 is called and V is
initialized to Ze. Assume that the algorithm first considers
the object o1 and updates the current Voronoi cell using the
half-space between o1 and o3 (the broken line). The updated
Voronoi cell in this case becomes empty and the algorithm
can terminate returning φ. Hence, Ze remains unaffected.
Note that the modified version accesses only one object. �

Advantage 3. Let C = Ze∩PIR(o). If o is a skyline object,
the evolving safe zone is updated as Ze ← Ze∩PIR(o) = C.
Since, the modified version of Algorithm 1 returns C, we can
simply update Ze by C, i.e., the intersection between the
polygons is not required.

A final issue requiring attention is that, at line 6 of Al-
gorithm 3, we decide whether an object o is a skyline ob-
ject or not based on whether q is inside PIR(o) or not.
However, the optimization presented in this section returns
C = Ze ∩PIR(o) instead of PIR(o). Lemma 12 shows that
we can check whether o is a skyline object or not using C.

Lemma 12 : An object o is a skyline object if and only if
q lies in C where C = Ze ∩ PIR(o).

Proof. According to Lemma 7, o is a skyline object if
and only if q lies in PIR(o). By definition of safe zone Z, q
lies in Z. Since Z ⊆ Ze, q lies in Ze. Hence, o is a skyline if
and only if q lies in Ze ∩ PIR(o).

5. BRANCH AND BOUND ALGORITHM
Based on the ideas presented in the previous section, we

present our branch and bound algorithm specially designed
for the case where distance between an object and query is

computed using Euclidean distance metric. Although our
techniques can be applied on any data structure, due to the
simplicity and popularity of R-trees, we assume that the
data objects are indexed by a disk-resident R-tree.
Algorithm 4 shows the details of our branch and bound

algorithm. Safe zone Ze is initialized to the whole data uni-
verse. A min-heap is initialized with root entry of the R-tree.
To access the objects in the order proposed in Section 4.1.2,
the heap stores the entries according to the static scores of
their lower corners (see line 7). In other words, key of an

entry e is
∑d

i=1
eL[i] where eL denotes the lower corner of

an entry e (i.e., eL is a point of e consisting of lowest value
on each dimension). Ties are broken by preferring the en-
try that has smaller minimum distance from q. If ties are
still unbreakable, preference is given to the entry that is at
a deeper level in the tree (e.g., a data object is preferred to
a leaf node). If still not broken, we break the tie arbitrarily.

Algorithm 4 Branch and Bound Algorithm

1: Initialize Ze as the whole data universe
2: insert root of R-tree in a min-heap H
3: while H is not empty do
4: deheap an entry e
5: if e is not pruned then /* using Algorithm 5 */
6: if e is a leaf or intermediate node then
7: insert every child c in heap with key set to the static

score of lower corner of c
8: else
9: C ← Ze ∩ PIR(e)
10: if q ∈ C then /* e is a skyline object */
11: Ze ← C
12: add e in S and insert e in main-memory R-tree
13: else
14: Ze ← Ze − C
15: return set of skyline objects S and safe zone Z = Ze

Entries are de-heaped iteratively. For each de-heaped en-
try e, we check if e can be pruned or not (line 5) by using
our pruning algorithm that will be introduced later in Sec-
tion 5.1. If e cannot be pruned and is a leaf or intermedi-
ate node then its children are inserted in the heap (line 7).
Otherwise, if e is a data object then we need to update the
evolving safe zone Ze using the pseudo-impact region of e.
We utilize the idea presented in Section 4.2.1 to avoid exact
computation of PIR(e) and compute C = Ze ∩PIR(e) (see
line 9). According to Lemma 12, e is a skyline object if q
lies in C (line 10). If e is a skyline object then the safe zone
Ze is updated and e is inserted in a main-memory R-tree
(line 12). This main-memory R-tree is used in our pruning
algorithm. If e is not a skyline object, the safe zone Ze is up-
dated appropriately (line 14). The algorithm returns skyline
objects and the safe zone when the heap becomes empty.

5.1 Pruning Algorithm
Recall that Algorithm 4 indexes the accessed skyline ob-

jects in a main-memory R-tree. Hereafter, this R-tree is
called a local R-tree. The disk-resident R-tree that indexes
all of the data objects is called global R-tree. Let Rcnd be
an entry of the global R-tree and Rfil be an entry of the lo-
cal R-tree. In this section, we present an approach to prune
Rcnd (the candidate node) using Rfil (the filtering node).
Fig. 6 shows an example where Rcnd and three filtering

entries R1, R2 and R3 are shown. Each entry R is a four-
dimensional rectangle (two static dimensions and two loca-
tion coordinates). Fig. 6(a) shows the rectangles according
to their static dimensions and Fig. 6(b) shows the rectan-
gles according to their location coordinates. For a rectangle
R, we use RL and RH to denote the lower and upper cor-

ners of R, respectively. RH
a �sR

L
b denotes that the upper

corner of Ra statically dominates or equals the lower corner
of Rb. In Fig. 6(a), RH

3 �sR
L
cnd (upper corner of R3 stat-

ically dominates lower corner of Rcnd) whereas RL
2 ⊀sR

L
cnd

(lower corner of R2 does not statically dominate lower cor-
ner of Rcnd). mindist(R,A) denotes the minimum distance
between a rectangle R and a shape A (a point or polygon)
computed using their location coordinates. Maximum dis-
tance is defined in a similar way.

(a) Static dimensions (b) Location coordinates

Figure 6: Illustration of pruning

Pruning Rule 1 : Rcnd can be pruned if RH
fil�sR

L
cnd and

maxdist(Rfil, Ze) < mindist(Rcnd, Ze).

Proof. Let o be an object in Rcnd and o′ be an object
in Rfil. Since RH

fil�sR
L
cnd, it implies that o′ ∈ PA(o) be-

cause o′�so and o′ is skyline object (o′ ∈ Rfil which is
an entry of local R-tree that indexes only the skyline ob-
jects). Moreover maxdist(o′, Ze) < mindist(o, Ze) because
maxdist(Rfil, Ze) < mindist(Rcnd, Ze). Hence, according
to Lemma 10, o does not affect the shape of the evolving
safe zone Ze. This holds for every o ∈ Rcnd.

Next, we present a tighter pruning rule based on Lemma 11.

Pruning Rule 2 : Rcnd can be pruned if both of the fol-
lowing conditions hold: 1) RH

fil�sR
L
cnd; and 2) for every

point x ∈ Ze, every point y ∈ Rfil and every point z ∈ Rcnd,
dist(y, x) < dist(z, x).

Proof. Let o be an object in Rcnd. As shown in the
proof of Pruning Rule 1, if RH

fil�sR
L
cnd then every object

o′ ∈ Rfil is a skyline object and satisfies o′�s o. If the
second condition holds then, for every x ∈ Ze, there always
exists an object o′ ∈ Rfil for which dist(o′, x) < dist(o, x).
Hence, according to Lemma 11, o can be pruned.

Given three rectangles A, B and C, Emrich et. al [9]
present an efficient approach that returns true if and only
if, for every point x ∈ A, y ∈ B and z ∈ C, dist(y, x) <
dist(z, x). Since their proposed approach applies only on the
rectangles, we approximate the safe zone Ze by a minimum
bounding rectangle to apply Pruning Rule 2.

Example 9 : In the example of Fig. 6, Rcnd cannot be
pruned by R1 because RH

1 �sR
L
cnd (see Fig. 6(a)). Similarly,

R2 cannot prune Rcnd. However, R3 satisfies RH
3 �sR

L
cnd.

Note that R3 also satisfies the second condition (please see
Fig. 6(b)). Hence, Rcnd can be pruned by R3. �

Lemma 13 : None of the objects in Rfil can prune Rcnd if
RL

fil�sR
L
cnd or maxdist(Rcnd, Ze) < mindist(Rfil, Ze).

The proof is straight forward because none of the children
of Rfil satisfies the pruning condition in Pruning Rule 1

and 2. Hence, in this case, the children ofRfil can be ignored
because they cannot pruneRcnd. In the example of Fig. 6(a),
RL

2 �sR
L
cnd which implies that no child of R2 can be used for

pruning Rcnd. Similarly, in Fig. 6(b), assume that R1 is
to be pruned. Note that although RL

3�sR
L
1 (see Fig. 6(a)),

no child of R3 can prune R1 because maxdist(R1, Ze) <
mindist(R3, Ze) (see Fig. 6(b)).

Algorithm 5 Pruning Algorithm

Input: Rcnd: the candidate node, A main memory R-tree
that indexes only the skyline objects

Output: Return true if Rcnd can be pruned.
Description:
1: initialize H with root of the main-memory R-tree
2: while H is not empty do
3: deheap an entry Rfil

4: if maxdist(Rcnd, Ze) < mindist(Rfil, Ze) then
5: return false
6: if Rcnd can be pruned using Pruning Rule 1 or 2 then
7: return true
8: if RL

fil
�sR

L
cnd

then

9: if Rfil is a leaf or intermediate node then
10: insert its every child c in H with key mindist(c, Ze)
11: return false

Algorithm 5 shows the details of our pruning algorithm.
A heap H is initialized with root of the main-memory R-
tree that indexes only the skyline objects. Each entry e is
inserted in heap H with key set to mindist(e, Ze) (line 10).
The entries from heap are de-heaped iteratively. The algo-
rithm returns false ifmaxdist(Rcnd, Ze) < mindist(Rfil, Ze)
for a de-heaped entry Rfil (see line 5). This is because, ac-
cording to Lemma 13, none of Rfil and its children can
prune Rcnd. Moreover, every entry e in the heap H has
mindist(e, Ze) at least equal to mindist(Rfil, Ze) (accord-
ing to order of entries in heap). Hence, no such entry e or
its children can prune Rcnd.
If Rcnd can be pruned by applying Pruning Rule 1 or 2,

then the algorithm returns true (line 7). Otherwise, the
children of Rfil are inserted in heap H only if RL

fil�sR
L
cnd

(see Lemma 13). The algorithm returns false if the heap
becomes empty.

5.2 Monitoring Filtered Skyline Objects
In this section, we show that our techniques can be easily

adopted to continuously monitor the skyline objects that
satisfy certain conditions. Note that the conditions defined
on static dimensions are trivial to handle. Once the skyline S
and the safe zone is computed, the objects can be filtered by
applying the conditions. Since the set of skyline objects does
not change as long as the query is inside the safe zone, the
filtering remains valid unless the query leaves the safe zone.
Next, we present the techniques to handle the conditions
defined on the dynamic dimension, i.e., distance.

(a) Price and rank (b) Location coordinates

Figure 7: 2-closest skyline objects are o1 and o2

Assume that a user wants to continuously monitor k-
closest skyline objects. First, the skyline S and the safe
zone are computed. To avoid ambiguity, we call this safe
zone Zsky because the set of skyline objects remain valid as
long as q remains inside Zsky. Fig. 7 reproduces the example

we presented in Section 1. Zsky is the shaded area and the
set of skyline objects is S = {o1, o2, o3}.

We consider the set of skyline objects S and compute the
k-nearest neighbors (kNN) of q and the order-k Voronoi cell
of S that contains q. This order-k Voronoi cell is denoted
as ZkNN because the k-nearest neighbors (kNN) of q among
S remain the same as long as q remains inside ZkNN [27,
10]. In Fig. 7(b), order-2 Voronoi cell (computed using S)
that contains q is the triangle shown using thick lines. The
2-NNs of q among S are o1 and o2 and the 2-NNs remain
the same as long as q is inside Z2NN . Note that the results
of k-closest skyline remain valid as long as q is inside both
Zsky and ZkNN . If q leaves Zsky then the set of skyline
objects S changes. Hence, Zsky and ZkNN are recomputed.
Otherwise, if q is inside Zsky but leaves ZkNN then only a
new ZkNN is to be computed.

Note that the above framework can also be used to moni-
tor the skyline objects that lie within a given distance range
r from the user. The only difference is that we need to com-
pute Zrange instead of ZkNN where Zrange is the safe zone
for a range query issued on the set of objects S. The tech-
niques presented in [10] and [5] can be immediately applied
to compute ZkNN and Zrange, respectively.

6. EXPERIMENTS

6.1 Experimental Setup
A näıve approach to monitor moving skyline queries is

to compute the safe zone as we described in the basic al-
gorithm (Algorithm 2). Another näıve approach is to call
existing algorithms such as BBS [20] to re-compute the sky-
line whenever the results are to be updated (e.g., after every
t time units). However, our experiments demonstrated that
both of these näıve approaches perform quite poorly (e.g.,
both algorithms are almost three orders of magnitude worse
than our algorithm).

For a strict evaluation of our algorithm, we specially de-
sign the supreme algorithm that assumes the existence of an
oracle and meets the lower bound IO cost.
Supreme Algorithm. We assume that there exists an
oracle that computes the safe zone without incurring any
IO or CPU cost. The supreme algorithm uses BBS [20] to
compute the skyline objects and assumes that the oracle re-
turns it the safe zone. The results are updated by calling
BBS again only when the query leaves the safe zone. Note
that the cost of computing the skyline objects is the lower
bound cost for every algorithm that computes the safe zone.
Since BBS has been shown to be IO optimal [20] for skyline
queries, the supreme algorithm meets the lower bound IO
cost for the safe zone computation. Our experimental re-
sults demonstrate that the performance of our algorithm is
reasonably close to the supreme algorithm.

Table 2: System Parameters
Parameter Range

Number of objects (×1000) 50, 75, 100, 125, 150
Dimensionality of R-tree 3, 4, 5, 6
Speed of queries in km/hr 40, 60, 80, 100, 120
Distribution on static dimensions unif, norm, corr, anti

Our evaluation framework is similar to the framework
used in existing safe zone based techniques [4, 27, 18] for
continuous spatial queries. Table 2 shows the parameters
we use in our experiments and the default values are shown
in bold. The objects are indexed by a disk-resident R-tree
with node size set to 4096 bytes. The dimensionality of

the objects vary from 3 to 6 (including two location co-
ordinates). We generate different data sets each following
a different distribution on static dimensions, i.e., Uniform
(unif for short), Normal (norm), Correlated (corr) and Anti-
correlated (anti) [2]. The location coordinates of the objects
are extracted from a real dataset [1] that contains 175, 813
points of interest (POIs) in North America and corresponds
to a data universe of 5000Km×5000Km. To run the exper-
iments for varying number of objects, we randomly choose
the required number of POIs from the real data set. One
hundred queries are generated using the popular Brinkhoff
data generator [3] that simulates cars (queries) moving on
the road network of North America. The results of each
query are monitored for 5 minutes and the experiments re-
port the total cost of monitoring all queries for 5 minutes.

6.2 Performance Evaluation
As we mentioned earlier, the näıve algorithms perform

quite poorly. Therefore, for a better illustration of the com-
parison, we only show the results for our algorithm and the
supreme algorithm. Nevertheless, towards the end of this
section, we present Fig. 13 that not only compares our al-
gorithm with a näıve algorithm but also demonstrates the
effectiveness of our proposed optimizations.

6.2.1 Effect of data cardinality
Fig. 8 studies the effect of data cardinality on both of

the algorithms. Our algorithm incurs more IOs (the num-
ber of accessed R-tree nodes) as compared to the supreme
algorithm because our algorithm also needs to consider the
non-skyline objects to construct the safe zone in contrast
to the supreme algorithm that only computes the skyline
objects. The CPU cost of our algorithm is higher mainly
because it not only processes non-skyline objects but also
computes the pseudo-impact regions to construct the safe
zone. Nevertheless, the cost of our algorithm is reasonably
close to the cost of supreme algorithm which shows the ef-
fectiveness of our proposed optimizations.

25
50
75

100
125
150
175

50 75 100 125 150

#n
od

es
 (

in
 th

ou
sa

nd
s)

Number of objects (in thousands)

Our
Lower bound

(a) Node accesses

 0

 20

 40

 60

 80

 100

50 75 100 125 150

T
im

e
(in

 s
ec

)

Number of objects (in thousands)

Our
Supreme

(b) CPU time

Figure 8: Effect of data cardinality

6.2.2 Effect of dimensionality
In Fig. 9, we change the number of static dimensions from

1 to 4 (the location coordinates are two dimensional). It is
well known [20, 2] that the cost of skyline computation al-
gorithms significantly increases with the increase in dimen-
sionality. The same can be observed in Fig. 9. However, the
cost of our algorithm is close to the cost of the supreme al-
gorithm which demonstrates that the cost of our algorithm
increases mainly because the cost of skyline computation in-
creases (i.e., the safe zone construction does not add a large
overhead).

6.2.3 Effect of data distribution
In Fig. 10 we study the effect of data distribution. The

distribution of location coordinates does not significantly af-
fect the cost of the algorithms. Therefore, we only present

 17

 90

 430

 1695

 3 4 5 6

#n
od

es
 (

in
 th

ou
sa

nd
s)

Number of dimensions

Our
Lower bound

(a) Node accesses

 1

 10

 100

 1000

 10000

 3 4 5 6

T
im

e
(in

 s
ec

)

Number of dimensions

Our
Supreme

(b) CPU time

Figure 9: Effect of dimensionality

the results for the distributions of values on static dimen-
sions. More specifically, Fig. 10 shows the effect of corre-
lated (shown as corr), uniform (unif), normal (norm) and
anti-correlated (anti) distributions. In accordance with the
results reported in existing work [20, 2], the skyline algo-
rithms perform best for correlated distribution and the worst
for anti-correlated distribution. Note that the cost of our al-
gorithm remains reasonably close to the cost of the supreme
algorithm for all data distributions.

50
100
150
200
250
300
350

corr unif norm anti

#n
od

es
 (

in
 th

ou
sa

nd
s)

Distribution

Our
Lower bound

(a) Node accesses

 0

 50

 100

 150

 200

 250

 300

corr unif norm anti

T
im

e
(in

 s
ec

)

Distribution

Our
Supreme

(b) CPU time

Figure 10: Effect of distribution

6.2.4 Effect of query speed
In Fig. 11, we run the experiments where the average

speed of queries varies from 40 km/hr to 120 km/hr. The
cost increases with the increase in query speed because the
queries leave their respective safe zones more often and the
safe zones are required to be recomputed more frequently.
Note that IO and CPU cost of our algorithm is close to the
cost of supreme algorithm.

25

50

75

100

125

150

 40 60 80 100 120

#n
od

es
 (

in
 th

ou
sa

nd
s)

Query speed (in km/hr)

Our
Lower bound

(a) Node accesses

 0

 20

 40

 60

 80

 100

 40 60 80 100 120

T
im

e
(in

 s
ec

)

Query speed (in km/hr)

Our
Supreme

(b) CPU time

Figure 11: Effect of query speed

6.2.5 Effectiveness of the safe zone
Note that a safe zone based approach is not effective if a

query leaves its safe zone too frequently. Hence, the aver-
age distance a query travels before it leaves the safe zone is
an important measure to verify the effectiveness of the safe
zone. In Fig. 12(a), we show the average escapee distance
which is the average distance the queries travel before leav-
ing their respective safe zones. Fig. 12(a) shows that the
average distance varies from 1300 meters to 1900 meters.
The average escape distance decreases with the increase in
data cardinality because the safe zone shrinks.

If the safe zone is a very complex shape then the clients,
which usually have low computational power, may not be
able to efficiently check whether they lie inside the safe zone
or not. Hence, the shape of the safe zone is also an important
measure to evaluate its effectiveness. The safe zone in our
case is always a polygon and the cost of checking whether a

 0

 500

 1000

 1500

 2000

 2500

50 75 100 125 150

D
is

ta
nc

e
(in

 m
et

er
s)

Number of objects (in thousands)

Average escape distance

(a) Escape distance

 0

 5

 10

 15

 20

50 75 100 125 150

N
um

be
r

of
 e

dg
es

Number of objects (in thousands)

Average
Maximum

(b) Edges of safe zone

Figure 12: Effectiveness of safe zone

client lies inside the safe zone or not is linear to the number
of edges of the polygon. Fig. 12(b) shows that the average
number of edges of the safe zone is around 5 whereas the
maximum number of edges for any safe zone is 14. We con-
ducted the same experiments for other settings (e.g., varying
distribution) and observed that the average number of edges
is always between 5 to 6.

6.2.6 Effectiveness of proposed optimizations
In Fig. 13, we evaluate the effectiveness of the optimiza-

tions we presented in Section 4. More specifically, Basic is
the basic algorithm (Algorithm 2). No-Pseudo is the same
as Algorithm 4 except that it computes the safe zone by
using exact impact regions instead of using pseudo-impact
regions. However, No-Pseudo algorithm uses our proposed
pruning rules. In contrast, No-Pruning algorithm uses the
concept of pseudo-safe zone but does not employ the pruning
rules used in Algorithm 4.

0.05
0.15

0.58

3.2

18

123

600

50 75 100 125 150

#n
od

es
 (

in
 m

ill
io

ns
)

Number of objects (in thousands)

Basic
No-Pseudo

No-Pruning
Our

(a) Node accesses

 14

 51

 240

 2100

 48000

 260000

50 75 100 125 150

T
im

e
(in

 s
ec

)

Number of objects (in thousands)

Basic
No-Pseudo

No-Pruning
Our

(b) CPU time

Figure 13: Effectiveness of proposed optimizations

Fig. 13 shows that our algorithm is several orders of mag-
nitude better than the basic algorithm (note the log scale).
The IO cost of No-Pseudo is quite high because it does not
use the main-memory R-tree (i.e., for each accessed object,
all other objects have to be considered). Although the IO
cost of No-Pruning is lower than the cost of No-Pseudo, it
is 20 to 30 times higher than the IO cost of our algorithm.
This shows the effectiveness of our pruning rules.

7. CONCLUSIONS
We are the first to present a safe zone based approach

to continuously monitor skyline for queries moving in arbi-
trary fashion. We propose efficient safe zone construction
techniques that can be applied on arbitrary metric spaces.
Our experiments demonstrate that the cost of our proposed
algorithm is close to the lower bound cost and is more than
three orders of magnitudes lower than a näıve algorithm.

Acknowledgments. Muhammad Aamir Cheema is sup-
ported by ARC DE130101002 and ARC DP130103405. The
research of Xuemin Lin is supported by NSFC61232006,
NSFC61021004, ARC DP110102937 and ARCDP120104168.
Wenjie Zhang is supported by ARC DP120104168 and ARC
DE120102144. The research of Ying Zhang is supported by
ARC DP130103245 and ARC DP110104880.

8. REFERENCES
[1] http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm.
[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline

operator. In ICDE, pages 421–430, 2001.
[3] T. Brinkhoff. A framework for generating network-based

moving objects. GeoInformatica, 6(2):153–180, 2002.
[4] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and

W. Wang. Multi-guarded safe zone: An effective technique
to monitor moving circular range queries. In ICDE, 2010.

[5] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and
W. Wang. Continuous monitoring of distance-based range
queries. IEEE Trans. Knowl. Data Eng., 23(8):1182–1199,
2011.

[6] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang. Influence
zone: Efficiently processing reverse k nearest neighbors
queries. In ICDE, pages 577–588, 2011.

[7] M. A. Cheema, W. Zhang, X. Lin, and Y. Zhang.
Efficiently processing snapshot and continuous reverse k
nearest neighbors queries. VLDB J., 21(5):703–728, 2012.

[8] K. Deng, X. Zhou, and H. T. Shen. Multi-source skyline
query processing in road networks. In ICDE, 2007.

[9] T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, and
A. Züfle. Boosting spatial pruning: on optimal pruning of
mbrs. In SIGMOD, 2010.

[10] M. Hasan, M. A. Cheema, X. Lin, and Y. Zhang. Efficient
construction of safe regions for moving knn queries over
dynamic datasets. In SSTD, 2009.

[11] Y. Hsueh, R. Zimmermann, and W. Ku. Efficient updates
for continuous skyline computations. In DEXA, 2008.

[12] Z. Huang, H. Lu, B. C. Ooi, and A. K. H. Tung.
Continuous skyline queries for moving objects. IEEE
TKDE, 18(12):1645–1658, 2006.

[13] J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and
D. Zhang. Continuous evaluation of monochromatic and
bichromatic reverse nearest neighbors. In ICDE, 2007.

[14] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in
the sky: An online algorithm for skyline queries. In VLDB,
pages 275–286, 2002.

[15] M.-W. Lee and S. won Hwang. Continuous skylining on
volatile moving data. In ICDE, pages 1568–1575, 2009.

[16] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky:
Efficient skyline computation over sliding windows. In
ICDE, pages 502–513, 2005.

[17] H. Lu, Y. Zhou, and J. Haustad. Continuous skyline
monitoring over distributed data streams. In SSDBM, 2010.

[18] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The
v*-diagram: a query-dependent approach to moving knn
queries. PVLDB, 2008.

[19] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial
Tessellations: Concepts and Applications of Voronoi
Diagrams. Wiley, 1999.

[20] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal
and progressive algorithm for skyline queries. In SIGMOD,
2003.

[21] D. Sacharidis, P. Bouros, and T. K. Sellis. Caching
dynamic skyline queries. In SSDBM, pages 455–472, 2008.

[22] M. Sharifzadeh and C. Shahabi. The spatial skyline
queries. In VLDB, pages 751–762, 2006.

[23] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi.
Discovery of influence sets in frequently updated databases.
In VLDB, 2001.

[24] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In VLDB, pages 301–310, 2001.

[25] P. Wu, D. Agrawal, Ö. Egecioglu, and A. E. Abbadi.
Deltasky: Optimal maintenance of skyline deletions
without exclusive dominance region generation. In ICDE,
2007.

[26] T. Xia and D. Zhang. Continuous reverse nearest neighbor
monitoring. In ICDE, page 77, 2006.

[27] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based spatial queries. In SIGMOD, 2003.

