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ABSTRACT
The dominance operator plays an important role in a wide
spectrum of multi-criteria decision making applications. Gen-
erally speaking, a dominance operator is a partial order on a
set O of objects, and we say the dominance operator has the
monotonic property regarding a family of ranking functions
F if o1 dominates o2 implies f(o1) ≥ f(o2) for any ranking
function f ∈ F and objects o1, o2 ∈ O. The dominance op-
erator on the multi-dimensional points is well defined, which
has the monotonic property regarding any monotonic rank-
ing (scoring) function. However, the problem remains open
for multi-dimensional uncertain objects although a variety of
existing works have studied the semantics of ranking query
on uncertain objects due to the uncertain nature of data in
many emerging applications. Although there are several at-
tempts to propose dominance operator on multi-dimensional
uncertain objects, none of them claims the monotonic prop-
erty on these ranking approaches.

Motivated by this, in this paper we propose a novel match-
ing based dominance operator, namely matching domi-
nance, to capture the semantics of the dominance for multi-
dimensional uncertain objects so that the new dominance
operator has the monotonic property regarding the mono-
tonic parameterized ranking function, which can unify other
popular ranking approaches for uncertain objects. Then we
develop a layer indexing technique, Matching Dominance
based Band (MDB), to facilitate the top k queries on multi-
dimensional uncertain objects based on the matching domi-
nance operator proposed in this paper. Efficient algorithms
are proposed to compute the MDB index. Comprehensive
experiments convincingly demonstrate the effectiveness and
efficiency of our indexing techniques.

1. INTRODUCTION
Due to various factors such as data incompleteness, lim-

itation of measuring equipment, delay or loss of data up-
dates and privacy preservation, the objects in many ap-
plications such as data integration, environmental surveil-
lance, geographic information system, and location based
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service are described by the uncertain object model; that
is, an uncertain object is described by a probability density
function (PDF) or a set of instances (points) with occur-
rence probabilities. For instance, in the meteorology system
sensors collect the temperature and relative humidity at a
large number of sites. The reading may be uncertain, and
hence each site can be modeled by a 2-dimensional uncer-
tain object. There are some popular web sites (e.g., http:
//www.restaurantratingz.com) in which each restaurant
may be evaluated by different customers against food, am-
bience, and service. The weight (occurrence probability) of
each rating (an instance recording food-rate, ambience-rate
and service-rate) for a restaurant (a 3-dimensional uncertain
object) can be derived based on the customers’ knowledge
and experience levels.
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Figure 1: Certain Objects and Uncertain Objects

Top k Queries. As ranking is an essential analytic method,
it is natural and fundamental to investigate how to rank a
set of uncertain objects. Conventional top k queries assume
that the objects in the database are points, namely certain
objects, in a multi-dimensional space as shown in Figure 1(a),
where each dimension corresponds to one feature of the ob-
jects that users are interested in. Given a scoring function
f based on a user’s weight strategy on the features and a set
O of certain objects, the top k query retrieves the k certain
objects with the highest scores.

However, as shown in Figure 1(b), it is non-trivial to iden-
tify the top k uncertain objects due to the presence of mul-
tiple instances per uncertain object and their occurrence
probabilities. For instance, in Figure 1(b) we may have
f(a1) > f(b1) and f(a2) < f(b2) for a given scoring func-
tion f . In recent years, various ranking approaches (e.g.,
U-k rank [20], Global-top k [22] rank, expected rank [6] and
parameterized rank [11]) have been proposed to retrieve the
top k uncertain objects based on their score distributions de-
rived from a scoring function f [6]. Particularly, the mono-
tonic parameterized ranking method can unify other popular
ranking functions. Therefore, in this paper we only need to



investigate the dominance operator over the parameterized
ranking method.

Conventional Dominance Operator. The dominance
operator on a set of points (certain objects) is well defined
in the database literature and known to well capture the
monotonicity of a ranking function. We say a point p dom-
inates another point q, denoted by p ≺ q, if p is not worse
than q on each dimension and p is better than q on at least
one dimension. Without loss of generality, we assume the
smaller coordinate value is preferred in this paper. In
Figure 1(a), we have A dominates C and A does not dom-
inate B. Due to the monotonic property of the dominance
operator, we have f(A) ≥ f(B) for any monotonic scor-
ing function f , if A dominates B. For instance, the scores
of the certain objects (e.g., D) within the shaded area in
Figure 1(a) have scores smaller or equal to f(C) for any
monotonic scoring function f . This monotonic property is
important for the top k queries since it enables the pre-
computation of a layer indexing structure {L1, . . . ,LK},
namely skyband [15, 14, 23], where an object is assigned
to the i-th layer if it is dominated by i − 1 other objects.
Then for any monotonic scoring function, only the objects
on the first k layers can be the candidate objects of a top
k query, which significantly reduces the query costs since
the skyband can be pre-computed off-line and usually only
a small number of objects are accessed for each top k query,
especially when k is small.

Example 1. In Figure 1(a), given four certain objects
{A,B,C,D}, we have A dominates C, A dominates D, and
C dominates D. Consequently, the first layer of the Sky-
band is {A,B} since they are not dominated by any other
object. Objects C and D go to the second and third layers
respectively.

Motivation. Motivated by the above observation, we aim
to develop a dominance operator on multi-dimensional un-
certain objects to effectively index multi-dimensional uncer-
tain objects. Such a dominance operator should have the de-
sirable monotonic property so that if a multi-dimensional
uncertain object U dominates another uncertain object V ,
U is not ranked lower than V regarding any monotonic pa-
rameterized ranking function.

To the best of our knowledge, although there are some
related works in the context of skyline computation on multi-
dimensional uncertain objects, none of them claims the mono-
tonic property on the monotonic parameterized ranking func-
tion. There are three categories of studies involving the
dominance operator among multi-dimensional uncertain ob-
jects: 1) P-domination [1], 2) probabilistic dominance [16,
2], and 3) stochastic order [18, 13, 21].

P-domination is proposed in [1] to capture the dominance
among uncertain objects. However, P-domination operator
is defined based on the tuple-level uncertain object model
(i.e., there is only one instance for each uncertain object with
a particular existence probability); it is not generally appli-
cable to uncertain objects with multiple instances. More-
over, the ranking function is limited to the expected rank [6]
which is a special case of parameterized ranking function.

The probabilistic dominance in [16, 2] is to compute the
probability of one object which is not dominated by the
other objects based on the possible world semantics. Given
two uncertain objects A and B, we use Pr(A ≺ B) to de-
note the probability that A dominates B, where 0 ≤ Pr(A ≺
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Figure 2: Motivation of Matching Dominance

B) ≤ 1. However, it is not safe to claim the monotonic prop-
erty of the dominance unless Pr(A ≺ B) = 1, namely fully
dominance; that is, we have a ≺ b for any instance a ∈ A
and b ∈ B. Regarding the example in Figure 2(a), assum-
ing A and B are independent, Pr(A ≺ B) can be infinitely
close to 1 when the occurrence probability of b1 approaches
0. However, we can have a monotonic scoring function f
such that f(p) = 1 if p ≺ b1 (i.e., in the shaded area), and
f(p) = 0 otherwise. Then B should have higher rank regard-
ing f since f(a1) = f(a2) = 0 while f(b1) = 1. Clearly, as
shown in Figure 2(b), the fully dominance operator should
support any reasonable ranking function. Nevertheless, we
observe that the condition of the fully dominance is strict in
the sense that two uncertain objects are incomparable when
their instances slightly overlap.

The usual stochastic order [18] has been extensively used
in the fields of finance and economics, which is a dominance
operator against uncertain objects. An uncertain object
U dominates another uncertain object V regarding usual
stochastic order if the probabilistic mass of U is always larger
than that of V regarding any lower set 1. Recently, Zhang et
al. [21] develop efficient algorithms to verify the dominance
regarding the general stochastic order as well as the corre-
sponding skyline computation. [18] shows that the usual
stochastic order captures the monotonicity of the expected
scores functions. Nevertheless, it is not clear that if the
usual stochastic order has the monotonic property regard-
ing popular ranking approaches proposed in the literature
(e.g., parameterized ranking function).

These motivate us to propose a new dominance operator
to properly capture the semantics of dominance of multi-
dimensional uncertain objects with the desirable monotonic
property.

Matching Dominance. To introduce the basic idea of
the matching dominance, we start with a simple example in
which we assume that objects have the same number of in-
stances and each instance has the same occurrence probabil-
ity. Then we say an uncertain object U matching dominates
V if there is a one-to-one mapping function ζ between U
and V , so that for each instance u ∈ U we have u ≺ ζ(u). In
Figure 2(c), suppose both A and B have two instances and
each instance has the occurrence probability 0.5, we have A
matching dominates B since we can map a1 and a2 to b1 and
b2 respectively. It is interesting that the problem of match-
ing dominance verification in the example can be converted
to the bipartite graph perfect matching problem [5] where
vertices are instances of two uncertain objects and there is
an edge between two vertices (i.e., instances) u and v if v is
dominated by u.

1We say a points set S is a lower set if for each pair of points
x � y, y ∈ S implies x ∈ S .



As in practice, however, the above assumptions may not
hold for uncertain objects. In Section 3, we carefully de-
fine the matching dominance operator in a similar way but
without the above equality assumptions on the number of
instances and the occurrence probability. We theoretically
show that the proposed matching dominance operator can
support the monotonic parameterized ranking function; that
is, an uncertain object U is not ranked lower than any uncer-
tain object V if V is matching dominated by U . Moreover,
we show that the matching dominance operator is equiva-
lent to the usual stochastic order [18] since dominance ver-
ifications of both operators can be transformed to the well
known max-flow problem [5]. This implies that the tech-
niques developed in [21] can be immediately applied to verify
the matching dominance. Given the definition of matching
dominance, we can compute the MDB index of a set O of
uncertain objects, and an uncertain object is assigned to the
i-th layer if it is matching dominated by i−1 other uncertain
objects in O. We also develop an efficient algorithm to con-
struct MDB index in Section 4. Note that the first layer of
MDB index corresponds to the stochastic skyline [21], which
can provide a minimal candidate for the optimal solutions
(top 1 result) for any monotonic parameterized ranking func-
tion.

Contributions. Our principle contributions in this paper
can be summarized as follows.

• We formally introduce a novel dominance operator on
multi-dimensional uncertain objects, termed match-
ing dominance, which is a natural extension of the
traditional dominance operator. We show that match-
ing dominance operator has the monotonic property
regarding the monotonic parameterized ranking func-
tion. Moreover, it is shown that the matching domi-
nance is equivalent to the well known usual stochastic
order [18], and hence the dominance verification tech-
niques developed in [21] can be immediately applied.

• Based on the matching dominance operator, we pro-
pose a layer indexing technique for uncertain objects,
named matching dominance based band (MDB for
short) index. We also develop an efficient MDB com-
putation algorithm following the branch and bound
paradigm.

• Comprehensive experiments demonstrate the effective-
ness and efficiency of our indexing techniques.

Organization of the paper. The rest of the paper is
organized as follows. Section 2 introduces the parameter-
ized ranking function and problem statement. Section 3
formally defines the matching dominance operator and the
corresponding verification algorithm. Section 4 develops ef-
ficient MDB algorithm. Some possible extensions are dis-
cussed in Section 5. The experimental results are reported
in Section 6. This is followed by the related work presented
in Section 7. We conclude our paper in Section 8.

2. BACKGROUND
In this section, we first formally introduce the uncertain

object model and the parameterized ranking function, as well
as the problem statement. Then we show how to calculate
the rank scores of the uncertain objects based on the gen-
erating function. Table 1 summarizes notations frequently
used throughout the paper.

Notation Meaning

U, V,A,B uncertain objects
u, v, a, b instances (points) of the uncertain objects
u ≺ v u dominates v

u.Di i-th dimensional coordinate value of u
pu occurrence probability of the instance u

PRFω parameterized ranking function
Υ(U) the rank score of U
Umbb minimal bounding box of U
Uf score distribution of U regarding f

Pr(Uf > c) Probability that Uf is larger than c

PU,v Pr(Uf > f(v)). Probability that score
of U is larger than score of instance v

MU≺V a dominance match for U and V

t ( t.u, t.v, t.p) a tuple t in the dominance match MU≺V

( instance from u, instance from v ,
probability of t)

P (MU≺V ) the weight of a dominance match MU≺V

Pr(U ≺ V ) dominance match probability for U and V

U ≺M V U matching dominates V

µ(U) ( µ(e) ) mean of an uncertain object U (entry e )
L(O) MDB index for a set O of objects

Table 1: The summary of notations.

2.1 Problem Definition
In this paper, a point (instance) p is in a d-dimensional

space and the i-th dimensional coordinate value of p is de-
noted by p.Di. Without loss of generality, we assume smaller
coordinate values are preferred and the monotonic func-
tion refers to the non-increasing function. For two points
p and q, p dominates q, denoted by p ≺ q, if p.Di ≤ q.Di

for all dimension i ∈ [1, d] and there is a dimension j ∈ [1, d]
with p.Dj < q.Dj . Meanwhile, we use p � q to denote that
p dominates or equals q.

The following lemma is immediate based on the definition
of the monotonic scoring function.

Lemma 1. For any two points p and q, we have f(p) ≥
f(q) if p ≺ q and f is a monotonic scoring function.

In this paper, we assume a scoring function f is monotonic
whenever the context is clear.

Uncertain Object Model. An uncertain object can be
described either continuously or discretely. In this paper,
we focus on the discrete case; that is, an uncertain object U
consists of a set {u1, u2, . . . , um} of instances (points). An
instance ui occurs with probability pui , and

∑m

i=1 pui = 1.
In Section 5, we discuss the cases where an uncertain ob-
ject is described by a probabilistic density function (PDF)
(i.e., continuous case). Moreover, in this paper we assume
that the uncertain objects are independent to each other. In
the following of the paper, we use object to denote multi-
dimensional uncertain object whenever there is no ambigu-
ity. Given an object U , Umbb denotes the minimal bounding
box which contains all of the instances of U . Let U−

mbb (U
+
mbb)

denote the lower (upper) corner of Umbb, we have U−
mbb � p

and p � U+
mbb for any point p ∈ Umbb.

Score Distribution. Given an object U and a scoring
function f , the score of U regarding f corresponds to a score
distribution Uf = {f(u), pu} for all instances u ∈ U . We use
Pr(Uf > c) to denote the probability that Uf is larger than
the value c, i.e., P r(Uf > c) =

∑
u∈U∧f(u)>c pu.



Example 2. Figure 3 shows the score distributions of three
uncertain objects A, B and C. Particularly, as f(a1) = 15,
f(a2) = 5, and pa1

= pa2
= 0.5, we have Af = {(15, 0.5),

(5, 0.5)}. Similarly, we have Bf = {(20, 0.2), (2, 0.8)} ,
Cf = {(10, 0.5), (7, 0.5)} and Pr(Bf > 15) = 0.2 .
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Figure 3: Score Distributions

Possible World Semantics. For a set O of objects, a
possible world W is a set of instances with one instance
from each object. Given a possible world W and a scoring
function f , the score of an object U is f(u) where u is the
instance of U appearing in the possible world W . For each
possible world W , objects are ranked based on the scores of
their corresponding instances occurring in W . In this paper,
we use rW (U) to denote the rank of an object in the possible
world W regarding f , which is abbreviated to r(U) whenever
there is no ambiguity. Let W denote the set of all possible
worlds, and we have

∑
W∈W Pr(W ) = 1 where Pr(W ) is

the occurring probability of the possible world W .

Parameterized Ranking Function. The score distribu-
tions of a set of objects can be ranked by the top k semantics
studied for uncertain data in the literature. In this paper,
we focus on the parameterized ranking function (PRFω) pro-
posed in [11] and the following is its formal definition.

Definition 1 (PRFω). Let ω be a weighted function
which maps an object-rank pair to a complex number, the
rank score of an object U , denoted by Υ(U), is defined as
follows.

Υ(U) =
∑

i>0

ω(U, i)× Pr(r(U) = i) (1)

where ω(U, i) denotes the weight of U if it is ranked at the
i-th position in the possible world, and Pr(r(U) = i) de-
notes the probability of U being ranked at the i-th position,
i.e., Pr(r(U) = i) =

∑
W∈W∧rW (U)=i Pr(W ). Recall that

rW (U) denotes the rank of U in the possible world W .

In this paper, we assume ω(U, i) = ω(i) (i.e., the weight
is independent of U). Therefore, we have

Υ(U) =
∑

i>0

ω(i)× Pr(r(U) = i) (2)

In practice, the parameterized ranking function is mono-
tonic; that is, we have w(i) ≥ w(j) for any two ranking
positions i and j where i < j because the higher position
is usually at least as desirable as those behind it and thus
should be given a higher weight. Moreover, the scoring func-
tion f used is monotonic. As shown in [11], other popular
ranking methods can be unified by the monotonic parame-
terized ranking functions.

In this paper, we return the k objects with the highest
rank scores. Ties are broken arbitrarily in this paper.

Problem Statement. Given two multi-dimensional un-
certain objects U and V , we aim to propose a dominance
operator between U and V so that for a monotonic parame-
terized ranking function PRFω, we have Υ(U) ≥ Υ(V ) if U
dominates V . Then for a set O of multi-dimensional uncer-
tain objects, a layer indexing L(O) is constructed where an
object is located at the i-th layer, denoted by Li(O), if it is
dominated by i− 1 other objects in O.

2.2 Computing Rank ScoreΥ(U)

As shown in [11], the rank score of an object U can be
calculated by the summation of the rank scores of its in-
stances. For an instance u ∈ U , we can use the following
generating function F(x, u) to calculate the rank score of
u, where PV,u is the probability that Vf is larger than f(u)
(i.e., Pr(Vf > f(u)) ). Intuitively, a small PV,u is in favor of
the rank score of the instance u. Recall that Vf is the score
distribution of the object V regarding f .

F(u,x) =
∏

V ∈O\U

(1− PV,u + PV,u x) pu x (3)

As shown in [11], we have Pr(r(u) = i) = ci where r(u)
is the rank position of instance u and ci is the coefficient of
xi in F(x, u). Therefore, we have

Υ(u) =
∑

1≤i≤n

ci × ω(i) (4)

and

Υ(U) =
∑

u∈U

Υ(u) (5)

Example 3. In Figure 3, we have f(a1) = 15 and hence
Pr(Bf > f(a1)) = 0.2 (i.e., the probability mass of the in-
stances of B in the shaded area ) and Pr(Cf > f(a1)) = 0.0.
According to Equation 4, F(x, a1) = (0.8+0.2 x)×(1)×0.5 x
= 0.4 x + 0.1 x2. Therefore, we have Pr(r(a1) = 1) = 0.4
and Pr(r(a1) = 2) = 0.1. Similarly, F( x, a2) = (0.8 +
0.2 x)×( x )×0.5 x = 0.4 x2+0.1 x3 , and hence Pr(r(a2) =
1) = 0,Pr(r(a2) = 2) = 0.4 and Pr(r(a2) = 3) = 0.1. Sup-
pose ω(1) = 3, ω(2) = 2, and ω(3) = 1 in PRFω, then
Υ(A) = Υ(a1) + Υ(a2) = (0.4 × 3 + 0.1 × 2) + (0.4 × 2 +
0.1 × 1) = 2.3 according to Equation 4. Similarly, we have
Υ(B) = 1.4 and Υ(C) = 2.1. Therefore, Υ(A) > Υ(C) >
Υ(B).

3. MATCHING DOMINANCE OPERATOR
In this section, we first formally introduce the matching

dominance operator. Then we present some of its important
properties used in Section 4, and show that the matching
dominance is equivalent to the well known usual stochastic
order [18], and hence the dominance verification techniques
developed in [21] can be immediately applied.

3.1 Definition of Matching Dominance
For two objects U and V , we define a dominance match

for U and V as follows.

Definition 2 (Dominance Match). Given two ob-
jects U and V , a dominance match between U and V is de-
noted by MU≺V , which consists of a set of tuples {t <u, v, p>}
where t.u ∈ U , t.v ∈ V , t.u ≺ t.v, and t.p is the prob-
ability mass of the tuples with

∑
t∈MU≺V ∧t.u=u t.p ≤ pu



and
∑

t∈MU≺V ∧t.v=v
t.p ≤ pv. The weight of a dominance

match MU≺V , denoted by P (MU≺V ), is the probability mass
of the tuples in MU≺V , i.e.,

∑
t∈MU≺V

t.p.

Note that according to the above definition, an instance
u ∈ U or an instance v ∈ V may appear in multiple tuples
in MU≺V . But the total probabilities contributed from an
instance u (v) cannot exceed its occurrence probability pu
(pv). Without loss of generality, we assume the object U
(V ) does not have instances with duplicate locations.
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Figure 4: Dominance Match

Example 4. In Figure 4, suppose each instance in A and
C has the occurrence probability 0.25, pb1 = 0.5, pb2 =
0.1 and pb3 = 0.4. Figure 4(a) shows a dominance match
for A and B where an edge from a1 to b1 denotes a tuple
(a1, b1, p) where p is labeled beside the edge. Then MA≺B =
{(a1, b1, 0.25), (a2, b1, 0.25), (a3, b2, 0.1), (a3, b3, 0.15), (a4,
b3, 0.25)} where P (MA≺B) = 1. As an alternative, we may
have another dominance match M2

A≺B in Figure 4(a), where
M2

A≺B = {(a2, b1, 0.25), (a3, b1, 0.20) (a4, b3, 0.20)} where
P (M2

A≺B) = 0.65. Regarding MA≺C in Figure 4(b), there
are three tuples and P (MA≺C) = 0.75.

Bellow, we use the dominance match with the maximum
weight to define the matching dominance probability for U
and V , denoted by Pr(U ≺M V ).

Definition 3 (Matching Dominance Probability).
Given two objects U and V ,

Pr(U ≺M V ) = max
MU≺V ∈M

P (MU≺V ) (6)

whereM represents a set of all possible dominance matches
for U and V .

Clearly, for any two objects U and V , Pr(U ≺M V ) ≤ 1
according to Definition 2 and 3. Following is the definition
of matching dominance operator.

Definition 4 (Matching Dominance Operator).
Given two objects U and V , we say U matching dominates
V , denoted by U ≺M V , if Pr(U ≺M V ) = 1, i.e., there is
a dominance match for U and V with weight 1.

Example 5. In Figure 4(a), we have Pr(A ≺M B) = 1
(i.e., A ≺M B) since we have

∑
t∈MA≺B

t.p = 1. MA≺C in

Figure 4(b) already achieves the maximum weight since a2

matching dominates none of the instances in C, and hence
A 6≺M C.

3.2 Important Properties
In this subsection, we introduce some important proper-

ties of the matching dominance. Specifically, we first show
that matching dominance can guarantee that if an object
U matching dominates another object V , U is not ranked
lower than V regarding any monotonic parameterized rank-
ing function. Then we show that matching dominance is a
strict order over a set of objects. Finally, we introduce two
theorems to provide effective pruning and validation rules.

Monotonic Property. Given two objects U and V , follow-
ing theorem indicates that for any monotonic parameterized
ranking function, we can safely claim that Υ(U) ≥ Υ(V ) if
U ≺M V . The motivation of the proof is that we can decom-
pose the instances of U (V ) into m instances since there is a
dominance match MU≺V with m tuples and

∑m

i=1 ti.p = 1,
so that there is a one-to-one mapping function for U and
V where t.u is mapped to t.v for each t ∈ MU≺V with
pt.u = pt.v and t.u ≺ t.v. We show that, ti.u is always
ranked not lower than ti.v for 1 ≤ i ≤ m, which is intuitive
since f(ti.u) ≥ f(ti.v), then the correctness of the theorem
follows.

Theorem 1. Given two objects U and V , for any mono-
tonic parameterized ranking function PRFω, Υ(U) ≥ Υ(V )
if U ≺M V .

Proof. Since U ≺M V , there is a dominance match
MU≺V with P (MU≺V ) = 1. Let t1, t2, . . ., tm denote m
tuples in MU≺V with

∑m

i=1 t.p = 1. The object U can be
represented by m instances where ui = ti.u and pui = ti.p
for 1 ≤ i ≤ m. Similarly, the object V is represented by
m instances with vi = ti.v and pvi = ti.p (1 ≤ i ≤ m).
Since ui ≺ vi based on the definition of dominance match
(Definition 2), we have f(ui) ≥ f(vi) for 1 ≤ i ≤ l ac-
cording to Lemma 1. For an instance ui ∈ U , Equation 3
can be rewritten as F(ui,x) =

∏
W∈O\{U,V } ρ(W,ui,x) ×

ρ(V, ui, x) ×pui x where ρ(W,ui, x) = 1−PW,ui +PW,ui x
and ρ(V, ui,x) = 1−PV,ui +PV,ui x. Recall that PW,ui and
PV,ui is the probability Pr(Wf > f(ui)) and Pr(Vf > f(ui))
respectively. Similarly, we have F(vi, x) =

∏
W∈O\{U,V }

ρ(W,vi,x)×ρ(U,vi,x)×pvi x. Because f(ui) ≥ f(vi), we
have Pr(Wf > f(ui)) ≤ Pr(Wf > f(vi)) for any object
W ∈ O\{U, V } , i.e., PW,ui ≤ PW,vi . Moreover, as puj = pvj
and f(uj) ≥ f(vj) (1 ≤ i ≤ m), for any instance vj with
f(vj) > f(ui), we have f(uj) > f(vi) since f(ui) ≥ f(vi).
This implies that we have Pr(Vf > f(ui)) ≤ Pr(Uf >
f(vi)), i.e.,PV,ui ≤ PU,vi . Therefore, together with the fact
that pui = pvi , we have

∑
1≤j≤q

cj(U) ≥
∑

1≤j≤q
cj(V ) for

any 1 ≤ q ≤ n, where cq(U) and cq(V ) denote the coefficient
of xq regarding F(ui, x) and F(vi, x) respectively. On the
other hand, we have ω(q) ≥ ω(j) for any q < j as PRFω

is a monotonic function. we have
∑

1≤q≤n
cq(U)ω(q) ≥∑

1≤q≤n
cq(V )ω(q) where n is the total number of objects.

Then we have Υ(ui) ≥ Υ(vi) according to Equation 4. Con-
sequently, the theorem holds since Υ(U) =

∑
1≤i≤m

Υ(ui)

and Υ(V ) =
∑

1≤i≤m
Υ(vi) according to Equation 5.

Transitivity Property. The following theorem indicates
that matching dominance operator has the transitivity prop-
erty.

Theorem 2. For any three objects U , V and W in a set
of objects O, we have that U ≺M V and V ≺M W implies
U ≺M W .



Proof. Since U ≺M V and V ≺M W , there are two
dominance matches MU≺V and MV ≺W with P (MU≺V ) = 1
and P (MV ≺W ) = 1. For a tuple t ∈ MU,V , it can be split
into t1 and t2 with t1.u = t2.u = t.u, t1.v = t2.v = t.v and
t1.p+ t2.p = t.p. Similarly, tuples in MV ≺W can be split as
well, and the operation can be conducted recursively. Since∑

t∈MU≺V
t.p =

∑
t∈MV ≺W

t.p = 1 , we can recursively split

tuples in MU,V and MV ≺W , which results in two new dom-
inance matches M∗

U≺V and M∗
V ≺W with the same number

of tuples m. Moreover, we have t1i .v = t2i .v and t1i .p = t2i .p
for t1i ∈ M∗

U≺V and t2i ∈ M∗
V ≺W where 1 ≤ i ≤ m. Then

we can construct a dominance match MU≺W with m tu-
ples where ti.u = t1i .u, ti.w = t2i .w and ti.p = t1i .p for
t1i ∈M∗

U≺V and t2i ∈M∗
V ≺W . Since t1i .u ≺ t1i .v , t1i .u = t2i .u

and t2i .v ≺ t2i .w for 1 ≤ i ≤ m, we have ti.u ≺ ti.w for
all ti ∈MU≺W . Consequently, MU≺W is a valid dominance
match and P (MU≺W ) = 1. Therefore, U ≺M W holds.

U

V

W

u(U)

u(W)

u(V)

Figure 5: Pruning
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With similar rationale, it is trivial that matching dom-
inance operator also satisfies the irreflexive property (i.e.,
U 6≺M U for any object U ) and asymmetric property (i.e.,
U ≺M V implies V 6≺M U ). Therefore, matching domi-
nance operator is a strict partial order on a set of objects.

Pruning Rule. We first define the mean of an object.

Definition 5 (mean). The mean of an uncertain ob-
ject U , denoted by µ(U), is a point with µ(U).Di =

∑
u∈U

u.Di ×pu. Recall that q.Di denotes the i-th dimensional
coordinate value of a point q.

The following theorem indicates that we can safely claim
an object cannot matching dominate another object simply
based on their mean information.

Theorem 3. Given two objects U and V , we have U 6≺M

V if µ(U) 6≺ µ(V ).

Proof. We show that U ≺M V implies µ(U) ≺ µ(V ).
Given U ≺M V , we have a dominance match MU≺V with
P (MU≺V ) = 1. For each tuple t ∈MU≺V we have t.u ≺ t.v.
Then, we have

∑
t∈MU≺V

t.u.Di×tp ≤
∑

t∈MU≺V
t.v.Di×tp

for any dimension i. This implies that µ(U) ≺ µ(V ) or
µ(U) = µ(V ) according to Definition 5 and the fact that∑

t∈MU≺V
tp = 1. Based on the fact that, for any two points

p and q,
∑

1≤i≤d
p.Di <

∑
1≤i≤d

q.Di if p ≺ q, we have

µ(U) 6= µ(V ). Therefore, the theorem holds.

Example 6. In Figure 5, we have W 6≺M V according
to Theorem 3 since µ(W ) 6≺ µ(V ), i.e., µ(W ) is not in the
shaded region.

Validation Rule. Suppose the minimal bounding boxes
(MBBs) of the uncertain objects are available, we can im-
mediately claim that an object matching dominates another
one simply based on their MBBs.

s

a1 a2

b1 b3b2

a3 a4

t

0.25
0.25 0.25 0.25

0.5
0.1

0.4

Figure 7: The network constructed based on Figure 4(a)

Theorem 4. Given two objects U and V , we have U ≺M

V if U+
mbb ≺ V −

mbb.

Proof. Since U−
mbb � p and p � U+

mbb for an object U
and any point p ∈ Umbb, we have u ≺ v for any u ∈ U
and v ∈ V if U+

mbb ≺ V −
mbb; that is, U fully dominates V as

mentioned in Section 1. Therefore, we can easily come up
with a dominance match MU≺V with P (MU≺V ) = 1.

Example 7. In Figure 6, we have U ≺M V according to
Theorem 4 because U+

mbb ≺ V −
mbb, i.e., V

−
mbb is in the shaded

region.

3.3 Matching Dominance Verification
In this subsection, we show that the calculation of the

matching dominance probability can be converted to the
max-flow problem.

The max-flow problem is to find a feasible flow through a
single-source, single-sink flow network that is maximum. Let
N (E) denote a set of vertices (edges) and G =< N,E > be
a network with s, t ∈ N being source and sink respectively.
The capacity of an edge <u, v> is the maximum amount
of flow that can pass through <u, v>, denoted by cu,v. A
feasible flow g of GU,V maps each edge <u, v> to a non-
negative value gu,v following two constraints: (i) gu,v ≤ cu,v
for each edge <u, v> ∈ E where gu,v is the amount of
flow through edge <u, v> (capacity constraint); (ii) for
each node u ∈ N \ {s, t},

∑
<v,u>∈E

gv,u =
∑

<u,v>∈E
gu,v

(conservation of flows). The max-flow problem is to max-
imize |g| where |g| =

∑
<s,v>∈E

gs,v.

Same as [21], we construct a network GU,V regarding two
objects U and V as follows.

• Vertices s and t for source and sink respectively.

• Each instance u ∈ U contributes a vertex u and an
edge <s,u> with cs,u = pu.

• Each instance v ∈ V contributes a vertex v and an
edge <v, t> with cv,t = pv.

• If u ≺ v for two instances u ∈ U and v ∈ V , there is
an edge <u, v> with cu,v =∞.

Example 8. In Figure 7, we show the network constructed
based on two objects A and B in Figure 4(a). Note that all
instances from A have the occurrence probability 0.25, and
pb1 = 0.5, pb2 = 0.1 and pb3 = 0.4. We label the capacities
of the edges which start from s or end up at t. All other
edges unlabeled have the capacity ∞.

Following theorem indicates that the problem of calculat-
ing the matching dominance probability can be converted to
the max-flow problem.



Theorem 5. Let GU,V be the network constructed based
on two object U and V , we have Pr(U ≺M V ) = |g∗| where
g∗ is a maximum flow in GU,V .

Proof. For presentation simplicity, we use Em to denote
the edges <u, v> ∈ E with u ∈ U and v ∈ V . And the edges
<s, u> for u ∈ U belong to Es, and edges <v, t> for v ∈ V
are assigned to Et.

We first show that Pr(U ≺M V ) ≤ |g∗|. Let MU≺V be
the dominance match with P (MU≺V ) = Pr(U ≺M V ), we
have

∑
t∈MU≺V

t.p = Pr(U ≺M V ). Then we construct

a flow g as follows. For each tuple t ∈ MU≺V , we set
gt.u,t.v = t.p. While gs,u is set to

∑
t∈MU≺V ∧t.u=u tp, and

gv,t is set to
∑

t∈MU≺V ∧t.v=v
tp. Clearly, all vertices ex-

cept s and t satisfy the conservation constraint. The edges
<u, v> ∈ Em always meet the capacity constraint. Since∑

t∈MU≺V ∧t.u=u
t.p ≤ pu according to Definition 2, all edges

from Es satisfy the capacity constraint. With the same argu-
ment, all edges from Et also meet the capacity constraint.
Therefore, g is a feasible flow on the network GU,V , and
hence Pr(U ≺M V ) =

∑
t∈MU≺V

t.p= |g| ≤ |g∗|.

Now we prove that |g∗| ≤ Pr(U ≺M V ). Let g∗ be a max-
imum flow of GU,V , we construct a dominance match MU≺V

as follows. For each edge <u, v> ∈ Em, we build a tuple <u,
v, gu,v>. With similar rationale to the above proof, we can
show that MU≺V is a valid dominance match for U and V
since g∗ satisfies the capacity and conservation constraints.
Therefore, we have |g∗| = P (MU≺V ) ≤ Pr(U ≺M V ).

Based on Theorem 5 and Definition 4, the following the-
orem is immediate.

Theorem 6. Let GU,V be the network constructed based
on two object U and V , we have U ≺M V if and only if
|g∗| = 1 where g∗ is a maximum flow of GU,V .

3.4 Compared with Usual Stochastic Order
As shown in [21], the dominance verification of the usual

stochastic order can also be mapped to the problem of max-
flow with the same network structure, the following theorem
is immediate.

Theorem 7. Given two objects U and V , U matching
dominates V if and only if U dominates V regarding the
usual stochastic order.

In [21], the network GU,V is constructed with the time
complexity O(m2) in the worst case where m is the average
number of instances for each object, the state-of-art tech-
niques for max-flow problem can be applied to check match-
ing dominance operator for two objects U and V . In the
implementation, the open source code from [9] is employed
and the time complexity of the algorithm is O(mc log(c))
where m and c are the number of vertices (i.e., the number
of instances in U and V ) and edges in the network GU,V .

Although the two dominance operators are equivalent to
each other, the matching dominance operator has the fol-
lowing two advantages. Firstly, the definition of matching
dominance is more simple 2 and intuitive. It is unknown if
we can come up with the proof of the monotonic property
of the usual stochastic order without the help of matching

2The definition of the usual stochastic order involves proba-
bilistic computation against a infinite number of lower sets.

dominance operator. Secondly, as discussed in Section 5.2,
the matching dominance probability (i.e., Pr(U ≺M V ))
can naturally capture the extent of the dominance between
two objects, and hence can be used to reduce the size of the
skyline.

4. MDB INDEXING TECHNIQUE
In this section, we introduce the Matching-Dominance

based Band (MDB for short) indexing technique based on
the matching dominance operator, followed by an efficient
index computation algorithm.

4.1 Definition of MDB Index
We formally define the MDB index based on the matching

dominance operator proposed in Section 3.

Definition 6 (MDB Index). Given a set O of uncer-
tain objects, the MDB index of O, denoted by L(O), is a
layer indexing structure where an object U is kept on the
i-th layer of L(O), denoted by Li(O), if it is matching dom-
inated by i− 1 other objects in O.

Theorem below indicates that we can exclude the objects
which do not reside on the first k layers from the top k
candidate objects for any monotonic parameterized ranking
functions. The correctness of Theorem 8 is immediate based
on Theorem 1 since we have k objects {U} with Υ(U) ≥
Υ(V ) if an object V is matching dominated by at least k
other objects in O.

Theorem 8. For any monotonic parameterized ranking
function PRFω, we can exclude an object from the top k
candidates if it is matching dominated by k other objects.

a1 a2

A
B
C
D

b1
b2

c1

c2

d1 d2

Figure 8: MDB Index Example.

Example 9. In Figure 8, suppose O = {A,B,C,D} and
each object has two instances with the same the occurrence
probability 0.5. Since A ≺M C, A ≺M D and B ≺M D, we
have L1(O) = {A,B}, L2(O) = {C} and L3(O) = {D}.

Let K denote the maximum k value used in top k queries,
in practice K is much smaller than the number of objects.
Therefore, we only keep the first K layers of L(O) in our
implementation. As shown in the empirical study, MDB in-
dex can significantly reduce the number of top k candidates
for the top k queries, especially when k is small.

4.2 MDB Algorithm
In this subsection, we introduce an efficient MDB com-

putation algorithm based on the filtering and verification
techniques introduced in Section 3. We assume the MBBs
of the objects are organized by an R-Tree. We also keep
mean information for each entry. Specifically, µ(e) is the
mean of an entry where µ(e).Di = min(µ(U).Di) for all ob-
jects {U} covered by the entry e. Note that a data entry



e corresponds to an object. We use Udom (edom) to record
the number of times U (e) is matching dominated by other
objects.

Algorithm 1: MDB Computation(R)

Input : R ( R-Tree for O )
Output: L(O)
Rt = ∅;1

push root of R into a heap H ;2

while H 6= ∅ do3

e := H.deheap();4

if MD-Check (e, Rt) return false then5

if e is a data entry associated with object U then6

Li(O)← U , where i = edom + 1 ;7

insert µ(U) into Rt;8

else9

Push all child entries of e into H ;10

return L(O)11

Algorithm 1 outlines our implementation of MDB com-
putation. Same as the existing skyline and skyband com-
putation algorithms [13, 21, 15], Algorithm 1 follows the
branch-and-bound searching paradigm. Let SUM(p) denote
the summation of all coordinate values of a point p, i.e.,
SUM(p) =

∑d

i=1 p.Di, a min heap H is used in Algorithm 1
to maintain the entries to be visited and the key of each en-
try is SUM(µ(e)). For each entry e popped from the heap
H (Line 4), the procedure MD-Check conducts matching
dominance verification on the objects within e (Line 5). It
will return true if all objects within e (intermediate entry)
or the object associated with e (data entry) are matching
dominated by more than K − 1 other objects. Details of
MD-Check will be introduced in Algorithm 2. If an entry
e survives the dominance check and e corresponds to an ob-
ject U , Line 7 assigns U to its corresponding layer in L(O)
according to its matching dominance count Udom (i.e.,edom).
Note that, according to Theorem 3 and the definition of
µ(e), an object U cannot be matching dominated by any
objects within an entry e with SUM(µ(e)) ≥ SUM(µ(U)),
and hence Udom will not increase once U is processed. Mean-
while, we also insert the point µ(U) into an in-memory R-
Tree Rt at Line 8, which is used for pruning purpose in
Algorithm 2. If e is an intermediate entry which survives
the dominance check, we need to expand e in Line 10 and
put its child entries into the heap H for further processing.
The algorithm terminates when the heap H is empty, and
L(O) is constructed.

How to efficiently calculate thematching dominance count
of an object is the key issue in Algorithm 1. In Algorithm 2,
we illustrate the detailed implementation of MD-Check.
The validation rule (Theorem 4 in Section 3.2) can be im-
mediately extended to intermediate entries; that is, we have
U ≺M V for all objects {V } in the entry e if U+

mbb ≺ e−mbb.
Therefore, we do not need to access objects within e if the
lower corner of its MBB (i.e., e−mbb) is dominated by the up-
per corners of K other objects in Rt (Lines 1-5). Lines 7-16
conduct dominance check against the object U if e is a data
entry and V is the object associated with e. At Line 8, we
apply the pruning rule (Theorem 3 in Section 3.2) to re-
trieve the objects which may matching dominate objects in
e. For each object U in candidate objects set C, Line 10

Algorithm 2: MD-Check( e, Rt )

Input : e: an intermediate or data entry of R-Tree
Rt: R-Tree for survived objects seen so far

Output: if objects in e are matching dominated by
more than K − 1 objects

if e is an intermediate entry then1

if there are K objects {U} in Rt such that2

U+
mbb ≺ e−mbb (validation rule) then
return true3

else4

return false5

else6

V ← the object associated the with e ;7

C ← objects U ∈ Rt with µ(U) ≺ µ(V ) (pruning8

rule) ;
for any object U in C do9

if U+
mbb ≺ e−mbb (validation rule) then10

edom := edom + 1 ;11

else12

if U ≺M V then13

edom := edom + 1 ;14

if edom ≥ K then15

return true16

return false17

claims U ≺M V if U+
mbb ≺ V −

mbb (validation rule). Other-
wise, Line 13 will conduct the max-flow computation based
dominance check proposed in Section 3.3.

Utilizing Transitivity Property. We can further speed
up the computation by utilizing the transitivity property
of the matching dominance operator (Theorem 2 in Sec-
tion 3.2). Besides the dominance count, we also keep a
dominance list for each object U in L(O), which keeps the
objects {W } with W ≺M U . According to the transitiv-
ity property of matching dominance, we have W ≺M V if
U ≺M V . This implies that we can avoid the dominance
verification for W and V if U ≺M V , and hence signifi-
cantly reduce the computational cost especially when K is
large. It is interesting to investigate the access order of ob-
jects in C at Line 9. In the implementation, we calculate the
manhattan distance between µ(U) and µ(V ) and the object
U with the smallest distance will be accessed first. This
is called MD access order in this paper, and the empirical
study shows this method is useful since it can increase the
chance of applying transitivity property.

MDB Index Maintenance. We can dynamically main-
tain the MDB index based on the techniques in Algorithm 2.
Specifically, when a new object U arrives, the dominance
count of U can be calculated by invokingMD-Check(U,Rt).
According to Theorem 3, only objects {V } with µ(V ) ≺
µ(U) (e.g., objects with means located in R1 in Figure 9)
may increase Udom. Meanwhile, the dominance count of
some objects may be increased by one due to the arrival of
U . Only objects {W } with µ(U) ≺ µ(W ) (e.g., objects with
means located in R2 in Figure 9) need to be checked. The
object U and other objects with updated dominance counts
will be put to their corresponding layers. The deletion of an
object can be processed in a similar way. Note that we only



need to decrease the dominance counts of the objects which
are matching dominated by U , and then update L(O).

U
u(U)

R1

R2

Figure 9: Update

5. EXTENSIONS
This section discusses the possible extensions of ourmatch-

ing dominance operator proposed in the paper.

5.1 Continuous PDFs
In some applications, the uncertainty of the data might

be described by continuous probabilistic density functions
(PDFs). We can still check the matching dominance oper-
ator by partitioning the PDF into a set of instances where
each instance u is associated with a hyper-cube umbb, in-
stead of a point in the discrete case. To verify if U ≺M V
for two objects U and V , we can construct a network GU,V

in the same way with discrete case (Section 3.3) except that
an instance u cannot be mapped to another instance v un-
less umbb fully dominates vmbb, i.e., u

+
mbb ≺ v−mbb. Clearly,

we can immediately claim that U ≺M V if a maximum flow
g∗ with |g∗| = 1 is detected. Nevertheless, we cannot claim
U 6≺M V since we may come up with a network G′

U,V with
|g∗| = 1 if we further partition the instances. In practice,
we can discretize the distributions to an approximate level
of granularity, and claim that U 6≺M V if we cannot find a
maximum flow g∗ with |g∗| = 1. This may push some ob-
jects to higher layers and hence leads to a larger candidate
size in the top k query, but we will not miss any true top k
objects.

5.2 Probabilistic Matching Dominance based
Skyline

In some scenarios, instead of enforcing the matching dom-
inance (i.e., the usual stochastic order) users may relax the
dominance condition to reduce the number of skyline objects
retrieved for a concise result; that is, we may claim an ob-
ject U dominates another object V if U is likely to be ranked
higher than V in most of the functions in F . It is very na-
ture to use the matching dominance probability to control
the extent of the dominance. Given a probabilistic threshold
θ with 0.5 < θ ≤ 1, we say an object U θ-dominates V if
Pr(U ≺M V ) ≥ θ. The θ-skyline is a set of objects which are
not θ-dominated by any other objects, which corresponds to
the stochastic skyline in [21] when θ = 1.

Following theorem is immediate based on the above defi-
nition.

Theorem 9. Let Sθ(O) denote the θ-skyline of a set O
of objects, for any θ1 < θ2 we have Sθ1(O) ⊆ Sθ2(O).

Theorem 9 indicates that users can make the trade-off
between the size of θ-skyline objects and the strength of the

dominance condition by tuning the θ value (i.e., matching
dominance probability).

6. PERFORMANCE EVALUATION
We present results of a comprehensive performance study

to evaluate the efficiency and effectiveness of the proposed
techniques in this paper.

Algorithms. We implement and evaluate the following
techniques for MDB construction.

• MDB: the MDB computation algorithm proposed in
Section 4.

• MDB-NF: MDB without pruning rule (Theorem 3
in Section 3.2).

• MDB-NT: MDB without utilizing transitivity prop-
erty (Theorem 2 in Section 3.2).

• MDB-NO: MDB without utilizing Manhattan Dis-
tance (MD) access order, i.e., objects are randomly
chosen from C at Line 9 of Algorithm 2.

Remark 1. Note that, since the matching dominance op-
erator is equivalent to the usual stochastic order, the stochas-
tic skyline computation techniques in [21] can be immediately
used for the skyline computation against matching domi-
nance operator. In the experiments, we focus on the MDB
technique which can be regarded as a general case of skyline
computation.

Remark 2. As discussed in [21] and Section 1, the P-
domination [1] and probabilistic dominance [16, 2] do not
have the monotonic property for the uncertain objects with
multiple instances, and hence they cannot be used as the
dominance operator for MDB.

Datasets. Three real datasets, HOUSE, CA and USA, are
employed to represent the centers of the uncertain objects.
There are 127, 932 3-dimensional points (records) in dataset
HOUSE which is available at http://www.ipums.org, and
each record represents the percentage of an American fam-
ily’s annual income spent on 3 types of expenditures. CA
and USA are 2-dimension spatial datasets representing 62K
and 221K locations in California and United States respec-
tively, which are available at http://www.census.gov/geo/
www/tiger. By using methodologies in [3], we also generate
synthetic data for centers of uncertain objects following the
anti-correlated (A for short), correlated (C ) or independent
(E ) distribution. We use independent (E ) as the default
distribution for objects’ centers. The dimensionality of the
synthetic data varies from 2 to 5 with default value 3. And
the number of uncertain objects grows from 20K to 100K
with default value 100K. All dimensions are normalized to
domain [0, 10000].

The minimal bounding box (MBB) of an uncertain object
is a hyper-cube with expected length h varying from 50 to
400 with default value 200. For a given h, the lengths of the
objects are randomly chosen between 0 and 2× h. Suppose
the instance of an object is described by m instances which
follow two popular distributions Normal (N for short) and
Uniform (U ), where the expected m varies from 20 to 100
with default value 40. Note that, the total number of in-
stances in the default dataset is 100K×40 = 4 million, and



Notation Definition (Default Values)
h avg. MBB length (200)
n the number of objects (100K)
m avg. number of instances of

each object(40)
d dimensionality (3)
K maximal number of layers in L(O) (40)

Table 2: System Parameters

it reaches 10 million when the number of instances is set
to 100. Given m, the number of instances for each object
uniformly distributes between 0 and 2m, and instances in
the same object have the same occurrence probability. The
Normal distribution serves as default instance distribution
with standard deviation h

2
.

All algorithms proposed in the paper are implemented in
standard C++ with STL library support and compiled with
GNU GCC. Experiments are conducted on a PC with In-
tel Xeon 2.4GHz dual CPU and 4G memory under Debian
Linux. In our implementation, MBBs of the uncertain ob-
jects are indexed by an R-Tree with page size 4096 bytes
where the mean values of the R-Tree entries are also kept.
The instances of an object are kept by an individual file.
The number of layers in the MDB index (L(O)) ranges from
20 to 100 with default value 40.

Table 2 lists parameters which may potentially have an
impact on our performance study. In the experiments, all
parameters use default values unless otherwise specified.

6.1 Evaluate MDB Computation
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Figure 10: Effectiveness and Memory Usage
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Figure 11: Different Datasets

In the first set of experiments, we evaluate the effective-
ness of the pruning rule (Theorem 3), transitivity property
(Theorem 2) and MD order3. Figure 10(a) illustrates the
processing time of MDB, MDB-NF, MDB-NT and MDB-
NO on HOUSE dataset where K varies from 20 to 100. It

3The advantage of validation rule (Theorem 4) is obvious
and hence we do not evaluate the MDB without the valida-
tion rule.

is reported that three techniques (pruning rule, transitiv-
ity property and MD access order) make remarkable contri-
butions to the index construction efficiency, especially the
transitivity property. Figure 10(b) reports the use of main
memory in MDB and MDB-NT. As expected, the memory
space used by MDB grows faster than that of MDB-NT be-
cause we need to maintain dominance lists for objects in
L(O) where the sizes of the dominance lists may grow lin-
early with K. Nevertheless, the trend is not obvious since
we only keep the identifications of the objects and there are
at most K elements in each list. On the other hand, as
shown in Figure 10(a), the gain of the transitivity property
is significant especially when K is large.
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Figure 12: The effect of K

We evaluate the performance of MDB and MDB-NT against
datasets C-N, C-U, E-N, E-U, A-N, A-U, CA, USA and
HOUSE in Figure 12 where C-N denotes the 3 dimensional
synthetic data whose centers and instances follow the Correlated
and Normal distributions respectively, and similar defini-
tions go to C-U, E-N, E-U, A-N and A-U. It is observed that
the distribution of the instances (N and U ) does not notice-
ably affect performance of the algorithms. On the other
side, both algorithms are very sensitive to the distribution
of the object centers because, as reported in experiments
in Section 6.2, the distributions of the centers have a great
impact on the size of L(O). As expected, MDB always out-
performs MDB-NT since the former can take advantage of
the transitivity property. Consequently, we only evaluate the
performance of MDB in the following experiments.

Figure 12 investigates the impact of K (i.e., the number
of layers constructed for L(O)) on the performance of MDB
where datasets C-N, E-N, A-N, CA, USA and HOUSE are
evaluated. The construction time and I/O costs are reported
in Figure 12(a) and 12(b) respectively. As expected, the
performance of MDB degrades against the growth of K since
the number of objects in MDB increases.

We further investigate the impact of the edge length (h),
the number of objects (n), the number of instances (m)
and the dimensionality (d) against the performance of MDB
where three datasets A-N, E-N and C-N are deployed. Fig-
ure 13 shows that the processing time of MDB increases with
the growth of h, n, m and d, and dimensionality (d) has the
greatest impact compared with other parameters.

6.2 Evaluate Effectiveness of MDB
In this subsection we evaluate the query performance of

MDB by reporting the number of top k candidate objects
(i.e.,

⋃
1≤i≤k

Li(O)) and k varies from 1 to 100 with default
value 40. Besides the matching dominance based layer in-
dex, we also evaluate another layer index, namely FDB,
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based on the fully dominance operator described in Sec-
tion 1.

Figure 14 evaluates the effectiveness of MDB and FDB
indexing techniques against dataset C-N, C-U, E-N, E-U,
A-N, A-U, CA, USA and HOUSE, by measuring the num-
ber of candidate objects for top k query with k = 40. It
is shown that MDB is much more effective than FDB since
the candidate size of MDB is significantly smaller than that
of FDB on all datasets. This is because the condition of
full dominance is strict compared with matching dominance.
Moreover, the candidate sizes of both index techniques are
sensitive to the center distributions, where the worst perfor-
mance comes from the anti-correlated data.
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Figure 15: The effect of k

We evaluate the impact of k on HOUSE dataset where k
varies from 1 to 100. Figure 15 reports the number of candi-
date objects for top k query (i.e., the size of

⋃
1≤i≤k

Li(O))

as well as the number of objects at the k-th layer (i.e., the
size of Lk(O)). As expected, Figure 15(a) shows that the
number of candidates increases against k. Nevertheless, the

growth rate gradually slows down when k increases because,
as shown in Figure 15(b), the size of Li(O) decreases against
k. Similar trend is observed for FDB index.
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Figure 16: Impact of Diff. Parameters

Figure 16 investigates the impact of the edge length (h),
the number of objects (n), the number of instances (m) and
the dimensionality (d) against the performance of MDB and
FDB where the default dataset (3 dimensional E-N) is de-
ployed. It is shown that both methods are sensitive to the
dimensionality (Figure 16(d)), and the number of instances
(m) does not have noticeably affect (Figure 16(c)) on the size
of both indexes. Figure 16(a) and Figure 16(b) report that
MDB is much more scalable than FDB towards the growth
of h and n. MDB beats FDB by a huge margin when h and
n is large.
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Figure 17: Top k Query Response Time

Although the top k candidate size and construction time
which are independent of the specific scoring and parame-
terized ranking functions, we also implement a specific pa-
rameterized ranking function to show that the layer index-
ing based on matching dominance operator can significantly
improve the performance. Specifically, we use PRFω with
ω(i) = −i. This corresponds to the expected rank based
ranking approach [6], named ER, which is a simple and
popular ranking approach. As to the scoring function, we
adapt the linear function f(p) =

∑d

i=1−ai × p.Di where
ai is randomly chosen from [0, 1]. In the last set of exper-
iments, we evaluate the performance of ER algorithm (the
expected rank based algorithm [6]) combined with MDB and
FDB indexing techniques, denoted by MDB-ER and FDB-
ER respectively. Figure 17(a) and Figure 17(b) report the
average query response time of 1, 000 top k queries against
HOUSE dataset and the default dataset (3 dimensional E-
N) respectively, which further confirms the effectiveness of



matching dominance operator since less objects are loaded
for the rank computation.

7. RELATED WORK
In this section, we introduce the existing works which are

closely related to the paper.

7.1 Layer indexing technique
Top k query processing is a very active research area and

various novel techniques have been developed. Many effi-
cient index techniques have been proposed to pre-compute
and organize the candidate set based on the geometric prop-
erties of the convex and dominance relation, such as Onion [4]
and Skyband [15, 14, 23]. However, these layer indexing
techniques cannot be directly applied to top k query on un-
certain objects due to the inherent difference between certain
and uncertain objects.

7.2 Ranking uncertain Objects
In recent years, the inherent uncertainty of data in many

applications leads to the emergence of many uncertain database
models ([7, 19, 17]) most of which are developed based on
either tuple-level or attribute-level uncertainty. In this pa-
per, we model the uncertain data on attribute-level. A large
amount of work has been dedicated to top-k queries with
different semantics such as U-topk[20], U-kranks [20], PT-
k [10], Global-top k [22] rank, expected rank [6], c-Typical-
Topk [8], and parameterized ranking function based top k [11].
Particularly, as shown in [11] the parameterized ranking func-
tion can unify other popular ranking semantics. The ranking
of multi-dimensional uncertain objects for a given scoring
function is studied in [12] and the U-topk [20] semantics is
adapted for ranking.

7.3 Skyline Computation On uncertain Objects
Probabilistic skyline on uncertain data is first tackled in [16,

2]. Efficient techniques are proposed following the bounding-
pruning-refining framework. Recently, the P-domination is
proposed by Bartolini et al. [1] to capture the dominance
among uncertain objects. However, it is defined base on the
tuple-level uncertain object model and the ranking function
is the expected rank [6] which is a special case of parame-
terized ranking function. The stochastic order based sky-
line computation for multi-dimensional uncertain objects is
investigated in [13, 21]. The stochastic order can define
the dominance relation between two uncertain objects with
multiple instances, but objects are ranked by their expected
scores and existing ranking functions for uncertain objects
are not considered in [13, 21].

8. CONCLUSION
The dominance operator is fundamental in multi-criteria

decision making applications. Although a variety of works
have studied the semantics of ranking query on uncertain ob-
jects, there is no investigation on the semantics of dominance
on multi-dimensional uncertain objects regarding these rank-
ing approaches. This paper aims to fill this gap by intro-
ducing a novel matching dominance operator so that the
new dominance operator holds the monotonic property for
any monotonic parameterized ranking function, which can
unify the popular ranking approaches proposed in the lit-
erature. We further develop effective layer indexing tech-
nique, namely MDB index, to facilitate the top k queries

on multi-dimensional uncertain objects. Our comprehensive
experiments demonstrate the effectiveness and efficiency of
our techniques proposed in the paper.
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