
Efficient Construction of Safe Regions for

Moving kNN Queries Over Dynamic Datasets

Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang

The University of New South Wales, Australia
{mahadyh,macheema,lxue,yingz}@cse.unsw.edu.au

Abstract. The concept of safe region has been used to reduce the com-
putation and communication cost for the continuous monitoring of k

nearest neighbor (kNN) queries. A safe region is an area such that as
long as a query remains in it, the set of its kNNs does not change. In this
paper, we present an efficient technique to construct the safe region by
using cheap RangeNN queries. We also extend our approach for dynamic
datasets (the objects may appear or disappear from the dataset). Our
proposed algorithm outperforms existing algorithms and scales better
with the increase in k.

1 Introduction

With the availability of inexpensive mobile devices, position locators and cheap
wireless networks, location based services are gaining increasing popularity. The
continuous monitoring of k nearest neighbor (kNN) queries [1–4] has been widely
studied in recent past.

In this paper, we study the problem of moving kNN queries where the query
is constantly moving and the objects do not move. Consider the example of a car
driver who is interested in five nearest available car parking spaces while driving
in a city. Another example is a person looking for the nearest restaurants while
walking in a street.

A classical example of the safe region is Voronoi Diagram (VD) [5]. In a VD,
each object of the dataset lies within a cell called its voronoi cell. The voronoi
cell of an object has a property that any point that lies in it is always closer to
that object than any other object in the dataset. For a kNN query, a k order
VD can be constructed and k order voronoi cells can be treated as safe regions.
The VD based solution has the following major limitations: 1) The VD cannot
be precomputed and indexed if the value of k is not known in advance. 2) The
VD cannot deal efficiently with update of objects in the underlying dataset.

Our contributions in this paper include: 1) we devise an efficient safe region
construction approach that requires cheap RangeNN 1 queries; 2) our proposed
approach is extended to efficiently update the safe regions of queries for dynamic
datasets where the objects may appear or disappear and 3) extensive experiment
results show more than an order of magnitude improvement.

1 RangeNN query is to find the nearest object of q from the objects that lie within a
given distance from a point p.

2 Background Information

Continuous k Nearest Neighbor Query. Given a set of objects, a mov-
ing query point q , and a positive integer k , the continuous kNN query is to
continuously report k closest objects to q at each time stamp.
Definitions and Notations. A perpendicular bisector Bn:o between two points
n and o divides the space into two half-spaces. Let Hn:o be the half-space con-
taining n and Ho:n be the half-space containing o. Every point q in Hn:o is always
closer to n than it is to o (i.e; dist(q, n) < dist(q, o)). Figure 1 shows a bisector
Bn:o2

between two points n and o2 and the two half-spaces are also shown.
Safe Region S is a region such that as long as a kNN query q remains in it,

the set of its kNNs does not change. If a client (that issued query q) is aware of
its safe region, it does not need to contact the server to update its set of kNNs
as long as q resides in the safe region. This saves the communication cost as well
as computation cost. Now, we formally define the safe region.

Let N = {n1, · · · , nk} be the set of kNNs of a query q. The intersection of
all half-spaces Hni:oj

for every ni ∈ N and every oj ∈ O − N defines a region
such that as long as the query resides in it, the set of its kNNs N is unchanged.

Proof. We prove this by contradiction. Assume that q resides in its safe region
and oj ∈ O − N is an object such that dist(q, oj) < dist(q, ni) for any ni ∈ N .
Since safe region is the intersection of all half-spaces Hni:oj

, a query q that resides
in it satisfies dist(q, ni) < dist(q, oj) which contradicts the assumption. ⊓⊔

Figure 1 shows an example of the safe region for a NN query. The bisectors
between the nearest neighbor n and the objects o1 to o4 are drawn and the
shaded area is the safe region. Figure 2 shows an example of the safe region for
a 2NN query where the two NNs are n1 and n2. The bisectors between the NNs
and the objects o1 to o3 are drawn. For clarity, the bisectors between n1 and the
objects are shown in solid lines and the bisectors between n2 and the objects are
shown in broken lines. The shaded area is the safe region.

Note that not all the bisectors contribute in defining the safe region. A bi-
sector Bni:oj

that forms an edge of the safe region is called a representative
bisector (the bisector Bn:o2

in Fig. 1). The object oj that is associated with the
representative bisector is called an influence object (o2 in Fig. 1).

Notation Definition

Bx:q a perpendicular bisector between point x and q

Hx:q a half-space defined by Bx:q containing the point x

Hq:x a half-space defined by Bx:q containing the point q

dist(x, y) the distance between two points x and y

v ≺ Bni:oj
∩ Bnx:oy ≻ a vertex v formed by the intersection of the two bisectors

Table 1. Notations

A vertex is the intersection of two bisectors Bni:oj
and Bnx:oy

. A confirmed
vertex is the vertex of the safe region (i.e., it is an intersection of two represen-
tative bisectors). Vertex v in Fig. 1 is a confirmed vertex whereas the vertex v′ is
not a confirmed vertex. Please note that a confirmed vertex lies at the boundary
of the safe region. Table 1 defines the notations used throughout this paper.

The most related work to our technique is proposed in [6]. The authors pro-
pose construction of the safe region by using time parameterized kNN queries [7].
Due to space limitations, we omit the details.

3 Technique

Before we present our algorithm, we present observations that can be used to
confirm a vertex. First, we present the observation for k = 1 and then we extend
it for arbitrary value of k.

o
1

o
3

o
2n

q

H
n:o

2
H
o :n2

v
v'

B
n:o2

B
n:o

4

o
4

Fig. 1. Safe region for a
NN query

o
1

o
3

o
2n

1

q

n
2

Fig. 2. Safe region for a 2-
NN query

o
1

o
3

o
2n

1

q

n
2

o
4

v

Fig. 3. Illustration of Ob-
servation 2

Observation 1 : Let n be the NN of a query q and v be a vertex. The vertex
v can be confirmed if no object lies in the circle of radius R centered at v where
R = dist(v, n).

Proof. Assume that the circle does not contain any object and o4 (as shown in
Fig. 1) is any object that lies outside the circle. If the vertex v does not lie in
the safe region then there must be a half-space Ho4:n that contains v. Any point
p that lies in the half-space Ho4:n satisfies dist(p, o4) < dist(p, n). However, for
vertex v, dist(v, o4) > dist(v, n). Hence there is no such half-space Ho4:n that
contains v. So the vertex v lies in the safe region. ⊓⊔

Observation 2 : Let N = {n1, · · · , nk} be the set of kNNs of query q and v

be any vertex. The vertex v can be confirmed if no object o ∈ O − N lies in
the circle centered at v with radius R = maxdist(v,N) where maxdist(v,N) is
max(dist(v, ni)) for every ni ∈ N .

Proof. Assume that the circle does not contain any object and o4 is any object
that lies outside the circle (as shown in Fig. 3). The vertex v satisfies dist(v, ni) <

dist(v, o4) for every ni ∈ N , hence v lies in every Hni:o4
. For this reason, the

vertex v lies in the safe region. ⊓⊔
Algorithm 1 presents the construction of the safe region for a kNN query. The

algorithm maintains a set of vertices V (initialized to four vertices of the universal
data space). First, the set N containing kNNs of the query q is computed by
using BFS [8]. Then, the algorithm randomly selects an unconfirmed vertex v

from V and checks whether it can be confirmed or not by using Observation 2.
More specifically, the algorithm checks whether there is any object in the circle

Algorithm 1 Construct Safe Region (q)

1: V = {Vertices of the data space}
2: compute kNNs of q and store in N

3: while there is an unconfirmed vertex in V do

4: select any unconfirmed vertex v

5: R = maxdist(v, N)
6: o = RangeNN(q, v, R)/* Algorithm 2 */
7: if o = NULL then

8: confirm v

9: else

10: update V using bisectors between o and each ni ∈ N

of range R = maxdist(v,N) centered at v. If there is no object in the circle, the
algorithm marks the vertex as confirmed (line 8).

If there are more than one objects in the circle, the algorithm selects the
nearest object o to the query q (line 6). The safe region is updated by consid-
ering the bisectors between kNNs of q and the object o (line 10). For a given
bisector Bni:o, the safe region is updated by removing the vertices from V that
lie in Ho:ni

and adding the intersection points of Bni:o and the safe region. The
algorithm stops when all the vertices are confirmed. To show the correctness of
the algorithm, we need to show that the algorithm finds all the vertices of the safe
region and does not include any unconfirmed vertex. The proof of correctness is
similar to Lemma 3.1 in [6] and is omitted.

Algorithm 2 RangeNN(q, v, R)

Output: Returns the nearest neighbor of q from the objects that lie within distance
R from v

1: Initialize a min-heap H with root entry of the tree
2: while H is not empty do

3: deheap an entry e

4: if e is an intermediate or leaf node then

5: for each of its children c do

6: if mindist(c, v) < R then

7: insert c into H with key mindist(c, q)
8: else if e is an object and e is not one of the kNNs of q then

9: return e

10: return φ

Algorithm 2 presents the implementation of RangeNN query. This operation
can be regarded as finding the nearest object o of q from the objects lying within
the range R of a vertex v. Hence, we call it RangeNN query.

Example 1. Figure 4 illustrates our algorithm for a 2NN query where n1 and n2

are the NNs of q. Initial safe region is the data space bounded by four vertices v1

to v4. First, a RangeNN 2 query is issued on vertex v1 with range R = dist(v1, n1)
which returns the object o3. Then, the bisectors between o3 and the NNs are

2 Note that RangeNN query does not access all the objects within the range. It uses
BFS and stops when the NN is found. So the object o4 is not accessed in the example.

o
1

o
3

o
2n

1

q

n
2

v
1

v
2

v
3v

4

o
4

Fig. 4. RangeNN query
from v1

o
1

o
3

o
2

n
1

q

n
2

v
1

v
2

v
3v

4
v
8

v
6

v
7

v
5

v
9

o
4

Fig. 5. The safe region af-
ter visiting o3

o
1

o
3

o
2n

1

q

n
2

v

Fig. 6. Safe Region and
impact Region

drawn. In Fig. 5, the bisector between o3 and n1 is shown in solid line and the
bisector between o3 and n2 is shown in broken line. These bisectors update the
set of vertices V and the new safe region (the shaded area) now contains vertices
v3, v5, v9 and v8. Then, a RangeNN query is issued on vertex v9 with range
dist(v9, n1) and it is marked confirmed because no object is found within the
range. The algorithm continues in this way until all the vertices are confirmed.
The final safe region is shown in Fig. 6 (light shaded area).

Extension for Dynamic Datasets. First, we define impact region. The impact
region is an area such that as long as a query remains in its safe region and no
object appears or disappears from the impact region, the safe region of the query
is unchanged. It is easy to prove that the impact region consists of circles around
vertices with radius set to their corresponding nearest neighbors. In Fig. 6, the
impact region is shown shaded (both dark and light). Below, we formally define
the impact region.

Let V be a set of vertices of a safe region. Let Circv be a circle centered at
a vertex v ≺ Bni:oj

∩ Bnx:oy
≻ with radius Rv = dist(v, ni). The impact region

is the area covered by all circles Circvi
for each vi ∈ V .

We use a grid-based structure and mark all the cells that overlap with the
impact region. The results of a query are affected only if an object appears in
(or disappears from) these marked cells. For such queries, we compute the safe
regions again.

4 Experimental Study and Remarks

We compare our algorithm with LBSQ [6]. Other algorithms for moving kNN
queries either assume known query trajectory path [7, 4] or assume that clients
have sufficient computation resources to maintain kNNs from given (k + x) or
more NNs [9–11]. We use real dataset (http://www.census.gov/geo/www/tiger/)
that contains 128,700 unique data points in a data space of 350km×350km. We
continuously monitor 500 moving queries created by the spatio-temporal data
generator [12].

 0

30K

60K

90K

120K

150K

 1 3 10 30 100

of

 R
an

ge
N

N
/T

P
kN

N
 q

ue
rie

s

k values

RSR
LBSQ

Fig. 7. Total RangeNN /
TPkNN queries

 0

 2

 4

 6

 8

 10

 12

 1 3 10 30 100

T
im

e
in

 m
s

k values

LBSQ=0.3 RSR=0.07

LBSQ
RSR

Fig. 8. Average cost of
RangeNN / TPkNN query

 1

 10

 100

 1000

 10000

1 3 10 30 100

T
im

e
in

 s
ec

k values

2.1

5.9

2.6

9.9
4.9

38.5

11

178

37

1474
LBSQ

RSR

Fig. 9. The computation
time for different k

Figure 7 shows that the number of RangeNN queries is slightly higher than
the number of TPkNN queries, but the average cost of a RangeNN query is
significantly lower than that of a TPkNN query (Fig. 8).

Figures 9 studies the effect of k on the computation times of both algorithms
(shown in log scale). Our algorithm not only outperforms LBSQ but also scales
better. We also observed that the number of nodes accessed by our algorithm is
lower than that of LBSQ but we do not include the figure due to page limitation.

Previous algorithm uses TPkNN queries to compute the safe region of a kNN
query. In this paper, we present an efficient algorithm to construct the safe region
by using much cheaper RangeNN queries. Experiment results show an order of
magnitude improvement.

References

1. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An
efficient method for continuous nearest neighbor monitoring. In: SIGMOD Con-
ference. (2005) 634–645

2. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving
objects. In: ICDE. (2005) 631–642

3. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous
k-nearest neighbor queries in spatio-temporal databases. In: ICDE. (2005) 643–654

4. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB.
(2002) 287–298

5. Okabe, A., Boots, B., Sugihara, K.: Spatial tessellations: concepts and applications
of Voronoi diagrams. John Wiley and Sons Inc. (1992)

6. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial
queries. In: SIGMOD Conference. (2003) 443–454

7. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases.
In: SIGMOD Conference. (2002) 334–345

8. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: SSD. (1995) 83–95
9. Kulik, L., Tanin, E.: Incremental rank updates for moving query points. In:

GIScience. (2006) 251–268
10. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In:

SSTD. (2001) 79–96
11. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The v*-diagram: a query-dependent

approach to moving knn queries. PVLDB 1(1) (2008) 1095–1106
12. Brinkhoff, T.: A framework for generating network-based moving objects. GeoIn-

formatica 6(2) (2002) 153–180

