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Abstract. The widespread availability of 3D city models enables us to
answer a wide range of spatial visibility queries in the presence of obsta-
cles (e.g., buildings). Example queries include “what is the best position
for placing a billboard in a city?” or “which hotel gives the best view of the
city skyline?”. These queries require computing and differentiating the
visibility of a target object from each viewpoint of the surrounding space.
A recent approach models the visibility of a fixed target object from the
surrounding area with a visibility color map (VCM ), where each point
in the space is assigned a color value denoting the visibility measure of
the target. In the proposed VCM, a viewpoint is simply discarded (i.e.,
considered as non-visible) if an obstacle even slightly blocks the view
of the target from the viewpoint, which restricts its applicability for a
wide range of applications. To alleviate this limitation, in this paper, we
propose a scalable, efficient and comprehensive solution to construct a
VCM for a fixed target that considers the partial visibility of the target
from viewpoints. More importantly, our proposed data structures for the
fixed target support incremental updates of the VCM if the target moves
to near-by positions. Our experimental results show that our approach
is orders of magnitude faster than the straightforward approach.

1 Introduction

3D city models are increasingly available through popular mapping services such
as Google Maps, Google Earth and OpenStreetMap. We envision that these 3D
datasets will provide a new platform for answering many real-life user queries,
e.g., visibility queries in the presence of 3D obstacles, that form the basis of a
large class of location based applications. For example, an advertisement com-
pany may want to check the visibility of its billboard from the surrounding areas
before deciding on billboard’s position; a tourist may want to check visibility of
beautiful city skylines from available apartments; and a security company may
want to find the suitable positions for surveillance cameras.

All of the above applications require computing and differentiating the vis-
ibility of (from) a target object from (of) the surrounding area. For example,
a target billboard may be more visible from one location than another due to



different factors such as distance, viewing angle and obstacles. Also, a billboard
may be seen from many viewpoints but is readable only from viewpoints closer
to the target. Thus, our target applications require modeling the visibility as
a continuous notion, i.e., one needs to compute the visibility of the target for
every viewpoint in the space. In this paper, we propose efficient techniques to
compute the visibility of a target object from the surrounding continuous space,
which we call a visibility color map (VCM ).

A VCM is a surface color map, where every viewpoint in a 3D space is
assigned a color value denoting the visibility measure of the target from that
viewpoint. In a recent work [1], Choudhury et al. proposed a technique to com-
pute a VCM for a fixed target. Two major limitations of this technique are as
follows: (i) They do not take the partial visibility into account, i.e., a viewpoint
is simply discarded (i.e., considered as non-visible) if an obstacle even slightly
blocks the view of the target from that viewpoint. For example, if only a small
part of a billboard cannot be seen from a viewpoint, the viewpoint is declared as
non-visible, though a major part of the billboard is readable from the viewpoint.
Moreover, in a real 3D city environment, since many viewpoints are partially ob-
structed due to huge number of obstacles, only a small portion of the viewpoints
surrounding the target constitute the VCM, which is not desirable for real life
applications. (ii) They do not consider the case of a moving target, and thus a
slight change of the target’s position invalidates the entire VCM.

There is no straightforward way to incorporate the partial visibility and mov-
ing target into the existing technique due to the following reasons. First, since
the proposed technique in [1] uses simple tangents between extreme points of
an obstacle and the target, it cannot be converted to assess the partial visibil-
ity while computing the VCM. In this paper, we take the partial visibility into
account, which is the correct form of the VCM for a fixed target and is a much
harder problem with wider acceptability than [1]. Second, if the position of the
target changes, the entire VCM needs to be reconstructed as the proposed data
structure in [1] does not support incremental updates of the VCM.

To alleviate the above limitations, in this paper, we propose an efficient
technique to construct the VCM for both fixed and moving target using real
datasets comprising a large number of obstacles. One key idea of our approach
is to identify the potentially visible set (PVS ) of obstacles from the large obstacle
set, by removing obstacles that cannot affect the construction of the VCM. To
find the PVS, we adopt the concept of projection from computer graphics [2]
and make it scalable and workable for a large number of obstacles indexed using
an R-tree [3] in the database. After finding the PVS, we determine the visibility
states of several boundary points on the target by considering the occlusion effect
of the obstacles. The visibility state of a boundary point on the target represents
which cells are (not) visible. Finally, we add the effects of distance and angle
between the target and each cell to compute the visibility of every cell.

To extend the above approach for a moving target, we rely on a pre-computation
based idea that assumes an extended buffer area around the target and computes
the PVS and visibility states for the extended region. Once the target moves to



a near-by position, our proposed data structure is incrementally updated to
generate the VCM for the new target position.

We have evaluated the performance of our solution with both real and syn-
thetic 3D datasets. The experimental results show that our approach is on av-
erage 106 times faster than the straightforward approach.

In summary, we make the following contributions:
– We devise an effective algorithm to construct the VCM for a fixed target in

the presence of a large set of obstacles considering the partial visibility of
the target.

– We propose an efficient way to reconstruct the VCM for a moving target.
– We conduct experiments with real 3D datasets to demonstrate the effective-

ness and efficiency of our solution.

2 Related Works

The notion of visibility is fundamental to various fields including computa-
tional geometry, computer graphics, urban planning, architecture and spatial
databases. In this section we briefly discuss existing works on visibility.

2.1 Visibility in Computational Geometry and Computer Graphics

Visibility computation in computational geometry involves determining visibility
graphs [4] and visibility polygons [5] [6]. In computer graphics, a visibility map is
a graph describing a view of the scene including its topology. Various methods for
constructing a visibility map for a fixed [7] [8] [9] and moving [10] viewpoint have
been developed. In all the above approaches, visibility is defined from a point
source and consequently a binary notion, i.e. a point in the space is declared as
either visible or non-visible from the viewpoint.

Visibility of/from an extended region, i.e. from-region visibility, was studied
by Kim et al. [11]. His method determines the subset of the whole space which is
completely visible from a region, but does not handle the case of partial visibility.
Works done by Durand et al. [2] and Koltun et al. [12] [13] focus on determining
the set of obstacles visible from an extended region. However, they do not provide
any measure of the visibility of the region from the space.

2.2 Visibility in Urban Planning and Architecture

Visibility related problems are actively studied in the fields of urban planning
and architecture. Relevant contributions include [14] [15]. These approaches treat
visibility as a binary notion and are only applicable to cases where the number
of obstacles is small enough to fit into the main memory. Urban planners and
architects make use of software systems to visualize and render 3D data, such
as Google Sketchup [16], AutoCAD [17] and Maya [18]. These softwares do not
provide any functionality for quantifying visibility of a 3D object. By incorpo-
rating our techniques to construct the VCM, these applications can be equipped
to answer many realistic visibility queries which require quantification of the
visibility of an extended target object.



2.3 Visibility in Spatial Queries

Visibility problems studied in context of spatial databases include nearest neigh-
bor queries [19] [20] [21] and maximum visibility queries [22] [23]. The variants
of nearest neighbor queries find the nearest object in an obstructed scene from
a single query point or all points on a line segment, where results are ranked
according to the distances from the query point. Maximum visibility query finds
a subset of query points that provides the best view of an extended target.

Construction of the VCM for the entire space for a fixed position of the
target object is studied by Choudhury et. al. [1]. But they do not handle the
case of partial visibility and their solution is not applicable for a moving target
as we outline in the introduction. In this paper, we devise a method to construct
the VCM of the entire dataspace for a moving target, which also handles the
case of partial visibility in the presence of a large set of obstacles.

3 Problem Formulation

To construct a VCM, we need to produce a color map of the dataspace where
each point in the space is assigned a value that corresponds to the visibility
measure of the target from that point. We formally define the VCM as follows:

Definition 1. VCM. Given a d-dimensional dataspace Rd (d=2 or 3) and a set
O of obstacles in the dataspace, the VCM is a color map, where for each point p
in Rd, there exists a visibility color vp in [0,1]. The color vp corresponds to the
visibility of a given target object T from p. Here, higher value of vp corresponds
to higher visibility of T from p and vice versa.

In an earlier attempt [1] to construct the VCM for a fixed target, a point
gets a nonzero color if the target is entirely visible from that point. However,
the target can be partially visible from a point because of obstruction by the
obstacles. In this paper, while assigning visibility color to a point, we consider
the case of partial visibility by determining what portion of the target is visible
from that point.

We also address the problem of reconstructing the VCM efficiently as the
position of the target changes, i.e., for a moving target. Let V CMp denote the
VCM when the target is at position p. We formulate a method to incrementally
reconstruct V CMp′ efficiently for all p′ ∈ P , where P is the set of all candidate
positions.

4 Preliminaries

In this section we discuss some basic ideas on which our solution is built upon.
First we describe the factors affecting the visibility and then we discuss the the
partitioning scheme of the dataspace that we have used in our solution. The
examples illustrated in this section are in 2D, which can be easily extended for
a 3D scenario.



4.1 Factors Affecting Visibility Color

For a particular position of the target, the visibility measure (or, color), vp,
of a viewpoint p is obtained by considering two different visibility measures:
orientation based visibility, vorp , and obstruction based visibility, vobp . Both of

these values are in the range of [0,1]. After computing vorp and vobp , we can

estimate the visibility measure of a viewpoint p as vp = vorp * vobp .
Orientation based visibility captures the effect of both distance and the angle

between the target T and the viewpoint, and is measured as the visual angle [24].
The visual angle, αp, is the imposed angle by T at p as shown in Fig. 1(a).

To compute the obstruction based visibility measure, vobp , for a viewpoint p,
we consider a number of equally spaced boundary points on the surface of T .
Let BT

p be the set of boundary points which are visible from a point p in the

absence of obstacles and BO
p be the set of boundary points which are visible from

p in the presence of all obstacles. Then vobp = |BO
p |/|BT

p |. Here, the notation |.|
stands for cardinality of a set.
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Fig. 1. (a) Factors affecting visibility color of point p around target T . (b) A sample
partitioning of space. First 3 equidistant stripes are shown in different shades of gray.

In the scenario described in Fig. 1(a), there are 8 boundary points b1, b2, . . . , b8
on target T in a 2D space and the obstacle set O contains one obstacle, o. Here
BT

p = {b3, b4, b5, b6, b7}, BO
p = {b5, b6, b7} and vobp = 3/5 = 0.6. Thus, vobp mea-

sures what portion of the target T is visible from p.

4.2 Partitioning into Cells

The d-dimensional data-space Rd consists of infinitely many points and assigning
a visibility color, vp, to each viewpoint p in Rd is a prohibitively expensive task.
To address this problem, we partition the whole space into a finite number
of equi-visible cells as proposed by Choudhury et al. [1], and assign a single
visibility color to each cell. The visibility color of cell c is denoted by vc. Each
cell is constructed in a way so that the deviation in visibility of T from the
viewpoints inside a cell, measured as visual angle, is not visually perceivable.



To find equi-visible cells, we first partition the space based on distance and
then based on the angle between the target and the viewpoints. All the view-
points having a distance between di−1 and di from the target, where 0 < i ≤ k
and k is a positive integer, constitute the ith equidistant stripe, which is denoted
by Si. Here k is the number of equidistant stripes. Then each equidistant stripe
is further divided into cells based on the angle between the viewpoints and the
target. The detailed process of the partitioning is described in [1]. For simplicity,
we consider each cell as a rectangular region as shown in Fig. 1(b).

5 A Straightforward Approach

In this section, we present a straightforward approach to construct the VCM for
a fixed target. Let us consider a cell c with midpoint p. To determine visibility
color, vc, of c, we need to know the number of boundary points, which are visible
from p in the presence of obstacles. To determine the visibility between p and a
boundary point b, we check the line segment joining b and p against all obstacles.
If no obstacle intersects that line segment, b is visible from p. Otherwise b is not
visible from p. Finally we incorporate the effect of the distance and angle between
p and the target. This straightforward process is expensive both in terms of I/O
and computation, and not suitable for a moving target.

6 Our Approach

To construct the VCM for a target, we have to assess the occlusion effect of the
obstacles. One of the main challenges to construct the VCM for a target is to deal
with the huge obstacle set. Our strategy is to significantly reduce the number of
obstacles by discarding those obstacles that do not affect the calculation of the
VCM. This reduced obstacle set is called the potentially visible set, (PVS ). To
determine the PVS, we adopt a projection based idea of computer graphics [2]
and propose additional adjustments to determine the occlusion effect of a large
set of obstacles. We store the obstacles in an R-tree and perform a plane sweep
algorithm to determine the combined occlusion effect of multiple obstacles. The
process of determining the PVS is described in Section 6.1.

After determining the PVS, the next challenge is to efficiently compute the
view of the target from each cell of the partitioned of dataspace. The visibility
measure of each cell has two components: (i) orientation based visibility measure,
which can be computed using simple equations as described in Section 4.1, (ii)
obstruction based visibility measure, which needs to consider what portion of
the target is visible from the cell in the presence of obstacles. As the next step
of our algorithm, we determine the visibility states, indicating which cells are
visible from a particular boundary point of the target (Section 6.2). Visibility
states of all boundary points are then combined to measure the obstruction
based visibility measure of each cell (Section 6.3). To compute the VCM for a
fixed target, orientation and obstruction based visibility values are combined to
obtain the visibility color value for every cell (Section 6.4). In Section 6.5, we
discuss the construction of the VCM for a moving target.



6.1 Determining PVS

In this section, we formulate a methodology to prune out those obstacles which
do not affect the calculation of the V CM . Thus we obtain a reduced set of
obstacles, which we call the potentially visible set (PVS ). To efficiently determine
the PVS, we index all obstacles in an R-tree [3]. An R-tree consists of a hierarchy
of minimum bounding rectangles (MBRs), where each MBR corresponds to a
tree node and bounds all the MBRs in its sub-tree. Data objects (obstacles, in
our case) are stored in leaf nodes. Before going to the details of determining
PVS, we first discuss some terminologies related to visibility and projection.

Definition 2. Target-Obstacle Visibility. Given a target T and a set of ob-
stacles O, T and an obstacle o ∈ O are defined to be visible to each other if and
only if there exists a pair of points pT on T and po on o such that no obstacle
o′ ∈ O and o′ 6= o, intersects or touches the line segment joining pT and po.

Visibility between the target and an obstacle is bidirectional, i.e., if the target
is visible from a particular obstacle o, then o is visible from the target and vice
versa. An obstacle cannot affect the computation of the VCM if it is not visible
from the target. So we can ignore the obstacles which are not visible from the
target and obtain a reduced set of obstacles, the PVS, which we denote by Ov.

To determine the PVS, we adopt a projection based idea proposed by Durand
et al. [2]. This work employs a conservative occlusion culling technique combining
occlusion effects of multiple obstacles on the target visibility. A plane sweep in
each principal axis direction is performed to identify obstacles that are not visible
from the target. We add further modifications to this approach so that it fits
our purpose of dealing with a large obstacle set indexed in an R-tree.

Preliminaries of Projection: In this section we describe several key concepts
regarding projection. For ease of explanation, we have assumed 2D scenario with
axis aligned rectangular target and obstacles. However, our approach is appli-
cable to any convex target and obstacles in 2D and 3D spaces. We also assume
that the field of view (FOV) is 90 degree centering the positive X direction.
Other directions along the principal axes can be treated similarly. In subsequent
sections, we treat an R-tree node (i.e., an MBR) or an obstacle as an object.

First, we define the near distance and the far distance. The near distance
and the far distance of an object are respectively the smallest and the largest of
the x ordinate values of all points of the object. We denote the near distance and
the far distance of an object o, by on and of respectively. Now we discuss the
idea of projection of an object [2]. The projection of an object is computed on a
projection plane in 3D (or, projection line in 2D) with respect to the target. If the
projection plane is in between the target and the object, then the projection of
the object is the union of all views from any point of the target. If the projection
plane is in the opposite side of the object from the target then the projection
of the object is the intersection of all views from any point of the target. The
projection of an object o, on the projection line x = l, is denoted by P l

o.



Now we describe the concepts of aggregated projection and re-projection. We
denote the aggregated projection at the projection line x = l, by Al. Al reflects
the combined occluding effect of all obstacles with far distances less than or
equal to l, i.e., obstacles which are entirely in front of the sweep line x = l. As
a result, Al consists of several disjoint projections on x = l.
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Fig. 2. Bold segments stand for aggregated projections.

The process of computing the aggregated projection is as follows. Initially, we
set the aggregated projection as null, Ainit = ∅. Then we incrementally update
the aggregated projection as we encounter obstacles in the increasing order of
their far distance.

Suppose we know the aggregated projection on line x = lp, Alp , and we want
to calculate Aln , where lp < ln. (Here subscripts p and n stand for previous
and next respectively.) If no obstacle has far distance between lp and ln, then
we obtain Aln by re-projecting Alp on the projection line x = ln. Re-projecting
an aggregated projection onto another projection plane involves projecting each
disjoint projection of the aggregated projection separately onto the destination
plane. Now assume that there is an obstacle o, with far distance l, where lp <
l ≤ ln. In such cases, first we calculate the union of P l

o and the re-projection
of Alp on x = l and then re-project this combined projection on x = ln. This
method demonstrates that the aggregated projection needs to be recalculated
only at the far distances of the obstacles.

The process of calculating aggregated projections is simulated in Fig. 2. Let,
l1, l3 and l4 be the near distances of o1, o2 and o3 respectively, and l2, l5 and l6
be the far distances of o1, o2 and o3 respectively. In the figure, projection line
x = li is marked as Li. Initially, Ainit = ∅. We encounter the first far distance
at x = l2. As a result, Al2 is P l2

o1 . On x = l5, the re-projection of Al2 on x = l5
is AC and P l5

o2 is BD. The union of AC and BD is AD. Thus, Al5 is {AD}. At
x = l6, the re-projection of Al5 on x = l6 and P l6

o3 are disjoint. Thus, Al6 consists
of two disjoint segments as shown in Fig. 2.



Algorithm 1: determinePVS(R,T )

begin1

Ov, Ainit, Q←− ∅;2

Q.push(R.root);3

while Q 6= ∅ do4

o←− Q.pop();5

if o is entirely outside FOV then6

continue;7

l←− on;8

determine Al;9

if Al completely spans FOV then10

break;11

if P l
o ⊆ Al then12

continue;13

if o is an MBR then14

for c ∈ o.children() do15

Q.push(c);16

else17

Ov.push(o);18

return Ov19

end20

The Algorithm: In this section, we formally describe the process of deter-
mining the PVS in the algorithm determinePVS. We retrieve objects from the
R-tree in non-decreasing order of near distance (Fig. 3 shows an example R-tree
for 8 obstacles in a 2D space). This retrieval process can be visualized as a line
sweep over the 2D plane. A projection line (sweep line) perpendicular to the X
axis is moved towards the positive X direction. Suppose it enters an object, o,
at position x = l, i.e., on = l. Then the aggregated projection on the projection
line x = l, Al, is calculated, which reflects the combined occlusion effect of all
obstacles entirely in front of the sweep line. If the projection of o on the sweep
line, P l

o, is a subset of Al, then o is occluded by the obstacles in front of o,
and consequently o is discarded (Lines 12-13). o is also discarded if o is entirely
outside the field of view (Lines 6-7). If o cannot be discarded, we either declare
o as a potentially visible obstacle (in case o is an obstacle, Lines 17-18) or mark
o’s children for later consideration (in case o is an MBR, Lines 14-16). The algo-
rithm terminates when there are no more objects to process or the aggregated
projection completely spans the FOV (Lines 10-11). Note that an obstacle, o,
is discarded only if o is certainly not visible from the target, otherwise, o is
considered as potentially visible.

In the algorithm determinePVS, movement of the sweep line is implemented
by a priority queue, Q, which holds objects, i.e. MBRs and obstacles, in non-
decreasing order of near distance. Other variables hold their usual meaning. In
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Line 9, we determine the aggregated projection at the current sweep line position,
which can be calculated efficiently by considering only those obstacles that have
far distances between the previous and current sweep line positions.

In Fig. 3, we present a simulation of the algorithm determinePVS. At pro-
jection line L1, Al1 is null. As a result, o1 is added to Ov. On L2, P l2

o2 is not a
subset of Al2 and o2 is declared as potentially visible. Similar is the case with
o3 and o4. o5 is entirely outside the field of view, and consequently discarded.
o6 is rejected because, at L6, P l6

o6 is a subset of Al6 . The projection of the MBR,
R4 on L8 is a subset of Ad8

. As a result, R4, along with o7 and o8, is discarded.
Finally, the algorithm returns the set {o1, o2, o3, o4} as the PVS.

6.2 Determining Visibility State of a Point

The visibility State of a point, b, on the target indicates which cells in the par-
tition are visible from b and which cells are not. The process of determining
visibility state of b is equivalent to assigning a boolean value to each cell in the
partition indicating whether or not the cell is visible from b. As mentioned be-
fore, to construct the VCM, we need to determine the visibility states of all the
boundary points. In this section, we describe how to determine visibility state of
a particular boundary point, b, assuming that the field of view along the positive
X direction.

A cell c and a point b is visible to each other if and only if the line segment
joining b and the midpoint of c is intersected or touched by no obstacle. We
observe that the midpoints of cells in a particular equidistant stripe are situated
on a straight line perpendicular to the X axis. The line joining the midpoints
of the cells of Si is called the ith midway line, and denoted by Mi. Recall from
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Fig. 4. (a) Aggregated near projections (bold segments) on successive mid-way lines
(dotted lines). (b) Visibility state of b. Non-visible cells are darkened.

Section 4.2 that Si stands for the ith equidistant stripe. Let the equation of the
line Mi be x = mi.

As the midway lines are vertically aligned, we can reuse the idea of the pro-
jection based strategy, constructed in Section 6.1, for determining the occlusion
effect of obstacles around the point b. Let us first consider the point b as the tar-
get (i.e., a point target) and the PVS, returned by the algorithm determinePVS,
as the set of obstacles. For each midway line Mi, where i = 1, 2, . . . , k, we calcu-
late the occlusion effect of all obstacles situated partially (as we explain shortly)
or entirely in front of Mi. We declare a cell as not visible from b, if the cell’s
midpoint is occluded and vice versa.

To accurately measure the visibility state of a point, we consider the occlusion
effect of an obstacle at projection lines after the near distance of the obstacle.
Thus we ensure that when the projection line is between the near distance and
far distance of an obstacle, the occlusion effect of the portion of the obstacle
in front of the projection line is taken into account. If the occlusion effect of
all obstacles situated partially or entirely in front of the projection line is taken
into account, the combined projection is defined as aggregated near projection.
Aggregated near projection at projection line x = l is denoted by An

l .
To determine the visibility state of a boundary point, aggregated near pro-

jections are determined on successive midway lines considering Ov as the set of
obstacles. In Fig. 4, a sample scenario is illustrated, where visibility state of a
boundary point b is determined in the presence of an obstacle, o. Figure 4(a)
shows the aggregated near projections on consecutive midway lines and Fig. 4(b)
marks the cells which are declared as non-visible from b, i.e., those cells which
have midpoints on the aggregated near projections.

6.3 Visibility State of a Target

In the previous section, we compute the visibility state of a point on the target.
In this section, we will combine the visibility states of all boundary points on



the target to find the obstruction based visibility measure of the target from all
equi-visible cells of the partitioned dataspace.
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Fig. 5. Combining the visibility states of a particular equidistant stripe of 3 boundary
points. Lighter shade of gray on the leftmost stripe corresponds to better view of T .

Let us consider three boundary points b1, b2, and b3 on the positive X di-
rection of the target T as shown in Fig. 5. We need to compute the visibility
states of all cells on the positive X direction in the presence of an obstacle o.
Figure 5(a), 5(b) and 5(c) show visibility states of a particular equidistant stripe
for boundary points b1, b2 and b3, respectively. We can see that 5, 4, and 3 cells
of the equidistant stripe are not visible from boundary points b1 (Fig. 5(a)), b2
(Fig. 5(b)), and b3 (Fig. 5(c)), respectively. If we combine these three visibility
states, we obtain the the obstruction based visibility measures of all cells on
the equidistant stripe. Figure 5(d) shows the cells and corresponding numbers
indicating how many boundary points are visible from those cells, which indicate
the obstruction based visibility measure for the VCM.

6.4 VCM for a Fixed Target

Based on the above constructs, we summarize the process of VCM construction
for a fixed target as follows. First, we divide the dataspace into a set of equi-
visible cells. Second, for each cell c, we compute the orientation based visibility
measure vorc based on the distance and angular placement of c’s midpoint with
respect to the target. Third, we compute the potentially visible set (PVS ), Ov,
by the projection based line-sweep along every axis-parallel direction. Fourth,
we compute the visibility states of all the boundary points on the target by
considering the occlusion effect of Ov on target visibility. Fifth, for each cell c,
we compute the obstruction based visibility measure, vobc , as |BO

c |/|BT
c |, where

BT
c is the set of boundary points that are visible from c in the absence of obstacles

and BO
c is the set of boundary points that are visible from c in the presence of

obstacles. Finally, we estimate the visibility measure or the color value vc of each
cell c as vorc * vobc , which constitutes the VCM for the target.

6.5 VCM for a Moving Target

In this section, we discuss our solution to construct the VCM for a moving
target. The key concept of extending our method for a moving target is to pre-
compute the PVS and visibility states for an extended buffer area around the



target, and then incrementally update the VCM when the target moves to a
near-by position. Thus we can avoid a large amount of repetitive computation
and obtain the desired efficiency to construct the VCM for a moving target. Note
that performing the pre-computation for an extended region around the target
is consistent with realistic application scenarios, e.g., while placing a billboard, a
user may want to check its visibility from the surrounding space. Our proposed
method enables him to choose the right placement by constructing the VCM on-
the-fly for different near-by positions of the billboard. In this paper, we consider
a rectangular region that encloses the target as the buffer area. Defining the
buffer region more meaningfully is in the scope of our future work.

We name the extended buffer region around the target as a super target,
Ts and consider a number of equally spaced points in Ts as candidate points.
We follow two pre-computation steps involving the super target and candidate
points: (i) determine the PVS for Ts, and (ii) compute visibility states of all the
candidate points by considering the PVS as the obstacle set.

After the pre-computation steps, we can construct the VCM by combining
the visibility states of those candidate points that lie on the boundary of the
target. When the target moves to a position inside the super target, we add the
effects of visibility states of the new candidate points and remove the effects of
candidate points that do not belong to the new target. We assume that the target
is moved to a discrete position defined by a set of candidate points. However,
if the target moves to a position where its boundary points do not superimpose
with the candidate points, we approximate the given position of the target to
the nearest discrete position defined by the candidate points, and construct the
VCM accordingly. If a target moves outside the super target area, we need to
calculate the new PVS and visibility states of the new candidate points.

The speedup in the construction of the VCM for a moving target comes from
two sources. First, we calculate the PVS only once. If the target is entirely inside
the super target, we can use the reduced obstacle set determined in Step (i) as the
PVS. Second, one candidate point can be used to approximate targets at many
positions. Consequently, we do not need to repeat the process of determining
the PVS and the visibility states for any near-by positions of the target. Thus
the cost of the preprocessing steps is amortized over all subsequent runs of the
process for different positions of the target inside the super target.

7 Experimental Evaluation

We evaluate the performance of our proposed algorithm for constructing the
VCM with real and synthetic datasets. At first, we compare our approach to
construct the VCM for a fixed target with the exact straightforward approach
presented in Section 5. Then we evaluate the efficiency of our approach for
constructing the VCM for a moving target. The algorithms are implemented
in C++ and the experiments are conducted on a core i5 2.40 GHz PC with 3GB
RAM, running Microsoft Windows 7.



7.1 Experimental Setup

We conduct experiments for two real 3D datasets: (1) British1 dataset, represent-
ing 5985 data objects obtained from British ordnance survey2 and (2) Boston3

dataset, representing 130,043 data objects in Boston downtown. We also conduct
experiments using synthetic datasets. We vary the synthetic dataset size using
both Uniform and Zipf distributions of the obstacles. In all datasets, objects
are represented as 3D rectangles that are used as obstacles in our experiments.
All obstacles are indexed by an R-tree, with the disk page size fixed at 1KB. We
vary several parameters to evaluate our solution. The range and default value of
each parameter are listed in Table 1.

Table 1. Parameters

Parameter Range Default

Dataset Real, Synthetic Real

Angular Resolution 0.5, 1, 2, 4, 8 2

Number of Boundary Points 32, 42, 52, 62, 72 42

Length of Target 15, 30, 60, 120, 240 60

Dataset Size (Synthetic) 5K, 10K, 15K, 20K, 25K

7.2 Performance Evaluation

We compare our approach to construct the VCM with the exact straightforward
approach described in Section 5. The results of our approach deviate slightly
from the results of the exact method, because we have used an approxima-
tion for ease of implementation. Recall from Section 6.2 that while determining
the visibility states, we calculated the aggregated near projections to correctly
assess the occlusion effect of an obstacle, i.e. we consider the portion of the
obstacles partially or completely in front of the projection lines. But in our im-
plementation, we have calculated the projection of each obstacle at its’ near
distance. We have treated this projection as the occlusion effect of the obsta-
cle and removed the obstacle from further consideration. To formulate the error
incurred by this approximation, let vec denote the visibility color of cell c deter-
mined by the exact approach and vac denote the visibility color of cell c deter-
mined by our implementation. Then the error is given by the following formula:

error =

∑
c∈C
|ve

c−v
a
c |

|C|
The performance metrics used in our experiments include: (i) total processing
time, (ii) I/O cost, i.e. the number of nodes retrieved from the R-tree, and (iii)
error incurred by the approximation. For each experiment, we have evaluated
the results for 20 random positions of the target and reported the average.

1 http://www.citygml.org/index.php?id=1539
2 http://www.ordnancesurvey.co.uk/oswebsite/indexA.html
3 http://www.bostonredevelopmentauthority.org
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Fig. 6. Effect of dataset size on I/O performance.

7.3 Performance for Fixed Target

To evaluate the performance of our approach to construct the VCM for a fixed
target, we vary the size of the target, dataset size, angular resolution and the
number of boundary points independently and determine the total processing
time, I/O cost and the incurred error. When one parameter is varied, the other
parameters are kept at their default values.

Effect of Dataset Size: In this experiment we vary the dataset size from 5K to
25K using both Uniform and ZipF distributions and compare the performance of
our solution with the straightforward exact approach. Table 2 shows the effect of
dataset size on total processing time and error. Our approach runs approximately
105 to 106 times faster than the straightforward approach. The rate of error is
quite low and does not change significantly with varying dataset size. The total
processing time, reduction time, PVS size and I/O cost of our approach is shown
graphically in Fig. 6 to analyze the I/O performance of our solution. We see that
reduction time is dominating the total processing time in both datasets.

Increasing the dataset size results in an increase in reduction time and the size
of the PVS, which in turn increase the cost of determining the visibility states.
As a result, the total processing time and I/O cost rise with increasing dataset
sizes. The experimental results are in accordance with the above reasoning.



Table 2. Effect of dataset size on total processing time (in seconds) and Error

Distribution Uniform ZipF

Approach Our Naive Error(%) Our Naive Error(%)

5K 354.3 3.4e+7 2.66 28.3 4.1e+7 2.16

10K 431.5 9.6e+7 4.98 67.9 1.6e+8 3.21

15K 519.7 1.9e+8 3.50 111.1 2.9e+8 4.46

20K 528.5 2.8e+8 4.37 161.9 3.6e+8 4.23

25K 869.4 3.4e+8 4.40 219.5 4.2e+8 4.26

Effect of Target Size, Angular Resolution and Number of Boundary
Points: According to our experiments, as the size of the target increases, the
total processing time and I/O cost of our approach increase. The reason is, as
the size of the target increases, the number of obstacles visible from the target
also increases. As a result, the size of PVS grows with an increase in target size.
Consequently, the total processing time and the I/O cost increase.

We find that the total processing time is inversely proportional to angular
resolution or cell size. The reduction time does not depend on angular resolution.
But the computational overhead of determining visibility states and combining
the results decrease with increasing angular resolution. This is because the num-
ber of equidistant stripes decreases as the angular resolution increases.

Our experiments reveal that with an increase in number of boundary points,
total processing time increases and the error decreases. Total processing time
increases, because the cost of determining the visibility states is proportional
to the number of boundary points. The decrease in error occurs, because with
higher number of boundary points, we can obtain a more accurate measure of
what portion of the target is visible from each cell.

In the above cases, our solution runs 105 to 107 times faster than the exact
straightforward approach and the error rate varies from 3% to 7%, which is
negligible. The experimental results are not shown in details for brevity.

7.4 Performance for Moving Target

To assess the efficiency of our solution for constructing the VCM for a moving
target, we vary the ratio of the lengths of an edge of the super target and the
target from 2 to 5. We determine the average total processing time for all discrete
positions of the target inside the super target in two ways. First we separately
run the process of constructing the VCM for a fixed target as described in
Section 6.4 for each discrete position of the target inside the super target and
take the average processing time, which we call fixed target average cost. Then we
apply the method described in Section 6.5 to construct the VCM for all discrete
positions inside the super target and determine the average processing time by
amortizing the cost of the preprocessing steps over all discrete positions. This is
called moving target average cost.

The experimental results in Fig. 7 illustrate that our pre-computation based
solution for constructing the VCM for a moving target runs 10 to 100 times



10

100

1000

10000

100000

2 3 4 5

T
im

e
 (

s
e

c
)

Super Target to Target Ratio

British Dataset

Fixed Target Average Cost

Moving Target Average Cost

100

1000

10000

100000

1e+006

2 3 4 5

T
im

e
 (

s
e

c
)

Super Target to Target Ratio

Boston Dataset

Fixed Target Average Cost

Moving Target Average Cost

Fig. 7. Performance for moving target.

faster on average than the approach described in Section 6.4. As the size of
the target with respect to the super target decreases, the number of discrete
positions for the target inside the super target increases. As a result, the cost
of the preprocessing steps becomes negligible in average and the moving target
average cost becomes much smaller than the fixed target average cost.

8 Conclusion

In this paper, we have proposed an efficient and scalable technique to compute
the visibility color map (VCM ) that forms the basis of many real-life visibility
queries in 2D and 3D spaces. The VCM quantifies the visibility of (from) a
target object from (of) each viewpoint of the surrounding space and assigns
colors accordingly in the presence of obstacles. Our plane-sweep based solution
finds the VCM in three phases: finding the potentially visible obstacle set (PVS )
from a large set of obstacles, determining the occlusion effects of obstacles in the
PVS, and finally adding the effects of distance and angle between the target and
each cell of the partitioned dataspace. Our solution works for both fixed and
moving target, and handles the partial visibility of the target. When the target
moves to a near-by position, our proposed data structure can be incrementally
updated to generate the VCM on-the-fly. Experiments with real and synthetic
3D datasets demonstrate that for a fixed target, our approach outperforms the
straightforward approach by 5-6 orders of magnitude in terms of total processing
time. Our solution to calculate the VCM for a moving target runs 10 to 100 times
faster than our solution for a fixed target.
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