
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Continuous Monitoring of Distance
Based Range Queries

Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang and Wei Wang

Abstract—Given a positive value r, a distance based range query returns the objects that lie within the distance r of the query location.
In this paper, we focus on the distance based range queries that continuously change their locations in a Euclidean space. We present
an efficient and effective monitoring technique based on the concept of a safe zone. The safe zone of a query is the area with a
property that while the query remains inside it, the results of the query remain unchanged. Hence, the query does not need to be
re-evaluated unless it leaves the safe zone. Our contributions are as follows. 1) We propose a technique based on powerful pruning
rules and a unique access order which efficiently computes the safe zone and minimizes the I/O cost. 2) We theoretically determine
and experimentally verify the expected distance a query moves before leaving the safe zone and, for majority of queries, the expected
number of guard objects. 3) Our experiments demonstrate that the proposed approach is close to optimal and is an order of magnitude
faster than a naı̈ve algorithm. 4) We also extend our technique to monitor the queries in a road network. Our algorithm is up to two
order of magnitude faster than a naı̈ve algorithm.

Index Terms—Query processing, range queries, spatial data, continuous queries, road network.

F

1 INTRODUCTION

We consider a set O of objects, a query point q and a positive
value r. We use dist(o, q) to denote the distance between an
object o ∈ O and the query q. A distance based range query
returns every object o ∈ O that lies within distance r of the
query location q, i.e., every object such that dist(o, q) ≤ r.
Our main focus in this paper is on Euclidean distance based
range queries. Since the search space around the query is a
circle in this case, such queries are also called circular range
queries. We also consider the case when dist(o, q) is the
network distance between o and q (e.g., queries moving in
a road network).

Another variation of the range query, which we term “rect-
angular range query” (also called window query), returns the
objects that lie within a rectangle around the query location.
Distance based range queries and rectangular range queries
are inherently different and have different applications. When
clear by context, we use the term range query to refer to the
distance based range queries.

Due to availability of inexpensive position locators, cheap
network bandwidth and mobile devices with computation
and storage capabilities, location based services are gaining
increasing popularity. Consequently, continuous monitoring of
spatial queries has received significant research attention in the
past few years [1], [2], [3], [4], [5], [6], [7], [8].

In this paper, we study the continuous monitoring of moving
range queries over static data objects, i.e., a scenario where

• Muhammad Aamir Cheema is with the School of Computer Science and
Engineering, University of New South Wales, Australia.
E-mail: macheema@cse.unsw.edu.au

• Ljiljana Brankovic is with the University of Newcastle, Australia.
E-mail: ljiljana.brankovic@newcastle.edu.au

• Xuemin Lin, Wenjie Zhang and Wei Wang are with the University of New
South Wales and NICTA.
E-mails: {lxue,zhangw,weiw}@cse.unsw.edu.au

the queries are constantly moving whereas the data objects do
not change their locations. Such scenario has many interesting
applications. Consider the example of a family travelling by
car. Suppose they need to reach their final destination by a
certain time and only have up to 90min available for lunch.
They may want to continuously monitor restaurants within
10km of their current location so that they can choose a
restaurant that serves their favorite meals, and will not take
more than 15 min to reach. As another example, a bomber
plane might want to continuously monitor the enemy targets
(e.g., airport, arms depot) that are within its attack range.

We next discuss two models to monitor spatial queries.
Client-server model. In this model, the clients issue queries
and the central server is responsible for the computation
of these queries. For example, a person walking down the
street may issue a query to his mobile service provider to
continuously report the coffee shops within 1km of the issuer’s
location. It may be assumed that the server processes the query
in the main-memory, i.e., the data objects are stored in the
main-memory along with other relevant information needed to
efficiently update the results. However, such systems require
that the server continuously maintains this information in the
main-memory in order to provide the service.

We neither require that the data objects are stored in the
main-memory nor do we maintain any query information in the
main-memory. One advantage of this is that the service can be
run on-demand. Since the objects are stored in the secondary
memory and no main-memory information is maintained, the
server can go to sleep mode if there is no query. When a
query arrives, the server computes the results and the safe
zone, which are then sent to the client. The safe zone is an
area such that the reported results are valid as long as the client
(i.e., query) remains within the safe zone. A query that leaves
its safe zone sends an update request. The server updates the
safe zone and the results, and sends them back to the client.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

Local computation model. In the first application mentioned
above, the car may have a GPS navigation system with
points of interest (e.g., restaurants) stored in its memory card.
Since the navigation systems have limited main-memory and
computational capacity, it may be challenging to compute
the results of the range query whenever the query changes
its location (the car is continuously moving). Our proposed
approach returns a safe zone which guarantees that the results
of the query do not change as long as the query remains
within the safe zone. The safe zone is updated efficiently
when the query leaves the safe zone. Our experimental results
demonstrate that the overhead to compute the safe zone is
small compared to the cost of the range query. This enables
our framework to work effectively on the devices with limited
main-memory and computation power. We next highlight some
advantages of our proposed approach.
a. The computation of the safe zone reduces the overall
computation time because the query needs to be re-evaluated
only when it leaves the safe zone. Our experiments indicate
that the cost of computing the safe zone is small compared to
the cost of the range query.
b. Although the shape of the safe zone may be arbitrarily
complex, we can still efficiently check whether the query lies
within it. If the query is based on network distance, the safe
zone itself is a small network that is a subset of the original
network and it has to be determined whether the query lies
within the safe zone or not. For the circular range queries, we
utilize the fact that the safe zone only depends on the so-called
guard objects. Checking whether the query lies within the safe
zone takes k distance computations, where k is the number of
guard objects. Our experimental results demonstrate that the
average number of guard objects is around 5. This makes our
proposed approach applicable for the clients that have limited
computational power. We also present a theoretical analysis
and give an upper bound on the expected number of guard
objects for the queries with the diameter of the safe zone no
more than a constant times its expected value.
c. We do not require the data objects to be stored in the main-
memory, which allows our approach to work on systems with
limited main-memory (e.g., GPS navigation systems).
d. When an update request is received, the server computes
the new safe zone and the results for the circular range
queries. After updating the results, the server only sends new
information to the clients. For example, if the client was
informed that an object oi is within its range, the object oi

is not sent again in updated results if it still lies within the
range. If in the future such object oi ceases to be within the
range, the client is informed that oi is out of the range. Our
experimental results demonstrate that this significantly reduces
the amount of data transmitted from the server to the clients.
e. In the client-server paradigm, our proposed approach does
not require the server to maintain or record any information
related to the queries, yet it efficiently updates the safe zones.
This enables the server to run this service on-demand.

Note that some computation models require queries to get
registered at the server and report their locations after every
t time units. Our approach can be readily applied to such
systems. In the rest of the paper, we assume a model where a
query contacts the server only if it leaves the safe zone.

Although there exists a safe zone based solution for moving
window queries [6], this technique is not applicable to the
moving circular range queries. In Section 2 we show that it
is not possible to extend this technique to the case of the
distance based range queries as the problems of monitoring
moving window queries and the distance based range queries
are inherently different. We apply an aggressive approach to
prune the objects/entries that cannot affect the results and/or
the safe zone. Our pruning rules are tight and the performance
of our solution is close to optimal.

We next summarize our contributions in this paper.
• We present an efficient and effective technique to monitor

the moving circular range queries by adopting the concept
of safe zones.

• We present a rigorous theoretical analysis to verify the
effectiveness of our safe zone based approach for the
moving circular range queries. More specifically, we
evaluate the probability that a query moves out of the
safe zone within one time unit, the expected distance it
travels before it leaves the safe zone, and an upper bound
(which is a constant) on the expected number of guard
objects for the queries with the diameter of the safe zone
no more than a constant times its expected value. Our
experimental results confirm the accuracy of the presented
theoretical analysis.

• We conduct extensive experiments to show the effective-
ness of our approach. We compare our algorithm with an
optimal solution and a naı̈ve solution. The experimental
results indicate that our proposed approach is close to the
optimal solution and an order of magnitude faster than the
naı̈ve algorithm.

• Based on non-trivial access order and pruning rules, we
present a complete framework for answering the distance
based range queries in a road network. Experiments
demonstrate that our algorithm is up to two orders of
magnitude faster than a naı̈ve algorithm.

The remainder of the paper is organized as follows. In
Section 2, we give an overview of the related work. We
introduce our framework and pruning rules for processing
the moving circular queries in Section 3. In Section 4, we
present our safe zone based solution to the moving circular
range queries. Theoretical analysis is presented in Section 5.
In Section 6, we present our techniques to answer moving
range queries in a road network. The experimental results are
reported in Section 7. Section 8 concludes the paper.

2 RELATED WORK

2.1 Spatial queries in Euclidean space
Continuous monitoring of spatial queries has been extensively
studied in the recent past [9], [10], [2], [11], [3], [12],
[13], [6]. Prabhakar et al. [14] proposed velocity constrained
indexing and query indexing for continuous evaluation of static
queries over moving objects. Mokbel et al. [15] introduced an
algorithm (SINA) for evaluating a set of concurrent spatial
queries, which reduces the overall cost by shared execution
and incremental evaluation.

Several distributed processing techniques to continuously
monitor range queries have also been proposed [7], [1],

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

[16], [17]. Gedik et al. [7] introduce a technique called
MobiEyes, which reduces the computation load on the server
and communication costs between the clients and the server by
delegating some computation load to the client objects (e.g.,
mobile devices). In [18], the authors propose a motion adaptive
indexing scheme that uses the concept of motion sensitive
bounding boxes to model moving objects and queries. Hu et
al. [2] propose a generic framework to monitor continuous
range queries and kNN queries over moving objects. They
define the safe zones for each object such that the query results
remain unchanged if the object does not leave the region.
However, their approach is not designed for moving queries.
Wu et al. [19] use a new query indexing method called CES-
based indexing to minimize the total query evaluation time.

We now present the related techniques that are specifi-
cally designed for moving spatial queries. Several techniques
have been proposed to construct safe zones for moving
kNN queries [20], [21], [6], [22], [23] and moving window
queries [6]. However, to the best of our knowledge, there
does not exist any safe zone based technique to continuously
monitor moving circular range queries. We next show that the
existing work cannot be extended to monitor moving circular
range queries continuously.

Tao et al. [8] introduce Time-Parameterized queries (TP
queries). A TP query assumes that the motion pattern (e.g.,
path and speed) of the query is known and retrieves the current
results along with a future time at which the current results
will become invalid. A TP query also reports the object that
invalidates the results. In [8], the techniques to answer TP kNN
queries, TP window queries and TP join queries are presented.

q

o
2

o
1 q'

Fig. 1. A time-
parameterized window
query

q

o
2

AB
q'

Fig. 2. TP circular queries
cannot be used to con-
struct safe zone

Fig. 1 shows an example of a window query where the
current location of the query is q and its window is shown
with a solid line (the search space is shown in a dark shade).
The current result of the window query q is the object o1. A TP
window query is issued to find the object that invalidates the
current result when the query is moving in the direction shown
by the arrow. The query returns the object o2 as it invalidates
the current result when the query reaches the location q′. In
other words, when the query reaches q′, it has objects o1
and o2 within its window and not only o1. The minimal area
searched by the TP query is shown shaded in Fig. 1.

Based on TP queries, Zhang et al. [6] present a solution to
continuously monitor kNN queries and the window queries.
They use TP queries to identify the safe zones for moving
queries. The algorithm starts by assuming that the whole space

is the safe zone. TP queries are then issued towards the corners
of the current safe zone. If a TP query retrieves an object that
has not already been considered, the safe zone is trimmed
using that object (for details, see [6]); otherwise, the corner is
marked as confirmed. The algorithm terminates when all the
corners are confirmed.

We note that there does not exist any reported work on
TP circular range queries and the technique presented in [6]
cannot be applied to such queries. Even if the technique to
answer TP window queries are extended to answer the TP
circular range queries, the TP circular range queries cannot
be used to construct the safe zone. The reason is as follows.
The key observation used in the technique presented in [6]
is that if none of the TP queries issued towards corners of
a region returns a new object, the region is guaranteed to be
the safe zone. This observation does not hold for the moving
circular range queries. Consider the example in Fig. 2 where
the current region is shown dark shaded. The TP range queries
are issued towards each of the two corners A and B and they
search the space shown shaded in the figure. No object is
returned by either of the TP range queries. However, the region
cannot be guaranteed to be the safe zone. Consider that the
query moves to the location q′. Then the object o2 lies within
its range, which invalidates the results.

2.2 Spatial queries in road networks

Significant research attention has been given to develop-
ing techniques for spatial queries in road networks. kNN
queries [24], [25], [26], [27], [28], [29], [30], [31] and range
queries [32], [28], [33], [34] are among the most studied
spatial queries in road networks. Chen et al. [35] study the path
k-NN queries that returns kNNs with respect to the shortest
path connecting the destination and the user’s current location.

Papadias et al. [28] propose a framework to support nearest
neighbor queries, closest pairs queries, range queries and
distance joins on a road network. However, they assume that
the queries and the objects have fixed positions in the spatial
network. Wang et al. [34] propose a solution to answer static
range queries over moving objects. They utilize a disk resident
R-tree to store the network and a grid structure to store the
positions of moving objects. The main idea is to first find the
edges that may contain the objects within the range and then
the grid cells that overlap with the edges are used to retrieve
the objects. Liu et al. [33] present a distributed processing
technique to solve the moving range queries over moving
objects. Their approach relies on the computation power of the
moving objects and each moving object reports to the server
when it affects the results of one or more queries. Stojanovic et
al. [32] propose technique for continuous monitoring of range
queries over moving objects. The range of the query may be
defined by a user selected area, a map window, a polygon, a
circle or a part of the road segment.

Kriegel et. al [36] study the problem of proximity moni-
toring in road networks. Given a proximity threshold ε and
a set of moving objects, a server responsible for proximity
monitoring continuously reports the pairs of objects that are
within a distance ε to each other. Küpper et. al [37] propose
a technique for the same problem in Euclidean space. Both of

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

the techniques assign each moving object a region such that as
long as the object remains within this region it does not need
to report its location to the server. Note that these techniques
can be adopted to answer the distance based range queries by
setting the proximity threshold to r and considering only the
pairs of objects that contain the query object q. However, the
focus of these techniques is to reduce the communication cost
between the moving objects and the server. On the other hand,
the focus of our technique is to minimize the computation
time. Moreover, our framework is suitable for both the client-
server model and the local computation model.

3 FRAMEWORK

3.1 Solution Overview

Consider the example in Fig. 3 where a range query q is shown.
Its range is r and the area within its range is shown shaded.
Some objects around it are also shown. The objects that lie
within the range form the result set and are called internal
objects (e.g., the objects o1 and o2). The objects that do not
lie within the range are called external objects (e.g., the object
o3). Let Ci be a circle of radius r with centre at the location
of the object oi. Fig. 3 shows the circles for the objects o1,
o2 and o3.

o
1

o
2

o
3 q

r

v
1

v
2

v
3

Fig. 3. A range query and
its safe zone

q

o
1

o
2

o
3

o
4

o
5

Fig. 4. Some objects do not
affect the safe zone

Note that all the internal objects contain q in their circles
whereas the external objects do not. An internal object oi

ceases to be within the range only when the query q leaves
its circle Ci. Similarly, an external object becomes included
in the result only if the query enters its circle. In other words,
the result of the query q does not change as long as q does
not leave or enter any circle. Hence, the safe zone of a query
q is defined by the boundaries of the circles around it. In
the example in Fig. 3, the dark shaded area is the safe zone
because q does not enter or leave any circle as long as it
remains in this area. Formally, safe zone S can be defined
as the intersection of the circles of internal objects minus the
circles of external objects. That is, S = ∩iCi−∪jCj for every
internal object oi and every external object oj .

Please note that as we consider new objects in order to
calculate the safe zone, we may find that some objects may
not affect the shape of the safe zone. Consider the example
in Fig. 4 where the objects o4 and o5 are shown. The circle
of the internal object o4 completely contains the current safe

zone1 of q. Hence, it does not change the shape of the current
safe zone and will not define the final safe zone. Similarly, the
circle of the external object o5 does not intersect the current
safe zone and consequently does not affect its shape. For this
reason, the final safe zone can be defined without using the
circles of o4 and o5. In this paper, the objects that contribute to
the shape of the final safe zone are called guard objects (e.g.,
o1, o2 and o3). An internal (external) object that contributes
to the final safe zone is called an internal (external) guard.
Internal guards in this example are o1 and o2 whereas o3 is
an external guard. For the sake of simplicity, in what follows
we refer to both “current safe zone” and “final safe zone”
simple as “safe zone”.

3.1.1 Data structure at a glance
All objects are indexed by a disk-resident R-Tree [38]. For
each query, the server keeps the following information in
its memory during the computation of the safe zone: 1) its
location; 2) the list of internal objects called answer list; 3)
the list of guard objects. For each guard object, the server
stores its arcs that contribute to the safe zone. In the example
in Fig. 3, the object o1 has an arc with two end vertices v1 and
v3. We use this arc (or vertices) for effective pruning. Note that
the server stores this information in its memory only during
the construction of the safe zone, and discards this information
after the safe zone has been computed and sent to the client.

3.1.2 Checking whether q lies in the safe zone
Since the clients that issue queries (e.g., mobile devices) have
limited computational power, it is desirable that checking
whether the client is inside the safe zone is not computationally
expensive. Although the shape of a safe zone may be complex,
the cost of checking whether q lies in the safe zone takes
only k distance computations where k is the number of guard
objects. More specifically, the query q computes its distance
from each of the guard object. If it lies within the circle of
every internal guard and lies outside the circle of every external
guard then it lies within the safe zone. Our experimental results
show that the average number of guard objects is around 5.
We also present a theoretical analysis to give an upper bound
on the expected number of guard objects for the queries that
satisfy certain constraints.

A simple approach to compute the safe zone is to consider
all objects and find the objects that actually contribute to the
safe zone. However, the number of objects that are considered
must be reduced in order to reduce the I/O cost and to improve
the CPU time. We next present five effective pruning rules that
significantly reduce the number of considered objects.

3.2 Pruning Rules
As shown in the example in Fig. 4, some objects do not affect
the safe zone. More specifically, if the circle of an object
contains the safe zone (such as o4 in Fig. 4) or lies completely
outside the safe zone (such as (o5 in Fig. 4), that object does

1. We use the term current safe zone because the the safe zone is being
constructed and is not the final safe zone. From now on, the current safe zone
is called safe zone and the current guard objects are called guard objects when
there is no ambiguity.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

not affect the shape of the safe zone. In this section, we present
some effective pruning rules to prune such objects. Note that
only the circles of internal objects may contain the safe zone
and only the circles of external objects may completely lie
outside the safe zone. Hence, some pruning rules are specific
to the internal objects and some are to be applied only on
external objects.

First, we present pruning rules based on the approximation
of the safe zone by a rectangle. Let a and b be two rectangles or
points; we use mindist(a, b) and maxdist(a, b) to denote the
minimum and maximum distances between them, respectively.

3.2.1 Using approximation of the safe zone
Let RS be the minimum bounding rectangle of the current safe
zone as shown in Fig 5. Let Rcnd be a rectangle that contains
some candidate objects.

PRUNING RULE 1 : If maxdist(Rcnd, RS) < r then no
object in Rcnd can affect the safe zone.

Proof: Let o be an object in Rcnd. For every point p ∈
RS , dist(o, p) < r because maxdist(Rcnd, RS) < r. Hence,
the circle of o contains every point p of the safe zone, i.e., o
does not affect the safe zone.

PRUNING RULE 2 : If mindist(Rcnd, RS) > r then no
object in Rcnd can affect the safe zone.

Proof: Let o be an object in Rcnd. For every point p ∈
RS , dist(o, p) > r because mindist(Rcnd, RS) > r. Hence,
the circle of o does not contain any point p of the safe zone,
i.e., o does not affect the safe zone.

q

mindist(R
1
,R
S
)

maxdist(R
2
,R
S
)

R
2

R
S

R
1

Fig. 5. Pruning using the approximation of safe zone
In the example of Fig. 5, where maxdist(R2, RS) < r, it

can be immediately verified that any object in R2 contains the
safe zone in its circle. Similarly, mindist(R1, RS) > r and
every object in R1 can also be pruned.

3.2.2 Using the guard objects
Although the rectangle based pruning is inexpensive, it is
unfortunately not very tight. We present tighter pruning rules
below, based on the positions of the guard objects.

PRUNING RULE 3 : If mindist(Rcnd, oi) > 2r for any in-
ternal guard object oi then no object in Rcnd can affect the
safe zone.

Proof: An object can only affect the safe zone if its circle
intersects the safe zone. Safe zone is the area defined by the
intersection of the circles of the internal guard objects minus
the circles of the external guard objects. Hence, the circle of
any internal guard object contains the whole safe zone, Thus a
circle can only intersect the safe zone if it intersects the circles

o
1

o
2

o
3 q

r

o
4

Fig. 6. Illustration of prun-
ing rule 3

o
1

o
2

o
3 q

r

2r

2r

Fig. 7. Area pruned by the
rule 3

of all internal guard objects. Consequently, if an object oj lies
at a distance greater than 2r from any internal guard oi, it
cannot intersect the safe zone.

In Fig. 6, the object o4 cannot affect the safe zone because
it lies at a distance greater than 2r from o2. To show the
area that is pruned by this pruning rule, we zoom out Fig. 6
and show the pruned area in Fig. 7. The shaded area can be
pruned because every point in it lies at a distance greater than
2r from at least one of o1 and o2. This pruning rule prunes
the rectangles that contain external objects.

Before we present tighter pruning rules, we provide few
auxiliary observations and lemmas.

Consider a circle C with centre at M and radius r, and any
point E in the plane (inside or outside the circle) (see Fig. 8).
The line that passes through E and M intersects the circle at
two points, A and B. Without loss of generality, we assume
that dist(A,E) < dist(B,E), as shown in Fig. 8. We make
the following observation.

OBSERVATION 1 : Let C be a circle of radius r, and M , E, A
and B be the points as described above. The distance between
E and any point D on the circle monotonically increases as
D moves along the circle from point A to B, either clockwise
or counter-clockwise. In other words, any point D′ that lies
before D while travelling on the circle from A to B satisfies
dist(E, D′) < dist(E,D).

The above observation can be easily verified from the
triangle 4EMD. If we denote MD by r and the length
of EM by x, then the length of DE is given by the law
of cosine as dist(D,E) =

√
r2 + x2 − 2rx · cos(∠EMD).

Note that as D travels along the circle from A to B, the
angle ∠EMD increases from 0◦ to 180◦ and its cosine
monotonically decreases from 1 to -1. As both r and x remain
unchanged, the distance dist(D, E) monotonically increases.
Note that we do not require x to be smaller than r, so the
observation also holds for the case when E lies outside the
circle.

Based on Observation 1, we present the following lemma
that is used in our next pruning rule.

LEMMA 1 : Let
_

AB be an arc of radius r with subtending
angle θ < 180◦ where A and B are the end points of the arc
and M is the centre (as shown in Fig. 9). Let CA and CB

be two circles of radius r centred at A and B, respectively.
Every point E that lies inside both the circle CA and circle
CB satisfies the following: The circle of radius r with centre
at E (the dotted circle in Fig. 9) contains every point of the

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

E

M

r

B

A

D

D’

Fig. 8. Observation 1

E
D

A

M

rr
Bθ

F

Fig. 9. Lemma 1

arc
_

AB.

Proof: In order to prove the lemma, we need to show
that the distance of E from any point D that lies on the arc
_

AB is smaller than r. If we extend the line joining M and
E, it cuts the arc at point F which is the minimum distance
from E to the circle. We prove the lemma for the arc

_

AF

and the proof for the arc
_

FB is similar. By Observation 1,
we know that any point D that lies on the arc

_

AF satisfies
dist(E, D) ≤ dist(E, A). As the point E lies inside the circle
CA, dist(E, A) < r. Hence, dist(E, D) < r for any point D.

Please note that the lemma does not hold if the subtending
angle θ ≥ 180◦ as the line joining M and E intersects the arc
_

AB at point F which is the maximum distance from E to the
circle and is greater than r (Fig. 10).

E
A

M rr

B

θ

F

Fig. 10. When θ > 180◦

o
1

o
2

o
3 q

v
2

v
3

v
1

Fig. 11. Pruning rule 4
Based on Lemma 1, we present a pruning rule to prune the

rectangles that contain internal objects.

PRUNING RULE 4 : Let S be a safe zone such that every
arc that defines it has subtending angle smaller than 180◦. If
maxdist(Rcnd, vi) ≤ r for every vertex vi of the safe zone S,
then no object in Rcnd can affect the shape of the safe zone.

Proof: Let E be a point that lies within all the circles of
radius r centred at vertices of the safe zone. From Lemma 1,
we know that the circle centred at E contains every arc of the
safe zone. Hence, it contains the whole safe zone and cannot
affect its shape.

Fig. 11 shows three circles of radius r with centres at the
vertices v1, v2 and v3. Any object or rectangle that lies in the
shaded area can be pruned because its distance to any vertex
cannot be greater than r.

For our final pruning rule, we need the following lemma.

LEMMA 2 : Let
_

AB be an arc with centre at M , radius r

and subtending angle 0 < θ < 360◦ as shown in Fig. 12. The
distance of E from every point of the arc

_

AB is greater than
r, if E satisfies either of the following conditions:
1) E lies within the angle range θ and dist(E,M) > 2r;
2) E lies outside the angle range θ, dist(E, A) > r and
dist(E, B) > r.

Less formally, if E lies within the shaded area in Fig. 12,
its distance to any point on the arc

_

AB is greater than r.

Proof: We first consider a point E1 that lies within the
angle range θ (see Fig. 12). We draw a line through points E1

and M and we denote the intersection of the line and the arc
by G. By Observation 1 dist(E1, G) is the minimum distance
from the point E to the arc

_

AB. Since dist(E1, M) > 2r, it
follows that dist(E1, G) > r and thus dist(E1, D) > r for
any point D on the arc

_

AB.
We now consider a point E2 that lies outside the angle

range θ (see Fig. 12). Again, by Observation 1, the minimum
distance from E2 to the circle is dist(E2, F) (see Fig. 12),
and the distance between E2 and the points on the circle
increases monotonically as we move along the circle away
from the point F . Thus for every point D on the arc

_

AB we
have either dist(E2, D) ≥ dist(E2, A) > r or dist(E2, D) ≥
dist(E2, B) > r.

A

M

rr
Bθ

E
1

E
2

F

D

Fig. 12. Illustration of
Lemma 2

q

o
1

o
2

o
3

Arc of o
2
with radius 2r

Arc of o
1
with radius 2r

Fig. 13. Pruning by rules 4
and 5

Based on Lemma 2, we present our final pruning rule that
prunes external objects.

PRUNING RULE 5 : No object in a rectangle Rcnd can affect
the safe zone if Rcnd satisfies Lemma 2 (i.e., Rcnd lies
completely in the shaded area of Fig. 12) for every arc of
the safe zone.

Proof: The proof immediately follows from Lemma 2 as
any point in Rcnd has minimum distance to the boundary of
the safe zone greater than r. Hence, its circle cannot intersect
the safe zone.
In order to apply this pruning rule, we check the minimum
distance of the rectangle Rcnd from M , A and B. If the
rectangle completely lies outside the angle range θ, it can be
pruned if its minimum distance from both A and B is greater
than r. Otherwise, it can be pruned if its minimum distance
from M is greater than 2r.

Fig. 13 shows the area pruned by the rules 4 and 5, where
the outer shaded area is pruned by the pruning rule 5 and we
call it external pruned area. The inner shaded area is pruned
by the rule 4 and we call it internal pruned area.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

The arguments similar to those used in proofs of Lemma 1
and 2 can be used to show that the pruning rules are tight.
In other words, any object that lies in the unpruned area (the
white area in Fig. 13) affects the shape of the current safe
zone. Note that although the rectangle based pruning rules
have less pruning power, they are important because they are
computationally less expensive. We first apply the rectangle
based pruning rules and if an object is not pruned, we apply
the guard objects based pruning rules.

4 TECHNIQUE

Initially, the whole space is assumed to be the safe zone. We
then access each object that cannot be pruned, and use its
circle to trim the safe zone. The algorithm stops when all
the objects that cannot be pruned are accessed. The order in
which the objects are accessed is important as better access
order retrieves fewer objects that affect the safe zone. We first
present our proposed access order. Secondly, we present our
query processing algorithm followed by the algorithm to trim
the safe zone. Finally, we present an efficient technique to
update the safe zone when the query leaves it.

4.1 Access order
After applying the pruning rules presented above, there may
be several objects left in the unpruned area. The order in which
these objects are accessed is important. Intuitively, the objects
that lie closer to the boundary of the range query have a more
significant effect on the shape of the safe zone and should be
accessed first.

Consider the example in Fig. 14, where the boundary of q
is shown in thick broken line. The objects o1, o2 and o3 are
accessed first and are the current guard objects. The object
o4 that lies closer to the boundary than all of the existing
guard objects is guaranteed to affect the shape of the safe
zone. In Fig. 15, the object o4 is accessed and the safe zone is
shown after trimming with respect to its circle. We present a
lemma that shows the importance of the objects located near
the boundary for constructing the safe zone.

q
o
1

o
2

o
3

o
4

F

Fig. 14. Importance of ac-
cess order

q
o
1

o
2

o
3

o
4

F G

Fig. 15. o1 is not a guard
object anymore

LEMMA 3 : Let oi be an object that is closer to the boundary
of the range query than all current guard objects. The object
oi is guaranteed to affect the shape of the current safe zone.

Proof: Without loss of generality, consider the example
in Fig. 14 where the current safe zone is shown shaded. The

closest guard object to the boundary of the range query is
o3. Thus the minimum distance from the query to the current
safe zone is | dist(o3, q) − r |. Any object o4 that lies closer
to the boundary than o3 has a point G on its circle with
distance | dist(o4, q) − r | from the query, which is less than
| dist(o3, q) − r | (see Fig. 15). Hence, the circle of o4 has
at least one point inside the current safe zone so it affects the
safe zone.

In fact, in this particular example, the object o4 is not
only a guard object but it also removes the object o1 from
the list of the guard objects. Consider Fig. 15, where the
object o4 has been considered for trimming and the new
safe zone is shown shaded after. Clearly, the circle of the
object o1 does not contribute to the safe zone anymore, and
consequently o1 is removed from the list of the guard objects.
This example supports the intuition that the objects that lie
closer to the boundary of the query should be accessed first.
Our experimental results demonstrate the effectiveness of this
proposed access order (Fig. 31 in Section 7). Next, we present
an efficient algorithm that accesses the objects in the proposed
order.

4.2 Algorithm
We use an R-Tree [38] to index the objects. Each leaf and
index node of an R-tree contains pointers to its entries and a
minimum bounding rectangle that contains all its objects. For
details, please see [38].

Algorithm 1 outlines the solution. A min-heap is initialized
with the root entry of the R-tree. The entries are de-heaped
iteratively until the heap becomes empty. If a de-heaped entry
e has maxdist(e, q) < r, then all the objects in it are internal
and we apply pruning rules 1 and 4. If the entry is pruned, we
do not need to check any objects within it for the construction
of the safe zone. However, as these objects are internal, they
contribute to the answer to be sent to the query. Therefore, we
insert all the objects that are within this entry to the answer
list (lines 4 - 7).
Algorithm 1 Range Query (q, r)
Input: q: the query point; r: range of the query;
Description:

1: initialize a min-heap H with root of the R-Tree
2: while H is not empty do
3: deheap an entry e
4: if maxdist(e, q) < r then
5: if pruned using rules 1 and 4 then
6: insert all objects of e in the answer list
7: continue
8: else if mindist(e, q) > r) then
9: If pruned using rules 2, 3 and 5, continue;

10: if e is an object then
11: TrimSafeZone(e,q,S) /* Algorithm 2 */
12: if e is an internal object, insert in the answer list
13: if e is a leaf or index node then
14: for each entry c in e do
15: insert c into H with key set to its minimum distance

from boundary
16: send guard objects and answer list to the query q

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

If the de-heaped entry e has mindist(e, q) > r, then all
the objects in it are external objects and we apply pruning
rules 2, 3 and 5 (lines 8 and 9). If the entry is pruned, we
continue the algorithm by de-heaping the next entry. Note that
an entry e for which mindist(e, q) ≤ r ≤ maxdist(e, q)
cannot be pruned by any of the pruning rules. This is because
such entries may contain both internal and external objects,
while all the proposed pruning rules are applicable either to
internal objects or to external objects. For this reason, we do
not consider such entries for pruning.

If e is an object and cannot be pruned, we use it to trim the
safe zone; if it is an internal object, we also insert it into the
answer list (lines 10 - 12). Otherwise, if e is a leaf or index
node, we insert its entries into the heap with key of each entry
set to minimum distance of the entry from the boundary of the
range query (lines 13 - 15). The algorithm stops when the heap
becomes empty.

The minimum distance of an entry e from the boundary of
the range query is computed as follows: If mindist(e, q) ≤ r
and maxdist(e, q) ≥ r, then the minimum distance of this
entry from the boundary is zero because the entry e overlaps
the boundary (see R1 in Fig. 16). If mindist(e, q) > r, then
the minimum distance of this entry is mindist(e, q) − r (see
R2 in Fig. 16). Finally, if the maxdist(e, q) < r then the
minimum distance is r − maxdist(e, q) (see R3 in Fig. 16).

q

R
1

r

R
2

R
3

Mindist(R
2
,q)

Maxdist(R
3
,q)

Fig. 16. Minimum distance
from the boundary

o
1

o
2

o
3

o
4

v
1

v
2

v
3

v
5

v
4

v
6

q

Fig. 17. Illustration of the
trimming (Algorithm 2)

In a special case when there is no object within the range,
the whole space minus the circles of all the external objects
will be the safe zone. However, the number of guard objects
may be arbitrarily large. For such cases, in order to restrict
the space, we treat query location as a virtual internal object.
Then only the objects within distance 2r of the query may be
the guard objects.

4.3 Trimming the safe zone

Algorithm 2 shows the procedure to trim the safe zone with
respect to an object o. Note that to trim the safe zone, we only
need to update the guard objects and the vertices of the safe
zone and we do it as follows. For each guard object oi, the
intersection points of the circles of o and oi are computed. If
the intersection point lies on the boundary of the safe zone,
the point is added as the vertex of the safe zone (lines 1 to 3).
Then, the object o is added as the guard object.

Finally, the existing vertices that are no longer in the safe
zone are removed and the objects that no longer have any

Algorithm 2 TrimSafeZone (o, q, S)
Input: o: an object o to be used for updating the safe zone;

q: the query point; S: the list of current guard objects;
Description:

1: for each guard object oi in S do
2: for each intersection point vi of circles of o and oi do
3: add vi to vertices list if vi lies on the boundary of

the safe zone
4: add o to the list of guard objects S
5: if o is an internal object then
6: remove every vertex v if dist(o, v) > r
7: else if o is an external object then
8: remove every vertex v if dist(o, v) < r
9: remove every guard object o from S if all its related

vertices have been removed

associated vertices are removed from the list of guard objects
(lines 5 to 9).

Fig. 17 illustrates the Algorithm 2 and shows the safe zone
(shaded), together with its current guard objects o1, o2 and o3.
The safe zone is to be trimmed by a new object o4. For the
sake of clarity, the circles of o1 and o3 are not shown. The
circle C4 of the object o4 intersects the circle C2 of the object
o2 at two points, v4 and v5. The intersection point v4 lies on
the boundary of safe zone, so it is added to the list of vertices
of the current safe zone. The intersection point v5 lies outside
the safe zone so it is deleted. Similarly, the intersection points
of the circle C4 with the circles of o1 and o3 are considered
and v6 is added to the list of vertices. All other intersection
points lie outside the safe zone and are deleted.

Now the vertices of the safe zone that are not valid anymore
are to be deleted. Since o4 is an internal object (it contains q
in its circle), all vertices that lie outside its circle are deleted.
For this reason, the vertices v1 and v2 are deleted. The related
object o1 is also deleted as it no longer has any associated
vertex. After trimming of the safe zone, its vertices are v3, v4

and v6 and the guard objects are o2, o3 and o4.

4.4 Updating the safe zone when query leaves it

When the query leaves its safe zone, it sends its current
location and current guard objects to the server. The server
updates the answer list (the list of internal objects), computes
the new safe zone and sends it to the query. A straightforward
approach is to compute the safe zone and answer list from
scratch. However, this is not only expensive but can also cause
a large amount of data to be transmitted from the server to the
query if the answer list contains a large number of objects.

In this section, we propose an effective approach to update
the safe zone and the answer list, called smart-update. The
smart-update utilizes the previous safe zone of the query and
avoids searching the area that was visited before. Furthermore,
instead of computing and sending all the objects lying within
the range, the smart-update sends a list of objects called delta
list that contains two types of objects. An object o+

i indicates
that the object oi that was previously external is now internal.
So, the client must add it in its answer list. An object o−i
indicates that the object oi that was previously internal is now
external. Hence, the client must remove it from its answer list.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

q'

o
1

o
2

o
3

q

Fig. 18. q leaves the safe
zone

q

o
1

o
2

o
3

o
4 o

5

Fig. 19. Smart-update in
action

Fig. 18 shows that a query q leaves the safe zone and moves
to q′. The shaded area corresponds to the area that was pruned
with respect to its previous safe zone. The smart-updates first
considers the existing guard objects and constructs an initial
safe zone (as shown in Fig. 19). Then, the smart-update uses
two observations to reduce the search area. 1) The white
area of the Fig. 18 cannot contain any object. The proof is
straightforward because if there were any object in the white
area, it would have affected the previous safe zone. Hence, the
smart-update does not search this area. 2) The query q contains
in its answer list all the objects that are in the internal pruned
area (the internal shaded area of Fig. 18). Hence, the objects
that lie within distance r from q′ and lie in the internal pruned
area are not required to be sent to the client.

In the example in Fig. 19, the object o4 is not sent to the
query because it lies in the previous internal pruned area and
the query already contains it. However, the object o5 must be
sent so that the query removes it from its answer list.

We remark that our approach can be easily adopted to
update the safe zone for the case when the underlying objects
issue updates (e.g., an object appears or disappears from the
dataset). Due to the space limitations, we omit the details and
refer the readers to Section VI of [39].

5 THEORETICAL ANALYSIS

In this section we present a theoretical analysis to evaluate
the effectiveness of the safe zone. In what follows we assume
that there are N objects in total and that they are uniformly
distributed in a square unit universe.

5.1 Escape Probability (Pesc)
We first analyse the escape probability Pesc, which we define
as the probability that a query q leaves its safe zone within one
time unit. Escape probability is important because a smaller
escape probability indicates that on average the results of the
query will remain unchanged for longer.

Consider the example in Fig. 20 with a range query q and
the guard objects o1, o2 and o3. The safe zone is shown with
bold boundary. Suppose that the query q travels some distance
x along a straight line in an arbitrary direction and that it
crosses the boundary of the safe zone at point q′. Zhang et
al. [6] presented an interesting observation for window queries
which we here apply to the circular range queries. When a
query q moves, its circle sweeps some area, which is called
sweeping region. In Fig. 20, the shaded area corresponds to
the sweeping region of the query which moved from q to q′.

q

o
1

q'o
2

o
3

x

Fig. 20. Sweeping region
(x < 2r)

q

q'

x

Fig. 21. Sweeping region
(x ≥ 2r)

It is important to note that as long as the query remains in
the safe zone, that is, while x ≤ dist(q, q′), the corresponding
sweeping region contains no objects.

The area A of the sweeping region when the query moves a
distance x < 2r (as shown in Fig. 20) and a distance x ≥ 2r
(as shown in Fig. 21) is

A(x) =πr2+2rx −

2r2arccos(
x

2r
) − x

√
r2 − x2

4
, if x < 2r

0 , otherwise
(1)

Since we assume uniform distribution of the objects in a
unit universe, the probability pi that an object oi lies within
the sweeping region is A(x). The probability p′i that the object
oi does not lie within the sweeping region is (1−A(x)). The
probability that none of the N objects lies within the sweeping
region is (1 − A(x))N . Hence, the probability that the query
does not leave its safe zone when traveling a distance x, i.e.,
the probability that x < dist(q, q′) is (1−A(x))N . Finally, the
probability that at least one of the N objects lies within the
sweeping region, that is, the probability that x ≥ dist(q, q′)
is:

P{x ≥ dist(q, q′)} = 1 − (1 − A(x))N (2)

Let the query speed v be such that the query travels distance
d in one time unit. The probability of escape Pesc can be
computed as P{d ≥ dist(q, q′)} = 1 − (1 − A(d))N .

5.2 Expected distance (m)
In this section, we analyse the expected distance m that a
query travels before it leaves its safe zone. The probability
density function pdf(x) is given by the derivative of P (x)
presented in Equation (2) as follows:

pdf(x) = 2rN(1 − A(x))N−1

 (1 +
√

1 − (
x

2r
)2) , if x < 2r

1 , otherwise
(3)

Integrating x · pdf(x)dx for x from 0 to 1 gives us the
expected distance.

Unfortunately, it is difficult to integrate x·pdf(x)dx because
the area A is represented by trigonometric functions and it
makes the expression difficult to solve when x < 2r. We
address this problem by approximating the area A(x) when

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

x < 2r. By plotting the equations on a graph, it can be shown
that when 0 ≤ x ≤ 2r, then 1.1πrx ≤ A(x) ≤ 1.3πrx. We
thus define the lower bound on the area as Alow = 1.1πrx
and the upper bound as Aup = 1.3πrx. We can then show that
for x < 2r, 2rNx(1−Aup)N−1 ≤ x ·pdf(x)dx ≤ 4RNx(1−
Alow)N−1. Thus we define the lower and upper bound on the
expected distance as follows:

mup =
∫ 2r

0

4rNx(1−Alow)N−1dx+
∫ 1

2r

2rNx(1−A(x))N−1dx

(4)

mlow =
∫ 2r

0

2rNx(1−Aup)N−1dx+
∫ 1

2r

2rNx(1−A(x))N−1dx

(5)
Exact values of mlow and mup can be found by solving the

integrals. For large values of N we have

mup ≈ 0.33
rN

and mlow ≈ 0.12
rN

(6)

The equations for the expected distance bounds describe the
relation between the expected distances, radius and the total
number of objects. More specifically, the expected distance
is inversely proportional to the radius r and the number of
objects N .

5.3 Expected number of guard objects
We now evaluate the expected number G of guard objects.
Let d(θ) be the distance a query moves in direction θ before
it leaves the safe zone. Let dmax be the maximum of d(θ) over
all θ such that 0 ≤ θ ≤ 2π. Let P (x) be the probability that a
query has dmax ≤ x. We know from the theory of conditional
expectation that the expected number of guard objects is given
by

E(G) =
∫ 1

o

E(G|dmax = x)P ′(x)dx (7)

where E(G|dmax = x) is the expected number of guard
objects for a query that has dmax = x and P ′(x) is the
derivative of P (x) with respect to x. First, we show that
E(G|dmax = x) ≤ 4πrxN .

Consider the example of Fig. 22 where the maximum
distance from q to the boundary of the safe zone is x (x
corresponds to the circle shown in thick line). The circles of
radii r, r+x and r−x are also shown. Any object oi that lies
in the circle of radius r− x cannot be a guard object because
the circle Ci of the object oi fully contains the safe zone. This
is the case because the maximum distance of oi to the safe
zone maxdist(oi, S) ≤ dist(q, oi)+x ≤ r. Hence, the object
oi cannot affect the shape of the safe zone.

Similarly, any object oj that lies outside the circle of radius
r+x cannot affect the shape of the safe zone as the minimum
distance of oj to the safe zone mindist(oj , S) ≥ dist(q, oj)−
x ≥ r. Fig. 22 shows two objects o1 and o2 and both cannot
be the guard objects.

As discussed above, only those objects that have a distance
from the query no less than r − x and no greater than r + x
can be the guard objects (i.e., only the objects in the area
shown shaded in Fig. 22 can be the guard objects). Thus the

o
1 q

o
2

r

x

x

r+x

r-x

Fig. 22. Proving that E(G|dmax = x) < 4πrxN

number G of guard objects of any query with dmax ≤ x
is less than or equal to the total number of objects in the
shaded area and consequently the expected number of G is
less than or equal to the expected number of objects in the
shaded area which is (π(r + x)2 − π(r − x)2)N = 4πrxN .
Hence E(G|dmax = x) ≤ 4πrxN .

For queries q for which dmax ≤ C · m, where C is a
constant and m is the expected distance, Equation (8) shows
the upper bound of the expected number of guard objects. In
other words, if we consider only the queries for which the
maximum distance to the boundary of the safe zone dmax

is not greater than C · m, the upper bound on the expected
number of guard objects is given by

∫ C·m

0

E(G|dmax = x)P ′(x)dx ≤ 4πrNCm

∫ C·m

o

P ′(x)dx

= C · 4πrmN
(8)

Hence, the queries that have dmax ≤ C · mup have the
expected number of guard objects at most:

4πrNC × 0.33
rN

= 4.14C (9)

If we know C, we can obtain the upper bound on the
expected number of guard objects. For instance, in our ex-
periments, we found that 30% to 50% of the queries have
dmax less than 2mup (i.e., C is at most 2). Hence, the upper
bound for such queries is 8.28.

6 RANGE QUERIES IN ROAD NETWORKS

6.1 Solution Overview

Before we outline our approach, we define a few terms.
A road network G is a weighted graph consisting of vertices
and edges. An edge between two vertices v1 and v2 is denoted
as e(v1, v2). Each edge has a positive weight that denotes the
cost of travelling on that edge (e.g., length of the edge, time
taken to travel along the edge etc.).

Fig. 23 shows an example of a road network, together with
three objects (o1, o2 and o3) and a query q. For simplicity, the
objects o1, o2 and the query q are chosen to coincide with
vertices of the graph.
Segment seg(x, y) is the part of an edge between x and y
where both x and y are points on the edge. By definition, an
edge is also a segment defined by the end points (vertices) of

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

the edge. Fig. 23 shows several segments including segment
seg(b, h) of weight 7.
Minimum network distance MinNetDist(a, b) between
any two points a and b is the minimum distance from a to
b (i.e., total weight of the edges and segments on the shortest
path from a to b). For example, the shortest path between o3

and v is o3 → b → a → v and the MinNetDist(o3, v) is 14.
Range network of a point p (denoted as RNp) for a given
range r consists of every point of the road network G that is
within the network distance r from the point p. Fig. 23 shows
the range network (r = 10) of o3 in thick lines.
Internal/external objects and vertices. All objects (vertices)
that lie on the range network of the query q are called internal
objects (vertices) and all other objects (vertices) are called
external objects (vertices). Although the range network of q is
not highlighted in Fig. 23, it is easy to see that the objects o1

and o2 are internal objects and o3 is an external object. The
vertices q, t, s, w, a are internal vertices and all other vertices
are external vertices.
Safe zone is a connected network consisting of edges and
segments such that as long as the query remains in the safe
zone, its result does not change. In the example of Fig. 23,
the safe zone is shown with broken lines. More specifically,
the safe zone consists of e(q, w), e(q, t), e(q, s), e(s, t) and
seg(s, v). Please note that as long as the query remains on
these edges and segments the results remain the same.

The main idea of our solution is similar to our safe zone
based approach for Euclidean space. More specifically, the
safe zone in a road network consists of the segments of the
network that are within distance r from each internal object
and have distance greater than r from each external object. In
other words, the safe zone is the intersection of range networks
of all internal objects minus range networks of all external
objects. Formally, the safe zone S is given by the expression
S = ∩iRNi−∪xRNx, where the intersection is taken over the
range networks of all internal objects and the union is taken
over the range networks of all external object.

6.1.1 Checking whether q lies in the safe zone
In contrast to the safe zone of circular range queries, the safe
zone in a road network consists of edges and segments. The
safe zone (e.g., the edges and segments) is sent to the query
and it can easily check whether it lies in the safe zone or not.

6.2 Pruning Rules
6.2.1 Pruning internal objects
PRUNING RULE 6 : An internal object i cannot affect the
safe zone if its range network RNi contains the whole safe
zone.

Proof: Recall that the safe zone is given by S = ∩iRNi−
∪xRNx. If the range network of an internal object i contains
the whole safe zone, it implies that the intersection of the
current safe zone and the range network of i is the same as
the current safe zone. Hence, the safe zone is not affected.

Consider the example of Fig. 23 and assume that there is
an object o4 (not shown in the figure) that lies anywhere on
the edge e(q, t). Such an object would not affect the safe zone
because its range network would cover the whole safe zone.

2

3

1

7

 2

2

5

3

1
0

b

d

c
f

e

o
3

g

h
j

k

m

n

q

7

5

6

2

4

12

12

4

4

2

a

o
1

o
2

s

t

w

v

2 6z

1

Fig. 23. Range query on a road network (r = 10)

The above pruning rule requires computing the range net-
works of the internal objects in order to prune them. Next, we
present a pruning rule that is less expensive.

PRUNING RULE 7 : Let dmax be the maximum
MinNetDist(q, x) over every point x in the safe
zone (i.e., dmax = maxx∈S(MinNetDist(q, x))
where S denotes the safe zone). An object o such that
MinNetDist(o, q) ≤ (r−dmax) cannot affect the safe zone.

Proof: We prove this by showing that the range network
of any such object o contains the whole safe zone. Let x be
any point in the safe zone S. The network distance between
x and o satisfies MinNetDist(o, x) ≤ MinNetDist(o, q)+
MinNetDist(q, x). Since MinNetDist(o, q) ≤ (r − dmax)
and MinNetDist(q, x) ≤ dmax, MinNetDist(o, x) ≤ (r −
dmax) + dmax ≤ r. Hence, the range network of the object o
contains every point x of the safe zone.

In the example of Fig. 23, dmax is 6. Hence, any object that
lies within distance 10−dmax = 4 of q cannot affect the safe
zone. To prune an internal object, we first apply the pruning
rule 7 (due to its low cost) and then apply pruning rule 6.

6.2.2 Pruning external objects
We next present the pruning rules for external objects.

PRUNING RULE 8 : An object o cannot affect the safe zone
if its range network RNo does not intersect the safe zone.

Proof: Recall that the safe zone is given by S = ∩iRNi−
∪xRNx. If the range network of an external object x does not
intersect the safe zone, it implies that the set difference of the
current safe zone and the range network of x is the same as
the current safe zone. Hence, the safe zone is not affected.

In Fig. 23, the object o3 does not affect the safe zone
because its range network does not intersect the safe zone.
The next pruning rule is applicable to only the road networks
where the weight of each edge corresponds to the length of
the edge. For such networks, Euclidean distance between any
two points is always smaller than or equal to the minimum
road network distance between them.

PRUNING RULE 9 : An object o cannot affect the safe zone
S if mindist(o, S) ≥ r where mindist(o, S) is minimum
Euclidean distance of o from the safe zone S.

Proof: For any two points x and y, the Euclidean distance
between them is always smaller than or equal to the minimum
road network distance between them. Hence, if the minimum
Euclidean distance between o and any point x of the safe zone
is greater than r, it implies that its minimum road network

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

distance from x is greater than r. In other words, the range
network of o does not intersect the safe zone.

PRUNING RULE 10 : An external object oj cannot affect the
safe zone if MinNetDist(oi, oj) ≥ 2r where oi is any
internal object.

This pruning rule is similar to the pruning rule 3. The proof
of correctness is basically the same except that the term range
network is to be used whenever the term circle appears in the
proof of the pruning rule 3.

PRUNING RULE 11 : Let dmax be the distance as defined in
the description of pruning rule 7. An object o cannot affect
the safe zone if MinNetDist(q, o) ≥ r + dmax.

Proof: We prove this by showing that the range network
of such an object o does not intersect the safe zone. Let x be a
point in the safe zone. The minimum network distance between
o and x satisfies MinNetDist(o, x) ≥ MinNetDist(q, o)−
MinNetDist(q, x). We know that MinNetDist(q, x) ≤
dmax (by definition of dmax) and MinNetDist(q, o) ≥ r +
dmax. Hence, MinNetDist(o, x) ≥ (r + dmax)− dmax ≥ r.
This implies that the range network of o does not contain
any point x of the safe zone (i.e., its range network does not
intersect the safe zone).

In the example of Fig. 23, dmax is 6 and an object o cannot
affect the safe zone if its minimum network distance from q
is at least 16.

Before we present our final pruning rule, we define a few
additional terms. We say that a vertex v is a dead vertex if its
range network RNv does not intersect the safe zone. A path
between two points a and b is called a valid path if the path
does not contain any dead vertex. For example, the vertices b,
c, e and f are dead vertices because, for each of these vertices,
its minimum distance to the safe zone is larger than 10. The
path d → z → t is a valid path whereas the path d → b → t
is not a valid path.

PRUNING RULE 12 : An object o cannot affect safe zone if
there does not exist a valid path between o and q.

Proof: By definition, the safe zone is a connected network
and the query q lies on it. Moreover, it follows from the
definition of dead vertex that the safe zone cannot contain any
dead vertex v. This implies that if there exists a valid path
between o and any point of the safe zone x then there exists a
valid path between o and q. Since we know that there does not
exist any valid path between o and q, this means there does not
exist any valid path between o and any point x of the safe zone.
This implies that there always exists a dead vertex v on every
path connecting o and x. Hence, MinNetDist(o, x) > r
because MinNetDist(v, x) > r and the path from o to x
passes through v. So o cannot affect the safe zone.

For example, in Fig. 23, any object o that lies on the edge
e(b, c) cannot affect the safe zone because both the vertices b
and c are dead and there does not exist a valid path between
o and q.

We use this pruning rule in our algorithm while exploring
the road network. A vertex that is marked dead is not further
explored and hence the pruning rule limits the number of
explored vertices.

6.3 Algorithm

Similar to Lemma 3, it can be shown that the order in
which the objects are accessed is important. More specifically,
an object oi should be accessed before an object oj if
|r − MinNetDist(q, oi)| < |r − MinNetDist(q, oj)| (the
proof is similar to the proof of Lemma 3). For this reason,
we use a min-heap H that gives priority to the objects with
smaller |r − MinNetDist(q, oi)| (i.e., the key of each entry
e of the heap is |r − MinNetDist(q, e)|.
Algorithm 3 Network Range Query (q, r)
Input: q: the query point; r: the range
Description:

1: initialize a min-heap H /* key of each entry n
is to bet set to |r − MinNetDist(q, n)| */

2: insert in H vertices and objects lying on every edge that
overlaps with RNq

3: insert the objects lying on RNq in answer list
4: while H is not empty do
5: de-heap an entry n
6: if n is a vertex then
7: if RNn does not intersect the safe zone then
8: mark n as dead;
9: else

10: for each adjacent vertex v of n do
11: update/insert objects lying on edge e(n, v) in H
12: if v is not marked dead then
13: update/insert v in H
14: else if n is an object and cannot be pruned then
15: update the safe zone
16: return answer list and safe zone

Algorithm 3 presents the details of our technique. Initially,
the objects and vertices that lie in the range network of q are
inserted in the min-heap H . Then, the algorithm iteratively
de-heaps the entries from the heap.

If the de-heaped entry n is a vertex and RNn does not
intersect the safe zone, we mark the vertex as dead. Otherwise,
we process it as follows. For each of its adjacent vertices v,
we insert in the heap the objects that are located on edge
e(n, v). It is possible that the objects on the edge e(n, v) had
already been inserted. In this case, for each object o lying on
the edge e(n, v) we update MinNetDist(q, o) if its network
distance from q via n is smaller than the previously stored
MinNetDist(q, o). Its key |r − MinNetDist(q, o)| is also
updated accordingly. Moreover, if the vertex v is not marked
dead we insert v in the min-heap. If the vertex v already exists
in the heap (e.g., it was inserted when another of its neighbors
was considered), we update MinNetDist(q, v) and its key
|r − MinNetDist(q, v)| accordingly.

Finally, if the de-heaped entry n is an object and it cannot be
pruned by any of the pruning rules presented in the previous
section, we update the safe zone using n and update dmax.
The algorithm stops when the heap becomes empty.

6.4 Updating the safe zone

In this section, we present our technique for updating the safe
zone (line 15 of Algorithm 3). We explain the main idea to

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

update the safe zone for external objects. The technique for
the internal objects is similar.

Recall that the safe zone is S = ∩iRNi − ∪xRNx where
the range network of every internal object i contributes to the
intersection and the range network of every external object x
contributes to the union. Hence, to update the safe zone for
an external object, we need to delete the segments of the safe
zone that lie within its range network.

q

4
3

7

3

5

5

4

2

a

b

c

d

e
f

g h

3

7

1

2

q

2
3

7
3

3

5

2

2

4

2

a

b

c

d

e
f

g h

3

4
1

2

j

k

o
1

o
2

o
1

o
2

(a) (b)

3

Fig. 24. Updating the safe zone (r = 10)
Consider the example of Fig. 24(a) where the current safe

zone consists of e(q, b), e(q, f) and e(q, d) (shown in broken
lines). Assume that an object o1 is used for updating the
safe zone (r = 10). The range network of o1 is shown in
Fig 24(b) (in thick lines). The segment seg(d, k) lies within
the range network of o1 and can be removed from the safe
zone. Fig. 24(b) shows the updated safe zone which consists
of e(q, b), e(q, f) and seg(q, k). Next we show that, to update
the safe zone, we do not need to compute the complete range
network for every object.

We define the vertex flow for a vertex v with respect to
an object o as F (v, o) = r − MinNetDist(v, o). In Fig. 24,
assume that range r is 10. The vertex flow of c with respect to
o1 is F (c, o1) = 10 − 3 = 7. Similarly, F (c, o2) = 10 − 4 =
6. The maximum vertex flow Fmax(v) of a vertex v is the
maximum of F (v, o) over all objects o considered so far. In
Fig. 24, the maximum vertex flow of c is 7 (i.e., Fmax(c) = 7).

The vertex flow F (v, o) denotes that every point p that lies
within distance F (v, o) of the vertex v lies on the range net-
work RNo of object o. For instance, when the range network
of o1 is computed in Fig. 24(b), it discovers everything within
distance F (c, o2) = 7 of the vertex c.

We now show that we do not need to compute the complete
range network for an object o if its range network contains a
vertex v such that F (v, o) ≤ Fmax(v). Consider that the range
network of object o1 has been considered and Fmax(v) =
F (c, o1) = 7. When the range network of the object o2 is
being computed, the vertex c is discovered and F (c, o2) = 6.
Since F (c, o2) < Fmax(v), we do not need to further explore
the range network by considering the adjacent vertices of c.
This is because every point within distance 7 of c has already
been discovered by the range network of o1 (whereas the range
network of o2 will discover every point within distance 6 of
c).

Now, we define another condition that avoids the complete
computation of range network for certain objects. If a dead
vertex v is discovered during the range network computation
of an object o, we do not need to further explore the vertex

v. By definition of a dead vertex v, its range network does
not intersect the safe zone. This means that every point within
distance r of v lies outside the safe zone. Hence, the range
network of o that passes through the vertex v cannot affect the
safe zone. In Fig. 24, the vertices g and h are the dead vertices.
When the range network of o2 is being computed, it does not
need to further explore the vertex g. Recall that the vertex c
was not required to be explored because F (c, o2) < Fmax(c).
Hence, during the range network computation of o2, only the
the edge e(g, c) is discovered.

7 EXPERIMENTS

First we present the experimental results for our approach in
Euclidean space. Then, in Section 7.6, we present the results
for range queries in road networks. To evaluate the perfor-
mance of our proposed approach, we compare our approach
with an optimal algorithm and a naı̈ve algorithm. We assume
that the optimal algorithm already knows the safe zone and
updates the results only when the query leaves the safe zone.
To compute the initial results, the optimal algorithm visits
the objects that lie within the range. To update the results,
the algorithm searches only the area that may contain the
new answers. We only consider the I/O cost for the optimal
algorithm (the CPU time is assumed to be zero).

The naı̈ve algorithm prunes every object oi such that its
circle does not intersect with the circle of any guard object.
That is, an object or rectangle can be pruned if its distance
from all guard objects is greater than 2r.

All the experiments were conducted on Intel Xeon 2.4 GHz
dual CPU with 4 GBytes memory. We used real dataset as
well as synthetic dataset. The real dataset2 contains 175, 813
points of interests in North America that corresponds to a
data universe of 5000Km×5000Km. To verify the theoretical
analysis, we created synthetic datasets consisting 50, 000 to
150, 000 points following uniform distribution within the same
data universe size. The objects are indexed by an R-tree with
node size set to 2K.

Parameter Range
Number of objects (×1000) 50, 75, 100, 125, 150
Range (in Km) 50, 100, 150, 200, 250
Average speed (in Km/hr) 40, 60, 80, 100, 120

We simulated moving queries (moving cars) by using the
spatio-temporal data generator described in [40]. The average
speed of moving queries varies from 40 Km/hr to 120 Km/hr.
All queries are continuously monitored for 5 minutes and the
results shown correspond to the average monitoring cost for a
single query for the 5 minutes duration. All the experimental
results shown correspond to the real dataset except the results
where we show the effect of number of objects. The table
above shows the default parameters.

7.1 Cost comparison

The cost of each algorithm consists of I/O cost (by charging
2ms for each node access) and CPU cost (assumed zero
for the optimal algorithm). The naı̈ve algorithm was at least

2. http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

20 times slower3 than our algorithm for all settings so we
exclude it from figures to better illustrate the comparison of
our algorithm with the optimal algorithm.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250

T
im

e
(in

 s
ec

)

Range (in Km)

Our CPU Time
Our I/O Time

Optimal I/O Time

(a) Radius

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

50 75 100 125 150

T
im

e
(in

 s
ec

)

Number of objects (in thousands)

Our CPU Time
Our I/O Time

Optimal I/O Time

(b) Number of objects
Fig. 25. Efficiency

In Fig. 25 and Fig. 26, we compare the cost of our
algorithm with the cost of the optimal algorithm for different
ranges, different number of objects and varying speed. The
performance of our algorithm is close to the optimal algorithm.
The main cost for our proposed approach is the I/O cost which
is very close to the I/O cost of the optimal solution. This shows
that the overhead of computing the safe zone is very small
compared to the cost of the range query.

7.2 Verification of the theoretical analysis

First, we study the escape probability and verify the theoretical
results obtained. In our experiments, the escape probability of
a query is computed by dividing the number of times it leaves
the safe zone by the total number of movements recorded.
We record the movement every second and check whether the
query lies within the safe zone or not. Fig. 27 and Fig. 28
compare the escape probabilities with the theoretical results
for different values of different parameters. Please note that
Fig. 28 corresponds to the experiments run on the real data
and it is evident that the theoretical results are accurate even
on the real data.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 40 60 80 100 120

T
im

e
(in

 s
ec

)

Speed (in Km/hr)

Our CPU Time
Our I/O Time

Optimal I/O Time

Fig. 26. Efficiency (effect
of speed)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

50 75 100 125 150

E
sc

ap
e

P
ro

ba
bi

lit
y

Number of objects (in thousands)

Practical
Theoretical

Fig. 27. Escape Probabil-
ity vs data cardinality

As expected, the escape probability increases with the
number of objects. The range and the speed have a similar
effect on the escape probability. The results demonstrate that
the escape probability is small, which shows the effectiveness
of our proposed approach in real world settings.

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

 50 100 150 200 250

E
sc

ap
e

P
ro

ba
bi

lit
y

Range (in Km)

Practical
Theoretical

(a) Effect of range

 0

 0.02

 0.04

 0.06

 0.08

 40 60 80 100 120

E
sc

ap
e

P
ro

ba
bi

lit
y

Speed (in Km/hr)

Practical
Theoretical

(b) Effect of speed
Fig. 28. Escape Probability

3. We also compared our algorithm with naı̈ve algorithm for in-memory
data and observed 30-70 times better performance. This shows that our
proposed approach performs good even for in-memory computation models.

In Fig. 29, we show the expected distance for queries run
on the synthetic dataset with increasing number of objects
and increasing range of the query. It shows that the actual
expected distance is close to the expected bounds we obtained
in Section 5. Moreover, the actual expected distance is from
300 meters to 1200 meters.

 0

 200

 400

 600

 800

 1000

 1200

50 75 100 125 150

D
is

ta
nc

e
(in

 m
et

er
s)

Number of Objects (in thousands)

Expected Lower Bound
Experimental

Expected Upper Bound

(a) Effect of data cardinality

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 50 100 150 200 250

D
is

ta
nc

e
(in

 m
et

er
s)

Range (in Km)

Expected Lower bound
Experimental

Expected Lower Bound

(b) Effect of range
Fig. 29. Expected Distance

Fig. 30 shows the average number of guard objects for all
queries and compares the theoretical bound with the actual
number of guard objects. As stated in Section 5, our theoretical
upper bound is valid for the queries for which maximum
distance to the safe zone is smaller than C · mup where C
is a constant. We observed that when C is set to 2, 30% to
50% queries satisfy the constraint. We call such queries the
nominated queries.

 0

 5

 10

 15

 20

50 75 100 125 150

of

 g
ua

rd
s

ob
je

ct
s

Number of Objects (in thousands)

Avg for all queries
Avg for nominated queries

upper bound for nominated queries

(a) Effect of data cardinality

 0

 5

 10

 15

 20

 50 100 150 200 250

of

 g
ua

rd
 o

bj
ec

ts

Range (in Km)

Avg for all queries
Avg for nominated queries

upper bound for nominated queries

(b) Effect of range
Fig. 30. Number of guard objects

In Fig. 30, we show the average number of guard objects for
all queries as well as the average number of guard objects for
the nominated queries. It is interesting to note that the average
number of guard objects for all queries is around 5 regardless
of the experiment settings.

7.3 Effectiveness of the proposed access order

In Fig. 31, we show the effectiveness of our proposed access
order. We tried two other access orders namely MinFirst
and RandomAccess. In MinFirst access order, the objects
are accessed in increasing order of their distances from the
query. In RandomAccess, the objects are accessed randomly.
However, to improve the performance of RandomAccess, we
give priority to the objects that lie within the range over the
objects that lie too far from the query.

 0

 10

 20

 30

 40

 50

 60

 50 100 150 200 250

of

 o
bj

ec
ts

 a
cc

es
se

d

Range (in Km)

Our Access Order
Random Access

Fig. 31. Effectiveness of
access order

 0

 10

 20

 30

 40

 50

 60

 50 100 150 200 250

of

 u
np

ru
ne

d
ob

je
ct

s

Range (in Km)

All Pruning Rules
Rectangle based pruning

Fig. 32. Effectiveness of
Pruning rules

For each access order, we record the number of objects
considered for updating the safe zone. MinFirst considers from
100 to 1300 objects when the range is increased from 50 Km
to 250 Km. We exclude it from Fig. 31 to better illustrate

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 15

the comparison of the other two access orders. Our proposed
algorithm accesses around 6 objects when the range becomes
larger. Note that an optimal access order will access only the
guard objects (the number of guard objects is around 5). This
shows that our proposed access order is close to the optimal
access order.

7.4 Effectiveness of the pruning rules
In Fig. 32, we show the effectiveness of the rectangle based
pruning rules and the guard objects based pruning rules.
As expected, although the rectangle based pruning rule is
computationally cheap, it is unable to prune many objects.
On the other hand, the guard objects based pruning rules are
more effective.

7.5 Effectiveness of Smart-Update
Fig. 33 shows the effectiveness of our proposed smart-update.
In Fig. 33(a), we show the cost of our algorithm with and
without using the smart-update. We also show the performance
of the optimal algorithm if the smart-update is not applied,
i.e., every time a query leaves the safe zone, the optimal
approach without the smart-update accesses all the objects
within the range and sends to the client. The effectiveness
of our proposed smart-update is evident from Fig. 33(a). As
the range increases, the performance gain by the smart-update
increases because it avoids to visit a larger area.

 0

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250

T
im

e
(in

 s
ec

)

Average speed (in Km/hr)

Our (with smart-update)
Our (without smart-update)

Optimal (without smart-update)

(a) Effect on Cost

 5

 95

 1350

 50 100 150 200 250

of

 o
bj

ec
ts

Range (in Km)

Transmitted
Answer Size

(b) Effect on data transmis-
sion

Fig. 33. Effectiveness of the Smart-Update
Fig. 33(b) shows the average number of objects transmitted

to the query whenever the server receives an update request.
It also shows the total number of objects that lie within the
range (shown as answer size). Please note that a log scale is
used to better illustrate the trend. If the results are updated
without using the smart-update, all the objects that lie within
the range are to be sent again. Using our proposed smart-
update approach, the number of objects that are sent to client
are around 5. Note that this number includes the number of
guard objects that are sent to the client.

7.6 Range queries in road networks
We use the road map of California4 that consists of 21694
road segments (edges). We generated queries moving with
default speed of 80 Km/hr. Each query starts at a randomly
chosen vertex. Whenever the query reaches at a vertex, one
of its adjacent vertex is randomly chosen as destination and
the query continues travelling. Each query is monitored for
5 minutes and the reported time is the total time for the 5
minutes duration of a query. Naı̈ve algorithm recomputes the

4. http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm

results whenever the query reports location update. In Fig. 34,
we change the number of objects and the range of the query
and observe that our approach is up to two orders of magnitude
faster than the Naı̈ve algorithm.

 0

 0.5

 1

 1.5

 2

 2.5

 20 40 60 80 100

T
im

e
(in

 s
ec

)

Number of objects (in thousands)

NAIVE
Our

(a) Effect of data size

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 50 75 100 125 150

T
im

e
(in

 s
ec

)

Range (in Km)

NAIVE
Our

(b) Effect of range
Fig. 34. Range queries in a road network

In Fig. 35, we show the effectiveness of our proposed access
order. Similar to the experiments for Euclidean distance based
queries, we observe that our access order performs better than
MinFirst access order and the random access order. MinFirst
access order was outperformed by both the random access
order and our access order so we do not include it in Fig. 35.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

of

 o
bj

ec
ts

 a
cc

es
se

d

Number of Objects (in thousands)

Our Access Order
Random Access

(a) Effect of data size

 0

 5

 10

 15

 20

 25

 50 75 100 125 150

of

 o
bj

ec
ts

 a
cc

es
se

d

Range (in Km)

Our Access Order
Random Access

(b) Effect of range
Fig. 35. Effectiveness of access order

8 CONCLUSION

In this paper, we presented a safe zone based approach to
efficiently monitor distance based range queries in Euclidean
space and in road networks. We conducted a rigorous theoret-
ical analysis to study the effectiveness of our safe zone based
approach for Euclidean distance based range queries. The ex-
periment results also demonstrated that the proposed approach
for Euclidean distance based range queries is close to optimal.
We also showed that our network distance based algorithm is
an order of magnitude faster than a naı̈ve approach.
REFERENCES

[1] Y. Cai, K. A. Hua, and G. Cao, “Processing range-monitoring queries
on heterogeneous mobile objects,” in Mobile Data Management, 2004.

[2] H. Hu, J. Xu, and D. L. Lee, “A generic framework for monitoring con-
tinuous spatial queries over moving objects,” in SIGMOD Conference,
2005, pp. 479–490.

[3] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Conceptual
partitioning: An efficient method for continuous nearest neighbor mon-
itoring,” in SIGMOD, 2005.

[4] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest
neighbor and reverse nearest neighbor queries for moving objects,” in
IDEAS, 2002, pp. 44–53.

[5] M. A. Cheema, X. Lin, Y. Zhang, W. Wang, and W. Zhang, “Lazy
updates: An efficient technique to continuously monitoring reverse knn,”
PVLDB, vol. 2, no. 1, pp. 1138–1149, 2009.

[6] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee, “Location-based
spatial queries,” in SIGMOD Conference, 2003, pp. 443–454.

[7] B. Gedik and L. Liu, “Mobieyes: Distributed processing of continuously
moving queries on moving objects in a mobile system,” in EDBT, 2004.

[8] Y. Tao and D. Papadias, “Time-parameterized queries in spatio-temporal
databases,” in SIGMOD Conference, 2002, pp. 334–345.

[9] K. Mouratidis, D. Papadias, S. Bakiras, and Y. Tao, “A threshold-based
algorithm for continuous monitoring of k nearest neighbors,” TKDE, pp.
1451–1464, 2005.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 16

[10] Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neighbor search,”
in VLDB, 2002, pp. 287–298.

[11] X. Xiong, M. F. Mokbel, and W. G. Aref, “Sea-cnn: Scalable processing
of continuous k-nearest neighbor queries in spatio-temporal databases,”
in ICDE, 2005, pp. 643–654.

[12] G. S. Iwerks, H. Samet, and K. P. Smith, “Continuous k-nearest neighbor
queries for continuously moving points with updates,” in VLDB, 2003.

[13] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring k-nearest neighbor queries
over moving objects,” in ICDE, 2005.

[14] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Ham-
brusch, “Query indexing and velocity constrained indexing: Scalable
techniques for continuous queries on moving objects,” IEEE Trans.
Computers, vol. 51, no. 10, pp. 1124–1140, 2002.

[15] M. F. Mokbel, X. Xiong, and W. G. Aref, “Sina: Scalable incremen-
tal processing of continuous queries in spatio-temporal databases,” in
SIGMOD Conference, 2004, pp. 623–634.

[16] X. Wang and W. Wang, “Continuous expansion: Efficient processing
of continuous range monitoring in mobile environments,” in DASFAA,
2006, pp. 890–899.

[17] H. Wang, R. Zimmermann, and W.-S. Ku, “Distributed continuous range
query processing on moving objects,” in DEXA, 2006, pp. 655–665.

[18] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu, “Motion adaptive indexing
for moving continual queries over moving objects,” in CIKM, 2004.

[19] K.-L. Wu, S.-K. Chen, and P. S. Yu, “Incremental processing of continual
range queries over moving objects,” IEEE Trans. Knowl. Data Eng.,
vol. 18, no. 11, pp. 1560–1575, 2006.

[20] B. Zheng and D. L. Lee, “Semantic caching in location-dependent query
processing,” in SSTD, 2001, pp. 97–116.

[21] Z. Song and N. Roussopoulos, “K-nearest neighbor search for moving
query point,” in SSTD, 2001, pp. 79–96.

[22] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik, “The v*-diagram: a
query-dependent approach to moving knn queries,” PVLDB, vol. 1, no. 1,
pp. 1095–1106, 2008.

[23] M. Hasan, M. A. Cheema, X. Lin, and Y. Zhang, “Efficient construction
of safe regions for moving knn queries over dynamic datasets,” in SSTD,
2009, pp. 373–379.

[24] C. S. Jensen, J. Kolárvr, T. B. Pedersen, and I. Timko, “Nearest neighbor
queries in road networks,” in GIS, 2003, pp. 1–8.

[25] H.-J. Cho and C.-W. Chung, “An efficient and scalable approach to cnn
queries in a road network,” in VLDB, 2005, pp. 865–876.

[26] M. R. Kolahdouzan and C. Shahabi, “Continuous k-nearest neighbor
queries in spatial network databases,” in STDBM, 2004, pp. 33–40.

[27] M. Kolahdouzan and C. Shahabi, “Voronoi-based k nearest neighbor
search for spatial network databases,” in VLDB, 2004, pp. 840–851.

[28] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in
spatial network databases,” in VLDB, 2003, pp. 802–813.

[29] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis, “Continuous
nearest neighbor monitoring in road networks,” in VLDB, 2006, pp. 43–
54.

[30] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh, “A road network
embedding technique for k-nearest neighbor search in moving object
databases,” in ACM-GIS, 2002, pp. 94–10.

[31] S. Shekhar and J. S. Yoo, “Processing in-route nearest neighbor queries:
a comparison of alternative approaches,” in GIS, 2003, pp. 9–16.

[32] D. Stojanovic, A. N. Papadopoulos, B. Predic, S. Djordjevic-Kajan, and
A. Nanopoulos, “Continuous range monitoring of mobile objects in road
networks,” Data Knowl. Eng., vol. 64, no. 1, pp. 77–100, 2008.

[33] F. Liu, T. T. Do, and K. A. Hua, “Dynamic range query in spatial network
environments,” in DEXA, 2006, pp. 254–265.

[34] H. Wang and R. Zimmermann, “Snapshot location-based query process-
ing on moving objects in road networks,” in GIS, 2008, p. 50.

[35] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu, “Monitoring path nearest
neighbor in road networks,” in SIGMOD Conference, 2009, pp. 591–
602.

[36] H.-P. Kriegel, P. Kröger, and M. Renz, “Continuous proximity monitor-
ing in road networks,” in GIS, 2008, p. 12.

[37] A. Küpper and G. Treu, “Efficient proximity and separation detection
among mobile targets for supporting location-based community ser-
vices,” Mobile Computing and Communications Review, vol. 10, no. 3,
pp. 1–12, 2006.

[38] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in SIGMOD Conference, 1984, pp. 47–57.

[39] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. W. 0011,
“Multi-guarded safe zone: An effective technique to monitor moving
circular range queries,” in ICDE, 2010, pp. 189–200.

[40] T. Brinkhoff, “A framework for generating network-based moving ob-
jects,” GeoInformatica, vol. 6, no. 2, pp. 153–180, 2002.

Muhammad Aamir Cheema is currently a PhD
student in the School of Computer Science
and Engineering, the University of New South
Wales, Australia. He completed his Master of
Engineering degree in Computer Science and
Engineering from the University of New South
Wales, Australia, in 2007. He received his B.Sc.
degree in Electrical Engineering from University
of Engineering and Technology, Lahore, in 2005.
His current research interests include spatio-
temporal databases, location-based services,

mobile and pervasive computing and probabilistic databases. He also
served as Associate Lecturer at the University of New South Wales,
Australia, in 2007. He received 2009 CiSRA best research paper award
and the best research paper award of Autralasian Database Conference
2010.

Ljiljana Brankovic received bachelors Degree
in Electrical Engineering from The University in
Belgrade and a PhD in Computer Science from
the University of Newcastle, Australia. She is an
Associate Professor in the School of Electrical
Engineering and Computer Science, University
of Newcastle and a former Head of Discipline
of Computer Science and an Assistant Dean
(Postgraduate) at the Faculty of Electrical En-
gineering and Built Environment. Her research
interests include databases and data security,

privacy preserving data mining, combinatorics and graph theory. She
is a fellow of the Institute of Combinatorics and its Applications, life
member of the Combinatorial Mathematics Society of Australasia and
a former Chair of the National Committee for Computer Security of the
Australian Computer Society.

Xuemin Lin is a Professor in the School of Com-
puter Science and Engineering, the University
of New South Wales. He has been the head of
database research group at UNSW since 2002.
Before joining UNSW, Xuemin held various aca-
demic positions at the University of Queensland
and the University of Western Australia. Dr. Lin
got his PhD in Computer Science from the Uni-
versity of Queensland in 1992 and his BSc in
Applied Math from Fudan University in 1984.
During 1984-1988, he studied for PhD in Applied

Math at Fudan University. He currently is an associate editor of ACM
Transactions on Database Systems. His current research interests lie in
data streams, approximate query processing, spatial data analysis, and
graph visualization.

Wenjie Zhang is currently a postdoc research
fellow in School of Computer Science and En-
gineering, the University of New South Wales,
Australia. She received her PhD degree from
the University of New South Wales, M.S. degree
and B.S. degree both from Harbin Institute of
Technology, China. All degrees are in computer
science. Her research focuses on spatial data
analysis, stream processing and uncertain data
management. She has published papers in con-
ferences and journals including SIGMOD, VLDB,

ICDE, VLDBJ, TKDE and Information Systems. She is also the recipient
of Best Paper Award of National DataBase Conference of China 2005,
APWebWAIM 2009 and Australasian Database Conference 2010.

Wei Wang is currently a Senior Lecturer at the
School of Computer Science and Engineering
at University of New South Wales, Australia.
He received his Ph.D. degree in Computer Sci-
ence from Hong Kong University of Science
and Technology in 2004. His research interests
include integration of database and information
retrieval techniques, similarity search, and query
processing and optimization.

