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Abstract In many applications involving multiple criteria optimal decision making, users

may often want to make a personal trade-off among all optimal solutions for selecting one

object that best fits their personal needs. As a key feature, skyline in a multi-dimensional

space provides a minimal set of candidates for such purposes by removing every object that

is not preferred by any (monotonic) utility/scoring function; that is, the skyline removes all

objects not preferred by any user no matter how their preferences vary. Due to its impor-

tance, the problem of skyline computation and its variants have been extensively studied in

the database literature. In this paper, we provide a comprehensive survey of skyline com-

putation techniques. Specifically, we first introduce the skyline computation algorithms on

traditional (exact) data where each object corresponds to a point in a multi-dimensional

space. Then, we discuss the skyline models and efficient algorithms to handle uncertain data

which is inherent in many important applications. Finally, we briefly describe a few variants

of the skyline (e.g., skycube, k-skyband and reverse skyline) in this paper.
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1 Introduction

In a d-dimensional space Rd, the skyline is defined over given preferences of
coordinate values on each dimension (i.e., either smaller or larger coordinate values are
preferred). Without loss of generality, in the rest of the paper, we assume that smaller
coordinate values are preferred on each dimension and all points are in Rd

+ (i.e., co-
ordinate values are non-negative). Given two points x and y in Rd

+, x dominates y

if x is not greater than y on any dimension and is smaller than y on at least one
dimension. More precisely, assuming x[i] denotes the i-th co-ordinate value of a point
x, we say x dominates y if x[i] 6 y[i] for every dimension i ∈ [1, d] and there exists
at least one dimension j ∈ [1, d] such that x[j] < y[j].

Assume that the users prefer smaller values on each dimension and want to
select a top object (point) from a set D of objects (points). Clearly, a point in D
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that dominates every other point in D would be the top object. However, D may not
contain a point that dominates every other point. Therefore, scoring functions are
often used to rank the points in D. A decreasing scoring function f has the property
that it returns higher scores for the points that have smaller co-ordinate values, i.e.,
f(x) > f(y) if x dominates y. Hence, a decreasing scoring function may be used to
capture the user’s preference of smaller values on each dimension and the object with
the highest score may be returned as the top object.

Clearly, the score of a point computed by a scoring function may be easily affected
by outlier coordinate values of the point on some dimensions. Consequently, the users
may not be content with the optimal solution based on a single scoring function.
Moreover, due to the lack of domain knowledge or incomparable units on different
dimensions (e.g., dollars vs meters), the users may not be able/willing to define a
single scoring function that best meets their personal needs. A feasible solution to
this problem is to return the users a set of points S where S ⊆ D and has the following
property: for each point y ∈ D − S, there is a point x ∈ S such that f(x) > f(y) for
every decreasing scoring function f . In other words, the top object is always a point
in S no matter which decreasing scoring function is used to rank the objects. The
users may make personal trade-off to select one object from S which best meets their
personal needs. We call such an S a superior set of D.

The skyline of D consists of the points in D which are not dominated by any other
points in D. The skyline S of D provides the superior set of D with the minimum size
for users to make their personal trade-offs. Such a personal trade-off is very effective
especially when the number of skyline points is small.

Figure 1 demonstrates a classical motivating example for the skyline computation.
Assume that a tourist is looking for a hotel that is cheap and is close to a beach.
Figure 1 shows a list of hotels, each of which has two numerical attributes, price
and dist (distance to the beach). Unless a single scoring function is used, a hotel
that best meets her needs cannot be determined. Nevertheless, we can safely exclude
p1 because the hotel p2 dominates the hotel p1 and hence f(p2) > f(p1) for every
decreasing function f . In other words, the hotel p2 is always preferable to p1 regardless
of the scoring function used. With similar rationale, we can also exclude p3, p5 and
p7 because they are all dominated by p6. Hence, the skyline in Fig. 1 is {p2, p4, p6}.
These skyline hotels are returned to the user and she may choose a hotel that best
meets her needs by making a personal trade-off between the price and the closeness

Figure 1. Skyline of hotels
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to the beach. It can be guaranteed that her most preferable hotel is not missed if the
skyline is returned.

A straightforward approach for the skyline computation is to check the dominance
relationship between each pair of objects in the dataset and to remove the objects
which are dominated by any other object. Clearly, this is computationally expensive
especially when the number of objects is large. Due to the importance of the skyline,
in the past few years, many efficient skyline computation algorithms are proposed and
we briefly describe these techniques in this paper.

In many applications, uncertainty is inherent due to various factors such as data
randomness and incompleteness, limitation of equipment, and delay or loss in data
transfer. In such cases, the exact values of an object may be unknown and such an
object is called an uncertain object. An uncertain object may be described either con-
tinuously or discretely. In continuous cases, an uncertain object U may be described

by a probability density function (PDF) fU such that
∫

u∈U

fU (u)du = 1; Never-

theless, in many applications PDFs are not always available. Hence, a discrete case
representation is used where an uncertain object U is represented by a set of instances
such that each instance u ∈ U has a probability P (u) to appear. The discrete case
representation has the property that 0 < P (u) ≤ 1 and

∑

u∈U

P (u) = 1. Unlike the tra-

ditional skyline computation in which the dominance relationship between two objects
are clearly defined, it is a challenge to capture the dominance relationship between
two uncertain objects since there are multiple instances in each uncertain object. We
provide an overview of various approaches that compute skyline on uncertain data.

Some important variations of skyline operators are also introduced in this paper.
Figure 2 summaries the breakthroughs in skyline computation over both certain and
uncertain data, as well as skylines variations.

Figure 2. Research breakthroughs in skyline processing

This survey is organized as follows. In Section 2 and Section 3, we introduce
some of the most notable skyline computation algorithms for exact data. Specifically,
the algorithms that compute skyline over non-indexed data are presented in Section
2 followed by the skyline computation algorithms for indexed data in Section 3. In
Section 4, we present an overview of different skyline models for uncertain data. We
also describe the computation algorithm for each model. In Section 5, we introduce
a few variants of the skyline such as skycube, k-skyband and reverse skyline etc.
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2 Skyline Computation Over Non-Indexed Exact Data

The problem of skyline computation has been extensively studied ever since it
was introduced in 1975 by Kung et al.[11]. They show that the time complexity of the
skyline computation is O(N log N) for d = 2 and d = 3 where d is the total number
of dimensions and N is the total number of points. For d > 4, the time complexity is
bounded by O(N logd−2 N). Bentley et al. showed[5] that the average size of skyline
is O(logd−1 N) assuming that the values on each dimension are independent to the
values on the other dimensions.

Realizing the need of efficient skyline computation for massive datasets, the
database research community has also given significant attention to skyline computa-
tion since 2001[4]. In this section, we introduce a set of efficient skyline computation
algorithms (for exact data) that assume that the data is not indexed by any data
structure. Specifically, we survey Divide and Conquer[4], Block Nested Loops[4], Sort
First Skyline[8] and Linear Elimination Sort for Skyline[29] algorithms.

2.1 Divide and conquer algorithm (D&C)

The D&C approach[4] recursively partitions the whole dataset until each parti-
tion fits in the main memory. For each partition, a skyline (called local skyline) is
computed using a main-memory algorithm, e.g., Refs. [11, 25]. The final skyline is
obtained by merging the local skylines.

Assume that we want to compute the skyline on the dataset shown in Fig. 3.
First, D&C calculates the median of the data points on dimension x and divides the
dataset into two parts, S1 and S2 (see Fig. 3(a)). Assuming that both S1 and S2 fit
in main-memory, the skylines of S1 and S2 are computed. This step of D&C is called
divide step. The local skylines of S1 and S2 are shown in Fig. 3(a).

Figure 3. An example of DC algorithm

In merge step, D&C merges the local skylines by eliminating the data points
of the local skyline of S2 which are dominated by the local skyline points of S1.
To efficiently eliminate such points, the local skyline points of S1 and S2 are further
partitioned by using the median of the local skyline points of S1 on dimension y. These
partitions are shown in Fig. 3(b). Note that every data point in S22 is dominated by
every point in S11. Hence, all the points in S22 (i.e., p2 and p5) can be eliminated.
Furthermore, none of the points in S21 is dominated by any point in S12 because each
point in S21 has a smaller value in y dimension. Hence, none of the points in S12 can
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eliminate a point of S21. Consequently, D&C only needs to check whether a point in
S11 dominates a point in S12. It is found that p7 is dominated by p9. Hence, p7 is
removed. So, the overall skyline is {p3, p8, p9, p10}.

Analysis of D&C. The partitioning phase of D&C requires to read and write
the dataset at least once, thus incurring significant IO overhead. To improve the
performance of D&C when limited main memory is available, M-way DC algorithm
is proposed in Ref. [4]. We omit the details due to the space limitations.

2.2 Block nested loops algorithm (BNL)

A straightforward way to compute the skyline is to compare each data point p

in the dataset D with all the other data points in D. A point p is reported as a
skyline point if it is not dominated by any other point. Based on this concept, BNL
algorithm[4] maintains a window of candidate skyline points in the main memory and
evaluates the data points in the dataset one by one. During evaluation, p is compared
against all the candidate points in the window. There may be the following three
cases.

Case 1: p is dominated by a candidate point in the window. If so, p is discarded
immediately without further comparison with other points.

Case 2: p dominates some candidate points in the window. In this case, the domi-
nated candidates points are removed from the window and p is inserted into the
window as a new candidate point.

Case 3: p is neither dominated by nor dominates any candidate point in the window.
In this case, p is inserted into the window as a new candidate point.

After all the data points are evaluated, the candidate points in the window are
reported as the skyline points. If the window grows larger than the main memory,
BNL adopts a temporary file to store the candidate points that satisfy Case 3. After
the whole dataset is scanned, all the candidate points in the window which were
evaluated before the creation of the temporary file are output as the skyline points.
Then, BNL evaluates all data points in the temporary file in the same way again until
no temporary file is created.

Analysis of BNL. The advantage of BNL is that it can be used for any dimen-
sionality without indexing or sorting. However, it relies on main memory to store the
candidate skylines and a small memory may lead to numerous iterations.

2.3 Sort first skyline (SFS)

SFS[8] is a variation of BNL. In order to improve BNL, SFS introduces the entropy
value E(p) for each data point p = (p[1], p[2], · · · , p[d])

E(p) =
d∑

i=1

ln(p′[i] + 1)

where p′[i] is the normalized value of p[i] and d is the dimensionality. Obviously, given
two data points p and q, p cannot dominate q if E(p) is greater than or equal to E(q).
Based on the this observation, SFS first sorts all the data points in non-decreasing
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order of their entropy values. After that, SFS processes the sorted dataset in the
same way as BNL.

Analysis of SFS. Compared with BNL, SFS possesses the progressive nature which
means skylines could be output without accessing the whole dataset. This is because
the pre-sorting ensures that a point p can be dominated by only the points that are
visited before p. This also alleviates BNL’s problem of reliance on main memory.
Nevertheless, SFS has to scan the entire data file to return a complete skyline.

2.4 Linear elimination sort for skyline (LESS)

LESS[29] improves SFS by integrating external merge sort procedure tightly into
skyline computation. Similarly to SFS, LESS first sorts the dataset according to
entropy values of all data points and then computes the skyline in the same way as
BNL. In order to eliminate the data points efficiently, LESS makes the following two
major changes during external merge sorting procedure.

1. It maintains an elimination-filter (EF) window in pass 0 of the external merge
sort procedure to eliminate some non-skyline data points; and

2. It combines the final pass of the external merge sort procedure with the skyline
examination procedure of BNL algorithm.

Analysis of LESS. Compared with SFS, LESS consistently performs better be-
cause (1) the dataset to be processed after pass 0 in LESS is smaller than that of SFS;
this may also require SFS to do more passes in order to complete the sort; and (2)
LESS saves at least one pass since it combines the final merge pass with the skyline
examination procedure. It has been proven[29] that the average-case running time
of LESS is O(dn) where d and n are dimensionality and cardinality of the dataset,
respectively.

In addition, Ref. [3] computes the skyline based on sorting and further improves
the performance of Ref. [8]. Reference [42] applies the sort based paradigm to conduct
skyline computation on high dimensions.

3 Skyline Computation Over Indexed Exact Data

In many real applications, the size of dataset might be massive and it is desirable
to develop the indexing based techniques such that the performance of the skyline
computation can be significantly improved in terms of CPU and I/O costs by taking
advantage of the pre-computed indexes. In this section, we introduce the algorithms
that utilize the indexes such as Bitmap[33], Index[33], Nearest Neighbor Skyline[13],
Branch and Bound Skyline[26] and Z-order[21] algorithms.

3.1 Bitmap

Bitmap algorithm[33] encodes each data point with a bitmap according to the
rank of its value on each dimension. The bitmaps enable the algorithm to efficiently
determine whether a data point is a skyline point or not by bitwise operations (i.e.,
AND). Consider a data point p = (p[1], p[2], · · · , p[d]), where d is the dimensionality.
Each coordinate p[i] (1 6 i 6 d) is converted into mi-bit vector, where mi is the
number of distinct values on the i-th dimension, in which the (mi − rank(p[i]) + 1)
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most significant bits are 1 and others are 0. After conversion, every data point is

mapped to an m-bit vector, where m =
d∑

i=1

mi.

As an example, assume that there are 10 points in the 2-dimensional space as
shown in Table 1. Since rank of p10[1] is 9 in the first dimension, it is converted to
vector 1100000000. Similarly, all the bits of the corresponding vector to p10[2] are 1
because p10[2] is the smallest value in the second dimension (i.e., rank(p10[2]) = 1).

Table 1 An example of Bitmap algorithm

Id Coordinates Bit Vectors

p1 (10, 9) (1000000000, 100000000)

p2 (6, 8) (1111100000, 110000000)

p3 (1, 7) (1111111111, 11000000)

p4 (3, 6) (1111111100, 111100000)

p5 (7, 6) (1111000000, 111100000)

p6 (4, 5) (1111111000, 111110000)

p7 (8, 4) (1110000000, 111111000)

p8 (2, 3) (1111111110, 111111100)

p9 (5, 2) (1111110000, 111111110)

p10 (9, 1) (1100000000, 111111111)

After converting all data points to bitmaps, every data point can be efficiently
determined whether it belongs to the skyline by calling bitwise operations on the
bitmaps. Specifically, given a data point p = (p[1], p[2], · · · , p[d]), Bitmap algorithm
first generates d bit vectors b1, b2, · · · , bd, where bi (1 6 i 6 d) is juxtaposing the corre-
sponding rank(p[i]) bits of every data point. The 1’s in the result of b1 & b2 & . . . & bd

indicate the data points which dominate p. Obviously, if there is only single 1 in the
result, the considered data point is a skyline point.

Continuing the above example to check whether p7 is a skyline point. For p7,
the corresponding bit vectors b1 and b2 are 0111111110, and 0000001111, respectively.
Then, the result of b1 & b2 is 0000001110 which indicates p7 is dominated by p8 and
p9. As a result, p7 is not a skyline point. On the other hand, for data point p8, the
result of b1 & b2 is 0010000100 & 0000000111 = 0000000100, which has only single 1.
Therefore, p8 belongs to the skyline. To obtain the entire skyline, Bitmap algorithm
repeats the same examination for every data point in the dataset.

Analysis of Bitmap. The computation of the entire skyline using Bitmap is ex-
pensive because for each inspected point, the bitmaps of all points must be retrieved
in order to obtain the juxtapositions. Furthermore, the space consumption may be
prohibitive if the number of distinct values (i.e., m) is large.

3.2 Index algorithm

Given a set of d-dimensional data points, Index algorithm[33] organizes the data
set into d B+-tree indices. A data point p = (p[1], p[2], · · · , p[d]) is assigned to the
i-th (1 6 i 6 d) B+-tree index if and only if p[i] is the minimum coordinate among all
coordinates of p. The key of each B+-tree index is the minimum coordinate (denoted
by minV alue) of each data point. The data points in the same B+-tree index which
have same minV alue are maintained in a batch.
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To compute skyline, the maximum value of all the coordinates of the current
skyline points is maintained, which is denoted as maxV alue. The algorithm itera-
tively examines each B+-tree index and processes the batch which has the smallest
minV alue. minV alue of this batch is first compared with maxV alue. Obviously, if
maxV alue is smaller than or equal to minV alue, then there exists a skyline point in
the current skyline which dominates the data points in this batch as well all other
unprocessed data points in this B+-tree index. Therefore, the batch and all other un-
processed data points in the same B+-tree index can be safely discarded. Otherwise,
within the batch processed, a local skyline is computed first. Then, the points of this
local skyline are compared with the points maintained in the current skyline. If one of
these points is dominated by any current skyline point, it is discarded. Otherwise, it
is inserted into the skyline as a new skyline point. Once a new skyline point is found,
maxV alue is updated. Index algorithm returns the skyline result after the batches
of all B+-tree indices are processed.

Consider the example of dataset shown in Table 2. All the batches in the 2
B+-tree indices are listed in Table 2 in the increasing order of minV alue. Initially,
Index algorithm processes the batches with minV alue = 1 one by one. Data points
p3 and p10 are added into the skyline as they are not dominated by the current skyline
points. After that, maxV alue is updated to 9. Similarly, p8 and p9 are added into
skyline after their batches are processed. maxV alue is not changed after these two
new skyline points are found. Then, p4 is examined and discarded as it is dominated
by some current skyline point (i.e., p8). Index algorithm continues to examine the
remaining batches in the increasing order of its minV alue. When p1 is processed,
since its minV alue = 9 is equal to maxV alue, p1 is discarded immediately without
being evaluated with the current skyline points. After all batches are processed, Index
algorithm outputs the skyline {p3, p10, p8, p9}.

Table 2 An example of Index algorithm

Index 1 Index 2

minV alue batch minV alue batch

1 p3(1, 7) 1 p10(9, 1)

2 p8(2, 3) 2 p9(5, 2)

3 p4(3, 6) 4 p7(8, 4)

4 p6(4, 5) 6 p5(7, 6)

6 p2(6, 8) 9 p1(10, 9)

Analysis of Index Algorithm. Index algorithm is progressive in nature, i.e., it
can return skyline points as they are found. However, it cannot output skyline points
according to a user-defined order. Furthermore, as indicated in Ref. [13], Index al-
gorithm cannot support skylines retrieval on arbitrary subset of dimensions since the
B+-tree that a point belongs to may change with a different subset of dimensions.

3.3 Nearest neighbor based algorithm (NN)

NN[13] is based on the following fundamental observation.
Observation: Given a dataset and a monotonic distance function f (e.g., Euclidean
distance), the nearest neighbor of the origin is a skyline point.
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This observation can be easily proven by contradiction. Based on the above
observation, to compute the skyline for the given dataset, NN first finds the nearest
neighbor p of the origin. Then, the algorithm partitions the data space into 3 parts
with respect to p (see Fig. 6(a) where p8 is the nearest neighbor of the origin).

Part 1: The hyper rectangle with the origin as lower-left corner and p as upper-right
corner (i.e., R1 shown in Fig. 4(a)). According to the above observation, this
part is empty as no data point dominates p.

Part 2: The hyper rectangle with p as lower-left corner and the upper-right corner
of the data space as upper-right corner (i.e., R4). Obviously, all data points in
this part are dominated by p. Therefore, these data points can be discarded
safely.

Part 3: The other regions (i.e., R2 and R3). The property of those regions is that
their local skyline points belong to the global skyline as p does not dominate
any data point in those regions. As a result, NN is recursively applied to these
regions till the whole data space is evaluated.

As shown in Fig. 4(a), after the nearest neighbor of the origin (p8) is found, the
data space is partitioned into 4 parts, R1, R2, R3, and R4. As stated above, NN
only needs to consider regions R2 and R3. For each region, NN recursively finds the
nearest neighbor of its lower-left corner and partitions it into sub-regions. For the
partition R3, since there is only one data point p3, it is returned as a skyline point and
the search process in this region is terminated. Similarly, p9 is found as the nearest
neighbor of the lower-left corner of R2. Hence, R2 is further partitioned into four
regions (as shown in Fig. 4(b)). After the last data point p10 is found as the nearest
neighbor of its sub-region, NN terminates and outputs all the nearest neighbors found
as the skyline.

Figure 4. An example of NN algorithm

In general, for multiple dimensional space (d > 2), the regions in part 3 may
overlap. Elimination methods are also proposed in NN[13] to eliminate such duplicates.

Analysis of NN. The performance of NN is significantly impacted due to the
expensive eliminations of duplicates when dimensionality is higher than 2.
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3.4 Branch and bound skyline algorithm (BBS)

Like NN algorithm, BBS[26] is also based on nearest neighbor search. The dataset
is indexed by an R-tree. To find the skyline, BBS traverses the R-tree in a best-first
manner, i.e., it always evaluates and expands the node that is closest to the origin
among all un-visited nodes. To do that, BBS employs a heap in which the key of
each entry (i.e., R-tree node or data point) is its minimum distance to the origin.
Here, the minimum distance of an R-tree node to the origin is the summation of the
coordinates of its lower-left corner. Initially, all child entries of the root node of the
R-tree are inserted into the heap. In each iteration, the top entry e is removed from
the heap and examined against the skyline computed so far. If e is dominated by a
current skyline point, e is discarded. Otherwise, e is either expanded or output as a
skyline point depending on whether it is a node or a data point. More specifically,
if e is an R-tree node, it is expanded by inserting all its child entries which are not
dominated by any current skyline point into the heap. If e is a data point, it is output
as a new skyline point. BBS terminates when the heap becomes empty.

Consider the dataset shown in Fig. 5(a). Its corresponding R-tree is illustrated
in Fig. 5(b). To compute skyline, as listed in Table 3, BBS first inserts entries e1

and e2 into the heap. Then, e1, which is closer to origin than e2, is expanded to
entries e3 and e4. The next top entry is e3 and its data points p8 and p6 are inserted
into the heap. Next, p8 is processed. As it is not dominated by any current skyline
point (the current skyline is empty), it is output as a new skyline point. Similarly,
entry e4 is expanded and its data points (p7, p9 and p10) are inserted into the heap.

Figure 5. An example dataset and its R-tree

Table 3 An example of BBS algorithm

Action Heap Skyline

initializing 〈e1, 3〉, 〈e2, 7〉 ∅
expand e1 〈e3, 5〉, 〈e4, 6〉, 〈e2, 7〉 ∅
expand e3 〈p8,5〉, 〈e4, 6〉, 〈e2, 7〉, 〈p6, 9〉 p8

expand e4 〈p9,7〉, 〈e2, 7〉, 〈p6, 9〉, 〈p10, 10〉, 〈p7, 12〉 p8, p9

expand e2 〈e5, 7〉, 〈p6, 9〉, 〈p10, 10〉, 〈p7, 12〉 p8, p9

expand e5 〈p3,8〉, 〈p6, 9〉, 〈p10, 10〉, 〈p7, 12〉 p8, p9, p3

examine p6, p10, p7 ∅ p8, p9, p3, p10

When e2 is expanded, its child entry e6 is found being dominated by one skyline point
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(i.e., p8) and it is discarded. For the same reason, when e5 is processed, the data point
p3 is inserted into the heap whereas p4 is discarded. BBS continues to the process in
this way till all entries are processed and the skyline {p8, p9, p3, p10} is returned.

Analysis of BBS. BBS is progressive and IO optimal – the number of nodes of
R-tree accessed is minimized.

3.5 Z-Order based algorithm (Z-order)

Reference [21] considers both query efficiency and update efficiency and proposes
an index structure called ZBtree based on Z-order curve. As shown in Fig. 6(a), all
points in Region IV are dominated by points in Region I. This means we can eliminate
Region IV if Region I is non-empty. Points in Region II and III do not dominate each
other but could be dominated by the points in Region I. Thus, a natural access
order should be I, II, III, IV (or I, III, II, IV), which forms a Z-order curve. Similar
philosophy applies to the points inside each subregion recursively until there is only
one point in the subregion. The proposed ZB-tree is a modification of B+-tree to
index these Z-order curves. To retrieve skyline objects based on ZB-tree, block based
dominance tests are conducted to avoid dominating tests of unpromising regions (e.g.,
Region IV in Fig. 6) or unnecessary dominance checks among different regions (e.g.,
Regions II and III in Fig. 6). The update operations such as insertion and deletion
are shown to be more effective than BBS[26]. Reference [17] further improves Ref. [21]
by combining ZB-tree with a nested coding scheme and also supports skylines on
partial orders.

Figure 6. Example of Z-order curve

In addition, a very recent work[31] provides an external memory algorithm for
computing skyline of a d-dimensional dataset. The algorithm improves the I/O com-
plexity from O((N/B)log(d−2)

2 (N/M)) to O((N/B)log(d−2)
M/B (N/M)) for d ≥ 3, where

N is the cardinality of the dataset, M is the capacity of main memory, and B is the
size of a disk block.

4 Skyline Computation Over Uncertain Data

As mentioned in the introduction, it is non-trivial to capture the dominance
relationship between two uncertain objects because there are multiple instances in
each uncertain object. In this section, we introduce four probabilistic skyline models
and their corresponding skyline computation algorithm.



486 International Journal of Software and Informatics, Volume 6, Issue 4 (2012)

4.1 Threshold based probabilistic skylines (PSkyline)

The problem of skyline computation over uncertain data is firstly studied in
Ref. [24] following the possible world semantics. As shown in Fig. 7, each uncertain
object may have multiple instances where each instance represents a possibility of the
uncertain object. If the uncertainty of an uncertain object U is modeled continuously,
the probability for U to be a skyline object is:

Pr(U) =
∫

u∈U

f(u)
∏

∀V 6=U

(1−
∫

v≺u

f ′(v)dv)du (4.1)

Here
∏

V 6=U (1−∫
v≺u

f ′(v)dv) is the probability that the point u ∈ U is not dominated
by any other uncertain object. f and f ′ denotes the PDF of U and V , respectively.
In a discrete case, the skyline probability of U is:

Pr(U) =
∑

u∈U

(P (u)×
∏

∀V 6=U

(1−
∑

v∈V,v≺u

P (v))) (4.2)

∏
V 6=U (1−

∑

v∈V,v≺u

p(v)) is the probability that u ∈ U is not dominated by any other

object. Recall that P (u) denotes the appearance probability of instance u.

Figure 7. Uncertain objects

Given a set of uncertain objects U , PSkyline aims to retrieve all objects from U
with skyline probabilities not smaller than a given probability threshold γ. Bounding-
pruning-refining iteration is deployed to achieve efficiency. Two algorithms, bottom-
up and top-down, are developed. The bottom-up algorithm computes Pr(U) from
instance level. After calculating skyline probabilities of some selected instances, these
values are used to prune other instances and objects. Top-down algorithm, on the
other hand, partitions instances of one uncertain object into several groups and apply
pruning techniques in the group and object level.

4.2 Computing all skyline probabilities

While Ref. [24] solves the case of probabilistic skyline computation with a pre-
given threshold, Ref. [2] studies the problem of computing skyline probabilities for
every object in the uncertain database. The time complexity to compute all skyline
probabilities is sub-quadratic by using space partitioning and dominance counting
algorithms. In Ref. [2], the assumption of equal instances’ probabilities is removed
and total occurrence probability of instances from the same uncertain object could
be smaller than 1.
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Suppose there are m uncertain objects denoted as O1, · · · , Om. For each object
Oi, let Si denote the set of ni instances of Oi. Use S to denote the set of all instances
from m objects and n to denote |S|, namely n is the total number of instances from
m uncertain objects. For each instance p ∈ S, Pr(p) denotes its probability. Suppose
p is an instance from object Oj . Then, the skyline probability of p is as follows.

Prsky(p) = Pr(p)×
m∏

i=1,i 6=j

(1−
∑

p′∈DS,i(p)

Pr(p′))

Here DS,i(p) denotes the set of instances of object Oi in S that dominate p and is

called the dominant set of p. Let β(p) denote
∏m

i=1,i 6=j


1−

∑

p′∈DS,i(p)

Pr(p′)


. The

skyline probability of an uncertain object Oi is simply the sum of skyline probabilities
of its instances, i.e.,

Prsky(Oi) =
∑

p∈Oi

Prsky(p)

As shown in Fig. 8, all instances in S forms a grid with n2 instances. For an
instance p, β(p) could be computed using the grid by accumulating the probability
of instances dominating p along each dimension. The weighted dominance counting
problem is for a given set S of n weighted points, to compute for each point p of
S the sum of the weights of all points in S that dominate p[25]. The grid method
and the weighted dominance counting techniques are combined together to yield a
sub-quadratic time complexity algorithm to compute skyline probabilities for each
uncertain object.

Figure 8. Grids

4.3 Top-k probabilistic skyline operator

Instead of requiring a probability threshold, the top-k probabilistic skyline opera-
tor outputs k uncertain objects from the data set with the highest skyline probabilities.
Both discrete and continuous cases are tackled in Ref. [43].

Given a set of uncertain objects U = {U1, · · · , Un} such that each Ui has a
PDF fUi

defined on Ui. The possible world semantic can be extended to cover the
continuous case as follows. A possible world W = {u1, u2, · · · , un} is a point in the
space Ω =

∏n
i=1 Ui such that

∫
W∈Ω

∏n
i=1 fUi

(ui)du1du2 · · · dun = 1. SKY (W ) is
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defined as the objects with a point in the skyline of W . The skyline probability of U

is

Psky(U) =
∫

U∈SKY (W ),W∈Ω

n∏

i=1

fUi
(ui)du1du2 · · · dun. (4.3)

This can be rewritten as:

Psky(U) =
∫

u∈U

fU (u)
∏

V 6=U

(1−
∫

v≺u,v∈V

fV (v)dv)du. (4.4)

The framework to retrieve top-k objects with the highest skyline probabilities
follows the seeding and refinement paradigm. BBS algorithm[26] is also adopted in
the framework. For the continuous case, a randomized algorithm is proposed with
accuracy guarantee.

4.4 Stochastic skylines

The research in ranking uncertain objects against multiple criteria has a long
history in economics, finance, and mathematics; see Refs. [12, 18, 30] for example.
The expected utility principle is the most popular model[12,18] to select the optimal
uncertain object against multiple criteria. In the light of the expected utility principle,
given a function f , an uncertain object U with the maximum expected utility is the
optimal solution; that is, select U to maximize E[f(U)] for a given utility function f .

Recall that skyline provides the minimal set of candidates by removing the points
not preferred by any decreasing scoring functions. While the skyline probabilities can
effectively capture the possible dominance relationships among uncertain objects, sky-
line probabilities do not provide the candidature of optimal solutions regarding the
expected utility principle. This motivates the study of modeling skyline operator over
uncertain objects using stochastic orders. Two types of stochastic skyline operators
are proposed so far[22,41], where the stochastic skyline operator based on lower or-
thant order (lskyline) provides the minimum candidate set of optimal solutions to all
multiplicative monotonic scoring functions and the stochastic skyline operator based
on usual order (gskyline) provides the minimum candidate set of optimal solutions to
all monotonic scoring functions.

Stochastic orders have been widely used in many real-life applications[12,18,30],
including economics, finance, and multi-criteria statistic decision making to facilitate
the expected utility principle. Generally, given a family F of utility (scoring) functions
from all users, an uncertain object (random variable) U stochastically dominates V

regarding F , denoted by U ≺F V if and only if E[f(U)] > E[f(V )] for each f ∈ F (see
Ref. [12]); that is, all users prefer U to V according to the expected utility principle.
Given a set U of uncertain objects, the stochastic order based skyline regarding F
is the subset of U such that each object U in the stochastic order based skyline is
not stochastically dominated by any other object in U regarding F . Based on the
above definition of stochastic orders, it is immediate that the stochastic order based
skylines regarding F provide the minimum set of candidates to the optimal solutions
(maximum values) for all functions in F by removing the objects not preferred by
any function in F .

In Fig. 9, assume that A has 3 instances a1, a2, and a3 with the occurrence
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probabilities
1
2
,

1
7
,

5
14

, respectively, assuming the game performance a1 occurs 7

times, a2 occurs 2 times, and a3 occurs 5 times. Suppose that B has 2 instances b1

and b2 with the occurrence probabilities
1
2

and
1
2
, respectively; and C has 3 instances

c1, c2, and c3 with the occurrence probabilities
1
8
,
1
8
, and

3
4

respectively. Immediately,

the expected utility of A regarding the 3 instances regarding a utility function f is

E[f(A)] =
1
2
f(a1) +

1
7
f(a2) +

5
14

f(a3) =
1
2
f(1, 4) +

1
7
f(2, 1) +

5
14

f(3, 2). Similarly,

we can calculate E[f(B)] and E[f(C)]. It can be immediately verified that for any
nonnegative decreasing function f , E[f(A)] > E[f(B)]; that is, A is always preferred
to (better than) B. Consequently, B should be excluded as a candidate for users to
make a personal trade-off. However, it can be verified that the skyline probabilities

of A, B, and C are
51
56

,
7
16

, and
3
14

respectively. Clearly, B is always preferred to C

based on the skyline probability values; that is, impossible to exclude the object B

without excluding the object C based on skyline probabilities.

Figure 9. Motivating example for stochastic skylines

Lower Orthant Order based Skyline (lskyline).
For a point x ∈ Rd

+, the probability mass U.cdf(x) of U is the sum of the prob-
abilities of the instances in R((0, · · · , 0), x) where (0, 0, · · · , 0) is the origin of Rd

+;

that is, U.cdf(x) =
∑

u¹x,u∈U

pu. In Fig. 12(a), A.cdf(b2) =
1
2
, B.cdf(b2) =

1
2

and

C.cdf(b2) =
1
4
.

Below we give the definition of lower orthant order and lskyline.
[Lower Orthant Order.] Given two uncertain objects U and V , U stochastically domi-
nates V regarding the lower orthant order, denoted by U ≺lo V , if U.cdf(x) > V.cdf(x)
for each point x ∈ Rd

+ and ∃y ∈ Rd
+ such that U.cdf(y) > V.cdf(y).

[lskyline.] Given a set of uncertain objects U , U ∈ U is a lskyline object if there is no
object V ∈ U such that V ≺lo U . The set of all lskyline objects of U is the lskyline
of U .

In Ref. [22], it is proved that the problem of determining the lower orthant order
between two objects is NP-complete regarding the dimensionality. A novel, efficient,
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partition based algorithm is developed to verify if an uncertain object is stochastically
dominated by another object based on the lower orthant order. The algorithm runs
in polynomial time if the dimensionality is fixed. To retrieve lskyline from a given
uncertain data set U , Ref. [22] adopts the BBS paradigm Ref. [26]. Pruning techniques
are also proposed based on distance and statistic information.
Usual Order based Skyline (gskyline).

Given a set S ⊆ Rd
+, U.cdf(S) denotes the probability mass of U restricted

to S; that is, U.cdf(S) =
∑

u∈S∩U

pu. Regarding the shaded area S1 in Fig. 9(a),

A.cdf(S1) =
1
2
, B.cdf(S1) =

1
2
, and C.cdf(S1) =

1
4
, while regarding the shaded area

S2 in Fig. 9(b), A.cdf(S2) =
1
7
, B.cdf(S2) = 0, and C.cdf(S2) =

1
4
.

Next, we give the definition of lower set, usual order and gskyline.
[Lower Set.] A set S of points in Rd

+ is a lower set if for each pair of points x ¹ y in
Rd

+, y ∈ S implies x ∈ S.
The shaded areas in Figs. 9(a) and (b) are lower sets, respectively.

[Usual Order.] Given two uncertain objects U and V , U stochastically dominates an
object V regarding the usual order, denoted by U ≺uo V , if U.cdf(S) > V.cdf(S) for
each lower set S ⊆ Rd

+ and U.cdf(S′) > V.cdf(S′) for a lower set S′ ⊆ Rd
+.

Regarding the depicted lower set S1 (shaded area) in Fig. 9(a), since A.cdf

(S1) =
1
2

and C.cdf(S1) =
1
4
, C.cdf(S1) < A.cdf(S1); thus, C 6≺uo A. Regarding

the depicted lower set S2 (shaded area) in Fig. 9(b), since A.cdf(S2) =
1
7

and

C.cdf(S2) =
1
4
, A.cdf(S2) < C.cdf(S2); thus, A 6≺uo C.

[gskyline.] In a set U of uncertain objects, U ∈ U is a gskyline object if there is no
object V ∈ U such that V ≺uo U . The set of all gskyline objects of U is the gskyline
of U .

In Ref. [41], it is shown that the problem of testing the usual order can be solved
in polynomial time though it involves more complex geometric forms in the definition
than that in the definition of the lower orthant order. The problem of testing usual
order is converted to the max-flow problem, and then novel techniques are proposed to
effectively reduce the size of auxiliary networks to significantly speed up the testing.
To retrieve gskyline from a set of uncertain objects U , the framework is similar to
Ref. [22] except that the pruning techniques are more sophisticated.

5 Variations of Skyline

We briefly introduce the variations of the skyline operator in this section.
Reverse skyline. Given a set of multidimensional objects D and a query object

q, the dynamic skyline corresponds to the skyline of a transformed data space where
point q becomes the origin and all points of D are represented by their distance vector
to q. The reverse skyline query retrieves the objects whose dynamic skyline contains
the query object q. Reverse skylines are first studied in Ref. [10]. Reverse skylines on
uncertain data are studied in Ref. [15] following the possible world semantics.
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Top-k dominating queries. Top-k dominating queries combine the advan-
tages of top-k and skyline queries[38]. Instead of retrieving the objects which are not
dominated by other objects, a top-k dominating query returns k objects with the
highest dominating abilities. The dominating ability of an object p is measured by
the number of points dominated by p. This problem is first tackled in Ref. [38] and
the probabilistic top-k dominating queries are studied in Refs. [16, 40].

Top-k representative skyline. The size of skylines could be large and difficult
to analyze in some cases. Top-k representative skyline identifies k objects that best
capture the full skyline information. Reference [20] first studies representative skylines
with the aim that the returned k skyline objects together cover as many objects from
the database as possible. References [1, 32] tackles the problem from the aspect of
distances and distributions, respectively.

Spatial skyline. Spatial preference queries are often used to suggest the ob-
jects based on their spatial proximity to the facilities in many user recommendation
systems[36]. The spatial skyline provides the minimal candidate set of the optimal
solutions for any monotonic distance based spatial preference query[23].

Skycube. Suppose that the skyline operator is defined on d dimensions. Differ-
ent users may have different preferences and would like to select the skylines based
on different combinations of the d dimensions. Skycubes, or subspace skylines, address
this problem by retrieving skylines of all possible non-empty subsets of a given set of
d dimensions[27,37].

k-skyband. Recall that the skyline provides minimum candidate set for the opti-
mal solution of all monotonic ranking functions, namely, top-1 result for all monotonic
ranking functions. The k-skyband operator, on the other hand, retrieves the candi-
date set of top-k results for all monotonic ranking functions. Reference [35] studies
k-skyband queries on both full spaces and subspaces.

k dominant skyline. In high dimensional space, the chances that a point
dominates another point become small. This leads to a large size of the skyline and
may fail to provide interesting insights to users. k dominant skyline query relaxes
the definition of skylines in that one point p dominates another point q if p is better
than or equal to q in at least k dimensions (k ≤ d where d is the total number of
dimensions) and is better than q in at least one of these k dimensions[9].

Skyline over partially ordered domains. In many applications, the at-
tributes may be partially ordered. The traditional skyline techniques are all based on
the assumptions that attributes are all totally ordered. Reference [7] is the first to
study skylines over partially ordered domains.

Skyline over sliding windows. In many important applications, the data
arrives continuously in a streaming fashion. Usually users are interested in the most
recent information with a window size N . This is also called the sliding window model.
Skyline computation over sliding windows are studied in Refs. [19, 34]. Specifically,
Ref. [19] supports skyline computation of any recent n elements as long as n ≤ N .
Skyline computation over uncertain data streams is studied in Ref. [39].

Parallel Skyline. Since skylines are computationally expensive, Ref. [14] pro-
pose techniques to compute skyline using parallel processing.

Distributed Skyline. In various applications, data is stored and processed
in a distributed way. The distribution of content and lack of global knowledge pose
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challenges for skyline processing. Skyline and constrained skyline queries processing
are studied in Refs. [6, 28].

6 Conclusions and Future Work

The skyline operator is a useful tool in multi-criteria decision making since it
possesses many desirable features such as it provides a minimal candidate set to
the optimal solutions of all monotonic ranking functions. Furthermore, the skyline
operator is not influenced by value ranges on different dimensions and requires no
pre-given ranking functions. We summarize the techniques for skyline computation
over both exact and uncertain data, as well as variations of skylines. Some future
directions on skylines processing include skylines in the cloud environment and over
complex unstructured data (e.g., graphs).
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