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Abstract. Given a set of users U , a set of facilities F , and a query
facility q, a reverse nearest neighbors (RNN) query retrieves every user
u for which q is its closest facility. Since q is the closest facility of u,
the user u is said to be influenced by q. In this paper, we propose a
relaxed definition of influence where a user u is said to be influenced by
not only its closest facility but also every other facility that is almost as
close to u as its closest facility is. Based on this definition of influence,
we propose relaxed reverse nearest neighbors (RRNN) queries. Formally,
given a value of x > 1, an RRNN query q returns every user u for which
dist(u, q) ≤ x × NNDist(u) where NNDist(u) denotes the distance
between a user u and its nearest facility. Based on effective pruning
techniques and several non-trivial observations, we propose an efficient
RRNN query processing algorithm. Our extensive experimental study
conducted on several real and synthetic data sets demonstrates that our
algorithm is several orders of magnitude better than a näıve algorithm
as well as a significantly improved version of the näıve algorithm.

1 Introduction

People usually prefer the facilities in their vicinity. Hence, they are influenced by
nearby facilities. A reverse nearest neighbors (RNN) query [1–4] aims at finding
every user that is influenced by a query facility q. Formally, given a set of users
U , a set of facilities F and a query facility q, an RNN query returns every user
u ∈ U for which the query facility q is its closest facility. The set containing
RNNs, denoted as RNN(q), is also called the influence set of q.

Consider the example of Fig. 1 that shows four McDonald’s restaurants (f1
to f4) and three users (u1 to u3). In the context of RNN queries, the users u2 and
u3 are both influenced by f1 because f1 is their closest McDonald’s. Therefore,
u2 and u3 are the RNNs of f1, i.e., RNN(f1) = {u2, u3}. Similarly, it can be
confirmed that RNN(f2) = ∅, RNN(f3) = ∅, RNN(f4) = {u1}.

A reverse k nearest neighbors (RkNN) query [5–10] is a natural extension
of the RNN query and uses a relaxed notion of influence. Specifically, in the
context of an RkNN query, a user u is considered to be influenced by its k closest
facilities. Hence, an RkNN query q returns every user u ∈ U for which q is among
its k closest facilities. In the example of Fig. 1, assuming k = 2, R2NN(f2) =
{u1, u2, u3} because f2 is one of the two closest facilities for all of the three users.
Similarly, R2NN(f1) = {u2, u3}, R2NN(f3) = ∅ and R2NN(f4) = {u1}.



Fig. 1. Illustration of the reverse nearest neighbor query and its variants

RkNN queries have numerous applications [1] in location based services, re-
source allocation, profile-based management, decision support etc. Consider the
example of a supermarket. The people for which this supermarket is one of the
k closest supermarkets are its potential customers and may be influenced by
targeted marketing or special deals. Due to its significance, RNN queries and its
variants have received significant research attention in the past decade (see [6]
for a survey).

In this paper, we propose an alternative definition of influence and propose a
variant of RNN queries called relaxed reverse nearest neighbors (RRNN) query.
This definition is motivated by our observation that an RkNN query may not
properly capture the notion of influence as explained below.

1.1 Motivation

Consider the example of a person living in a suburban area (e.g., u2 in Fig. 1)
who does not have any McDonald’s nearby. Her nearest McDonald’s is f1 which
is say 30 Km from her location. In the context of R2NN query, u2 is influenced
by f1 and f2 – her two nearest facilities. However, we argue that it is also
influenced by f3 because a user who needs to travel a minimum of 30 Km to
visit a McDonald’s may also be willing to travel to a McDonald’s store 31 Km
far from her location.

Similarly, consider the example of another person living in a suburb (e.g.,
u1 in Fig. 1) who has only one McDonald’s nearby (f4) assuming that all other
McDonald’s (e.g., f1 to f3) are in downtown area and are quite far. In the context
of R2NN queries, the user u1 is considered to be influenced by both f4 and f2
because these are her two closest facilities. However, we argue that the user u1
is only influenced by f4 because the other facilities are significantly farther than
dist(u1, f4), e.g., a user who has a McDonald’s within 1 Km is not very likely to
visit a McDonald’s that is say 30 Km from her location.

As shown above, the definition of influence used in RkNN queries considers
only the relative ordering of the facilities based on their distances from u and
ignores the actual distances of the facilities from u. Motivated by this, in this
paper, we propose a relaxed reverse nearest neighbors (RRNN) query that relaxes
the definition of influence using a parameter x (called the x factor in this paper)
and considers the relative distances between the users and the facilities.

Definition 1. Let NNdist(u) denote the distance between u and its nearest
facility. Given a value of x > 1, a user u is said to be influenced by a facility f ,
if dist(u, f) ≤ x×NNdist(u).



Relaxed Reverse Nearest Neighbors (RRNN) query. Given a value of x >
1, an RRNN query q returns every user u for which dist(u, q) ≤ x×NNdist(u),
i.e., return every user u that is influenced by q according to Definition 1. The
set of RRNNs of a query q is denoted as RRNNx(q). Note that an RRNN query
is the same as an RNN query if x = 1.

In the example of Fig. 1, assuming x = 1.2, RRNN of f2 are the users
u2 and u3, i.e., RRNN1.2(f2) = {u2, u3}. Similarly, RRNN1.2(f1) = {u2, u3},
RRNN1.2(f3) = {u2} and RRNN1.2(f4) = {u1}.

Remark. RkNN queries and RRNN queries assume that the distance is the main
factor influencing a user. This assumption holds in many real world scenarios.
For instance, the users looking for nearby fuel stations are usually not concerned
about price (or even rating) because all fuel stations have similar price (or even
the same price because, in some countries, the fuel prices are regulated by the
government). Similarly, users interested in McDonald’s restaurants are mainly
influenced by the distance because other attributes such as price, menu, and
ratings are the same for all stores. Nevertheless, in the case where the users
are influenced by other attributes, reverse top-k queries [11, 12] can be used to
compute the influence using a scoring function involving multiple attributes such
as distance, price, and rating. This is a different line of research and is not within
the scope of this paper.

1.2 Contributions

We make the following contributions in this paper.

1. We complement the RkNN queries by proposing a new definition of influence
that uses the x factor to provide more meaningful results by considering the
relative distances between the users and the facilities.

2. As we show in Section 3, the pruning techniques used to solve RkNN queries
cannot be applied or extended for RRNN queries. This is mainly because, in our
problem settings, a facility f may not be able to prune the users that are quite
far from f (see Section 3 for details). Based on several non-trivial observations,
we propose efficient pruning techniques that are proven to be tight, i.e., given
a facility f used for pruning, the pruning techniques guarantee to prune every
point that can be pruned by f . We then propose an efficient algorithm that
utilizes these pruning techniques to efficiently compute the RRNNs.

3. We conduct an extensive experimental study on three real data sets and
several synthetic data sets to show the effectiveness of our proposed techniques.
Since existing techniques cannot be extended to answer RRNN queries, we com-
pare our algorithm with a näıve algorithm (called RQ) as well as a significantly
improved version of RQ (called IRQ). The experimental results show that our
algorithm is several orders of magnitude better than both of the competitors.
Furthermore, we note that the results of an RRNN query are the same as the
RkNN (k = 1) query when x is quite close to 1. Therefore, we also compare our
algorithm (by setting x = 1 + 10−0.6) with the most notable RNN algorithms.



Although our algorithm solves a more challenging version of the problem, our
experiments show that it performs reasonably well compared to RNN algorithms.

The rest of the paper is organized as follows. We present the problem defini-
tion and an overview of the related work in Section 2. The pruning techniques
are discussed in Section 3. Section 4 describes our algorithm to solve RRNN
queries. An extensive experimental study is provided in Section 5 followed by
conclusions and directions for future work in Section 6.

2 Preliminaries

2.1 Problem Definition

Similar to RkNN queries, RRNN queries can also be classified into bichromatic
RRNN queries and monochromatic RRNN queries.

Bichromatic RRNN query. Given a set of users U , a set of facilities F ,
a query facility q (which may or may not be in F ), and a value of x > 1,
a bichromatic RRNN query returns every user u ∈ U for which dist(u, q) ≤
x×NNdist(u) where NNDist(u) denotes the distance between u and its nearest
facility in F .

Monochromatic RRNN query. Given a set of facilities F , a query facility
q (which may or may not be in F ), and a value of x > 1, a monochromatic RRNN
query returns every facility f ∈ F for which dist(f, q) ≤ x ×NNdist(f) where
NNDist(f) denotes the distance between f and its nearest facility in {F − f}.

In Fig. 1, the monochromatic RRNNs of f2 (assuming x = 1.5) are f1 and
f3. Monochromatic queries aim at finding the facilities that are influenced by
the query facility. Consider a set of police stations. For a given police station q,
a monochromatic query returns the police stations for which q is a nearby police
station. Such police stations may seek assistance (e.g., extra policemen) from q
in case of an emergency event.

Although our techniques can be easily applied to monochromatic RRNN
queries, in this paper, we focus on bichromatic RRNN queries because the bichro-
matic version has more applications in real world scenarios. Similar to the exist-
ing work on RNN queries, we assume that both the facility and user data sets
are indexed by R*-tree [13]. The R*-tree that indexes the set of facilities (resp.
users) is called facility (resp. user) R*-tree. Since most of the applications of the
RNN query and its variants are in location-based services, similar to the existing
RNN algorithms [6], the focus of this paper is on two dimensional location data.

2.2 Related Work

The RkNN query has been extensively studied [3, 14, 15, 2, 7, 5, 16, 17, 4, 8, 9, 18,
19, 10] ever since it was introduced in [1]. Below, we briefly describe two widely
used pruning strategies.
Half-space based pruning [5]. A perpendicular bisector between a facility f
and a query q divides the whole space into two halves. Let Hf :q denote the half-
space that contains f and Hq:f be the half-space that contains q. A user u that



lies in Hf :q cannot be the RNN of q because dist(u, f) < dist(u, q). Consider
the example of Fig. 2, where the half-space Ha:q is the shaded area. The users
u1 and u2 cannot be the RNN of q because they lie in Ha:q. This observation
can be extended for RkNN queries. Specifically, a user u cannot be the RkNN
of q if it lies in at least k such half-spaces. In Fig. 2, assuming k = 2, the user u2
cannot be R2NN of q because it lies in Ha:q and Hb:q. In other words, the area
Ha:q ∩Hb:q (the dark shaded area) can be pruned.

Six-regions based pruning [2]. In six-regions based pruning approach, the
space around q is divided into six equal regions of 60◦ each (see P1 to P6 in Fig. 3).
Let dki be the distance between q and its k-th nearest facility in a partition Pi.
It can be proved that a user u lying in a partition Pi cannot be the RkNN of
q if dist(u, q) > dki . Based on this observation, the k-th nearest facility in each
partition Pi is found and the distance dki is used to prune the search space. For
instance, in Fig. 3, the shaded area can be pruned if k = 1, i.e., the users u1 and
u2 are pruned.

Fig. 2. Half-space pruning Fig. 3. Six-regions pruning Fig. 4. Challenges

It has been shown [5] that the half-space based approach prunes more area
than the six-regions based pruning. However, the advantage of the six-regions
based pruning is that it is computationally less expensive. Six-region [2] and
Slice [10] are the most notable algorithms that use six-regions based pruning
whereas TPL [5], FINCH [20], InfZone [8, 21], and TPL++ [6] are some of the
remarkable algorithms that employ half-space based pruning. The details of these
algorithms can be found in a recent survey paper [6].

To the best of our knowledge, none of the existing algorithms can be applied
or trivially extended to answer RRNN queries studied in this paper. The idea of
relative distances has been discussed in [22] in the context of k nearest neighbors
queries. However, this is a survey study and a solution was not proposed.

3 Pruning Techniques

Given a facility f , a user u cannot be the RRNN of q if dist(u, q) > x×dist(u, f).
In such case, we say that the facility f prunes the user u. In this section, we will
present the pruning techniques that use a facility f or an MBR of the facility
R*-tree to prune the users. First, we highlight the challenges.



3.1 Challenges

Existing pruning techniques cannot be applied or extended for the RRNN queries
due to the unique challenges involved. For instance, the algorithms to solve
RkNN queries can prune most of the search space by considering only the nearby
facilities surrounding q. Consider the example of Fig. 4 where the six-regions
approach finds the nearest facility to the query q in each of the six partitions
and the shaded area can be pruned.

However, in the case of RRNN queries, the nearby facilities surrounding the
query q are not sufficient to prune a large part of the search space. Assuming
x = 2, in partition P3 (see Fig. 4), while the user u1 can be pruned by f the
user u2 cannot be pruned by f . In other words, the users that are further from
a facility f are less likely to be pruned by it.

In Fig. 4, assuming x = 2, the six shaded circles show the maximum possible
area that can be pruned by the six facilities a to f (the details on how to compute
the circles will be presented later). Note that the facilities that are close to q
prune a smaller area as compared to the farther facilities. Hence, the algorithm
needs to access not only nearby facilities but also farther facilities to prune a
large part of the search space. Also, note that RRNN queries are more challenging
because the maximum area that can be pruned is significantly smaller.

In Section 3.2, we present the pruning techniques that prune the space using
a data point, i.e. a facility f . In Section 3.3, we present the techniques to prune
the space using an MBR of the facility R*-tree. Efficient implementation of the
pruning techniques is discussed in Section 3.4.

3.2 Pruning using a facility point

Before we present our non-trivial pruning technique, we present the definition
of a pruning circle.

Definition 2 (Pruning circle). Given a query q, a multiplication factor x > 1
and a point p, the pruning circle of p (denoted as Cp) is a circle centered at c

with radius r where r = x·dist(q,p)
x2−1 and c is on the line passing through q and p

such that dist(q, c) > dist(p, c) and dist(q, c) = x2·dist(q,p)
x2−1 .

Consider the example of Fig. 5 that shows the pruning circle Cf of a facility
f assuming x = 2. The centre of c is located on the line passing through q and f

such that dist(q, c) = 4·dist(q,f)
3 , dist(q, c) > dist(f, c) and radius r = 2·dist(q,f)

3 .
The condition dist(q, c) > dist(f, c) ensures that c lies towards f on the line
passing through q and f , i.e., f lies between the points c and q as shown in
Fig. 5. Next, we introduce our first pruning rule in Lemma 1.

Lemma 1. Every user u that lies in the pruning circle Cf of a facility f cannot
be the RRNN of q, i.e., dist(u, q) > x× dist(u, f).



Fig. 5. Lemma 1 Fig. 6. Lemma 3 Fig. 7. Pruning using MBR

Proof. Given two points v and w, we use vw to denote dist(v, w). Consider the
example of Fig. 5. Since u is inside the circle Cf , uc < r. Assume that uc = n · r
where 0 ≤ n < 1. Since r = x·qf

x2−1 , we have uc = n · r = n · x·qf
x2−1 .

Considering the triangle4quc, qu =
√

(qc)2 + (uc)2 − 2 · uc · qc · cos θ. Since

uc = n · x·qf
x2−1 and qc = x2.qf

x2−1 , we have

qu =

√
(
x2 · qf
x2 − 1

)2 + n2(
x · qf
x2 − 1

)2 − 2n(
x · qf
x2 − 1

)(
x2 · qf
x2 − 1

) · cos θ

=

√
(
x · qf
x2 − 1

)2(x2 + n2 − 2 · x · n · cos θ)

= (
x · qf
x2 − 1

)
√
x2 + n2 − 2xn cos θ

(1)

Similarly considering 4fcu, fu =
√

(fc)2 + (uc)2 − 2 · uc · fc · cos θ. Since

fc = qc− qf and qc = x2.qf
x2−1 , we get fc = qf

x2−1 . We can obtain the value of fu

by replacing the values of fc and uc.

fu =

√
(

qf

x2 − 1
)2 + n2(

x · qf
x2 − 1

)2 − 2 · n(
x · qf
x2 − 1

) · ( qf

x2 − 1
) · cos θ

= (
qf

x2 − 1
)
√

1 + n2x2 − 2nx cos θ

(2)

Note that the user u can be pruned if dist(u, q) > x× dist(u, f). Therefore,
we need to show qu− x · fu > 0. The left side of this inequality can be obtained
using the values of qu and fu from Eq. (1) and Eq. (2), respectively.

qu− x · fu =
x.qf

x2 − 1
(
√
x2 + n2 − 2xn cos θ −

√
1 + x2n2 − 2xn cos θ ) (3)

Since x > 1, ( x.qf
x2−1 ) is always positive. Hence, we just need to prove that

(
√
x2 + n2 − 2xn cos θ −

√
1 + x2n2 − 2xn cos θ > 0. In other words, we need to



show (
√
x2 + n2 − 2xn cos θ >

√
1 + x2n2 − 2xn cos θ. Note that both sides of

this inequality are positive (otherwise qu and fu in Eq. (1) and Eq. (2) would
be negative which is not possible). Hence, we can take the square of both sides
resulting in x2 + n2 − 2xn cos θ > 1 + x2n2 − 2xn cos θ which implies that we
need to prove (x2 + n2 − x2n2 − 1) > 0. This inequality can be simplified as
(x2−1)(1−n2) > 0. Since x > 1 and n < 1, it is easy to see that (x2−1)(1−n2) >
0 which completes the proof. ut

Note that although the pruning technique itself is non-trivial, applying this
pruning rule is not expensive, i.e., to check whether a user u can be pruned or
not, we only need to compute its distance from the centre c and compare it with
the radius r. Next, we show that this pruning rule is tight in the sense that any
user u′ that lies outside Cf is guaranteed not to be pruned by the facility f .

Lemma 2. Given a facility f and a user u′ that lies on or outside its pruning
circle Cf , then dist(u′, q) ≤ x× dist(u′, f), i.e. u′ cannot be pruned by f .

Proof. Consider the user u′ in Fig. 5. Since u′ is on or outside the pruning
circle, it satisfies u′c = n · r, where n ≥ 1. The proof is similar to the proof of
Lemma 1 except that we need to show that u′q − x.fu′ ≤ 0, i.e., we need to
show (x2 − 1)(1− n2) ≤ 0 which is obvious given that x > 1 and n ≥ 1. ut

Note that the pruning circle Cf is larger if dist(q, f) is larger which implies
that the facilities that are farther from the query prune larger area. For instance,
in Fig. 6, the pruning circle Cb is bigger than the pruning circle Ca.

3.3 Pruning using the nodes of facility R*-tree

In this section, we present our techniques to prune the search space using the in-
termediate or leaf nodes of the facility R*-tree. These pruning techniques reduce
the I/O cost of the algorithm because the algorithm may prune the search space
using a node of the R*-tree instead of accessing the facilities in its sub-tree.

A node of the facility R*-tree is represented by a minimum bounding rect-
angle (MBR) that encloses all the facilities in its sub-tree. Without accessing
the contents of the node, we cannot know the locations of the facilities inside it
except that each side of the MBR contains at least one facility. We utilize this
information to devise our pruning techniques. Specifically, we use all four sides
of the MBR and use each side (i.e., line segment) to prune the search space.
Lemma 3 presents the pruning rule and Fig. 6 provides an illustration.

Lemma 3. Given a query q, a multiplication factor x > 1, and a line ab rep-
resenting a side of an MBR, a user u cannot be the RRNN of q if it lies inside
both of the pruning circles Ca and Cb, i.e., u can be pruned if u lies in Ca ∩Cb.

Proof. Let maxdist(p, ab) denote the maximum distance between a point p and
a line ab. Note that maxdist(u, ab) = max(dist(u, a), dist(u, b)). Since u lies
in both Ca and Cb, dist(u, q) > x × dist(u, a) and dist(u, q) > x × dist(u, b)



(according to Lemma 1). In other words, dist(u, q) > x×maxdist(u, ab). Since
there is at least one facility f on the line ab, dist(u, f) ≤ maxdist(u, ab). Hence,
dist(u, q) > x× dist(u, f) which implies that the user u can be pruned. ut

In Fig. 6, the shaded area can be pruned by using the line ab. The next
lemma shows that this pruning rule is also tight.

Lemma 4. Given a line ab such that the only information we have is that there
is at least one facility f on ab, a user u cannot be pruned if it lies outside either
Ca or Cb.

Proof. Without the loss of generality, assume that u lies outside Ca. Now assume
that there is exactly one facility f on the line ab and it lies at the end point a.
Since f lies on a, Ca = Cf which implies that u is outside Cf . Hence, u cannot
be pruned by f (Lemma 2). ut

To prune the search space using an MBR, we apply Lemma 3 on each of side
si of the MBR. Specifically, a user u can be pruned if, for any side si of the
MBR, u lies in both of the pruning circles of the end points of si. Consider the
example of Fig. 7 where an MBR abcd is shown along with the pruning circles
of the corners of the MBR (see Ca to Cd). Let Ai denote the area pruned by a
side si of the MBR. In Fig. 7, the shaded area can be pruned which corresponds
to ∪4i=1Ai where A1 = Ca ∩Cb, A2 = Cb ∩Cc, A3 = Cc ∩Cd, and A4 = Cd ∩Ca.

3.4 Implementation of the pruning techniques

In the previous sections, we discussed how to prune the search space using a
facility point or an MBR of the facility R*-tree. In this section, we discuss how
to efficiently and effectively implement the pruning techniques.

Assume that we have a set of facilities and MBRs to be used for pruning
the search space. Let Ai denote the area pruned by a facility point or a side
of an MBR. Let A = {Ai, · · · , An} be the total area that can be pruned by
using the set of facilities and MBRs. In this section, we present Algorithm 1
that efficiently checks whether an entry e of user R*-tree (i.e., a point or an
MBR) can be pruned by A or not, i.e., whether e lies inside A or not. Before
we discuss the details of Algorithm 1, we describe how to prune a user MBR e
using a single pruning area Ai ∈ A. Since e is an MBR, it is possible that e only
partially lies in Ai. Ideally, we should be able to prune the part of the MBR that
lies inside Ai. In our algorithm, we process the MBR e such that the area that
lies inside Ai is trimmed. Below are the details on how to do this.
Case 1: Ai corresponds to the area pruned by a facility. Consider the example of
Fig. 8 where Ai corresponds to the circle Ca. Note that only a part of the rect-
angle R lies in the circle. In such case, we conservatively approximate the area
that can be pruned. Specifically, we use a function TrimEntry(Ca, R) that trims
the MBR R using a circle Ca and returns Ra that corresponds to the minimum
bounding rectangle of the part of R that lies outside Ca, i.e., Ra cannot be
pruned by Ca. In Fig. 8, Ra is the shaded area. In Fig. 9, Rb (the light shaded



area) is returned by TrimEntry(Cb, R). The function TrimEntry(Ca, R) can be
implemented as follows. Let I be the set of intersection points between a circle
Ca and a rectangle R. Let C be the corners of R that lie outside Ca. The trimmed
entry Ra is the minimum bounding rectangle enclosing the points in I ∪ C.

Fig. 8. Trimming an MBR Fig. 9. Pruning an entry Fig. 10. Observations 1&2

Case 2: Ai corresponds to the area pruned by a side of an MBR. Consider the ex-

ample of Fig. 9 where Ai corresponds to the area pruned by a line ab, i.e.,
Ai = Ca ∩ Cb. In this case, we find the part of the MBR R that cannot be
pruned by Ai as follows. Let Ra =TrimEntry(Ca, R) (see the dark shaded area)
and Rb=TrimEntry(Cb, R) (see the light dotted area) in Fig. 9. The unpruned
part of R is the minimum bounding rectangle enclosing both Ra and Rb, e.g.,
Rt shown in thick broken lines in Fig. 9 cannot be pruned by Ca ∩ Cb.

Algorithm 1 PruneEntry(e,A)

Input: e: the entry to be pruned, A: the set of pruned areas
Output: Return the part of e that cannot be pruned byA
1: for each Ai ∈ A do
2: if Ai is related to a facility f then
3: R← TrimEntry(Cf ,e)
4: else if Ai is related to a line ab then
5: Ra ← TrimEntry(Ca,e)
6: Rb ← TrimEntry(Cb,e)
7: R← minimum bounding rectangle enclosing both Ra and Rb

8: e← R
9: if e is empty then

10: return φ
11: return e

Algorithm 1 shows the details of how to prune an entry e using a set of
pruned areas A. The output of the algorithm is the part of e that cannot be
pruned by A. Each entry Ai is iteratively accessed from A and the entry e is
trimmed using the details described earlier (lines 2 to line 7). The trimmed part
R is assigned to e which is to be further trimmed in the next iteration (line 8).
At any stage, if e is empty, the algorithm terminates by returning φ (line 10)
which indicates that the whole entry e can be pruned by A. When all entries Ai

in A have been accessed, the algorithm returns e.
We remark that although the trimming significantly improves the I/O cost

(2 to 3 times) of the algorithm, the overall CPU time is also increased due to



the overhead of trimming. This must be taken into consideration when making
the decision on whether to use trimming or not, e.g., the trimming should not
be used if the main focus is to optimize CPU cost.
Improving Algorithm 1. Note that Algorithm 1 accesses every entry Ai ∈ A
regardless of whether Ai can prune a part of e or not. Now, we discuss how
to improve the efficiency of Algorithm 1 by ignoring the entries Ai that cannot
prune e. Similar to six-regions approach [2] and Slice [10], we divide the whole
space around q in t equally sized partitions, e.g., see the partitions P1 to P6 in
Fig. 10. Our technique is based on the following two simple observations.
Observation 1. Let P be the set of partitions overlapped by a pruned area Ai.
An entry e can be pruned by Ai only if e overlaps with at least one partition
in P. Consider the example of Fig. 10 where the area Ai is shown shaded and
overlaps with partitions P3 and P4. Since the entry e1 does not overlap with P3

or P4, it cannot be pruned by Ai.
Observation 2. Let Ai.max and Ai.min denote the maximum and minimum dis-
tances between q and the pruned area Ai, respectively. Fig. 10 shows Ai.max =
dist(q, a) and Ai.min = dist(q, b). We remark that Ai.max and Ai.min can be
computed following the ideas presented in [23, 24]. Note that an entry e cannot
be pruned by Ai if mindist(q, e) > Ai.max or maxdist(q, e) < Ai.min. For in-
stance, the entry e2 cannot be pruned by Ai because mindist(q, e2) > Ai.max.
Similarly, the entry e3 cannot be pruned because maxdist(q, e3) < Ai.min.

Let Ai.interval denote an interval from Ai.min to Ai.max and e.interval
denote an interval from mindist(q, e) to maxdist(q, e). Observation 2 shows that
an entry e can be pruned by Ai only if e.interval overlaps with Ai.interval. We
use an interval tree [25] to efficiently retrieve every Ai for which Ai.interval
overlaps with e.interval. Specifically, for each partition Pi, we maintain an in-
terval tree Ti that contains Aj .interval for every Aj ∈ A that overlaps with Pi.
To check whether an entry e (that overlaps with a partition Pi) can be pruned
by A, we issue an interval query on Ti with input interval e.interval. Let Ae de-
note the set containing every area Aj returned by the interval query e.interval.
In Algorithm 1, we use Ae instead of A. Note that the cost of interval query is
O(m+ log n) where n is the number of intervals stored in the interval tree and
m is the number of intervals that overlap with the input interval.

4 Algorithm

Our algorithm consists of three phases namely pruning, filtering and verification.
In the pruning phase, we use the facility R*-tree to prune the search space, i.e.,
compute A. In the filtering phase, the users that lie in the pruned space are
pruned and the remaining users are inserted in a candidate list called Lcnd.
Finally, in the verification phase, each candidate user u ∈ Lcnd is verified to
check whether it is a RRNN of q or not.
Pruning Phase Algorithm 2 presents the details of the pruning phase. The
algorithm initializes a heap h with the root of the facility R*-tree. The entries
are iteratively de-heaped from the heap and are processed as follows. If a de-



heaped entry e is pruned (i.e., the entry e′ returned by Algorithm 1 is empty),
we ignore it (lines 5 and 6). Otherwise, we process it as follows.

Algorithm 2 Pruning

Input: facility R*-tree, and a query q
Output: The set of pruned areas A
1: A ← φ
2: insert root of facility R-tree in a h
3: while h is not empty do
4: de-heap an entry e
5: e′ ← PruneEntry(e,A) . Algorithm 1
6: if e′ 6= φ then . e is not pruned
7: if e is an intermediate or leaf node then
8: for each side ab of e do
9: create Ai = Ca ∩ Cb and insert in A

10: for each child c of e do
11: if c overlaps with e′ then insert c in the heap
12: else . e is a facility point
13: create Ai = Ce and insert in A

If e is an intermediate or leaf node of the R*-tree, for each side of e, we create
a pruning area Ai and insert it in A (line 9). We also insert its children in the
heap h. Note that a child c of e that does not overlap with e′ can be pruned
because it lies in the pruned area. Hence, only the children that overlap with e′

are inserted in the heap (line 11). If e is a facility point, we create the pruning
circle Ce and add it to A (line 13). The algorithm terminates when the heap
becomes empty.
Filtering Phase Algorithm 3 describes the filtering phase. A stack S is initial-
ized with the root entry of the user R*-tree. Each entry e is iteratively retrieved
from S and processed as follows. If e can be pruned by A, it is ignored (lines 5
and 6). Otherwise, if it is an intermediate or leaf node, its children that overlap
with e′ are inserted in the stack (line 9). If e is a user, it is inserted in Lcnd

(line 11). The algorithm stops when the stack S becomes empty.
Verification Phase In the verification phase, each candidate user u ∈ Lcnd is
verified as follows. Note that a user u is a RRNN if and only if there is no facility

f for which dist(u, f) < dist(u,q)
x . A circular boolean range query is issued with

centre at u and radius r = dist(u,q)
x that returns true if and only if there exists a

facility in the circle. The boolean range query is conducted on the facility R*-tree
as in previous works [7] and u is reported as an answer if it returns false.

5 Experiments

5.1 Experimental Setup

To the best of our knowledge, there is no prior algorithm to solve RRNN queries.
We consider a näıve algorithm (RQ) and make reasonable efforts to devise a
significantly improved version of RQ, as explained below.



Algorithm 3 Filtering

Input: user R*-tree, query q, and A
Output: a list of candidates Lcnd

1: Lcnd ← φ
2: insert root of user R*-tree in a stack S
3: while S is not empty do
4: retrieve top entry e from S
5: e′ ← PruneEntry(e,A) . Algorithm 1
6: if e′ 6= φ then . e is not pruned
7: if e is an intermediate or leaf node then
8: for each child c of e do
9: if c overlaps with e′ then insert c in stack S

10: else . e is a user
11: insert e in Lcnd

Range Query (RQ). For each user u, a boolean range query with range
dist(u, q)/x is issued on the facility R*-tree (as described in the verification
phase above).
Improved Range Query (IRQ). Note that an intermediate or leaf node en-
try eu of the user R*-tree cannot contain any RRNN if there exists at least
one facility f such that mindist(eu, q) > x × maxdist(eu, f), i.e., eu can be
pruned. Based on this, to check whether eu can be pruned or not, we use a
function isPruned(eu) that is implemented as follows. The facility R*-tree is
traversed in ascending order of maxdist(eu, ef ) where ef denotes an entry in
the facility R*-tree. The entry eu is pruned as soon as we find an entry ef for
which mindist(eu, q) > x × maxdist(eu, ef ). To further improve the I/O and
CPU cost of isPruned(eu), we do not access the sub-tree of a facility entry ef
if mindist(eu, q) < x×mindist(eu, ef ) because no child of ef can prune eu.

The IRQ algorithm is the same as Algorithm 3 except that 1) “if isPruned(e)
then” replaces lines 5 and 6 of Algorithm 3; and 2) at line 11, the user is re-
ported as an answer instead of inserting it in Lcnd. Note that IRQ does not
have a pruning and verification phase because it merges all these phases in one
algorithm. In our experiments, we observed that the performance of IRQ can
be further improved if isPruned(eu) is only applied to leaf entries of the user
R*-tree. This is because the intermediate nodes are highly unlikely to be pruned
and result in un-necessary I/O. We included this optimization in IRQ.

All algorithms were implemented in C++ and experiments were run on Intel
Core I 5 2.3GHz PC with 8GB memory running on Debian Linux. Experimental
settings are quite similar to the existing work [6]. Specifically, we use the same
real data sets containing 175, 812 points from North America (called NA data
set hereafter), 2.6 million points from Los Angeles (LA) and 25.8 million points
from California (CA). We also generate several synthetic data sets containing
1, 000 to 20 million points following normal distributions. The default real data
set is LA containing 2.6 million points. Unless mentioned otherwise, each data
set is randomly divided into two sets of almost equal size, one corresponding to
the facilities and the other to the users. The page size of each R*-Tree [13] is
set to 4, 096 Bytes. We randomly select 100 points from the facility data set and



treat them as query points. The cost reported in the experiments correspond to
the average cost of a single RRNN query. We vary the value of x from 1.1 to 4
and the default value is 1.5.

5.2 Evaluating Performance

Effect of buffers. All three algorithms need to traverse facility R*-tree every
time a boolean range query is issued to verify a candidate user. Hence, the
buffers may reduce the I/O cost. We study the effect of the number of buffers on
each algorithm. Each buffer page can hold one node of the R*-tree and we use
random eviction strategy. In Fig. 11, we report the I/O cost of each algorithm
on LA data set for different number of buffers. As expected, the I/O cost of each
algorithm decreases with the increase in number of buffers. Note that IRQ is up
to two orders of magnitude better than RQ and our algorithm is up to three
orders of magnitude better than IRQ. Similar to [6], we use 100 buffer pages for
each algorithm in the rest of the experiments.
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Fig. 12. Effect of the x factor (LA data set)

Effect of the x factor. In Fig. 12, we study the effect of the x factor on the
three algorithms. Specifically, Fig. 12(a) shows the CPU cost and Fig. 12(b)
shows the I/O cost of the three algorithms for varying values of x. In terms of
both CPU and I/O cost, our algorithm is up to three orders of magnitude better
than IRQ and up to four orders of magnitude better than RQ. The cost of our
algorithm and IRQ is higher for larger x factor because the pruning area shrinks
as the x factor increases which results in a larger number of candidates and
RRNNs. Note that the cost of RQ is not significantly affected by the x factor
mainly because it needs to verify every user regardless of the value of x.
Effect of data set size. In Fig. 13(a) and 13(b), we study the effect of data set
size on the performance of the three algorithms. Specifically, we conduct experi-
ments on three real data sets: NA (175, 000 points), LA (2.6 million points) and
CA (25.8 million points). Our algorithm outperforms the other two algorithms
and the gap between the three algorithms increases as the data set size increases
(please note that log-scale is used in both figures). For example, Fig. 13(a) shows
that our algorithm is around 25 times faster than IRQ on NA data set and 330
times faster on CA data set. Similarly, Fig. 13(b) shows that the I/O cost of
our algorithm is around 12 times lower than IRQ for NA data set and almost
430 times lower for CA data set. Also, as expected the cost of each algorithm



increases as the data set size increases. This is mainly because the size of each
R*-tree increases and more entries are required to be processed.
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Fig. 13. Performance comparison on different real data sets

Since our algorithm is up to several orders of magnitude better than the other
algorithms, in the rest of the experiments, we focus on analysing the behavior of
our algorithm and omit the cost of the other algorithms for better illustration.

Effect of relative data size. In the previous experiments, each data set con-
tained almost the same number of users and facilities. Next, we analyse the
performance of our algorithm where the number of users and the number of fa-
cilities are different. Specifically, in Fig. 14 we vary the number of facilities from
1000 to 1 million and the number of users is fixed to 100K. The sets of facilities
and users are generated using normal distribution. Fig. 14(a) and Fig. 14(b)
show the CPU and I/O cost of our algorithm, respectively. Fig. 14(c) shows the
number of candidates, number of RRNNs and the number of entries (facility
points and MBRs) used for pruning.
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Fig. 14. Effect of varying the number of facilities (100K users)

Fig. 14(a) shows that the CPU cost of our algorithm is larger if the number of
facilities is too small or too large as compared to the number of users. The reason
is as follows. When the number of facilities is too small (e.g., 1, 000), the total
area that can be pruned is smaller due to the lower density of the facilities. This
results in a larger number of candidates and RRNNs (as shown in Fig. 14(c)).
Hence, the verification cost of the algorithm is larger as shown in Fig. 14(a).
On the other hand, when the number of facilities is too large (e.g., 1 million),
the pruning phase is the dominant cost of the algorithm. This is because the
algorithm needs to access a larger number of entries to prune the search space
(see Fig. 14(c)).



Fig. 14(b) shows the I/O cost of our algorithm. When the number of facilities
is too small, the I/O cost of the filtering phase is larger because the area that can
be pruned is smaller due to the lower density of facilities data set. The I/O cost
of pruning phase increases as the number of facilities increases. This is because
the size of facility R*-tree increases and more entries are required to be accessed
to prune the search space.
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Fig. 15. Effect of varying the number of users (100K facilities)

In Fig. 15, we vary the number of users from 1, 000 to 1 million and fix the
number of facilities to 100K. Fig. 15(a) shows that the CPU cost of the algorithm
increases as the number of users increases. This is because the filtering and
verification cost of the algorithm increases for larger set of users, e.g., the number
of candidate users and RRNNs increases (as shown in Fig. 15(c)). Similarly,
Fig. 15(b) shows that the I/O cost of the algorithm also increases for larger
number of users. This is because the filtering requires traversing a larger user
R*-tree which results in requiring to access more nodes of the users.

Fig. 15(c) also shows the effectiveness of the proposed pruning techniques.
Note that the number of candidates is much smaller as compared to the total
number of users. Furthermore, almost 65% of the candidates are the relaxed
reverse nearest neighbors. We remark that the verification I/O cost of our algo-
rithm is negligible mainly because most of the nodes accessed during verification
are already present in the buffer (from pruning phase or the previously issued
boolean range queries).

Efficiency compared with RNN algorithms. As stated earlier, there is no
previous algorithm to solve RRNN queries and the existing algorithms to solve
RNN queries cannot be trivially extended. Although we made significant efforts
to devise the second competitor IRQ, our algorithm is up to three orders of
magnitude better than it. In the absence of a well-known competitor, readers may
find it harder to evaluate the efficiency of an algorithm. Therefore, we compare
our algorithm with the most well-known RNN algorithms, namely Slice [10],
InfZone [8], TPL [5], FINCH [20] and six-regions [2]. For our algorithm, we set
x = 1 + 10−6 because we note that the results of an RRNN query is the same
as those of an RNN query if x is very close to 1.

Fig. 16 shows that the performance of our algorithm is comparable to the
most popular RNN algorithms which shows the effectiveness of the techniques
proposed in this paper. We remark that this experiment is conducted only to
demonstrate that our algorithm is efficient and it should not be used to draw any
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Fig. 16. Comparison with state-of-the-art RNN algorithms

conclusion regarding the superiority of our algorithm over any other algorithm
and vice versa. This is because our algorithm solves an inherently different and
arguably more challenging problem.

6 Conclusions and Future Work

In this paper, we propose a variant of RNN queries called relaxed reverse nearest
neighbors (RRNN) queries. An RRNN query relaxes the definition of influence
using the relative distances between the users and the facilities. RRNN queries
are motivated by our observation that RkNN queries may be unable to properly
capture the notion of influence. We propose an efficient algorithm based on
several efficient and effective pruning techniques and non-trivial observations.
The pruning techniques are proved to be tight. The extensive experimental study
demonstrates that our algorithm is several orders of magnitude better than the
competitors.

There are several interesting directions for future work. For example, it will
be interesting to study the relaxed version of reverse top-k queries by using the
idea of relative scores, i.e., return every user for whom the query product is
almost as good as her most preferred product. Also, continuous RRNN queries
for moving objects is another interesting research direction, e.g., continuously
report the drivers for which my fuel station is an RRNN. RRNN queries for
other distance metrics such as road network distances also need to be explored.
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