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Abstract. Manifold Ranking (MR) is one of the most popular graph-
based ranking methods and has been widely used for information re-
trieval. Due to its ability to capture the geometric structure of the image
set, it has been successfully used for image retrieval. The existing ap-
proaches that use manifold ranking rely only on a single image manifold.
However, such methods may not fully discover the geometric structure of
the image set and may lead to poor precision results. Motivated by this,
we propose a novel method named Multi-Manifold Ranking (MMR)
which embeds multiple image manifolds each constructed using a differ-
ent image feature. We propose a novel cost function that is minimized
to obtain the ranking scores of the images. Our proposed multi-manifold
ranking has a better ability to explore the geometric structure of image
set as demonstrated by our experiments. Furthermore, to improve the
efficiency of MMR, a specific graph called anchor graph is incorporated
into MMR. The extensive experiments on real world image databases
demonstrate that MMR outperforms existing manifold ranking based
methods in terms of quality and has comparable running time to the
fastest MR algorithm.

Key words: Image retrieval, integrated features, manifold ranking

1 Introduction

Traditional image retrieval techniques rely on the semantic labels attached to the
images such as image annotations [13] and tags [7]. However, a severe drawback
of such techniques is that the manual labelling is laborious, expensive and time-
consuming. Another disadvantage is that such techniques do not consider the
content of the images and this may lead to poor results especially if the quality
of the labelling is poor.

To address the issues mentioned above, content-based image retrieval (CBIR) [10,
5, 12] may be used which utilizes the low-level features (e.g., color, shape, tex-
ture) for image retrieval. These low-level features can be extracted automatically
and remain consistent for each image in contrast to the manually attached labels.
However, it is difficult to choose an ideal descriptor for the images because the
low-level features may not represent the same semantic concepts. For example,
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two images having similar color visualization may have totally different semantic
meanings (e.g., a green apple and a tennis ball as shown in Fig. 1). This is one
of the main challenges CBIR needs to address.

query Top Rank Bottom Rank

Fig. 1. If only the color feature is used, the most relevant results include a green tennis
ball and a green angry bird instead of the red apple. Hence, a single feature may not
provide desired results.

To address this challenge, He et al. [4] used manifold ranking that uses low-
level features as well as the intrinsic structure of the images. The basic idea
behind the manifold ranking is as follows. A weighted graph is constructed where
the vertices represent the images and, for each vertex, its near by vertices are
connected to it by weighted edges. The queries are assigned a positive ranking
and the remaining vertices are ranked with respect to the queries. The vertices
spread their ranking scores to their neighbors via the weighted graph. The spread
process is repeated until convergence. This approach has been shown to yield
better retrieval results because it utilizes the intrinsic structure of the image
set. Xu et al. [18] proposed a faster manifold ranking approach that uses anchor
graphs [8] to approximate the original graph and provides the results of similar
quality.

The above mentioned manifold ranking techniques use a single feature. In
other words, these techniques utilize the intrinsic structure of the images based
only on a single feature. The ranking based on the single manifold may have low
precision especially if the selected feature is not very representative. Motivated by
this, in this paper, we propose a technique called multi-manifold ranking (MMR)
that ranks the images by considering multiple manifolds each constructed using a
different feature. MMR demonstrates excellent ability to retrieve relevant images
because it considers multiple intrinsic structures of the images. We propose a
novel cost function that is minimzed to obtain the ranking scores of the images.
Our proposed approach provides better results than the existing techniques.
Furthermore, we present efficient techniques to create the multiple manifolds.

We remark that Huang et al. [6] also utilizes more than one low-level features.
However, they construct only one manifold by using average manifold distance
of multiple features. Since only a single manifold is used, the proposed approach
does not preserve the original geometric structure of any of the features. In
contrast, our approach constructs multiple manifolds and utilizes the geomet-
ric structure of each feature. This enables our approach to yield better results
as demonstrated in our experiments. Furthermore, we show that our proposed
approach is more efficient and can be used on large image databases.

Our contributions in this paper are summarized below.

• We propose multi-manifold ranking (MMR) that utilizes multiple intrinsic
structures of the images to provide a better ranking of the images.
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• To handle large image databases, we improve the efficiency of MMR by using
singular value decomposition [1] as well as anchor graphs.
• Our extensive experimental results on real world image databases demonstrate
that our algorithm provides better retrieval results than state of the art existing
techniques (MR [4], ADF [6] and EMR [18]) that use a single manifold for image
retrieval. Furthermore, the running time of our algorithm is similar to that of
EMR and is significantly lower than those of MR and ADF. We also present
simple extensions of MR and EMR that use more than one manifolds. Although
these extended versions demonstrate better retrieval results than the original
versions, our proposed multi-manifold ranking performs significantly better.

The rest of the paper is organized as follows. Related work is reviewed in
Section 2. The details of multi-manifold ranking are presented in Section 3.
Extensive experimental study on real world image databases is presented in
Section 4. Section 5 concludes the paper.

2 Related Work

Zhou et al. [20] explored the importance of intrinsic geometrical structure of the
data. They propose manifold ranking [21] that considers the intrinsic structure
of the data for the ranking. Manifold ranking has been successfully used on
various data types such as text [15], image [4] and video [19]. He et al. [4]
are the first to use manifold ranking for image retrieval. While the proposed
approach demonstrates good quality results, it is computationally expensive. Xu
et al. [18] propose a more efficient approach that can efficiently handle large
image databases. They replace the original image graph with anchor graph [8]
which is significantly smaller in size but provides the results of similar quality.
Huang et al. [6] use a probabilistic hypergraph for image retrieval. They construct
a single manifold using the average manifold distance of multiple features.

All of the above manifold ranking based approaches consider geometric struc-
ture of a single image manifold which may not precisely represent the image
content. Motivated by this, we propose a multi-manifold ranking based method
for image retrieval which exploits the geometric structure of multiple manifolds
each constructed using a different feature. Our idea for MMR is inspired by
[3], which addresses the problem of video annotation through multi-graph using
different video features.

3 Multi-Manifold Ranking

3.1 Preliminaries

Let X be a set containing n images, i.e. X = {x1, x2, · · · , xn}. Multi-manifold
ranking assigns each image xi a ranking score Fi. F = {F1, F2, · · · , Fn} is the
ranking score vector containing the score of each image. L = {L1, L2, · · · , Ln} is
an indicator label vector where Li = 1 if xi is the query image, otherwise Li = 0.

Multi-manifold ranking (MMR) constructs N graphs each using a different
feature. Gk denotes a s-NN graph constructed on X using kth feature. Specif-
ically, Gk is constructed by connecting every two vertices xi and xj if one is
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among the s nearest neighbors of the other. Here, the nearest neighbors are
computed using Euclidean distance between the kth feature vectors of the im-
ages. The Euclidean distance between the kth feature vectors of xi and xj is
denoted as ||xi, xj ||k.

W k denotes the edge affinity matrix of Gk. Each entry W k
ij in W k represents

the similarity between xi and xj according to the kth feature vector. W k
ij is

defined by a Gaussian kernel and is set to exp(−||xi, xj ||
2
k/2σ

2) if there is an
edge in Gk between xi and xj . Otherwise, W k

ij is zero. Dk is the diagonal matrix

of Gk where each element Dk
ii is defined as Dk

ii =
∑n

j=1 W
k
ij .

3.2 Objective Cost Function

In this section, we propose a novel cost function, inspired by [3], to obtain the
ranking scores of the images in X . The cost function O(F ) considers N image
manifolds each constructed using a different feature. The ranking score vector
F is obtained by minimizing the cost function O(F ) given in Eq. 1.

O(F ) =
1

2

N
∑

k=1

(
n
∑

i,j=1

W
k
ij(

1
√

Dk
ii

Fi −
1

√

Dk
jj

Fj)
2 + λ

n
∑

i=1

(Fi − Li)
2) (1)

The first term ensures that nearby points (i.e., similar images in the multiple
image manifolds) are assigned similar ranking scores. The second term is the
fitting constraint which ensures that the ranking results should fit the initial label
assignment. λ is the regularization trade-off parameter for the fitting constraint.

We minimize O(F ) by setting ∂O(F )
∂F

= 0, which leads to the following equa-
tion.

N∑

k=1

((I−(Dk)−
1

2W k(Dk)−
1

2 )F +λ(F−L)) =
N∑

k=1

((1+λ)F −SkF−λL) = 0 (2)

where Sk = (Dk)−
1

2W k(Dk)−
1

2 . Note that Eq. 2 is equivalent to the following
equation.

N∑

k=1

(F −
Sk

1 + λ
F −

λ

1 + λ
L) = 0 (3)

Let α = 1
1+λ

. Eq. 3 is equivalent to
∑N

k=1(I − αSk)F = N(1 − α)L. Hence,
the final optimal ranking score vector denoted by F ∗ can be obtained as follows.

F ∗ = (
N∑

k=1

(I − αSk))−1N(1− α)L (4)

where I is the identity matrix. Since both (1 - α) and N remain the same for
all the images, they do not affect the retrieval results. Therefore, F ∗ can be
obtained as follows.

F ∗ = (

N∑

k=1

(I − αSk))−1L (5)
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Eq. 5 is the closed form for the optimal solution F ∗. In large scale problems,
the iteration scheme is preferred [18]. Therefore, we also consider the iterative
form which is given below.

F (t+ 1) = F (t) + µ

N∑

k=1

(F (t)− SkF (t) + λ(F (t) − L)) (6)

where F (t) is the ranking score vector at time stamp t. By setting µ = − 1
N(1+λ) ,

the following equation can be obtained.

F (t+1) = F (t)−
1

N(1 + λ)

N∑

k=1

((1+λ)F (t)−SkF (t)−λL) =

∑N
k=1(αS

kF (t) + (1− α)L)

N

(7)
Since N remains constant for all images, it is sufficient to consider the following
equation which omits N .

F (t+ 1) =
N∑

k=1

(αSkF (t) + (1− α)L) (8)

The above iterative form can be used in the iterative scheme. During each it-
eration, each vertex (i.e., image) receives information from its neighbors (the
first term) and retains its initial information (the second term). The iteration
process is repeated until convergence. By following the arguments similar to [21],
it can be shown that Eq. 8 is converged to the following equation when F (0) is
initialized to L.

F ∗ = lim
t→∞

F (t) = N(1− α)(I − αS)−1L (9)

Note that both N and (1− α) can be omitted from Eq. 9 without changing the
final retrieval results because they are constant for all images. Therefore, the
optimal ranking results can be obtained as follows.

F ∗ = lim
t→∞

F (t) = (I − αS)−1L (10)

We remark that although Eq. 10 may assign negative scores to some of the
images, the relative ranking order of the images is preserved. Nevertheless, if
desired, the scores of all the images may be normalized (e.g., by shifting) such
that each image gets a positive score.

3.3 Improving the Efficiency of MMR

The approach we mentioned in the previous section has two major limitations.
Firstly, the time complexity for constructing the affinity matrix for n data points
using s nearest neighbors is O(sn2) [8]. Secondly, the inverse matrix computation
in Eq. 5 requires O(n3). Clearly, the cost of constructing the affinity matrix and
inverse matrix computation is prohibitive for large image databases. Hence, this
approach is not suitable for the large image databases.
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The first limitation can be addressed by using anchor graphs [8] in a similar
way as used in [18]. This reduces the cost from O(sn2) to O(dmn) where m ≪ n
and d ≪ n. Next, we use singular decomposition to address the second limitation
and reduce the cost from O(n3) to O(m3) where m ≪ n.

Let Ir denote an identity matrix of size r × r. Before we present the details
of efficient matrix inversion, we prove that the following equation holds.

(NIn − αHHT )−1 =
In −H(HTH − N

α
Im)−1HT

N
(11)

Proof. We prove the correctness of the equation by showing that R.H.S. divided
by L.H.S. equals to an identity matrix.

(NIn − αHHT )(
In−H(HT H−N

α
Im)−1HT

N
)

=
NIn−αHHT −(NH−αHHT H)(HT H−(N

α
Im))−1HT

N

=
NIn−αHHT +αH(−N

α
Im+HT H)(HT H−N

α
Im)−1HT

N

= NIn−αHHT +αHHT

N
= NIn

N
= In

(12)

�

Based on Eq. 11, we show that the cost of the matrix operation can be
reduced. Let Hk be defined as following.

Hk = (Dk)−
1

2Zk(Λk)
1

2 (13)

The following equation can be verified.

Hk(Hk)T = (Dk)−
1

2W k(Dk)−
1

2 (14)

Recall that R.H.S. of Eq. 14 equals to Sk (see Eq. 2 in Section 3.2).

Sk = Hk(Hk)T (15)

We replace Sk in Eq. 5 with its value in Eq. 15 which yields the following.

F ∗ = (NI − α
N∑

k=1

Hk(Hk)T )−1L (16)

Note that each Hk(Hk)T is a symmetric matrix. Hence,
∑N

k=1 H
k(Hk)T is

also a symmetric matrix. Without loss of generality, we set S =
∑N

k=1 H
k(Hk)T

which is a n× n gram matrix.

F ∗ = (NI − αS)−1L (17)

We decompose S by using singular value decomposition [1] S = UΛUT such
that UTU = In. Note that the decomposition takesO(n3) but it can be efficiently
approximated in O(m3) by using the techniques presented in [16]. Assume that
we have obtained the approximate decomposition of S as follows.

S = UmΛmUT
m (18)
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where Um is a n×m matrix formed by the first m normalized eigenvectors of U
and m equals to the number of anchor images. Λm is the diagonal matrix with m
diagonal elements (sorted in decreasing order from left to right) and correspond
to the m largest eigenvalues of S. Eq. 18 is equivalent to the following equation.

S = UmΛ
1

2

mΛ
1

2

mUT
m = Y Y T (19)

where Y = UmΛ
1

2

m. By combining Eq. 17 and Eq. 19, we obtain the following
equation.

F ∗ = (NIn − αS)−1L = (NIn − αY Y T )−1L =
In − Y (Y TY − N

α
Im)−1Y T

N
L

(20)
Since N remains constant for all of the images, the optimal ranking score vector
F ∗ can be obtained as follows.

F ∗ = (In − Y (Y TY −
N

α
Im)−1Y T )L (21)

Note that Eq. 21, requires the inversion of a m × m matrix in contrast to
Eq. 5 that requires the inversion of a n × n matrix. Hence, Eq. 21 reduces the
cost from O(n3) to O(m3).

4 Experimental Results

In this section, we evaluate the performance of our proposed approach (MMR)
by using several real world image databases. All the experiments are imple-
mented in Matlab R2009a and C++. First, we present the experimental setup
in Section 4.1. Then, in Section 4.2, we evaluate the performance of our proposed
approach.

4.1 Experimental Setup

Data sets. We evaluated the performance of MMR on the following data sets.
• COREL: It is composed of 7700 images divided into 77 categories.
• Caltech101: This image database contains 8677 images from 101 different cat-
egories.
• MSRC: The data set contains 18 different categories and consists of approxi-
mately 4300 images.
Competitors. We compare our proposed approach with several manifold rank-
ing based algorithms. Below are the details.
•MR. This is the first work [4] that applied manifold ranking (MR) for image
retrieval.
•EMR. This is the algorithm proposed by Xu et al. [18]. While MR demon-
strated good quality results, it is not suitable for large scale image databases
because of its high computational cost. EMR proposes interesting techniques to
improve the efficiency of MR and demonstrates that it retrieves the results of
similar quality.
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•ADF. This algorithm is proposed in [6]. ADF uses multiple features to con-
struct a single image manifold.

Recall that our proposed approach uses multiple features to construct multi-
ple image manifolds. We argue that using multiple image manifolds yield better
results than the previous techniques. A natural question is whether previous ap-
proaches (e.g., MR and EMR) can perform better if they also utilize more than
one features. To answer this question, we extend the previous techniques such
that they utilize multiple features. Below are the details of how each technique
is extended.

•MR+N . N denotes the total number of features used by the algorithm. Let F k
i

be the ranking score of xi computed by MR [4] using kth feature. The final score

of each image xi is
∑N

k=1 F
k
i . MR+N ranks the images according to the final

scores. Note that MR+1 is the same as original MR algorithm proposed in [4].

•EMR+N . Similar to MR+N , EMR+N computes the score of each image ac-
cording to each feature. The images are then ranked according to their final
scores. We remark that EMR+1 is the original EMR algorithm proposed in [18].

Later, we show that these extended versions retrieve better results than their
respective original versions. Moreover, the quality of the retrieved results im-
proves as the value of N increases. Similar to the notations used for extended
version of MR and EMR, we use MMR+N to denote that our algorithm MMR
was run using N features. Similarly, ADF+N denotes that ADF was run using
N features.

Features used by the algorithms. We use some of the most popular features
in the algorithms. More specifically, we use DoG-SIFT (Scale-Invariant Feature
Transform) [9], HOG (Histogram of Oriented Gradients) [2], LBP (Local Binary
Patterns) [11], Centrist [17] and RBG-SIFT [14]. Table 1 shows these features
in a particular order. Any algorithm using N features uses the first N features
shown in Table 1. For example, MMR+3 is our algorithm and uses the first three
features (DoG-SIFT, HOG and LBP). Similarly, EMR+2 denotes that EMR was
run using first two features (DoG-SIFT and HOG). ADF+5 denotes that ADF
was run using all of the features. We remark that this order of the features best
suits EMR+N which is our main competitor.

Table 1. Features used by the algorithms

1 2 3 4 5
Feature DoG-SIFT HOG LBP Centrist RGB-SIFT

Evaluation metric. Each image in the image databases has its own category la-
bel (e.g., car, aeroplane etc.). A query is randomly selected from these databases
and a retrieved result is considered correct if its label matches with the query
label. For each query, we retrieve top-K results where the default value of K is
10 unless mentioned otherwise. We use precision as the main evaluation metric
which corresponds to the number of correct results in the top-K retrieved results
divided by K. Since K is fixed for all competitors, the recall value is directly
related to the precision, i.e., if precision is high then the recall is also high and
vice versa. Hence, we use precision as the only evaluation metric.

Recall that our algorithm (MMR) samples m anchor points and, for each
image xi, xi is connected to its d nearest neighbors. We set m to 500 and d to 5
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because our preliminary experimental evaluation demonstrated that these values
of m and d give a reasonable trade-off between the precision and efficiency of
the algorithm.

4.2 Performance comparison

In this section, we compare the performance (precision and efficiency) of our
algorithm with the other competitors. At the end, we present a case study where
we show the top-10 results returned by MMR, EMR and ADF for three queries.
Precision. In Fig. 2, we increase the number of features used by each algorithm
and study its affect on the precision. Note that the performance of each algo-
rithm improves as it uses more features. However, the precision obtained by our
algorithm (MMR+N ) is the highest. This is because our algorithm constructs
multiple manifolds and minimizes the cost function to obtain the ranking scores
in contrast to the other algorithms that use multiple features (manifolds) some-
what trivially. Note that the improvement in precision is less significant when
N > 3. Since the running time increases with the increase in N , we choose N = 3
for rest of the experiments (unless mentioned otherwise).
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Fig. 2. Effect of number of features and K on precision.

As noted in [18] and observed from Fig. 2 (a), the precision of EMR+N and
MR+N is quite similar. Furthermore, EMR+N is more efficient than MR+N as
we demonstrate later. Therefore, for a clearer illustration of results, in the rest
of the experiments we exclude MR+N . In Fig. 2 (b), we issue top-K queries and
vary K from 10 to 70 and study its affect on the precision. We observe that the
precision of each of the algorithms remain unaffected with the increase in K.
Also, note that our algorithm consistently gives better results than the other
competitors.

In Fig. 3, we study the precision at a more detailed level. More specifically, we
randomly choose 90 categories from the three image databases. For each category,
we randomly choose one image as the query. For each query, we obtain top-10
results and record the precision. Fig. 3 shows the precision of each algorithm for
the queries selected from each of the 90 categories. It can be observed that our
approach MMR+3 consistently performs better than the other methods. The
EMR proposed in [18] (shown as EMR+1) has the lowest precision. However,
EMR+3 that uses three manifolds has better retrieval performance than ADF+N .
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Fig. 3. Precision of top-10 images for randomly selected queries from each category

Running time. In Fig. 4(a), we increase the number of features used by each
algorithm and study its affect on the running time. Note that the running times
of ADF+N and MR+N are much higher than the running time of our algorithm
(MMR+N ) and EMR+N . This is because MMR+N and EMR+N present efficient
techniques for matrix inversion and use the anchor graphs to approximate the
large image graphs. Also, note that EMR+N and MMR+N scale better as the
number of features increases. The cost of MR+N is the highest. In order to
better illustrate the performance of other approaches, we do not display the cost
of MR+N when N > 2.
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Fig. 4. Effect of number of features and image database size on running time

In Fig. 4(b), we increase the size of image databases and study its affect
on the running times of all algorithms. It can be observed that ADF+N and
MR+N cannot handle large scale databases (e.g., the running time is more than
80 seconds when the image database contains 8000 images). On the other hand,
our proposed algorithm scales better and can handle large scale image databases.
The cost of EMR+1 is the lowest. This is because it uses a single image manifold
whereas our algorithm MMR+3 uses three image manifolds. Nevertheless, the
running times of both of the algorithms are quite close to each other.
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Fig. 5. Three queries are issued and top-10 results returned by MMR+3, ADF+3 and
EMR+3 are displayed. The irrelevant images retrieved by our algorithm are marked
with red square. It can be noted that MMR+3 returns more relevant results than the
other two algorithms.

A case study. In this section, we display the top-10 results returned by MMR+3,
ADF+3 and EMR+3 for three different queries. Fig. 5 displays the results re-
turned by each of the algorithms. Irrelevant results returned by our algorithm
are denoted by red square. Note that our algorithm returns more relevant results
than the other two algorithms.

5 Conclusion

In this paper, we propose a novel method name multi-manifold ranking (MMR)
which uses multiple image manifolds for image retrieval. We conduct extensive
experimental study on real world image databases and demonstrate that MMR
provides better retrieval results than state of the art techniques. Our experi-
mental results demonstrate that our algorithm is much more efficient than two
existing algorithms and is comparable to the most efficient existing approach.
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