
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Probabilistic Reverse Nearest Neighbor
Queries on Uncertain Data

Muhammad Aamir Cheema, Xuemin Lin, Wei Wang, Wenjie Zhang and Jian Pei, Senior Member, IEEE

Abstract —Uncertain data is inherent in various important applications and reverse nearest neighbor (RNN) query is an important
query type for many applications. While many different types of queries have been studied on uncertain data, there is no previous
work on answering RNN queries on uncertain data. In this paper, we formalize probabilistic reverse nearest neighbor query that is to
retrieve the objects from the uncertain data that have higher probability than a given threshold to be the RNN of an uncertain query
object. We develop an efficient algorithm based on various novel pruning approaches that solves the probabilistic RNN queries on
multidimensional uncertain data. The experimental results demonstrate that our algorithm is even more efficient than a sampling-based
approximate algorithm for most of the cases and is highly scalable.

Index Terms —Query Processing, Reverse Nearest Neighbor Queries, Uncertain Data, Spatial Data.

✦

1 INTRODUCTION

GIVEN a set of data pointsP and a query pointq, a reverse
nearest neighbor query is to find every pointp ∈ P such

that dist(p, q) ≤ dist(p, p′) for every p′ ∈ (P − p). In this
paper, we formalize and study probabilistic RNN query that
is to find the probable reverse nearest neighbors on uncertain
data with probability higher than a given threshold.

Uncertain data is inherent in many important applications
such as sensor databases, moving object databases, market
analysis, and quantitative economic research. In these ap-
plications, the exact values of data might be unknown due
to limitation of measuring equipment, delayed data updates,
incompleteness, or data anonymization to preserve privacy.

Usually an uncertain object is represented in two ways:
1) using a probability density function [4], [6] (continuous
case) and 2) using all possible instances [22], [17] each
with an assigned probability (discrete case). In this paper, we
investigate discrete cases.

Probabilistic RNN queries have many applications. Consider
the example in Fig. 1, where three residential blocksA, B and
Q are shown. The houses within each block are shown as small
circles. The centroid of each residential block is shown as a
hollow triangle. For privacy reasons, we may only know the
residential blocks in which the people live (or zipcode) but
we do not have any information about the exact addresses of
their houses. We can assign some probability to each possible
location of a person in his residential block. e.g; the exact
location of a person living inA is a1 with 0.5 probability.

Conventional queries on these residential blocks may use
distance functions like the distance between the centroidsof

• Muhammad Aamir Cheema is with the School of Computer Scienceand
Engineering, University of New South Wales, Australia.
E-mail: macheema@cse.unsw.edu.au

• Xuemin Lin, Wei Wang and Wenjie Zhang are with the Universityof New
South Wales and NICTA.
E-mails: {lxue,weiw,zhangw}@cse.unsw.edu.au

• Jian Pei is with Simon Fraser University, Canada.
E-mail: jpei@cs.sfu.ca

two blocks. However, the results provided by the conventional
queries may not be meaningful. There are two major limita-
tions for conventional queries on such data1.

1) The conventional queries do not consider the locations
of houses within each residential block. This affects quality
of the reported results. For instance, if the distance between
centroids of two residential blocks is used as distance function,
the closest block ofA is B (in other words the person living
in A is not the RNN of someone living inQ). However, if
the locations of houses within each block are considered, we
find that for most of the houses inA, the houses inQ are
closer than the houses inB. For example, the distance ofa1

to every house inQ is less that its distance to any house in
B. Similarly, the distance ofa2 to every house inQ is less
than its distance tob1. Which means, a person living inA has
high chances to be the RNN of some person living inQ.

2) Conventional queries do not report the probability of
objects to be the answer (an object is either a RNN or not
a RNN). On the other hand, probabilistic reverse nearest
neighbor queries provide more information by including the
probability of an object to be the answer. For example, a
probabilistic reverse nearest neighbor query reports thatthe
probability of a person living in blockA to become the RNN
of a person living inQ is 0.75 according to the possible
world semantics (see example 1). This type of results are more
meaningful and interesting.

Probabilistic RNN queries have applications in privacy
preserving location-based services where the exact location
of every user is obfuscated into a cloaked spatial region [16].
However, the users might still be interested in finding their
reverse nearest neighbors. We can model this problem to
finding probabilistic reverse nearest neighbor by assigning
confidence level to some possible locations of every user
within his/her respective cloaked spatial region. Probabilistic
RNN queries may also be useful to identify similar trading

1. Other distance functions like maximum distance, minimum distance and
aggregated distance also have these limitations.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

trends in stock markets. Each stock has many deals. A deal
(transaction) is recorded by the price (per share) and the
volume (number of shares). For a given stocks, clients may
be interested in finding all other stocks that have trading trends
more similar tos than others. In such application, we can treat
each stock as an uncertain object and its deals as its uncertain
instances. There are a number of other applications for the
queries that consider the proximity of uncertain objects [4],
[6], [14] and the applications of RNNs on uncertain objects
are very similar.

Q

A

a
1

a
2

q
1

q
2

B

Dist(Q,A)
Dist(A,B)

b
2

b
1

Fig. 1: An example of a
probabilistic RNN query

H
a2:q1

a
1

a
2

q
1

q
2

b
2

b
1

H
a1:q1

Fig. 2: Any point in shaded
area cannot be RNN ofq

Probabilistic RNN query processing poses new challenges
in designing new efficient algorithms. Although RNN query
processing has been extensively studied based on various
pruning methods, these pruning techniques either cannot be
directly applied to probabilistic RNN queries or become inef-
ficient. For example, the perpendicular bisectors adopted in the
state-of-the-art RNN query processing algorithm [20] assume
that objects are spatial points. In contrast, uncertain objects
have arbitrary shapes of their uncertain regions. In addition,
applying the pruning rules on the instance level of uncertain
objects is extremely expensive as each uncertain object usually
has a large number of instances.

Another unique challenge in probabilistic RNN queries
is that the verification of candidate objects usually incurs
substantial cost due to large number of instances in each
uncertain object. By verification, we mean computing the exact
probability of an object being the RNN of the query and testing
whether it qualifies the probabilistic threshold or not. Note that
instances from objects that are close to the candidate objects
also need to be considered in the verification phase.

In this paper, we formalize the problem of probabilistic
RNN queries on uncertain data using the semantics ofpossible
worlds. We present a new probabilistic RNN query processing
framework that employs (i) several novel pruning approaches
exploiting the probability threshold and geometric, topological
and metric properties. (ii) a highly optimized verification
method that is based on careful upper and lower bounding
of the RNN probability of candidate objects.

Our contributions in this paper are as follows:
• To the best of our knowledge, we are the first to formalize

the problem of probabilistic reverse nearest neighbors
based on the possible worlds semantics.

• We develop efficient query processing algorithm of prob-
abilistic RNN queries. The new method is based on non-
trivial pruning rules especially designed for uncertain data

and the probability threshold. Although in this paper, we
focus ondiscretecase where each object is represented by
some possible probable instances, our pruning rules can
be applied to thecontinuouscase where each uncertain
object is represented by a probability density function.

• To better understand performance of our proposed ap-
proach, we devise a baseline exact algorithm and a
sampling-based approximate algorithm. Experiment re-
sults on synthetic and real datasets show that our algo-
rithm is much more efficient than the baseline algorithm
and performs better than the approximate algorithm for
most of the cases and is scalable.

The rest of the paper is organized as follows: In Section 2,
we formalize the problem and present the preliminaries and
notations used in this paper. Our proposed pruning rules
are presented in Section 3. Section 4 presents our proposed
algorithm for answering probabilistic reverse nearest neigh-
bor queries. Section 5 evaluates the proposed methods with
extensive experiments and the related work is presented in
Section 6. Section 7 concludes the paper.

2 PROBLEM DEFINITION AND PRELIMINARIES

2.1 Problem Definition

Given a set of data pointsP and a query pointq, a conventional
reverse nearest neighbor query is to find every pointp ∈ P
such thatdist(p, q) ≤ dist(p, p′) for everyp′ ∈ (P − p).

Now we define probabilistic reverse nearest neighbor
queries. Consider a set ofuncertain objectsU = {U1, ..., Un}.
Each uncertain objectUi consists of a set ofinstances
{u1, ..., um}. Each instanceuj is associated with a probability
puj

called appearance probabilitywith the constraint that
∑m

j=1 puj
= 1. We assume that the probability of each

instance is independent of other instances. Apossible world
W = {u1, ..., un} is a set of instances with one instance
from each uncertain object. The probability ofW to appear is
P (W) =

∏n
i=1 pui

. Let Ω be the set of all possible worlds,
then

∑

W∈Ω P (W) = 1.
The probabilityRNNQ(Ui) of any uncertain objectUi to

be the RNN of an uncertain objectQ in all possible worlds
can be computed as;

RNNQ(Ui) =
∑

(u,q),u∈Ui,q∈Q

pq · pu · RNNq(u) (1)

RNNq(u) is the probability that an instanceu ∈ Ui is the
RNN of an instanceq ∈ Q in any possible worldW given
that bothu andq appear inW .

RNNq(u) =
∏

V ∈(U−Ui−Q)

(1 −
∑

v∈V,dist(u,v)<dist(u,q)

pv) (2)

Given a set of uncertain objectsU and a probability
thresholdρ, problem of finding probabilistic reverse nearest
neighbors of any uncertain objectQ is to find every uncertain
objectUi ∈ U such thatRNNQ(Ui) ≥ ρ.

Example 1: Consider the example of Fig. 1 where the un-
certain objectsA, B and Q are shown. Assume that the
appearance probability of each instance is0.5. According

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

to Equation (2),RNNq1
(a1) = 1 becausea1 is closer to

q1 than it is to b1 or b2. Also RNNq1
(a2) = 1 − 0.5

becausedist(a2, b2) < dist(a2, q1). Note thatb1 does not
affect the probability ofa2 to be the RNN ofq1 because
dist(a2, b1) > dist(a2, q1). Similarly, RNNq2

(a1) = 1 and
RNNq2

(a2) = 0.5. According to Equation (1),RNNQ(A) =
(0.5× 0.5× 1) + (0.5× 0.5× 1) + (0.5× 0.5× 0.5) + (0.5×
0.5 × 0.5) = 0.75. RNN probability of B can be computed
similarly andRNNQ(B) = 0.25. If the probability threshold
ρ is 0.7, then the objectA is reported as result.

�

2.2 Preliminaries

The filter-and-refine paradigm is widely adopted in processing
RNN queries in spatial databases. The idea is to quickly prune
away points which are closer to another point (usually called
filtering point) than to the query point. The state-of-the-art
pruning rule is based on perpendicular bisector [20]. It consists
of two phases: the pruning phase and the verification phase.

Hence, some objects are used to filter other objects and
are calledfiltering objects. Objects that cannot be filtered
are called candidate objects. The pruning in RNN query
processing involves three objects, the query, the filteringobject
and a candidate object. We useRQ, Rfil andRcnd to denote
the smallest hyper-rectangles enclosing uncertain query object,
filtering object and candidate object, respectively.

Table 1 defines the symbols and notations used throughout
this paper.

TABLE 1: Notations
Notation Definition

U an uncertain object
ui ith instance of uncertain objectU
Bx:q a perpendicular bisector between pointx andq

Hx:q a half-space defined byBx:q containing pointx
Hq:x a half-space defined byBx:q containing pointq
Ha:b ∩ Hc:d intersection of the two half-spaces
P [i] value of pointP in the ith dimension
RU minimum bounding rectangle (MBR) enclosing all

instances of an uncertain objectU

3 PRUNING RULES

Although the pruning for RNN query processing in spatial
databases has been well studied, it isnon-trivial to devise
pruning strategies for RNN query processing on uncertain data.
For example, if we näıvely use every instance of a filtering
object to perform bisector pruning [20], it will incur a huge
computation cost due to large number of instances in each
uncertain object. Instead, we devise non-trivial generalization
of bisector pruning for minimum bounding rectangles (MBRs)
of uncertain objects based on a novel notion ofnormalized
half-space.

Verification is extremely expensive in probabilistic RNN
query processing because, in order to verify an object as
probabilistic RNN, we need to take into consideration not
only the instances of this object but also the instances of query
object and other nearby objects. Hence it is important to devise
efficient pruning rules to reduce the number of objects that

need verification. In this section, we present several pruning
rules from the following orthogonal perspectives:

• Half-space based pruning that exploits geometrical prop-
erties (Section 3.1)

• Dominance based pruning that exploits topological prop-
erties (Section 3.2)

• Metric based pruning (Section 3.3)
• Probabilistic pruning that exploits the probability thresh-

old (Section 3.4)

3.1 Half-space Pruning

Consider a query pointq and a filtering objectU that has
n instances{u1, u2, . . . , un}. Let Hui:q be the half-space
betweenq andui. Any instanceu /∈ U that lies in∩n

i=1Hui:q

has zero probability to be the RNN ofq because by the
property ofHui:q, u is closer to everyui than toq.

Example 2: Consider the example of Fig. 2 where the bi-
sectors betweenq1 and the instances ofA are drawn and the
half-spacesHa1:q1

and Ha2:q1
are shown. Intersection of the

two half-spaces is shown shaded and any point that lies in
the shaded area is closer to botha1 anda2 than q1. For this
reason,b2 cannot be the RNN ofq1 in any possible world.

�

This pruning is very expensive because we need to compute
intersection of all half-spacesHui:q for everyui ∈ U . Below
we present our pruning rules that utilize the MBR of the entire
filtering object,Rfil, to prune the candidate object with respect
to a query instanceq or the MBR of uncertain query object
Q.

3.1.1 Pruning using Rfil and an instance q

First we present the intuition. Consider the example of Fig.3
where we know that the pointp lies on a lineMN but we do
not know the exact location ofp on this line. The bisectors
betweenq and the end points of the line (M andN) can be
used to prune the area safely. In other words, any point that lies
in the intersection of half-spacesHM :q andHN :q (grey area)
can never be the RNN ofq. It can be proved that whatever be
the location of pointp on the lineMN , the half-spaceHp:q

always containsHM :q ∩HN :q. Hence any pointp′ that lies in
HM :q ∩ HN :q would always be closer top than toq and for
this reason cannot be the RNN ofq.

q

H
M:q

M N

H
N:q

H
p:q

p

Fig. 3: The exact location of
the point p on line MN is
not known

q

H
M:q

M

N

H
P:q

H
O:q

O

P
H
N:q

R
fil

Fig. 4: Any point in shaded
area cannot be RNN ofq in
any possible world

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

Based on the above observation, below we present a pruning
rule for the case when the exact location of a pointp is
unknown within some hyper-rectangleRfil.

PRUNING RULE 1 : Let Rfil be a hyper-rectangle andq be a

query point. For any pointp that lies in
⋂2d

i=1 HCi:q (Ci is the
ith corner ofRfil), dist(p, q) > maxdist(p,Rfil) and thusp
cannot be the RNN ofq.

The pruning rule is based on Lemma 4 that is proved in our
technical report [5].

Consider the example of Fig. 4. Any point that lies in shaded
area is closer to every point in rectangleRfil than toq. Note
that if Rfil is a hyper rectangle that enclosesall instances of
the filtering objectUi then any instanceu ∈ Uj,j 6=i that lies in
⋂2d

i=1 HCi:q can never be the RNN ofq in any possible world.

3.1.2 Pruning using Rfil and RQ

Pruning rule 1 prunes the area such that any point lying in it
can never be the RNN of some instanceq. However, the points
in the pruned area may still be the RNNs of other instances
of the query. Now, we present a pruning rule that prunes the
area usingRfil and RQ such that any point that lies in the
pruned area cannot be the RNN ofany instance ofQ.

Consider the example of Fig. 5 where the exact location of
the query pointq on lineMN is not known. Unfortunately, in
contrast to the previous case of Fig. 3, the bisectors between
p and the end points of the lineMN do not define the area
that can be pruned. If we prune the areaHp:M ∩ Hp:N (the
grey area), we may miss some pointp′ that is the RNN of
q. Fig. 5 shows a pointp′ that is the RNN ofq but lies in
the shaded area. This is because the half-spaceHp:q does not
containHp:M ∩Hp:N . This makes the pruning usingRfil and
RQ challenging.

Note that ifHp:N is moved such that it passes through the
point whereHp:q intersectsHp:M then Hp:M ∩ Hp:N would
be contained byHp:q. We note that in the worst case whenp
lies infinitesimally close to pointM , Hp:q andHp:M intersect
each other at pointc which is the centre of line joiningp and
M . Hence, in order to safely prune the area, the half-space
Hp:N should be moved such that it passes through the point
c. The pointc is shown in Fig. 5. A half-space that is moved to
the pointc is called anormalizedhalf-space and a half-space
Hp:N that is normalized is denoted asH ′

p:N . Fig. 5 shows
H ′

p:N in broken line andH ′
p:N ∩ Hp:M (the dotted shaded

area) can be safely pruned.
The correctness proof of the above observation is lengthy

though it is quite intuitive. Thus we omit it from the paper. The
interested readers may read the proof in our technical report [5]
for a more general case when both the query and data objects
are represented by hyper-rectangles ind dimensional space
(Lemma 5). Before we present our pruning rule for the general
case that uses2d half-spaces to prune the area using hyper-
rectanglesRQ andRfil, we define the following concepts:

Antipodal Corners: Let C be a corner of rectangleR1 and
C ′ be a corner inR2, the two corners are calledantipodal

p H
p:M

M Nq

H
p:N

H
p:q

H'
p:N

p'
c

Fig. 5: Any point in dotted
area can never be RNN ofq

O

A B

CD

M

N

P

H
M:B

H’
M:B

H’
P:A

H
P:A

R
1

R
2

c
c

Fig. 6: Antipodal corners
and normalized half-spaces

corners2 if for every dimensioni whereC[i] = R1L[i] then
C ′[i] = R2H [i] and for every dimensionj where C[j] =
R1H [j] thenC ′[j] = R2L[j]. Fig. 6 shows two rectanglesR1
andR2. The cornersD andO are antipodal corners. Similarly,
other pairs of antipodal corners are (B,M), (C,N) and (A,P).

Antipodal Half-Space: A half-space that is defined by the
bisector between two antipodal corners is calledantipodal
half-space. Fig. 6 shows two antipodal half-spacesHM :B and
HP :A.

Normalized Half-Space: Let B and M be two points in
hyper-rectanglesR1 and R2, respectively. The normalized
half-spaceH ′

M :B is a space defined by the bisector betweenM
andB that passes through a pointc such thatc[i] = (R1L[i]+
R2L[i])/2 for all dimensionsi for which B[i] > M [i] and
c[j] = (R1H [i] + R2H [j])/2 for all dimensionsj for which
B[j] ≤ M [j]. Fig. 6 shows two normalized (antipodal) half-
spacesH ′

M :B and H ′
P :A. The pointc for each half-space is

also shown. The inequalities (3) and (4) define the half-space
HM :B and its normalized half-spaceH ′

M :B , respectively.

d
∑

i=1

(B[i]−M [i])·x[i] <

d
∑

i=1

(B[i] − M [i])(B[i] + M [i])

2
(3)

d
∑

i=1

(B[i] − M [i]) · x[i] <

d
∑

i=1

(B[i] − M [i])×

(R1L[i] + R2L[i])

2
, if B[i] > M [i]

(R1H [i] + R2H [i])

2
, otherwise

(4)
Note that the right hand side of the Equation (3) cannot be
smaller than the right hand side of Equation (4). For this reason
H ′

MB ⊆ HMB .
Now, we present our pruning rule.

PRUNING RULE 2 : Let RQ and Rfil be two hyper-

rectangles. For any pointp that lies in
⋂2d

i=1 H ′
Ci:C′

i
,

mindist(p,RQ) > maxdist(p,Rfil) where H ′
Ci:C′

i
is nor-

malized half-space betweenCi (the ith corner of the rectangle
Rfil) and its antipodal cornerC ′

i in RQ.

The proof of correctness is non-trivial and can be found in
Lemma 5 in our technical report [5].

2. RL[i] (resp.RH [i]) is the lowest (resp. highest) coordinate of a hyper-
rectangleR in ith dimension

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

O

A B

CD

M

N

P

H’
N:C

H’
M:BH’

P:A

H’
O:DR

Q

R
fil

Fig. 7: Any point in shaded
area can never be RNN of
any q ∈ Q

H’
N:C

H’
M:B

H’
P:A

H’
O:D

Rem
1

Rem
2

R
cnd

Rem

Fig. 8: Clipping part of the
candidate objectRcnd that
can not be pruned

Consider the example of Fig. 7 where the normalized
antipodal half-spaces are drawn and their intersection is shown
shaded. Any point that lies in the shaded area is closer to every
point in rectangleRfil than every point in rectangleRQ.

Note that if Rfil and RQ are the MBRs enclosing all
instances of an uncertain objectUi and query objectQ,
respectively, any instanceu ∈ Uj,j 6=i that lies in the pruned

region,
⋂2d

i=1 H ′
Ci:C′

i
, cannot be RNN of any instance ofq ∈ Q

in any possible world. Even if the pruning region partially
overlaps withRfil, we can still trim the part of any other
hyper-rectangleRUj,j 6=i

that falls in the pruned region. It
is known that exact trimming becomes inefficient in high
dimensional space, therefore, we adopt the loose trimming of
Rcnd proposed in [20].

Algorithm 1 : hspace pruning (Q,Rfil, Rcnd)
Input: Q: an MBR containing instances ofQ ; Rfil: the MBR to be

used for trimmingRcnd: the candidate MBR to be trimmed
Description:

1: Rem = ∅ // Remnant rectangle
2: for each cornerCi of Rfil do
3: if Q is a pointthen
4: Remi = clip(Rcnd, HCi:Q) // clipping algorithm [10]
5: else if Q is a hyper-rectanglethen
6: C′

i
= antipodal corner ofCi in Q

7: Remi = clip(Rcnd, H′

Ci:C
′
i

) // clipping algorithm [10]

8: enlargeRem to encloseRemi

9: if Rem = Rcnd then
10: return Rcnd

11: return Rem

The overall half space pruning algorithm that integrates
pruning rules 1 and 2 is illustrated in Algorithm 1. For each
half-space, we use the clipping algorithm in [10] to find
a remnant rectangleRemi ⊆ Rcnd that cannot be pruned
(lines 4 and 7). After all the half-spaces have been used for
pruning, we calculate the MBRRem ⊆ Rcnd as the minimum
bounding hyper rectangle covering everyRemi. As such, we
trim the originalRcnd to Rem.

For better illustration we zoom Fig. 7 and show the clipping
of a hyper-rectangleRcnd in Fig. 8. The algorithm returns
Rem1, Rem2 (rectangles shown with broken lines) when
H ′

M :B and H ′
P :A are parameters to the clipping algorithm,

respectively. For the half-spacesH ′
N :C and H ′

O:D the whole
hyper-rectangleRcnd can be pruned so the algorithm returns
φ. The remnant hyper-rectangleRem is an MBR that encloses

Rem1 and Rem2. Note that at any stage if the remnant
rectangleRem becomes equal toRcnd, the clipping by other
bisectors is not needed soRcnd is returned without further
clipping (line 10).

3.2 Dominance Pruning
We first give the intuition behind this pruning rule. Fig. 9
shows another example of pruning by using pruning rule 2 in
two dimensional space. The normalized half-spaces are defined
such that ifRfil is fully dominated3 by RQ in all dimensions
then all the normalized antipodal half-spaces meet at pointFp

as shown in Fig. 9. We also observe that for the case whenRfil

is fully dominated byRQ, the angle between the half-spaces
that define the pruned area (shown in grey) is always greater
than90◦. Based on these observations, it can be verified that
the space dominated byFp (the dotted-shaded area) can be
pruned4.

O

A B

CD

M

N

P

H’
N:C

H’
M:B

H’
P:A

H’
O:D

R
Q

F
p

R
Fil

Fig. 9: Pruning area of half-
space pruning and domi-
nance pruning

R
Q

12

3 4

f

f f

f

F
p

F
p F

p

F
p

Fig. 10: Dominance Prun-
ing: Shaded areas can be
pruned

Let RQ be the MBR containing instances ofQ. We can
obtain the2d regions as shown in Fig. 10. LetRUi

be an
MBR of a filtering objectRfil that lies completely in one of
the 2d regions. Letf be the furthest corner ofRUi

from RQ

andn be the nearest corner ofRQ from f . The frontier point
Fp lies at the centre of line joiningf andn.

PRUNING RULE 3 : Any instanceu ∈ Uj that is dominated
by the frontier pointFp of a filtering object cannot be RNN
of any q ∈ Q in any possible world.

Fig. 10 shows four examples of dominance pruning (one in
each region). In each partition the shaded area is dominatedby
Fp and can be pruned. Note that ifRfil is not fully dominated
by RQ, we cannot use this pruning rule because the normalized
antipodal half-spaces in this case do not meet at the same
point. For example, the four normalized antipodal half-spaces
intersect at two points in Fig. 7. In general, the pruning power
of this rule is less than that of the half-space pruning. Fig.9
shows the area pruned by the half-space pruning (shaded area)
and dominance pruning (dotted area).

The main advantage of this pruning rule is that the pruning
procedure is computationally more efficient than the half-space
pruning, as checking the dominance relationship and trimming
the hyper-rectangles is easier.

3. If every point inR1 is dominated (dominance relationship as defined in
skylines) by every point inR2 we say thatR1 is fully dominated byR2.

4. Formal proof is given in Lemma 6 of our technical report [5]

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

3.3 Metric Based Pruning

PRUNING RULE 4 : An uncertain objectRcnd can be pruned
if maxdist(Rcnd, Rfil) < mindist(Rcnd, RQ).

This pruning approach is the least expensive. Note that it
cannot prune part ofRcnd, i.e., it either invalidates all the
instances ofRcnd or does nothing.

3.4 Probabilistic Pruning

Note that we did not discuss probability threshold while
presenting previous pruning rules. In this section, we present
a pruning rule that exploits the probability threshold and
embeds it in all previous pruning rules to increase their pruning
powers.

A simple exploitation of the probability threshold is to trim
the candidate object using previous pruning rules and then
prune the object if the accumulative appearance probability
of instances within its remnant rectangle is less than the
threshold. Next, we present a more powerful pruning rule that
is based on estimating an upper bound of the RNN probability
of candidate objects.

First, we present an observation deduced from Lemma 5 in
our technical report [5]. In previous pruning rules, we prune
some area using MBR of a query objectRQ and a filtering
objectRfil. We observe that the area pruned by usingR′

Q and
R′

fil always contains the area pruned byRQ andRfil where
R′

Q ⊆ RQ and R′
fil ⊆ Rfil. Fig. 11 shows an example. The

shaded area is pruned whenR′
Q andRfil are used for pruning

and the dotted shaded area is pruned whenRQ and Rfil are
used. Note that this observation also holds for the dominance
pruning.

We can use the observation presented above to prune the
objects that cannot have RNN probability greater than the
threshold. First, we give a formal description of this pruning
rule and then we give an example.

PRUNING RULE 5 : Let the instances ofQ be divided into
n disjoint5 sets {Q1, Q2, ..., Qn} and RQi

be the mini-
mum bounding rectangle enclosingall instances inQi. Let
{Rcnd1

, Rcnd2
, ..., Rcndn

} be the set of bounding rectangles
such that eachRcndi

contains the instances of the candi-
date object that cannot be pruned forQi using any of the
pruning rules. LetPRQi and PRcndi be the total appearance
probabilities of instances inQi and Rcndi

, respectively. If
∑n

i=1(P
Rcndi ·PRQi) < ρ, the candidate object can be pruned.

Pruning rule 5 computes an upper bound of the RNN proba-
bility of the candidate object by assuming that all instances in
Rcndi

are RNNs of all instances inQi. The candidate object
can be safely pruned if this upper bound is still less than the
threshold.

Example 3: Fig. 12 shows MBRs of the query objectRQ

and a candidate objectRcnd along with their instances (q1

to q5 and u1 to u4). Assume that all instances within an
object have equal appearance probabilities (e.g;pqi

= 0.2

5. We only require instances ofQ to be disjoint. The pruning rule can be
applied even when the minimum bounding rectanglesRQi

overlap each other
as shown in Fig. 12.

R’
Q

R
Fil

R
Q

Fig. 11: Regions pruned by
RQ and its subsetR′

Q

R
cnd

R
2

R
1

q
1

q
3

q
2

q
4

q
5 u

1

u
3

u
2

u
4

R
Q1

R
Q2 R

Q

Fig. 12: Probabilistic Prun-
ing

for every qi and pui
= 0.25 for every ui). Suppose that no

part of Rcnd can be pruned usingRQ and any filtering object
Rfil (for better illustration, filtering object is not shown). We
pruneRcnd using the rectangleRQ1

that is contained byRQ.
This trims Rcnd and the remnant rectangleR1 is obtained.
Similarly, R2 is the remnant rectangle when pruning rules are
applied forRQ2

. Note that only the instances inR1 (u1 and
u2) can be the RNN of instances inRQ1

(q3, q4 and q5).
Similarly, no instance can be the RNNs of any instance in
RQ2

becauseR2 is empty. So the maximum RNN probability
of Rcnd is (0.6 × 0.5) + (0.4 × 0) = 0.3. If the probability
thresholdρ is greater than0.3, we can pruneRcnd. Otherwise,
we can continue to trimRcnd by using the smaller rectangles
contained inRQ1

.
�

In our implementation, we build an R-tree on query object
and the pruning rule is applied iteratively using MBRs of
children. For more details, please see Algorithm 5.

Although the smaller rectanglesR′
fil contained inRfil can

also be used, we do not use them because unlike query object
there may be many filtering objects. Hence, using the smaller
rectangles for each of the filtering objects would make this
pruning rule very expensive in practice (more expensive than
the efficient verification presented in Section 4.3).

3.5 Integrating the pruning rules

Algorithm 2 is the implementation of Pruning rules 1–4.
Specifically, we apply pruning rules in increasing order of their
computational costs (i.e., from Pruning rule 4 to 1). While
simple pruning rules are not as restricting as more expensive
ones, they can quickly discard many non-promising candidate
objects and save the overall computational time.

R
Q

R
1

R
2

R
cnd

Fig. 13: Rcnd can be pruned byR1 andR2

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

Algorithm 2 : Prune(Q,Sfil, Rcnd)
Input: RQ: an MBR containing instances ofQ ; Sfil: a set of MBRs

to be used for trimmingRcnd: the candidate MBR to be trimmed
Description:

1: for each Rfil in Sfil do
2: if maxdist(Rcnd, Rfil) < mindist(RQ, Rcnd) then //

Pruning rule 4
3: return φ
4: if mindist(Rcnd, Rfil) > maxdist(RQ, Rcnd) then
5: Sfil = Sfil − Rfil // Rfil cannot prune Rcnd

Rem = Rcnd

6: for each Rfil in Sfil do
7: if Rfil is fully dominated byRQ in a partitionp then // Pruning

rule 3
8: if some part ofRem lies in the partitionp then
9: Rem = the part ofRem not dominated byFp

10: if (Rem = φ) then return φ
11: for each Rfil in Sfil do
12: Rem = hspacepruning(RQ, Rfil, Rem) // Pruning Rules 1

and 2
13: if (Rem = φ) then return φ
14: return Rem

It is important to useall the filtering objects to filter a
candidate objects. Consider the example in Fig. 13.Rcnd

cannot be pruned by eitherR1 or R2, but will be pruned by
considering both of them.

Two subtle optimizations in the algorithm are:

• If mindist(Rcnd, Rfil) > maxdist(RQ, Rcnd) for a
given MBR Rfil, then Rfil cannot prune any part of
Rcnd. Hence suchRfil is not considered for dominance
and half-space pruning (lines 4-5). However,Rfil may
still prune some other candidate objects, so we remove
suchRfil only from a local set of filtering object,Sfil.
This optimization reduces the cost of dominance and half-
space pruning.

• If the frontier point Fp1
of a filtering objectRfil1 is

dominated by the frontier pointFp2
of another filtering

objectRfil2 , thenFp1
can be removed fromSfil because

the area pruned byFp1
can also be pruned byFp2

.
However, note that a frontier point cannot be used to
prune its own rectangle. Therefore, before deletingFp1

,
we use it to prune rectangle belonging toFp2

. This
optimization reduces the cost of dominance pruning.

4 PROPOSED SOLUTION

In this section, we present our algorithm to find the proba-
bilistic RNNs of an uncertain query objectQ. The data is
stored in system as follows: for each uncertain object, an R-
tree is created and stored on disk that contains the instances
of the uncertain object. Each node of the R-tree contains the
aggregate appearance probability of the instances in its subtree.
We refer these R-trees aslocal R-trees of the objects. Another
R-tree is created that stores the MBRs of all uncertain objects.
This R-tree is calledglobal R-tree.

Algorithm 3 outlines our approach. Our algorithm consists
of three phases namely Shortlisting, Refinement and Verifica-
tion. In the following sub-sections, we present the detailsof
each of these three phases.

Algorithm 3 : Answering Probabilistic RNN
Input: Q: uncertain query object;ρ: probability threshold;
Output: all objects that have higher thanρ probability to be RNN ofQ
Description:

1: Shortlisting: Shortlist candidate and filtering objects (Algorithm 4)
2: Refinement: Trim candidate objects using disjoint subsets ofQ and

apply pruning rule 5 (Algorithm 5)
3: Verification: Compute the exact probabilities of each candidate and

report results

4.1 Shortlisting

In this phase (Algorithm 4), the global R-tree is traversed to
shortlist the objects that may possibly be the RNN ofQ. The
MBR Rcnd of each shortlisted candidate object is stored in a
set of candidate objects calledScnd. Initially, root entry of the
R-tree is inserted in a min-heap H. Each entrye is inserted in
the heap with keymaxdist(e,RQ) because a hyper-rectangle
that has smaller maximum distance toRQ is likely to prune
a larger area and has higher chances to become the result.

Algorithm 4 : Shortlisting
1: Sfil = ∅, Scnd = ∅
2: Initialize a min-heapH with root entry of Global R-Tree
3: while H is not emptydo
4: de-heap an entrye
5: if (Rem = prune(RQ, Sfil, e)) 6= φ then
6: if e is a data objectthen
7: Scnd = Scnd ∪ {e}
8: else if e is a leaf or intermediate nodethen
9: Sfil = Sfil − {e}

10: for each data entry or childc in e do
11: insertc into H with key maxdist(c, RQ)
12: Sfil = Sfil ∪ {c}

We try to prune every de-heaped entrye (line 5) by using
the pruning rules presented in the previous section. Ife is
a data object and cannot be pruned, we insert it intoScnd.
Otherwise, ife is an intermediate or leaf node, we insert its
children c into heap H with keymaxdist(c,RQ). Note that
an entrye can be removed fromSfil (line 9) if at least one
of its children is inserted inSfil because the area pruned by
an entrye is always contained by the area pruned by its child
(Lemma 5 in our technical report [5]).

4.2 Refinement

In this phase (Algorithm 5), we refine the set of candidate
objects by using pruning rule 5. More specifically, we descend
into the R-tree ofQ and trim each candidate objectRcnd

against the children ofQ and apply pruning rule 5.
Let PR be the aggregate probability of instances in any

hyper-rectangleR. At this stagePRcnd of a candidate object
may be less than one becauseRcnd might have been trimmed
during shortlisting phase. We can pruneRcnd if upper bound
RNN probability of a candidate objectMaxProb = PRcnd is
less thanρ (line 3).

We use a max-heap that stores entries in form (e,R, key)
where e and R are hyper-rectangles containing instances of
Q andRcnd, respectively.key is the maximum probability of
instances inR to be the RNNs of instances ine (i.e; key =
P e · PRcnd). We initialize the heap by inserting (Q, Rcnd,

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

Algorithm 5 : Refinement
Description:

1: for each Rcnd in Scnd do
2: if (MaxProb = P Rcnd) < ρ then
3: Scnd = Scnd − Rcnd; continue;
4: Initialize a max-heap H containing entries in form (e, R, key)
5: insert (Q, Rcnd, MaxProb) into H
6: while H is not emptydo
7: de-heap an entry(e, R, p)
8: Rem = Prune (e, Sfil, R)
9: MaxProb = MaxProb − p + (P e · P Rem)

10: if MaxProb < ρ then
11: Scnd = Scnd − Rcnd; break;
12: if (P Rem > 0) AND (e is an intermediate node or leaf)then
13: for each child c of e do
14: insert (c, Rem, (P c · P Rem)) into H

MaxProb) (line 5). For each de-heaped entry (e,R, p), we
trim the hyper-rectangleR againste by Sfil and store the
trimmed rectangle inRem (line 8). The upper bound RNN
probability MaxProb is updated toMaxProb − p + (P e ·
PRem). Recall thatp = P e · PR was inserted with this entry
assuming that all instances inR are RNNs of all instances in
e. After we trim R using e (line 8), we know that only the
instances inRem can be RNNs ofe. That is the reason we
subtractp from MaxProb and add(P e · PRem).

At any stage, if theMaxProb < ρ the candidate object
can be pruned. Otherwise, an entry (c,Rem, (P c.PRem)) is
inserted into the heap, for each childc of e. Note that if the
trimmed hyper-rectangle does not contain any instance then
PRem is zero and we do not need to insert children ofe in
the heap for suchRem.

Recall that every node in local R-tree stores the aggregate
appearance probability of all instances in its sub-tree which
makes computation of aggregate probability cheaper.

4.3 Verification

The actual probability of a candidate objectRcnd to be the
RNN of Q is the sum of probabilities of every instanceui ∈
Rcnd to be the RNN of every instanceq of Q . To compute
the probability of an instanceui to be RNN ofq, we have to
find, for each uncertain objectU , the accumulative appearance
probability of its instances that have smaller distance toui than
dist(q, ui) (Equation (2)). A straight forward approach is to
issue a range query for everyui ∈ Rcnd centred atui with
range set asdist(q, ui) and then compute the accumulative
appearance probability of instances of each object that are
returned. However, this approach requires| Q | × | Rcnd |
number of range queries where| Q | and | Rcnd | are number
of instances inQ and Rcnd, respectively. Below, we present
an efficient approach that issues only one global range query
to compute the exact RNN probability of a candidate object.

4.3.1 Finding range of the global range query

Let Rfil be an MBR containing instances of a filtering object.
An instanceui has zero probability to be RNN of an instance
q if dist(ui, q) > maxdist(ui, Rfil). So the range of a range
query for ui centred atui is minimum of maxdist(ui, RQ)
andmaxdist(ui, Rfil) for everyRfil in Sfil.

R
cnd

R
1

R
2

R
3

R
4

u
1

Maxdist(u
1
,R
1
)

Maxdist(u
2
,R

Q
)+dist(u

2
,c)

u
2

R
Q

Fig. 14: Finding the range of the global query

Consider the example of Fig. 14 where the range of
queries centred atu1 and u2 are maxdist(u1, R1) and
maxdist(u2, RQ), respectively (circles with broken lines).

We want to reduce multiple range queries to a single range
query centred at the centre ofRcnd with a global ranger
such that all instances required to compute RNN probabilityof
every candidate instanceui ∈ Rcnd are returned. Letri be the
range of the range query ofui computed as described above.
The global ranger is max(ri + dist(ui, c)) for every ui ∈
Rcnd wherec is the centre ofRcnd. In the example of Fig. 14,
the global range isr = maxdist(u2, RQ) + dist(u2, c) as
shown in the figure (solid circle). Note that this range ensures
that all the instances required to compute RNN probability of
both u1 andu2 lie within this range.

4.3.2 Computing the exact RNN probability of Rcnd

We issue a range query on global R-tree with ranger as
computed above. For each returned objectUi, we issue a range
query on the local R-tree ofUi to get the instances that lie
within the range and then create a listLi containing all these
instances. We sort the entries in each listLi in ascending order
of their distances fromucnd.

The listLQ for the instances of query objectQ is shown in
Fig. 15. Each entrye contains two values(d, p) such thatd is
distance ofe from ucnd andp is the appearance probability of
the instancee. The lists for other objects are slightly different
in that each entrye contains two values(d, P) where P is
the accumulativeappearance probability of all the instances
that appear in the list beforee. In other words, given an entry
(d, P), the total appearance probability of all instances (in this
list) that have smaller distance thand is P .

Given these lists, we can quickly find the accumulative
appearance probability of all instances of any uncertain object
that lie closer toucnd than a query instanceqi. The example
below illustrates the computation of exact probability of a
candidate instanceucnd.

Example 4: Fig. 15 shows the lists of query objectQ and
three uncertain objectsA, B and C. The lists are sorted on
their distances from the candidate instanceucnd. We start
the computation from the first entryq2 in Q and compute
RNNq2

(ucnd). The distancedq2
is 0.3. We do a binary

search onA, B and C to find an entry in each list with
largestd smaller thandq2

. Such entries area3(0.1, 0.3) and
b4(0.2, 0.4) in lists A and B, respectively. No instance is
found in C. Hence, the sum of appearance probabilities of

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

q
1
(0.3,0.3)

q
2
(0.3,0.2)

q
3
(0.5,0.3)

q
4
(0.6,0.1)

a
3
(0.1,0.3)

a
2
(0.4,0.5)

a
6
(0.6,0.7)

b
1
(0.1,0.2)

b
4
(0.2,0.4)

b
2
(0.4,0.7)

b
3
(0.6,0.9)

b
5
(0.6,1.0)

c
1
(0.4,0.5)

c
2
(0.4,1.0)

Q A B C

q
5
(0.7,0.1)

Fig. 15: lists sorted on distance from a candidate instanceucnd

instances ofB that have distance fromucnd smaller than
dq2

is 0.4, similarly for A it is 0.3. Given bothq2 and ucnd

appear in a world, the probability ofucnd to be RNN ofq2 is
obtained from Equation (2) as(1− 0.4)(1− 0.3) = 0.42. The
probability of ucnd to be RNN ofq2 in any possible world is
0.42(pq2

× pucnd
).

Similarly the next entry in Q is processed and
RNNq1

(ucnd) is computed which is again0.42 because its
distance fromucnd is the same.RNNq3

(ucnd) is zero because
the binary search onC gives an entry (d, P) whereP = 1 (all
instances ofC have smaller distance toucnd thendq3

). Note
that, we do not need to compute the RNN probabilities ofucnd

against remaining instancesq4 andq5 because their distances
from ucnd are larger thandq3

and RNNq3
(ucnd) = 0. Also

note that the area to be searched in any listLi by binary search
becomes smaller for the processing of next query instance.

�

The above example illustrates the probability computation
of an instanceucnd to be the RNN of all instances inQ. We
repeat this for every instanceucnd ∈ Rcnd to compute the
RNN probability of the candidate object. Next, we present
some optimizations that improve the efficiency of verification
phase.
Optimizations

Our proposed optimizations bound the minimum and max-
imum RNN probabilities and verify the objects that have the
minimum probability greater than or equal to the threshold.
Similarly, the objects that have the maximum probability less
than the threshold are deleted. Below, we present the details
of the proposed optimizations.

a) Bounding RNN probabilities usingRQ:

Recall that, for each candidate objectRcnd, a global range
query is issued and for each objectUi within the range a list
Li is created containing the instances ofUi lying within the
range. Just before we sort these lists, we can approximate the
maximum and minimum RNN probability of the candidate
object based on the following observations.

Let c be the centre andd be the diagonal length ofRcnd and
ai be some instance in listA. Every ucnd ∈ Rcnd is always
closer to ai than everyqi ∈ Q if mindist(Rcnd, RQ) >
dist(ai, c) + d/2. Similarly, every ucnd would always be
further from ai than everyqi ∈ Q if maxdist(Rcnd, RQ) <
dist(ai, c)−d/2. Consider the example of Fig. 16, every point
in Rcnd is always closer toa1 than any point inRQ. Similarly,
every point inRcnd is always further froma2 than it is from
any point inRQ.

Based on the above observations, for every object, we can

R
Q

R
cnd

mindist(R
cnd
,R

Q
)

maxdist(R
cnd
,R

Q
)

a
1

a
2

c

a
3

a
4

R
cnd

maxdist(R
cnd
,q
1
)

mindist(R
cnd
,q
1
)

a
1

a
2

c

q
1

a
3

a
4

Fig. 16: Bounding lower and upper bound RNN probabilities

accumulate the appearance probabilities of all the instances
u such that everyucnd is always closer to (or further from)
u than everyqi. More specifically, we traverse each listLi

and accumulate the appearance probabilities of every instance
ui for which mindist(Rcnd, RQ) > dist(ui, c) + d/2 and
store the accumulated probabilities inPnear

i . Similarly, the
accumulated appearance probabilities of every instanceuj for
which maxdist(Rcnd, RQ) < dist(uj , c) − d/2 is stored in
P far

i . Then the maximum RNN probability of any instance
ucnd is pmax

cnd =
∏

∀Li
(1 − Pnear

i). The minimum probability
of any instanceucnd to be RNN ofQ is pmin

cnd =
∏

∀Li
(P far

i)

becauseP far
i is the total probability of instances that are

definitely farther. So we assume that all other instances are
closer toucnd than qi and this gives us the minimum RNN
probability.

Let PRcnd be the aggregate appearance probability of all
the instances inRcnd then Rcnd can be pruned ifPRcnd ·
pmax

cnd < ρ. Similarly, the object can be reported as answer if
PRcnd · pmin

cnd ≥ ρ.

b) Bounding RNN probabilities using instances ofQ:

If an object Rcnd cannot be pruned or verified as result
at this stage, we try to make a better estimate ofpmin

cnd

and pmax
cnd by using instances withinQ. Note that every

ucnd ∈ Rcnd is always closer toai than a query instance
qi if mindist(Rcnd, qi) > dist(ai, c) + d/2. Similarly,
every ucnd would always be further fromai than qi if
maxdist(Rcnd, qi) < dist(ai, c)−d/2. Consider the example
of Fig. 16 where every point inRcnd is closer to botha1 and
a4 thanq1. Similarly, every point inRcnd is further from both
a2 anda3 than it is fromq1.

To updatepmax
cnd , we first sort every list in ascending order

of dist(c, u) wheredist(c, u) is already known (returned by
global range query). Then, the listLQ is sorted in ascending
order of themindist(Rcnd, qi). Then for eachqi in ascending
order, we conduct a binary search on every listLi and find
the entrye(d, P) with greatestd in the list that is less than
mindist(Rcnd, qi) − d/2. The probabilityP of this entry is
accumulated appearance probabilityPnear

i of all the instances
ai such that everyucnd is always closer toai thanqi. Then the
maximum probability of any instanceucnd ∈ Rcnd to be the
RNN of qi is pmax

icnd
=

∏

∀Li
(1 − Pnear

i). We do such binary
searches for everyqi in the list andpmax

cnd =
∑

∀qi∈Q pmax
icnd

.
The update ofpmin

cnd is similar except that the listLQ is
sorted in ascending order ofmaxdist(Rcnd, qi) and the binary

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

search is conducted to find the entrye(d, P) with the greatest
d that is smaller thanmaxdist(Rcnd, qi) + d/2. The total
appearance probabilities of all instances inLi that are always
farther from everyucnd than qi is P far

i = (1 − P). Finally,
pmin

icnd
=

∏

∀Li
(P far

i) andpmin
cnd =

∑

∀qi∈Q pmin
icnd

.
After updating pmax

cnd and pmin
cnd , we delete the candidate

objects for whichPRcnd · pmax
cnd < ρ. Similarly, a candidate

object is reported as answer ifPRcnd · pmin
cnd ≥ ρ.

c) Early stopping:

If an object Rcnd is not pruned by the above mentioned
estimation of maximum and minimum RNN probabilities then
we have to compute exact RNN probabilities (as described in
Section 4.3.2) of the instances in it. By using the maximum
and minimum RNN probabilities, it is possible to verify
or invalidate an object without computing the exact RNN
probabilities of all the instances. We achieve this as follows;
We sort all the instances inRcnd in descending order of their
appearance probabilities. Assume that we have computed the
exact RNN probabilityRNNQ(u) of first i instances. LetP be
the aggregate appearance probabilities of these firsti instances
andPRNN be the sum of theirRNNQ(u). At any stage, an
object can be verified as answer ifPRNN +(1−P).pmin

cnd ≥ ρ.
Similarly, an object can be pruned ifPRNN +(1−P).pmax

cnd <
ρ.

Note that (1 − P).pmin
cnd is the minimum probability for

the rest of the instances to be the RNN ofQ. Similarly,
(1 − P).pmax

cnd is the maximum probability for the remaining
instances to be the RNN.

5 EXPERIMENT RESULTS

In this section we evaluate the performance of our proposed
approach. All the experiments were conducted on Intel Xeon
2.4 GHz dual CPU with 4 GBytes memory. The node size of
each local R-tree is1K and that of global R-tree is2K. We
measured both the I/O and CPU time and I/O cost is around
1-5% of the total cost for all experiments.Hence, for clarity
of experiment figures, we display the average total cost per
query. We used both synthetic and real datasets.

TABLE 2: System Parameters
Parameter Range

Probability threshold (ρ) 0.1, 0.3,0.5, 0.7, 0.9
Number of objects (×1000) 2, 4, 6, 8, 10
Maximum number of instances in an object200, 400,600, 800, 1000
Maximum width of hyper-rectangle 1%, 2%, 3%, 4%
Distribution of object centres Uniform , Normal
Distribution of instances Uniform , Normal
Appearance probability of instances Uniform , Normal

Table 2 shows the specifications of the synthetic datasets
we used in our experiments and the defaults values are
shown in bold. First the centres of the uncertain objects
were created (uniform or normal distribution) and then the
instances for each object (uniform or normal distribution)were
created within their respective hyper-rectangles. The width
of the hyper-rectangle in each dimension was set from0
to w% (following uniform distribution) of the whole space
and we conducted experiments forw changed from1 to

4. The appearance probabilities of instances were generated
following either uniform or normal distribution. Our default
synthetic dataset contains approximately 1.8 Million instances
(6000×600

2). Similar to [19], the query object follows same
distribution as the underlying dataset.

The real dataset6 consists of 28483 zip codes obtained from
40 states of United States. Each zip code represents an object
and theaddress blockswithin each zip code are the instances.
The data source provides address ranges instead of individual
addresses and we use the termaddress blockfor a range
of addresses along a road segment. The address block is an
instance in our dataset that lies at the middle of the road
segment with the appearance probability calculated as follows;
Let n be the number of total addresses in a zip code andm be
the number of addresses in the current address block then the
appearance probability of the current address block ism/n.
The real dataset consists of 11.24 Million instances and the
maximum number of instances (address blocks) in an object
(Sanford, North Carolina) were 5918.

5.1 Comparison with other possible solutions

We devise a näıve algorithm and a sampling based ap-
proximate algorithm to better understand the performance
of our algorithm. More specifically, in the naı̈ve algorithm,
we first shortlist the objects using our pruning rule 4 (e.g;
any object Rcnd can be pruned ifmindist(Rcnd, RQ) >
maxdist(Rcnd, Rfil)). Then, we verify the remaining objects
as follows. For each pair(ui, qi), we issue a range query
centred atui with rangedist(ui, qi) and compute the RNN
probability of the instanceui against the query instanceqi

using the Equation (2). Finally, the Equation (1) is used to
compute the RNN probability of the object.

In sampling based approach, we create a few sample possi-
ble worlds before starting the computation. More specifically,
a possible world is created by randomly selecting one instance
from each uncertain object. For each possible world, we
create an R-tree (node size2K) that stores the instances
of the possible worlds. This reduces the problem of finding
probabilistic RNNs to conventional RNNs. For each possible
world, we compute the RNNs using TPL [20] that is the best-
known RNN algorithm for multidimensional data. Letn be the
number of possible worlds evaluated andm be the number of
possible worlds in which an objectRcnd is returned as RNN,
thenRcnd is reported as answer ifm/n ≥ ρ. The costs shown
do not consider the time taken in creating the possible worlds.
Note that this algorithm provides only approximate results. For
real dataset, the accuracy varies from60% to 75%.

Näıve algorithm appeared to be too slow (average query
time from 7 minutes to 2 hours) so we show its computation
time only when comparing our verification phase in Fig. 18.

Fig. 17 compares our approach with the sampling based
approximate approach (for 100 and 200 possible worlds) on
synthetic dataset. In two dimensional space, our algorithmis
comparable with the sampling algorithm that returns approx-
imate answer. On the other hand, the Fig. 17 shows that our
algorithm is more efficient for higher dimensions and scales

6. http://www.census.gov/geo/www/tiger/

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 6 5 4 3 2

T
im

e
(s

ec
on

ds
)

Number of Dimensions

Our Alogrithm
Sampling (#PW=100)
Sampling (#PW=200)

Fig. 17: Overall cost

 500

 50

 5

 0.5

 0.05
 6 5 4 3 2

T
im

e
(s

ec
on

ds
)

Number of Dimensions

Our Verification
Naive Verification

Fig. 18: Verification cost

better. The cost for our algorithm first decreases as the number
of dimensions increase and then it starts increasing. The reason
is that for low dimensional space, the data is more dense and
the verification phase cost dominates the pruning phase cost.
On the other hand, for high-dimensional space, the data is
sparse and while the verification is cheaper the pruning phase
is expensive (e.g; greater number of bisectors required to prune
the space).

In Fig. 18, we compare the verification cost of our algorithm
with the verification cost of naı̈ve algorithm. The costs shown
are verification costs per candidate object. Our proposed
verification is three orders of magnitude faster than the naı̈ve
verification.

5.2 Performance on real dataset and effect of data
distribution

Fig. 19 compares the performance of our algorithm against
the sampling based approximate algorithm on real dataset for
probability threshold changed from 0.1 to 0.9. For sampling
based algorithm, the costs are shown for the evaluation of 100
and 200 possible worlds. Our algorithm performs better than
the approximate sampling based algorithm for larger threshold.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.9 0.7 0.5 0.3 0.1

T
im

e
(s

ec
on

ds
)

Probability Threshold

Our Algorithm
Sampling (#PW=100)
Sampling (#PW=200)

Fig. 19: Comparison on Real
Dataset

 0

 0.5

 1

 1.5

 2

 2.5

 3

 6 5 4 3 2

T
im

e
(s

ec
on

ds
)

Number of Dimensions

unif-unif-unif
unif-unif-norm
norm-unif-unif

norm-norm-unif
norm-norm-norm

Fig. 20: Effect of data distri-
bution

Note that although the accuracy may vary, the cost of sam-
pling algorithm does not change with the change in threshold,
underlying data distribution (as noted in [20]), width of hyper-
rectangle or number of instances in each object. Moreover, the
cost of sampling algorithm increases linearly with the number
of possible worlds evaluated. For this reason, now we focus on
the performance evaluation of only our proposed algorithm.

Fig. 20 shows the performance of our algorithm for different
data distributions. The legend shows data distributions inform
dist1 dist2 dist3 where dist1 is the distribution of the object
centres, dist2 is the distribution of instances within the objects
and dist3 is the distribution of appearance probability. For ex-
ample, normnorm unif shows the result for the data such that
the centres of objects and instances are normally distributed

with appearance probability following uniform distribution.
The performance of our algorithm on non-uniform data is
better than the uniform data as can be observed from Fig. 20.
This is mainly due to two reasons. Firstly, we observe that
the number of candidates inScnd is smaller after the pruning
phase if the data is non-uniform. Secondly, if the probability
distribution is not uniform the verification phase is faster
because we sort the instances in descending order of their
appearance probabilities and this lets us validate or invalidate
an object earlier.

5.3 Effect of data size

In Fig. 21, we increase the maximum number of instances
in each object from 200 to 1000. The performance degrades
as the number of instances increase. Although the increase in
number of instances does not have significant effect on pruning
phase, the verification phase becomes more expensive if each
object has greater number of instances. Also observe that
the cost does not change significantly for higher dimensions
because in high dimensional space, the pruning phase cost is
dominant which is not affected significantly by the number of
instances

 0

 1

 2

 3

 4

 5

 1000 800 600 400 200

T
im

e
(s

ec
on

ds
)

Number of Instances

2d
3d
4d
5d
6d

Fig. 21: Effect of number of
instances in each object

 0

 1

 2

 3

 4

 5

 10000 8000 6000 4000 2000

T
im

e
(s

ec
on

ds
)

Number of Objects

2d
3d
4d
5d
6d

Fig. 22: Effect of number of
objects in the dataset

Fig. 22 evaluates the performance of our algorithm with
increasing number of objects in the dataset. The computation
cost increases with increase in number of objects mainly due
to the increased verification cost because larger number of
objects (and in effect instances) are returned by the global
range query.

5.4 Effect of probability threshold and width of
hyper-rectangle

Fig. 23 shows the effect of probability threshold. The algo-
rithm performs better as the probability thresholdρ increases
because fewer number of candidate objects pass the pruning
phase and require the verification. The effect is more signif-
icant in lower dimensions because for low dimensions the
verification cost dominates the overall cost.

In Fig. 24, we change width of each hyper-rectangle and
study the performance of our algorithm. The performance
degrades in low-dimensional space due to larger overlap of
objects with each other and the query object. The effect in
higher dimensions is not as significant as in low-dimensional
space.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

 0

 1

 2

 3

 4

 5

 6

 0.9 0.7 0.5 0.3 0.1

T
im

e
(s

ec
on

ds
)

Probability Threshold

2d
3d
4d
5d
6d

Fig. 23: Effect of probability
Threshold

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 4 3 2 1
T

im
e

(s
ec

on
ds

)
Width of Rectangle in each dimension (in %)

2d
3d
4d
5d
6d

Fig. 24: Effect of width of
hyper-rectangles

5.5 Evaluation of different phases

In this section, we study the effect of our pruning phases. More
specifically, we compare the number of candidates after first
phase (shortlisting), second phase (refinement), optimization
(of the verification phase) and the number of objects in final
result. Fig. 25 shows the number of candidates after each
phase. The number of candidates aftershortlisting is from
10-20 and therefinementphase reduces the number to less
than its half. The optimization presented in the verification
phase prunes more objects in high-dimensional space because
in low-dimensional space due to larger volume of MBRs, most
of the MBRs of remaining candidates overlap with the query
object. Hence the optimizations are more useful for higher
dimensions.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 6 5 4 3 2

N
um

be
r

of
 c

an
di

da
te

s

Number of Dimensions

Shortlisting
Refinement

Optimization
Result

Fig. 25: Number of objects
in Scnd after each phase

 0.01

 0.1

 1

 10

 6 5 4 3 2

T
im

e
(s

ec
on

ds
)

Number of Dimensions

Shortlisting
Refinement

Optimization
Verification

Fig. 26: Computational time
taken by each phase

Fig. 26 shows the time taken by each of the pruning
phase. Our proposed optimization takes very small amount of
time and is quite useful especially for high-dimensional data.
Verification phase is the dominant cost for low-dimensional
queries and the pruning phases (shortlisting and refinement)
dominate the overall cost for high-dimensional queries. Note
that logscale is used for y-axis.

5.6 Effectiveness of pruning rules

Pruning rule 5 is used in phase 2 (refinement) of our algorithm
and uses the other pruning rules to estimate the maximum
probability. Its effectiveness can be observed in Fig. 25 by
comparing the number of objects aftershortlistingandrefine-
mentphases.

Fig. 27 shows the effectiveness of other pruning rules. We
observed that the dominance pruning rule prunes fewer objects
than the simple distance based pruning rule 4. However, the
dominance pruning can prune some objects that cannot be
pruned by the simple pruning rule because the dominance
pruning rule can trim part of the candidate objects.

Fig. 27 shows the number of candidates afterrefinement
phase of our algorithm when a combination of pruning rules

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 6 5 4 3 2

N
um

be
r

of
 c

an
di

da
te

 o
bj

ec
ts

Number of Dimensions

Pruning Rule 4
Pruning Rules 3&4
Pruning Rules 1-4

Fig. 27: Effectiveness of
pruning rules

 0

 10

 20

 30

 40

 50

 60

 70

 7 6 5 4 3 2 1

N
um

be
r

of
 O

bj
ec

ts

Width of rectangle in each dimension (in %)

0 < ρ ≤ 0.001
0.001 < ρ ≤ 0.1

0.1 < ρ ≤ 1

Fig. 28: Effect of width of
hyper-rectangles

is used. More specifically, we compare the number of objects
in Scnd when only the pruning rule 4 is used, the dominance
pruning is used along with pruning rule 4, and when all
pruning rules from 1 to 4 are used. Since pruning rule 5 uses
the other underlying pruning rules, it is enabled for all above
mentioned settings. The half-space pruning significantly re-
duces the number of candidate objects and the effectivenessof
dominance pruning is more significant for the low-dimensional
data.

5.7 Effect of hyper-rectangle width on the size of
result

We note that if the hyper-rectangles of objects largely overlap
each other, the probabilistic reverse nearest neighbor queries
are not very meaningful. In other words, there would be no
objects satisfying some reasonable probability threshold(a
value that can be considered significant). Fig. 28 shows the
number of objects that satisfy different probability thresholds.
The width of hyper-rectangle in each dimension is changed
from 1% to 7% and the results are shown for two dimensional
space. It can be observed that with large overlap in rectangles,
more and more objects satisfy very small probability threshold
constraint. On the other hand, there are very few or no object
at all that have greater than 0.1 probability to be the RNN.

6 RELATED WORK

Recently, a lot of work has been dedicated to uncertain
databases (see The TRIO system [22], The ORION project [7]
and the references therein). Query processing on uncertain
databases has gained significant attention in last few years
especially in spatio-temporal databases.

In [8], the authors develop index structures to querying
uncertain interval effectively. They are the first to study
probabilistic range queries. In [19], the authors propose access
methods designed to optimize both the I/O and CPU cost
of range queries on multi-dimensional data with arbitrary
probability density functions. The concept of probabilistic
similarity joins on uncertain objects is first introduced in[13]
which assigns a probability value to each object pair indicating
the likelihood that it belongs to the result set.Rankingand
thresholdingprobabilistic spatial queries are studied in [9].
A thresholding probabilistic query is to retrieve the objects
qualifying the spatial predicates with probability greater than
a given threshold. Similarly, a ranking probabilistic query
retrieves the objects with the highest probabilities to qualify

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

the spatial predicates. A probabilistic skyline model is pro-
posed in [17] alongwith two effective algorithms to answer
probabilistic skyline queries. While nearest neighbor queries
on uncertain objects are studied in [4], [6], [14], to the best
of our knowledge, there does not exist any previous work on
reverse nearest neighbor queries on uncertain data.

Now, we overview the previous work related to reverse
nearest neighbor queries where the data is not uncertain. Korn
et. al [12] are first to introduce the reverse nearest neighbor
queries. They provide a solution based on the pre-computation
of the nearest neighbor of each data point. More efficient
solutions based on pre-computation are proposed in [26]
and [15]. Stanoiet. alproposed a method that does not require
any pre-computation. They observe that in 2d-space, the space
around query can be partitioned into six equal regions and
only the nearest neighbor of query in each region can be
the RNN of the query. However, the number of regions to
be searched for candidate objects increases exponentiallywith
the dimensionality. Singhet al. [18] propose a solution that
performs better in high-dimensional space. They first findK
(system parameter) nearest neighbors of the query object and
then check whether the retrieved objects are the RNNs of query
object or not. Taoet al. [20] utilize the idea of perpendicular
bisector to reduce the search space. They progressively find
nearest neighbors of query and for each nearest neighbor they
draw a perpendicular bisector that divides the space in two
partitions. Only the objects that lie in the partition containing
query object can be the reverse nearest neighbors. Recently,
Wu et. al [24] propose an algorithm for RkNN queries in 2d-
space. Instead of using bisectors to prune the objects, theyuse
a convex polygon obtained from the intersection of bisectors.
Any object that lies outside the polygon can be pruned.

Continuous monitoring of RNN queries is studied in [3],
[11], [23], [25]. Reverse nearest neighbors in metric
spaces ([1], [2], [21]), large graphs [28] and ad hoc sub-
spaces [27] has also been explored. Problem of reverse nearest
neighbor aggregates over data streams is studied in [30].
Other variants like ranked reverse nearest neighbor queries and
reverse furthest nearest neighbor queries are studied in [31]
and [29], respectively.

7 CONCLUSION

In this paper, we studied the problem of reverse nearest
neighbor queries on uncertain data and proposed novel pruning
rules that effectively prune the objects that cannot be the RNNs
of query. We proposed an efficient algorithm and presented
several optimizations that significantly reduce the overall com-
putation time. Using real dataset and synthetic dataset, we
illustrated the efficiency of our proposed approach. Although
we focused on discrete case, the pruning rules we presented
can be applied when the uncertain objects are represented by
probability density function. As future work, we will study
the extension of our solution to probabilistic RkNN queries
on uncertain data.

ACKNOWLEDGMENTS

The work of Xuemin Lin is supported by Australian Re-
search Council Discovery Grants (DP0987557, DP0881035

and DP0666428) and Google Research Award. Wei Wang’s
research is supported by ARC Discovery Grants DP0987273
and DP0881779. Jian Pei’s research is supported in part by a
NSERC Discovery grant and a NSERC Discovery Accelerator
Supplement grant.

REFERENCES

[1] E. Achtert, C. Bohm, P. Kroger, P. Kunath, A. Pryakhin, andM. Renz.
Approximate reverse k-nearest neighbor queries in general metric spaces.
In CIKM, pages 788–789, 2006.

[2] E. Achtert, C. B̈ohm, P. Kr̈oger, P. Kunath, A. Pryakhin, and M. Renz.
Efficient reverse k-nearest neighbor search in arbitrary metric spaces. In
SIGMOD Conference, pages 515–526, 2006.

[3] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest
neighbor and reverse nearest neighbor queries for moving objects. In
IDEAS, pages 44–53, 2002.

[4] G. Beskales, M. Soliman, and I. F. Ilyas. Efficient search for the top-k
probable nearest neighbors inuncertain databases. InVLDB, 2008.

[5] M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei. Probabilistic
reverse nearest neighbor queries on uncertain data. InUNSW Technical
Report, 2008. Available at ftp:// ftp.cse.unsw.edu.au/pub/doc/papers/
UNSW/0816.pdf.

[6] R. Cheng, J. Chen, M. F. Mokbel, and C.-Y. Chow. Probabilistic
verifiers: Evaluating constrained nearest-neighbor queries over uncertain
data. InICDE, pages 973–982, 2008.

[7] R. Cheng, S. Prabhakar, and D. V. Kalashnikov. Querying imprecise
data in moving object environments. InICDE, pages 723–725, 2003.

[8] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient
indexing methods for probabilistic threshold queries over uncertain data.
In VLDB, pages 876–887, 2004.

[9] X. Dai, M. L. Yiu, N. Mamoulis, Y. Tao, and M. Vaitis. Probabilistic
spatial queries on existentially uncertain data. InSSTD, pages 400–417,
2005.

[10] J. Goldstein, R. Ramakrishnan, U. Shaft, and J.-B. Yu. Processing
queries by linear constraints. InPODS ’97: Proceedings of the sixteenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pages 257–267, New York, NY, USA, 1997. ACM.

[11] J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang.Continuous
evaluation of monochromatic and bichromatic reverse nearest neighbors.
In ICDE, pages 806–815, 2007.

[12] F. Korn and S. Muthukrishnan. Influence sets based on reverse nearest
neighbor queries. InSIGMOD Conference, pages 201–212, 2000.

[13] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Probabilistic
similarity join on uncertain data. InDASFAA, pages 295–309, 2006.

[14] H.-P. Kriegel, P. Kunath, and M. Renz. Probabilistic nearest-neighbor
query on uncertain objects. InDASFAA, pages 337–348, 2007.

[15] K.-I. Lin, M. Nolen, and C. Yang. Applying bulk insertion techniques
for dynamic reverse nearest neighbor problems.ideas, 00:290, 2003.

[16] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: Query
processing for location services without compromising privacy. In
VLDB, pages 763–774, 2006.

[17] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain
data. InVLDB, pages 15–26, 2007.

[18] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High dimensional
reverse nearest neighbor queries. InCIKM, pages 91–98, 2003.

[19] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar.
Indexing multi-dimensional uncertain data with arbitrary probability
density functions. InVLDB, pages 922–933, 2005.

[20] Y. Tao, D. Papadias, and X. Lian. Reverse knn search in arbitrary
dimensionality. InVLDB ’04: Proceedings of the Thirtieth international
conference on Very large data bases, pages 744–755. VLDB Endow-
ment, 2004.

[21] Y. Tao, M. L. Yiu, and N. Mamoulis. Reverse nearest neighbor search in
metric spaces.IEEE Trans. Knowl. Data Eng., 18(9):1239–1252, 2006.

[22] J. Widom. Trio: A system for integrated management of data,accuracy,
and lineage. InCIDR, pages 262–276, 2005.

[23] W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan. Continuous reverse k-
nearest-neighbor monitoring. InMDM, pages 132–139, 2008.

[24] W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan. Finch: Evaluating reverse
k-nearest-neighbor queries on location data. InVLDB, 2008.

[25] T. Xia and D. Zhang. Continuous reverse nearest neighbor monitoring.
In ICDE, page 77, 2006.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[26] C. Yang and K.-I. Lin. An index structure for efficient reverse nearest
neighbor queries. InProceedings of the 17th International Conference
on Data Engineering, pages 485–492, Washington, DC, USA, 2001.
IEEE Computer Society.

[27] M. L. Yiu and N. Mamoulis. Reverse nearest neighbors search in ad
hoc subspaces.IEEE Trans. Knowl. Data Eng., 19(3):412–426, 2007.

[28] M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao. Reverse nearest
neighbors in large graphs. InICDE, pages 186–187, 2005.

[29] B. Yao, F. Li, P. Kumar. Visible reverse k-nearest neighbor queries. In
ICDE, 2009.

[30] F. Korn,S. Muthukrishnan, D. Srivastava. Reverse nearest neighbor
aggregates over data streams. InVLDB, pages 814–825, 2002.

[31] K. C. K. Lee, B. Zheng, W. C. Lee. Ranked reverse nearest neighbor
search.IEEE Trans. Knowl. Data Eng., 20(7):894–910, 2008.

Muhammad Aamir Cheema is currently a PhD
student in the School of Computer Science
and Engineering, the University of New South
Wales, Australia. He completed his Master of
Engineering degree in Computer Science and
Engineering from the University of New South
Wales, Australia, in 2007. He received his B.Sc.
degree in Electrical Engineering from Univer-
sity of Engineering and Technology, Lahore,
in 2005. His current research interests include
spatio-temporal databases, location-based ser-

vices, mobile and pervasive computing and probabilistic databases. He
served as Lecturer in James Cook University (Sydney campus) from
2006-2007. He also served as Associate Lecturer at the University
of New South Wales, Australia, in 2007. (http://www.cse.unsw.edu.au/
∼macheema)

Xuemin Lin is a Professor in the School of Com-
puter Science and Engineering, the University
of New South Wales. He has been the head of
database research group at UNSW since 2002.
Before joining UNSW, Xuemin held various aca-
demic positions at the University of Queensland
and the University of Western Australia. Dr. Lin
got his PhD in Computer Science from the Uni-
versity of Queensland in 1992 and his BSc in
Applied Math from Fudan University in 1984.
During 1984-1988, he studied for PhD in Applied

Math at Fudan University. He currently is an associate editor of ACM
Transactions on Database Systems. His current research interests lie in
data streams, approximate query processing, spatial data analysis, and
graph visualization. (http://www.cse.unsw.edu.au/∼lxue)

Wei Wang is currently a Senior Lecturer at the
School of Computer Science and Engineering
at University of New South Wales, Australia. He
received his Ph.D. degree in Computer Science
from Hong Kong University of Science and Tech-
nology in 2004. His research interests include
integration of database and information retrieval
techniques, similarity search, and query pro-
cessing and optimization. (http://www.cse.unsw.
edu.au/∼weiw)

Wenjie Zhang is currently a PhD student in the
School of Computer Science and Engineering,
the University of New South Wales, Australia.
She received her M.S. degree and B.S. degree
both in computer science from Harbin Institute of
Technology, China. Her research focuses on un-
certain data management and spatio-temporal
indexing techniques. She has published papers
in conferences and journals including SIGMOD,
ICDE and VLDBJ. She is also the recipient of
Best Paper Award of National DataBase Confer-

ence of China 2005 and APWebWAIM 2009. (http://www.cse.unsw.edu.
au/∼zhangw)

Jian Pei is currently an Associate Professor and
the director of Collaborative Research and In-
dustry Relations at the School of Computing Sci-
ence at Simon Fraser University. His research
interests can be summarized as developing ef-
fective and efficient data analysis techniques for
novel data intensive applications. His research
has been supported extensively by government
funding agencies and industry companies. He
has published prolifically in refereed journals,
conferences, and workshops. He has served

regularly in the organization committees and the program committees of
many international conferences and workshops. He is a senior member
of ACM and IEEE. He is the recipient of the British Columbia Innovation
Council 2005 Young Innovator Award, an NSERC 2008 Discovery
Accelerator Supplements Award, an IBM Faculty Award (2006), and the
KDD’08 Best Application Paper Award. (http://www.cs.sfu.ca/∼jpei)

