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A Generic Framework for Top-k Pairs and
Top-k Objects Queries over Sliding Windows

Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang and Haixun Wang

Abstract—Top-k pairs and top-k objects queries have received significant attention by the research community. In this paper,
we present the first approach to answer a broad class of top-k pairs and top-k objects queries over sliding windows. Our
framework handles multiple top-k queries and each query is allowed to use a different scoring function, a different value of k
and a different size of the sliding window. Furthermore, the framework allows the users to define arbitrarily complex scoring
functions and supports out-of-order data streams. For all the queries that use the same scoring function, we need to maintain
only one K-skyband. We present efficient techniques for the K-skyband maintenance and query answering. We conduct a
detailed complexity analysis and show that the expected cost of our approach is reasonably close to the lower bound cost. For
top-k pairs queries, we demonstrate the efficiency of our approach by comparing it with a specially designed supreme algorithm
that assumes the existence of an oracle and meets the lower bound cost. For top-k objects queries, our experimental results
demonstrate the superiority of our algorithm over the state-of-the-art algorithm.

Index Terms—top-k pairs, top-k objects, sliding windows, data streams, top-k queries.
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1 INTRODUCTION earned by buying the underperforming stock and selling
Given a scoring functions(o;) that computes the scorelt When the divergence between the two stocks returns to

of an objecto;, a topk objects query returng objects normal. A topk pairs query can be issued to obtain the
with the smallest scores. Given a scoring functi¢n;, 0;) Pairs of st_ocks that are correlated _(e._g., they belong to the
that computes the score of a pair of obje€is,o,), a Same business sector and have similar fundamentals such
top-k pairs query returng pairs with the smallest scores@S market caps, dividends etc.) and display different send
among all possible pairs of objectsclosest pairs queries, Palr-tradlng can be profitable onl)_/ if the trader is the first
k furthest pairs queries and their variants are some weff€ to capitalize on the opportunity [9]. Hence, the trader
studied examples of top-pairs queries that rank the pairg@y want to continuously monitor the tdppairs from the
on distance functions. most recent data (e.g., a sliding window containing most

Due to the importance of the tdp-queries, numerous "€Centn items). , , _
algorithms have been proposed to answer several variant§onsider another example of an online auction website.
of the top# objects and top pairs queries [1], [2], [3], A user may k_)e mtere_s_ted_m finding the pairs of pr_oducts
[4], [5], [6]. Our focus in this paper is on developingthat have similar specifications but are sold at very difiere
efficient techniques for top-queries over sliding windows. Prices (i.e., different final bids). Such pairs may be used to
Top-k objects queries over sliding windows have manynders_tar_nd thg users behavior and market tr_engjs, e.g., suit
applications and have received significant research aitentaP!€ bidding time for buyers and suitable bidding closing
in the past few years [7], [6], [8]. However, Tdppairs time for sellers etc. An analyst or a user may issue the
query over sliding windows has not been studied weffe!lowing query to obtain toge pairs of such products sold
Therefore, our main focus in this paper is on presentif§/fing last 7 days.
the techniques for top-pairs queries. Then, we show thati:
the framework can be used to answer fopbjects queries. ;};l ect a. ijd, B. i g fromauction a, auction b

Top-k pairs queries have many interesting applications #{'¢"€ a.1d < D. | . .
different areas such as wireless sensor network, stock nﬁr%etr Ey dist(a.spec,b.spec) - |a bid - b.bid|
ket, traffic monitoring and internet applications etc. For i wj ndow [ 7 days]
stance, topk pairs queries can be used foair-trading [9]. ) . .
Pair-trading is a market neutral strategy according to tvhic Heredist(a.spec, b.spec) computes the distance (or dif-
two correlated stocks that follow same day-to-day pridgrence) between their specifications ajachid — b.bid|
movement (e.g., Coca-Cola and Pepsi) may be used to egﬁqlqtes the absolute difference between theT final bids they
profit when the correlation between them weakens, i.e., ofge€ive. Note that the query prefers the pairs of products

stock goes up and the other goes down. The profit can &t have small difference between their specifications but
have large difference between their selling prices. The

ndition a.id < b.id ensures that a paifa,b) is not
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data items (i.e., sliding window of size) and uses the the worst case wherg K B| is the size of the-skyband.

scoring functions is denoted as) i, s)- The expected cost of our technique (¥log (logn) +
log K + k) wheren is the size of the sliding window used
1.1 Contributions by the query ands is the largest value df any query may

use. Note that the lower bound cost for query answering is
following features. O(k) and the expected cost of our algorithm is reasonably

Unified framework. To the best of our knowledge, we areF!0S€: . . .
the first to study topk pairs queries over sliding windows. Extensive evaluation and analysisAs discussed above,

We present a unified framework that efficiently solve@€ conduct a detailed complexity analysis to evaluate our
the topk pairs queries involvingany arbitrarily complex algorlthms. and demonstrate that the cost of our proposed
scoring function. In our framework, the server maintaiis @PProach is reasonably close to the lower bound cost. To
most recent objects wheré indicates the size of the largesttxPerimentally verify this, we design an algorithm called
sliding window any query is allowed to use. Each object has/Premealgorithm that assumes the existence of an oracle
D attributes and the users may define any scoring functigit €an conduct certain calculations without requiring
that usesi < D of these attributes to compute the score&nY computation time. The usage of oracle allows the
Our framework handles multiple tap-pairs queries where SUPTEMe algorithm to meet the Iovyer bound. Our extensive
each query is allowed to use a different scoring functioffXPeriments on real and synthetic data demonstrate that
a different size of sliding window: < N and a different OUr algorithm performs reasonably well as compared to
value of k. the supreme algorithm and is more than three orders of
Intuitively, it may be possible to improve the performagnitude faster than a naive algorithm. ,
mance if the scoring functions satisfy certain properties, 1NiS_paper is an extended version of our previous
We propose optimizations to significantly enhance th¥OrK [10]. In this extended paper, we make the following
performance for a broad class of scoring functions calldgW contributions. _ _
global scoring functions[1]. We remark thatk-closest SUPPOrt for top-£ objects queries.We present techniques
pairs queriesk-furthest pairs queries and their variants arf®" answering topk objects queries over sliding windows
among many of the popular queries that use the g|ot{§,ectlon 6.2). In contrast to the existing t_echnlque_s, our
scoring functions. framework allows arbitrarily complex scoring functions,
Low storage requirement.Our system use9(N D) space SUpports out-of-order data streams and can answek: top-
to maintain the most recen¥ objects. The system mayobjects queries involving any_value &f and n such that
receive different queries (issued by a single user or difier ¥ < K andn < N. The experimental results demonstrate
users) and several queries having different valuesk of the superiority of our algorithm over the state-of-the-art
and n may share the same scoring function. For eacdldorithm [6] in terms of running time as well as memory
unique scoring function, our system maintains a sma&Pnsumption. _
subset of candidate pairs calléé-skyband(to be formally Handling out-of-order streams. In Section 6.1, we show
introduced in Section 3). All the queries that use thigat our proposed techniques for tbppairs queries can
scoring function are answered using only the pairs infthe P€ applied on out-of-order data streams. The experimental
skyband. We show that the expected size of Ahekyband results demonstrate that the performance of our algorithm
is O(K log (N/K)) whereK is the maximum value of IS petter for the out-of-order streams as compared to that
of the queries that use this scoring function aNds the Of in-order streams.
size of the largest sliding window any query is allowe®alch query processing.We present a new batch process-
to use. Hence, in addition t&(N D) memory space, our INg algorithm that computes the results of multiple top-
system use©)(K log (N/K)) memory for each unique * gueries in a batch (Section 6.3). The amortized cost of
scoring function. Note that the total number of possibié'€ algorithm meets the lower bound c@stk) when the
pairs is O(N?) and O(K log (N/K)) is much smaller. number of queries is larger than the number of elements in
Later, we show thaD(N D) is the lower bound storage the K -skyband. _ _
requirement (see Theorem 3). Support for chromatic queries. We show that our tech-
Efficient skyband maintenance As the new objects arrive iques can handle botthromaticand non-chromaticvari-
and the old objects expire, the skyband is needed to 88!S Of topk pairs queries [1]. For more details, see
maintained. Based on a novel conceptidfstaircase, we Section 6.4.
present efficient techniques to maintain tkieskyband. We
show thatO(N) is a lower bound cost for maintaining? BACKGROUND INFORMATION
the K-skyband for arbitrarily complex scoring functions or,
when the system is unaware of the properties of the scorifg:  Related Work
functions. For this case, the expected cost of our algorithfop-k objects queries. The top4 objects queries have
is O(N (log (log N) +log K')) which is reasonably close tobeen extensively studied [6], [11], [12]. Fagin's algonith
the lower bound cost. Note that, in practid€,is usually (FA) [11], threshold algorithm (TA) (independently pro-
small (e.g., less thah000) andlog (log N) is less thar2 posed in [11], [12], [13]) and no-random access (NRA) [11]
even for a very large value a¥ (e.g.,N = 10%). propose some of the top-processing algorithms that
Efficient query answering. We propose efficient tech- combine multiple ranked lists and return the topbjects.
nigues to answer the top-pairs queries using thé(- Top-k pairs queries. The database community has devoted
skyband. Given & -skyband, the complexity of our tech-significant research attention to the processing-afosest
nique to answer a top-pairs query iO(log |SKB|+k) in  pairs queries[2], [3], [5] and their variants [14], [15]. Al

Our framework that handles tdp-pairs queries has the
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of the above mentioned techniques are applicable only day other pairp’ € P, p.score < p’.score (the scores are
the k-closest pairs queries or their variants. Cheema edmputed using the scoring functiaih

al. [1] propose a unified framework to efficiently answer @napshot vs continuous queriesNote that the set of
broad class of the top-pairs queries including the queriesobjects in the sliding window changes dynamically as the
mentioned abovek-closest pairs queries on moving objectfew objects arrive and the old objects expire from the
are studied in [16], [14]. However, the extension of thesstiding window. Hence, some users may be interested in
techniques to answér-closest (or topk) pairs queries over continuous update of the results. In contrast, some users
sliding windows is either non-trivial or inefficient. may only be interested in retrieving the tégpairs from the
Queries on data streamsProcessing the top-objects current sliding window. The queries that require contirgiou
queries and: nearest neighbor queries [6], [8], [17], [18] orupdates of the results are called continuous queries and
the data stream has received significant attention. Mouthe queries that compute the results only once are called
tidis et al. [6] propose an efficient technique to computsnapshot queries.

top-k objects queries over sliding windows. They make

an interesting observation that a tépebjects query can

be answered from a small subset of the objects called

skyband [19]. Our algorithm is similar in the sense that W§ SOLUTION OVERVIEW
also maintain the{-skyband to answer the tdpqueries.
However, we use a singl&-skyband to answer multiple
gueries having different values bf< K and different sizes
of the sliding windows. Also, the previous techniques [6
[8] to maintain K -skyband are not applicable to our prob-
lem because the techniques rely on the fact that the ne
arrived objects cannot be dominated by any of the existiry
objects. Hence, these techniques unconditionally inclu . . . o
the newly arrived objects in th&-skyband. We remark that dImension:, z[i] < y[i] and for at least one dimensign
this observation does not hold for out-of-order data steearfil/] < ¥l7]- Given a set of point$, a K-skyband consists

which renders the existing techniques invalid for out—mQf every pointz € P that is dominated by at mosk’ — 1)

order streams. Furthermore, in our problem, even for tl%her points ofP.
in-order streams, the newly formed pairs may or may not
be dominated by the existing pairs, which make the request gk Pie

of online maintenance technically more challenging.

Before we present our framework, we revisit the concept
of K-skyband [19]. Then, we prove thaf-skyband is the
inimal set of pairs required to be maintained in order to
nswer topk pairs gueries.
-Skyband. Let x andy be two points ind dimensional
ace. For any point, z[i] denotes the value of in "
ension. A pointz dominates a point if for every

Score
£ o
T T

2.2 Preliminaries Ds® Pec
Sliding windows. Consider a stream of objects. For a fixed T Psie Ps®

number N, a count-basedsliding window contains the 1L

most recentN objects of the data stream. Similarly, forF. 1 K-skvband (K=2 Age

a fixed valueT’, atime-basedsliding window contains the ig. 1. K-skyband (K'=2)

objects that arrive within last time units. For the ease of Consider the example of Fig. 1 that shows six pojntto
presentation, in the rest of the paper, we consider only the in a two-dimensional space. The pojnt is dominated
count-based windows. However, our techniques can algp two pointsp; and ps. Hence, theK-skyband ((=2)

be applied to answer the tdppairs queries over the time-does not contain the poinis. The 2-skyband consists of
based sliding windows. the pointspy, p2, p3, p4+ andps because each of these points
Age of a pair of objects Let o be thei®" most recent is dominated by at most one other point.

object. We say that the age of the objecis i and we  Given a pair of objecty = (0;,0;) and a scoring
denote the age of an object asige. Note that a sliding function s, the pair can be mapped to a two dimensional
window of size N consists of every objeat for which age-score space where score.iscore = s(0;,0;) and age
o.age < N. We say that an objeat has been expired if iS p.age = max(0;.age, 0;.age). Fig. 1 shows six pairs of
o.age > N. objects shown in the age-score space.

A pair of objects(o;,0;) expires if at least one of the Theorem 1:Let P be the set of all possible pairs of most
objectso; ando; expire. Note that the age of a pdir;,0;) recentN objects and each pair be mapped to the age-
is max(0;.age, 0j.age). For the simplicity of the notations, score space using a scoring functien Let SK Bk )
we denote the age of a pairasp.age. A sliding window be the K-skyband of P in the age-score space. Every
of size N contains every paip for which p.age < N. top-k pairs queryQ,,.s,) can be answered using the
Score of a pair. Given a scoring functios(-, -), the score pairs in SKB s, if k < K andn < N. Furthermore,
of a pair(o;, ;) is s(0;, 0, ). For the simplicity of notations, SK By ,,) is a minimal set of pairs required to be main-
the score of a paip is denoted ag.score. tained in order to guarantee the correctness.

Top-k pairs query. A top-k pairs query i, takes three  The theorem is proved in [10]. Consider the example of
parameters:, n and s and considers a set of paif$ that Fig. 1. Any top# pairs queryQ ;) can be answered by
consists of every pait for which xz.age < n. The query considering only the pairg; to p; wherek < (K = 2),
Qr,n,s) returns an answer set fro that consists o n < (IV = 10) and s is the scoring function used to map
pairs such that for every pajr in the answer set and forthe pairs to the age-score space.
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3.1 Expected size of K-skyband of pairs in K-skyband isO(K - (In(N) — In(vK)) or

Existing analysis to estimate the expected size Fof O(K log (N/K)). -
skyband (e.g., [20]) assumes that i) the values of objects

in one dimension are independent of their values in tie2 Framework

other dimensions and ii) the values of the objects on eagh real world scenarios, different users have different re-
dimension are unique. Unfortunately, the existing analysjuirements. Therefore, different users may choose differe
cannot be directly applied to our problem because tkgoring functions each involving a different set of atttési
second assumption does not hold in our problem settingimilarly, different users (or even a single user) may issue
This is because many pairs have the same value on the top4 pairs queries with different values gfandn. We
age dimension (i.e., have the same age). Nevertheless, pugsent a framework that aims to handle all these different
conduct an analysis and show that the expected size of Higeries efficiently. Our framework consists of the follogin
K-skyband we need to maintain (K log (N/K)). three modules:

We assume that the scores of pairs are independentlof Stream Manager. Assume that each object haBd
their ages. This is a reasonable assumption for the scoregibutes and every query issued on the system can use
functions that do not use ages of the objects to determide< D of these attributes in its scoring function. Moreover,
the scores of pairs. suppose thalv is the maximum size of the sliding window

Lemma 1:Let p be a pair with age:. Assuming that the any query is allowed to use. The stream manager maintains
scores of pairs are independent of their ages, the probyabiliD + 1) lists each consisting ofV elements. For every
thatp is in K-skyband ismin(K /22, 1). 0 < ¢ < D, the i-th list stores the objects sorted in

Proof: Consider an objeat; and assume that.age = ascending order afth attribute values of the objects. The
x. Every pair(o;, 0;) for which o;.age < o0;.age has age (D + 1)-th list is sorted in ascending order of the ages
equal too;.age. Hence, the number of pairs with age equaif the objects. Clearly, the storage requiremer®{sV D).
to x is (z — 1). Also, for any pairp with p.age = =, the The theorem below shows that this is the minimum amount
number of pairs that have age less thais 1+2+- - -+(x— of storage required to answer the tbgairs queries.
2) = O(z?). Let p’ be one of thes®(z?) pairs. Note that  Theorem 3:To answer a tog: pairs query over the
the pairp is dominated by’ iff p’.score < p.score. Hence, sliding window of sizeN, the lower bound on storage
the probability that a pair with age is not dominated by requirementig)(N D) whereD is the number of attributes
any other pair in the sliding window is/z? assuming that involved in the scoring function.
every pair is equally probable to have the smallest score. Proof: Assume that an objeat is deleted such that
Similarly, the probability that a pair with ageis dominated o.age < N. Since the values of the newly arrived objects
by at mostK other pairs ismin(K/z?,1). [0 are unknown, a new objeot may arrive in the stream such

Theorem 2:Assuming that the scores of pairs are indghat s(o, o) is minimum (i.e., the paifo, o’) is one of the
pendent to the ages of the pairs, the expected size of thg-+ pairs). If the objecb is deleted from the stream, this
K-skyband isO(K log (N/K)). pair will not be considered and the system will miss the

Proof: From Lemma 1, the probability that a paircorrect answer. Hence, the objectmust not be deleted.
p with agex is dominated by at mosk other pairs is MOI‘EOVG.I’, the system must stqre all attr.ibute values of
min(K/xz2,1). As stated in the proof of Lemma 1, theeach object because the scoring functiomay involve
number of pairs with age equal teis (x — 1). Hence, the d < D attrlbl_Jtes. Hence, the lower bound on the storage
expected number of pairs that have age equaldad are in requirement isO(N D). O
K-skyband is(z — 1) x min(K/z2,1). The expected total 2. Skyband Maintenance Module.Let S = {s,- -+, sm}
number of pairs that are it -skyband is approximately be the set of unique scoring functions used by different
Zﬁf:ﬁ -min(K/z2,1). Lety = |VK]. This expression dueries. For each scoring functien the skyband mainte-
can be simplified as follows. nance module maintains a set of skyband p&ikSB g, ,,)
where K; is the maximum value ok for any query that

N N uses the scoring functiosy (see Fig. 2).
Z min(—,x) ~ Z:c + Z — (o) Queries M)
z’ xr st 3 K=> Skybandy, {=>| using sm @
z=2 z=2 r=y+1 Mafaagzr E> é for Kom o with kK 2
N 1 {o1,...,0n} 3 | (| 3
~ - c O O >
K+K ). - 1r 5 O O A B
r=y+1 S Queri [} g
Data Stream g R Skyband, PN ueries 3 2
~ using s
~ K + K(HN — Hy) '-% for Ko, s2 with Eusz z
o
. . New scoring B Queries 5
where Hy = Ziv_l 1/x and is called N** harmonic functions E> 9 || SNl sing s, ®
= gt X for Ky, s4 ith kK
number. For the case whep = 1 (i.e., K < 4) , the \_/ with kK W
term>Y_, = is considered zero and note that this does nbig. 2. Framework
affect our complexity analysis. If a user issues a querg); .., that uses a scoring

It is well known thatH y grows almost as fast as naturafunctions; not being used by any of the existing queries in
log of N. More preciselyH y is known to be (e.g., see [21]) the system, the skyband maintenance module creates a new
approximately equal tdn(N) 4 v wherey ~ 0.577 is skybandSK Bk, ,,) for this new scoring function. Upon
Euler's constantHence,H y and H, can be approximated receiving the object updates and new queries, the skyband
to In(N) andin(y), respectively . So, the expected numbemnaintenance module updates all the skybands in the system.
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3. Query Answering Module. The query answering mod-
ule is responsible for answering the snapshot or continuoug P2®
top-k pairs queries. A query) , ;) is answered using ¢ P3
the skybandSK Bk, s,)- o8- ®

In Section 4, we present the details of the query a[§—4 Pr e
swering module. The details of the skyband maintenance e Ps
module is presented in Section 5. The techniques for stream)- Ps
manager are simple and are omitted due to the space
limitations.

4 6

Age
Fig. 3. 2-skyband Fig. 4. Priority Search
4 QUERY ANSWERING MODULE Tree

In this section, we present our query answering technique.The priority search tree has the following properties: 1)
As discussed earlier, to answer a quely. ,, .,), the query the age of a node cannot be smaller than the age of its
answering module uses the skybafiék Bk, .. For the ancestor (e.g., the age pf is larger than the ages of its

ease of presentation, we dendte as K and SK B, .. ancestorg; andp.), 2) the score of a node is always greater
as skyband in this section. """ thanthe scores of its left cousins and is always smaller than

the scores of its right cousins (e.g., the scorps 6 greater
) . than the scores of its left cousins;(andps) and is smaller
4.1 Snapshot Top-k Pairs Queries than the scores of its right cousing,( ps and p4). Note
A straight forward approach to answer a tbguery is to that the score of a child may be smaller or larger than (or
scan the list of skyband pairs in increasing order of thesven equal to) the score of its ancestor.

scores. Any paip for which p.age > n is ignored. The  \yg ytjlize the above mentioned properties to efficiently
algorithm stops wheh pairs with age at most equaltoare 5nswer a topk pairs queryQ ..., Algorithm 2 shows

reltrleved.. The;é: pairs are reported. Note that the cost of,, query processing algorithm that traverses the PST in
this algorithm isO(|S K B|) in the worst case whet€ K'B| o order very similar to thpost-ordertraversal. In a post-
is the size of the(-skyband. Next, we present an approac§qer traversal, for any node its left subtree is visited
that answers the top-pairs query inO(log [SK'B|+ k) In hefore its right subtree and the nodés visited in the end.

the worst case. _ _ Our algorithm traverses the PST in the post-order except
To enable efficient computation of the queries, the skysg following two differences: i) it only considers the nede

band maintenance module indexes all fieskyband pairs ha¢ Jie in the sliding window (see lines 9 and 10) and ii)
in a priority search tree (PST) [22]. Algorithm 1 show§pe gigorithm terminates whein objects are visited in the

the PST construction algorithm and Fig. 4 shows a PSjlystorder (line 3). It can be proved that the fopairs are
constructed using the pairs #askyband of Fig. 3. The pairs 3mong the pairs that are either visited or are among the

are labeled such that the age of a paiiis i. The number \5red nodes in the stack (line 11). Finally, the set of

inside each node corresponds to its score. For each nodg,gidates is scanned ahdpairs with the smallest scores
PST also stores the median value used to split the left agd jptained (line 12).

right subtrees (see line 3 of Algorithm 1). For example, the— -
age of root node; is 1, its score iss and the left and right Algorithm 2 TopPairs(PST; n)

subtrees are decided based on the median st¢sbown visitedSet =¢ . .
under the dotted line). . if root.age< n then insert root in a stacld

. while visitedSet.size< k¥ AND S is not emptydo
Algorithm 1 PrioritySearchTred()

e = top element ofS
1. if P is emptythen return NULL

if e is a leaf OR is markedhen

Choose an element with smallest age among inserte in visitedSet and remove fror

CcoNoRONME

2:

3: median = median of score values of elements/n elsrﬁarke

o Pz }elfnjlinfs f;f with score greater thamedian} if e.rightChild.age n then push e.rightChild inS
6. p.right-subtree = PrioritySearchTrey) 10: if e.leftChild.age< n then push e.leftChild inS
7: p.left-subtree = PrioritySearchTra() 11: candidates = visitedSet U marked nodes in stacK
8 return » 12: visit candidates to obtaik pairs with smallest scores

Before we describe the properties of PST, we define aExample 1:Consider the-skyband shown in Fig. 3 and
few terms. Ancestor of a node is its parent or (recursivel{j€ PST shown in Fig. 4. Consider a query that wants to
the parent of its ancestor. For example, in Fig. 4, the nod&drieve top2 pairs in the sliding window of siz&. The
p1 andp, are the ancestors of the noge Two nodes are post-order t_raversal returns two nodes and pg and the
called cousins to each other if they have a common ancestick contains the nodes, p; andp,. The nodeg, and
and they do not have a child-ancestor relationship with eabp @€ the marked nodes ang is not a marked node.
other. For example, the nodgs andpg are cousins to each The top2 pairs arep; andps which are selected from the
other because they have a common ancestoA nodez candidates iz, ps, p1 and ps). Note that our algorithm
is called a left cousin of a nodeif they share a common dqe_s not.conS|der the noge because it does not lie in the
ancestore andz is in the left subtree of andy is in the Sliding window.
right subtree ofe. Right cousins are defined similarly. InProof of correctness.The algorithm returng: nodes in
Fig. 4, the nodey is a left cousin of the nodg, and the post-order traversal. Letbe the node with the largest score
nodep, is a right cousin of the nodgs. among these: nodes. Any other nodg that has score
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smaller thane.score must satisfy one of the followings: 1) of the scores of the new pairs. We scan the list in ascending
y is one of the left cousins of; 2) y is a child ofz or 3) order and every paip is added to the answer of the query
y is an ancestor of. Since our algorithm visits the nodesf p.score < score; where scorey is the largest score
in post-order, any node that satisfies the condition 1 or 2asong the scores of the tdppairs. Whenever such a pair
either visited by our algorithm or is not visited because # is added to the answer, the pair with the largest score
does not lie in the sliding window (its age is greater thaim the top4 pairs is deleted and thecore, is updated
n). Hence, any node that lies in the sliding window andccordingly. The algorithm stops scanning the sorted list
may possibly have score smaller than the score isfone whenp.score > scorei. This is because all the remaining
of its ancestors. Note that the stack contains the unvisitpdirs are guaranteed to have scores greaterdhar; and
ancestors of all the visited nodes. Moreover, every ancestre not needed to be considered.
of a visited node is a marked node in the stack (see line 8)Note that after handling the expired pairs and the newly
and our algorithm considers all the marked nodes of tlaerived pairs, the answer set of a query may contain less
stack (see line 11 of Algorithm 2). Hence, our algorithnthan & pairs (e.g., when the number of deleted pairs is
correctly determines the top-airs. greater than the number of pairs added in the answer set).
Complexity analysis. Priority search tree is always aln such cases, we call Algorithm 2 to compute the top-
balanced tree [22] because the left subtree and right subtpairs from scratch iO(log |SK B| + k).
of a node are determined based on the median scoBmmplexity analysis.In the worst case, the complexity of
Therefore, the height of the tree in the worst case igdating the results i©(log |SK B| + k) because we call
O(log |SK B|) where|SK B| is the number of pairs storedAlgorithm 2 when the number of deleted pairs is greater
in PST. Hence, the number of candidates at line 11 tfan the number of inserted pairs. This worst case may
Algorithm 2 is O(log |SKB| + k). This is because the happen only when one or more pairs are deleted from
number of elements in stack at any time is bounded by thiee top% pairs. We analyse the probability of this case to
height of the tree. To obtain the tdppairs, we use the the happen.
median of medians selection algorithm [23] to obtain the For any object;, the number of pairs containing in
k pairs in time linear to the number of candidates. Hendhe sliding window of size: is O(n). The total number of
the complexity of the algorithm i®(log |[SK B| + k) in  possible pairs in sliding window i©(n?). The probability
the worst case. that any of the pairs related to an objegt has the

As shown earlier, the expected size Bf-skyband for smallest score among all possible pairsnign? = 1/n.
a sliding window of sizeN is O(K - log (N/K)) (Theo- The probability that any of the pairs related to the object
rem 2). Note that our algorithm does not access a node; is one of the topk pairs isk/n. Hence, the probability
and its children ife does not lie in the sliding window of that any of the expired pairs is among the topairs is
size n. This means that we essentially consider only the/n. Therefore, the probability of the worst case to happen
pairs in K-skyband that lie in the sliding window of sizeis k/n and the expected amortized complexity of updating
n. Hence, the expected costlog |SK B,,| + k) where the results isO(k/n(log |SKB| + k)) per update.
|SK B,| is the size ofK-skyband for the sliding window of
sizen. Hence, the expected costiglog (K - log (n/K))+
k) = O(log (logn) + log K + k). We remark that in the 5 SKYBAND MNNTENA'_\ICE MO.DULE
worst case the expected costiélog (log N) +log K +k) 5.1 Handling arbitrary scoring functions
because the maximum size of the stack in the worst cagethis section, we present the details of skyband main-
may still be O(log |SK'B|) even though we ignore thetenance module (SMM) for arbitrarily complex scoring
nodes with age greater than This is because the PSTfunctions. TheK-skyband needs to be updated when an
is a balanced tree with respect to the overall data set agiliect expires or when a new object arrives. Below, we
may not necessarily be balanced for a subset of the datgescribe how to handle both of the cases.
Handling when an object expires.Handling an expired
object is easy because we only need to delete the relevant
pairs from theK -skyband. Note that the age of an expired
The initial results of a continuous tdp-pairs query are objecto; is the largest among all the objects in the sliding
computed using the algorithm presented earlier for comindow. Moreover, every pair that is to be deleted has age
puting the snapshot queries. The results of a qdgRy,,) equal too;.age. We keep a list of’-skyband pairs sorted
may change if one of the toppairs expires or if a new pair on their ages and for each pair in the list we store a pointer
has a score smaller than the score of one of the existing tep-the relevant node in the PST. We use this list to delete
k pairs. We first handle the expired pairs and then handigery pairp for which p.age = 0;.age.
the new pairs. Handling when an object arrives. When a new object
Handling pairs expired from K-skyband.For each query o; arrives, we may need to update ti#é-skyband. For
Q (k,n,s)» We maintain two lists of tog pairs one sorted on arbitrarily complex scoring functions, we need to consider
their ages and the other sorted on their scores. We use #iiievalid pairs ofo; with the existing objects in the sliding
list of top-k pairs that is sorted on the ages to determingindow. The number of pairs to be considered in this
when a pair expires. Let be an expired pair. We delee case isO(N). Note thatO(N) is the lower bound cost
from both of the sorted lists. for handling a new object because, for arbitrarily complex
Handling new pairs in K-skyband. The skyband main- scoring functions, if we do not consider a péit, o;) then
tenance module provides a list of new pairs added to thee may miss the correct result becagsg o;) may be one
K-skyband. The list is provided sorted in ascending ordef the top# pairs.

4.2 Continuous Top-k Pairs Queries
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Algorithm 3 Handling new objectd) K™ (K = 2) smallest age among these points. Based on
1: Let S be the pairs inK-skyband sorted on scores p3 andpy, we determine & -staircase poing; such that
2: for each new paip of the objecto do s1.score = ps.score ands;.age = p4.age. Please note that
3 gompute the score and 0et tnen such a point, is dominated by at leask” point of P
5 insertp in S in sorted order Hence, any point that is dominated b]YIS domlnatgd by at
6: UpdateSkybandAndStaircasg(* Al gorithm 4 * leastK points of P. Moreover, any point that dominates

is dominated by at modt’ — 1 points of P. To constructi -
Algorithm 3 shows the details of handling a newlystaircase, we repeat the above procedure for every point of

arrived objecto. We say that a paip is dominated by a the K-skyband and determine a relevdiitstaircase point.

K-skyband if there are at leasf pairs in theK-skyband Below, we present the details.

that dominatev. For each new paijs, we first need to check ) ]

whether it is dominated by the existirg-skyband or not 5-1.2 Updating K-skyband and K-staircase

(line 4). The pairs that are not dominated by fkieskyband Recall that in Algorithm 3, we need to update tiié-

are added to the existing-skyband which is kept sorted in skyband andk-staircase after all the new pairs are added

ascending order of the scores of pairs (line 5). After all the the existingK'-skyband (see line 6). In this section, we

pairs are considered, the algorithm updatesihekyband present our technique to efficiently update tiieskyband

(line 6). and K -staircase. In [24], the authors presented an algorithm
As mentioned earlier, for each new pair we need to to construct thei(-skyband from a set of two-dimensional

check whether it is dominated by the existifigskyband points P. Since our algorithm to construct thf€-staircase

or not (line 4). A naive approach to do so is to consider dilas a similar structure, we embed the two algorithms to

the pairs in the existind<-skyband and count the numbeiconstruct both thé(-skyband and-staircase in parallel. If

of pairs that dominatg. If the number of dominating pairs the points in the datasét are sorted in the ascending order

is less thanK then the pairp is not dominated by the of their scores, the algorithm constructs tiieskyband and

K-skyband. Note that the complexity of this approach i&-staircase inO(|P| - log K') where|P| is the number of

linear to the size of thé(-skyband, i.e.O(|SK B|). Next, points inP.

we present an approach that checks whether a jpasr ‘Algorithm 4 UpdateSkybandAndStaircagey
dominated by the(-skyband or not irO(log [SK B|. First  ——reimes max-heapH with key set to age of elements

we introduce the concept df -staircase 2: Let P be sorted in ascending order of scores

3: for each pairp in P do
4: if |H| < K then
8 P 5: addp to SK Bk
S, 6: insertp in H
g8 @ 7: if |H| = K then
3 P2 PsO . ; . .
4L 8: insert (p.score, H.top().age) into K-staircase
pse kSt 9: else
2L 10: if p.age > H.top.age then
Pse P 11: discardp
1L 12: else
Age 13: addp to SKBg
. ) 14: insertp in H
Fig. 5. 2-staircase 15: H.pop()/* del ete top el enent of H*
16: insert (p.score, H.top().age) into K-staircase

51.1 K-staircase 17: output SK Bx and K-staircase.

Given a set of points, the K-staircase is a set of points Algorithm 4 presents the details. The points ihare
SCase such that if a poinp is dominated byanypointz € accessed in ascending order of their scores (if two points
SCase then there arat least K points in P that dominate have the same score, the point with the smaller age is
p. Moreover, for any poiny’, if there does not exishtny accessed first). An accessed pojntcannot be thek-
pointz € SCase that dominate®’ then there arat most skyband point if the algorithm has accessed at ldast

K — 1 points in P that dominatep. Note that the points other points with age at most equal toage (line 10).

in the K -staircase can be used to check whether a pointTi&is is because all of thesE points have scores at most
dominated by thei-skyband or not. More specifically, aequal top.score (recall that the points are being accessed
point p is dominated by the(-skyband if and only if it is in ascending order of scores).

dominated by at least one point of tli&-staircase. If a point p is in K-skyband then we identify &-

Fig. 5 shows a set of point® = {p1,---,ps}. The staircase point such thatc.score = p.score andz.age =
K-staircase K = 2) is also shown which consists of theH.top().age where H.top().age is the maximum age of
points p1, ps, s1 and se (shown as stars). Note that thea pair in the heap (line 16). Note that the heap stores
points in the staircase are not necessarily the points in thesmallest ages anéi.top().age corresponds to thé'"
set P (sees; and sy). Before we show our algorithm to smallest age among the points that have been accessed (i.e.,
compute theK -staircase, we present the intuition. have scores smaller thanscore).

Consider a poinps that is in K-skyband = 2) as Checking dominance using K-staircase.We say that a
shown in Fig. 5. Among the points that have scores at mgstint p is dominated by thé{-staircase5Case if and only
equal tops.score, we identify a point that ha&*" smallest if there exists a point € SCase that dominates the point
age. In Fig. 5, the points that have scores at most equalAs stated earlier, a point is dominated byK -skyband
to ps.score are ps, py and ps and the pointp, has the if and only if p is dominated by thd{-staircase. Next, we




TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

show that checking whether a pointis dominated by the O(K) according to Lemma 2. The cost of inserting and
K-staircase can be done @(log |SK BY). deleting these pairs from the PSTGX K - log |SK B|).

Note that the points of theK-staircase returned by Overall cost of Algorithm 3The above analysis demon-
Algorithm 4 are sorted on their scores. To check whethetrates that the overall complexity of Algorithm 3G¥ N -
a pointp is dominated by thek -staircase or not, we do alog |SKB|+ K -log (|[SKB| + K)+(|SKB|+K)-log K).
binary search on the points in té-staircase and retrieve Since |[SK B| is larger thanK and N is larger than
a pointz that has score smaller thanscore and the point |SKB| if K < N (which is usually the case), the overall
next tox in the K -staircase has score greater thascore. complexity of Algorithm 3 isO(N - log (|]SK B))).
It can be proved that ip is not dominated by: then the Cost of handling an expired object When an objecb;
point is not dominated by any point in th&-staircase. expires, the number of pairs that are to be deleted from
This is because all the points of thié-staircase that have the K-skyband is at most. This is because the-
scores smaller than have age greater than.age (see skyband contains at mo#f pairs that have equal age (the
the K-staircase of Fig. 5). Since the size Af-staircase K pairs with the smallest scores). Recall that each deletion
is bounded by the size ot -skyband, checking whether aand insertion on PST takeQ(log |SK B|). In the worst

point is dominated byx -staircase take®(log |SK B|). case,K pairs are to be deleted and the worst case cost is
O(K -log|SKBJ).
5.1.3 Complexity analysis Overall cost Note that the cost of handling a new object

) . , ) dominates the cost of handling an expired object. Hence,
The following lemma is important in analysing the comine overall cost iSO(N - log | SK B]). Since the expected

plexity. _ _ size of [SKB| is O(K -log (N/K)), the overall expected
Lemma 2:When a new object arrives, the expectedomplexity isO(N - (log (log N) + log K))

number of new pairs that are not dominated by the existing
K'S"gr%%?_d Ilisg(f)ﬁewly arrived objech there are 5.2 Optimization for certain scoring functions

O(N) new pairs in the sliding window. Lep, be a Inthe previous subsection, we showed that the skyband can
new pair with age equal ta. The set of new pairs P& Maintained by considerin@(N) new pairs when a new

is {p2,ps, -+ ,pn}. From Lemma 1, a pair with age object arrives in the data stream. In this section, we show
has p,l’Ob’abilii[ymin(K/mQ 1) not to be dominated by thatfor a broad class of scoring functions we can reduce the
K-skyband HenceZN 7;u‘n(K/m2 1) gives the num- number of considered pairs. We call these scoring functions
ber of neW pairs thﬁQare hot dbminated by the the global scoring functionsThe global scoring functions

. : based on monotonic and loose monotonic functions as
skyband. The summation can be approximated/tg + &r€ Pase .
KZf,L _ 1/22. This is reduced ta/K + K - C where defined in [1] and can be used to model several important

. ) queries such ag-closest pairs queriess-furthest pairs
C'is a constant smaller that? /6 (see Basel's probleth queries and their variants. Due to space limitations, we omi
Hence, the number of such pairsG¥K). O

. .  the details of global scoring functions and refer the reader
Cost of handling a new object We analyse the complexity [1] (see Section II).

of Algorithm 3.
lines 2 to 4:For a newly arrived object, Algorithm 3 Threshold Algorithm

considersD(N) new pairs (line 2). For each of these pairs,  Sorted on attribute 2 !

. M . (01,07) 2 (01,07) 1 (01,00) 2
the algorithm checks whether it is dominated by thie Ol Tla[SlolBles{8leflofg] [ 2] [t0r0) ] [(0n0) 3
staircase or not. Hence, the total cost of these lin€xis - 0s 0, 01 07 05 03 o5 |0 3 lew0) 2 ][00 4
10g.|SKB|). _ ] Sorted on attribute 1 EZ:ZZ; g 221:; i E:ZZ; 2
line 5: According to Lemma 2, the number of pairs 0r00 6 | [ero9 5] [oron 7
that are not dominated by th€-skyband isO(K). These 16} LN S

O(K) pairs are inserted in th&-skyband setS. The cost ©1 02 O3 04 05 05 07 LSxy)=LS:fky) =yl .
of each such operation is logarithmic to the size Sf Sorted on age Scoring Function > Manhattan Distance
Hence, the cost of line 5 i9(K -log (|[SK B| + K)) where _ (®) Sorted Lists (b) Applying TA
O(|SKB| + K) is the expected size df after all K pairs Fig. 6. Optimization for global scoring functions
are added.
line 6: At line 6, Algorithm 4 is called. The cost of 5.2.1 Technique
Algorithm 4 to compute thés-skyband and thé&-staircase Let D be the total number of attributes of the objects. As
for a sorted dataset of sizé| is O(|S|-log K) [24]. Since described in Section 2 and shown in Fig. 6(a), the stream
the size ofS is O(|SK B|+ K), the cost of computing the manager maintaingD + 1) sorted lists D lists each sorted
K-skyband and thé{-staircase (line 6 of Algorithm 3) is on one of the attributes and one list sorted on the ages).
O((|SKB|+ K) -log K). After the K'-skyband is updated, The global score (i.e., final score) of a pair is computed by
the new pairs inserted in thE-skyband are inserted in thecombiningd < D local scores where théth local score
priority search tree (PST) and the pairs that are not amoogrresponds to the score of a pair on thth attribute.
the K-skyband pairs anymore are deleted from the PST.For a newly arrived object and for an attribute, we
Since the size of thé(-skyband is expected to remain thecan incrementally retrieve the pairs of objects relatedhéo t
same before and after the update, the number of new paitgecto in ascending order of theirth local scores (see [1]
is equal to the number of pairs deleted from the PST, i.éar details). Fig. 6(b) shows an example where, for a newly
arrived objecto;, the lists can be used to incrementally
1. http://en.wikipedia.org/wiki/Baseproblem retrieve the pairs ob; in sorted order of the scores. We
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iteratively retrieve these pairs in ascending order of esorstreams, the age of an object does not denote the time since
for each attribute and then apply an algorithm similar toit has been in the sliding window (i.e., the time since it
the threshold algorithm (TA) [11] to terminate the algomith was received) but it denotes the time since it was sent to
before visiting allO(N) new pairs of the newly arrived the server. Hence, the age of a newly received object may
object. be larger than the age of objects received earlier.
Algorithm 5 presents the details. The algorithm accessesAs mentioned in [26], various stream processing tech-
the pairs in round-robin fashion from the+ 1 attributes nologies experience significant challenges when faced with
where the(d + 1) attribute corresponds to the age of aut-of-order data streams. Our proposed techniques do not
pair (line 4). Each accessed pailis mapped to age-scorerely on the assumption that the age of a newly received
space and is inserted ifi if it is not dominated by the object is the smallest among the existing objects. Hence,

K-staircase (line 6). all of our proposed techniques can be directly applied

Algorithm 5 handling new objecb) on oyt-of—order data streams. In fact, one optimizqtion is
1. S = points in K-skyband sorted on scores poss[blle in the skyband maintenance module (Algorithm 3).
2 dummy point= (0, 0) Specifically, for out-of-order data streams, we update
3: while dummy point not dominated b§ -staircasedo skyband andx -staircase (line 6 of Algorithm 3) only if the
4. fori=1toi=d+1do _ ) ., SetSis changed due to insertion of any pair at line 5. In
5 ﬁ)%caels;ccr)]r%)(t best pajr of o in ascending order of ™  contrast, for in-order data streams, when an object arrives
6: if p is not dominated byK-staircasethen there is at Ie.ast one new pair Fh_at ha_s the smallest age
7 insertp in S in sorted order of scores among all existing pairs in the sliding window. Hence, for
8: Letls; be the score of last pair seen fdf attribute in-order streamsy' is always updated due to the insertion
9: Let age be the age of last pair seen from the age list of such pair and this requires update BfFskyband and

10:  dummy point =(age, gsf(ls1,- - ,1s4)) K -staircase.

11: UpdateSkybandAndStaircasg( Our theoretical analysis and experimental evaluation

flemonstrate that our proposed techniques perform better fo
out-of-order streams. This is due to Lemma 3 that states that
if an object arrives late (i.e., out-of-order), the new pair
]Jg)?ve lesser chance to be in théskyband which implies
[ow maintenance cost of th&-skyband.

Lemma 3:Assume that the age of a newly received
objecto,., is y. The expected number of new pairs that
not dominated by the existing-skyband is inversely
portional to the value of.

Proof: If y > N, then every new pair has age greater
N and can be ignored. Otherwise, there @{gV) new
pairs in the sliding window. There afg—1) pairs with age

al toy (the pairs ob,,.,, With every objecb that has age
smaller thany). The remaining pairs can be denoted as a set
{Py+1,Py+2,- - ,pn } Wherep, denotes that the age of pair
. . pe IS z. From Lemma 1, a pair with age has probability
52.2 Complexr[y. ana}lyss ) min(K/z?,1) not to be dominated by -skyband. Hence,
Note that the main difference between Algorithm 3 angd, _ 1) » min(K/y2, 1) + sV L min(K/a?,1) is the
Algorithm 5 is that Algorithm 3 considerS(N) new pairs - expected number of new pairs that are not dominated by the
when a new object arrives whereas Algorithm 5 considefs_skyhand. Clearly, this value is inversely proportional to
fewer pairs by using the threshold algorithm (TA). LBt e value ofy, i.e., the expected number of new pairs that

be the number of the pairs considered by Algorithm Sye ot dominated by th&-skyband is larger for smaller
We estimate the value o/ and obtaining the overall \5),es ofy and vice versa. 0

complexity is similar to that of the Algorithm 3.
We access the pairs in round robin fashion for éghe 1
attributes. Note that the algorithm may terminate if atiea§.2 Top-k objects queries

K pairs have been seen for each of thése 1 attributes. Gjyen a scoring function that computes the score of an

This is because for any unseen pair there would be at 'eé_ﬁiect, a topk objects query retrieves objects with the

K pairs that have both the score and age less than it. Fagjfjy|jest scores. A top-objects query over sliding windows
showed that the number of elements accessed fromithie qnsiders the objects in the current sliding window (e.g.,

i i i — d/(d d . X .
lists in such case i8/ = (d+1)- N/ KVHD 1] yha most recents objects) and returné objects with the
smallest scores. Such queries have many applications and

Let Is; be the local score of the last retrieved pai
for the i'" attribute andage be the age of the last pair
retrieved for the age aftribute. Note thia; corresponds
to the smallest possible local score of any unseen pair
the ;' attribute. Hencegsf(ls1, - ,lsq) is the smallest
possible final score of any unseen pair whesé() denotes
the global scoring function. Similarlyge is the smallest
possible age of any unseen pair. Hence, we map a dum
point (see line 10) to the age-score space with the small@
possible age and the smallest possible score. If this dumrﬁlI
point is dominated by thé& -staircase then any unseen pai n
will also be dominated by th& -staircase. For this reason,
we do not need to consider remaining unseen pairs (
line 3) if the dummy pair is dominated by thé-staircase.

6 EXTENSIONS have received significant research attention [7], [6], [8].
) In this section, we present techniques to efficiently han-
6.1 Handling out-of-order streams dle top# objects queries that outperform state-of-the-art

In many real-world applications, the objects do not arrivalgorithm [6] in terms of both running time and memory
in correct order due to various reasons such as netwardnsumption. We remark that our proposed algorithm has
delay and data sent from different sources [25], [26]. Su¢he following novel features not considered/supported by
streams are called out-of-order data streams. In out-aédfor the existing algorithms: 1) It supports arbitrarily comple
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scoring functions whereas the existing algorithms onigection 5.1.1). Since line 6 is called after at leashtew
support either monotonic functions [6] 8NN queries [7], arrivals, the amortized cost of line 6 g KB la K
[8]; 2) It can answer topk objects queries having anyHence, the amortized cost of the whole algorithm is
window sizen < N in contrast to the previous technique®(log (z + [SKB|) + 1(z + |SKBJ|)log K). Assuming
that focus only om = N; 3) Our proposed techniques carthat = = |SK B|, the amortized cost of the algorithm is
handle out-of-order data streams. O(log |SKB| + log K) = O(log | SK BY).

Our framework is similar to the framework we presente@ptimizing the value of . Intuitively, if we choose larger
to answer topk pairs queries. Specifically, each object ig, the cost of line 4 increases whereas the amortized cost
mapped to a score-age space and& &kyband is main- of line 6 is reduced (and vice versa). Next, we show how
tained by the skyband maintenance module. The quety choose an optimal value af. Let Cost(z) denote the
answering module uses thie-skyband to answer snapshotamortized cost of the algorithm for value
and continuous top- objects queries for anyy < K
and anyn < N. The query answering module (and its (¢ + |SKB|)log K

complexity analysis) is exactly the same as presented irCost(z) = log (z + |SK B|) + (1)

Section 4. The skyband maintenance module is different z

and is presented below. To minimize the cost, we take the derivative@bst(x)
and set it equal t@.

6.2.1 Sky_band maintenance fgr t_op-k objects 1 ISK B|log K

Note that if the data stream is in-order then the newly — =0

arrived object has the smallest age and cannot be dominated z +|SKB| @

by any existing object in the sliding window. Hence, the The optimal value ofr is then obtained by solving the
newly arrived object must always be insertedirskyband. above equation.
This observation was exploited in the existing work [6].

In contrast, for out-of-order data streams, a newly arrived ~, _ |SKB[ x (log K’ + Vl9og K (4 +1log K))

object may or may not be dominated by theskyband. 2
We present the techniques for out-of-order streams whichngte that the above analysis is valid f&f > 1. For a
can be directly applied for in-order streams. more accurate analysis that is also applicable o= 1,

A straightforward approach to maintaiii-skyband is to O(log K) in Eq. (1) is to be replaced bg(C + log K)
insert the newly arrived objeat in the K-skyband (if it \where( is a constant.

is not dominated by -skyband) and remove every object

o' that is dominated by and (K — 1) existing objects. ) ] ]

To efficiently check whether the newly arrived object i§-3 Batch processing for multiple queries

dominated by theK-skyband, we can usé-staircase. In this section, we present a query processing algorithm
This straightforward approach may be expensive becaubat answers multiple snapshot queries in a batch. Suppose
it requires updating<-skyband andy -staircase every time Q is a set of queries that share the same scoring function.
a new object arrives. Therefore, we adopt a lazy-updater a quenyR; €Q, k; andn; denote the values df andn
approach shown in Algorithm 6 that updates fieskyband used forQ);, respectively. Algorithm 7 presents the details
and K -staircase only if the size df-skyband increases by of the technique.

a parameter, Igorithm 7 Batch(SK B
Algorithm 6 computes the score and age of the newf?\'g CKB, Q)

¥ — . .
arrived objecto and checks whether it is dominated by ; fozoiaggcﬁg?)ir']nd‘gigfné?nzsgredn;'%? V?,{gggﬂ:ﬁg{gdo
K-staircase or not (line 3). 1b is not dominated, it is if p.age > n; then '
inserted inS and the priority search tree (line 4). Letbe break;

a parameter an K B| denote the size ok -skyband after insertp into Q;.topK

the last update of<-skyband andk-staircase (line 7). If if |Qi.topK]| :f(i th%” .

after the insertion ob in S, the size ofS becomes larger report@i.topK’ and remove; from Q

thanx + [SK B| then Algorithm 4 is called to update the Recall that the skyband maintenance module stores the

Noahw

K-skyband andk -staircase. pairs in K -skyband in sorted order of scores. The algorithm
Algorithm 6 Handling new object() accesses the pairs in ascending order of scores (line 1).
1: Let S be the objects inK-skyband sorted on scores For each accessed pair |t_accesses the ‘l_ue“es @in
2: compute the score and age ®f descending order of the window lengths (line 2). Note that
3: if o is not dominated byK-Staircasethen if the age ofp is greater than the window lengt} of an
gi !PTETO into fsi(ng IF;ET accessed query themcannot be an answer of any of the
oo >+ en remaining queries (because the agepofvould be larger
. 1 * 1 *
32 Té%?%fi@ig%ng?fgﬁtféﬁ%@‘ Algorithm 41 an the window lengths of such queries). This observation

is exploited at line 4 of Algorithm 7, i.e., the algorithm
Complexity analysis The cost of line 3 i€ (log |[SKB|). stops considering a pap if its age is greater than the
The insertion cost of each object int® and PST is at window lengthn; of the query currently being accessed.
most O(log (z + |SK B|)) (line 4). The cost of line 6 is If p.age < n; thenp is added to a linked lis®;.top K

O((x + |SKB|)log K) wherex + |SK B| is the number that stores the answer @j; (line 5). This is because the
of elements inS at the time K-skyband andK -staircase pairs that are to be accessed afidat line 1) cannot have
is updated (see the cost of Algorithm 4 presented Btores smaller thap, hence,p is one of the top: pairs.
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, insk. nai ; a) 5] 6]
If Q:.topK containsk; pairs then its results are reported 01‘\/‘&/03 od o o

and @; is removed fromQ so that it is not considered

in future (line 7). We remark that the algorithm for top-

k objects queries is exactly the same except that pair(f O ,\_/, (6]
replaced with object in the pseudocode. ! 2 2 04 % O6
Complexity Analysis. For the sake of simplicity, assume

that each query has the same valué:ofrhe total number (c) o '\./"

of results isk|Q| because each query haspairs. Since s ‘ ° Os
the cost of a single execution of line 5 (1), the total

cost of line 5 for the complete execution of the algorithrfid- 7. Sorted lists (a) non-chromatic (b) heterochro-
is O(k|Q]). The total cost of line 6 is the same as line Fnatic (c) homochromatic

i.e., O(k|Q]). The total cost of line 7 is at mos?(|Q|) Non-chromatic list. Since non-chromatic queries do not

because this line is executed at mo8t times. impose any restriction on the colors of the objects in the
For each paip accessed at line 1, the algorithm checksair, the non-chromatic list links the adjacent objects to

the condition of line 3. l{p does not satisfy this condition, each other (see Fig. 7 (a)).

included in the cost shown in the paragraph abovep If need to consider its pairs with the objects that have the

satisfies this condition then the algorithm stops consigerisgme color as that of;. Hence, for every object;, the

it. Hence, the total cost of line 4 is at mas{|SK B|). So, homochromatic list provides the links to its adjacent otsjec

the overall cost of this algorithm iI©(|SKB| + k|Q|). (in sorted order) of the same color. For example, in Fig. 7
Note that, wherjQ| is larger thanlSK B/, the amortized (p), the right adjacent object of; is os and its left adjacent

cost for each query i®(k) which meets the lower boundobject iS0;.

query processing cost. Heterochromatic list. For every objecb;, the heterochro-

matic list provides links to its adjacent objects (in sorted

: : ) ; : order) having different colors. For example, in Fig. 7 (c),

6.4 Handling chromatic Top-k pairs queries the right adjacent object af, is og and the left adjacent

The top# pairs queries can be classified into chromatic ansbject of o, is 03. These links are used to access the

non-chromatic tope pairs queries [1]. Chromatic queriesheterochromatic pairs related # in constant time [1].

are further classified inthomochromaticand heterochro-  As the new object arrives or the old object expires,

matic queries. Assume that each object in the stream is afe lists and affected links to the adjacent objects are

signed a color. A homochromatic tdppairs query returns ypdated. This can be done ifi(log N) for each object

the top% pairs among the pairs that contain two object§pdate. To answer the chromatic queries, the skyband

having the same color. In contrast, a heterochromatidtopmaintenance module only uses the relevant lists to maintain

pairs query considers only the pairs that contain two objeghe K-skyband. For example, to maintain /&-skyband

with different colors. The top pairs queries that considerfor the homochromatic top- pairs queries, the skyband

all the pairs (i.e., the colors are not taken into considenyit maintenance module only uses the homochromatic lists.

are called the non-chromatic queries. The query answering module does not require any change.
Consider the query Q1 shown in Section 1 and assume

that a user wants to consider only the pairs of prod-

ucts that were auctioned by different sellers. The usér EXPERIMENTS

may issue a heterochromatic query by adding a conditigm.  Top-k Pairs Queries

a.seller # b.seller. Similarly, a user who wants : .

to consider the pairs of products sold by the same sell7e'rl‘1 Experimental settln_gs )

may issue a homochromatic query by adding a conditié?eal data. We use a publicly available data set [27] col-

a.sel | er=b. sel | er. In this section, we propose ex-lected from 54 sensor nodes deployed in the Intel research

tension to handle chromatic top-k pairs queries. lab in Berkeley between February 28th and April 5th,
Recall that stream manager receives the data stream 8R@4. Each node measures environment readings such as

maintains the most recenY objects. As showed in Sec-temperature, humidity and light. The data set consists of

maintain K -skyband for a broad class of scoring function§€e following scoring function. _

if the objects are sorted on their attribute values as well s(0z,0y) = |Om.temp_oy.tL‘Zz;‘Z‘ﬁ,}ZfﬁZ{Z?_OU.humidity‘

as on their ages. Next, we show that the stream manageThe scoring function prefers the pairs of sensor readings

can store the objects in sorted order in a way that enabteat are taken within small duration of time and report quite

the system to efficiently handle both the non-chromatic amiifferent temperature and humidity. We remark that we tried

chromatic topk pairs queries. several other inherently different scoring functions alnel t
For each ofD attributes and the age, the stream managexperimental results demonstrated similar trends.

stores three doubly linked lists as shown in Fig. 7. Fig. 3ynthetic data. We generate synthetic data following uni-

shows an example where three lists are shown for tf@m, correlated and anti-correlated [28] distributiomsla

objects sorted on their ages. Some objects are assigned gragh data set consists af million objects. Leto[i] be

color (02, 04 andos) and the others are assigned white coldhe value of the object in i*"* dimension. For a scoring

(01, 03, 0). Below, we describe the structure of each of thinction that used dimensions, we use the following four

three lists. different scoring functions.
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$1(0g,0y) = Zle |0z [1] — oy [d]] meets the lower bound céstMore specifically, for query
59(0z,0y) = — ijl 0z [i] — 0, [1]| answering, we assume that the supreme algorithm requests
$3(05,0y) Hg_l l0a[i] — oy ]i]] oracle to return, in sorted order of scores, only the pairs

= . . of K-skyband that lie in the sliding window. The supreme
84(0z,0y) = — [[i—; loz[i] — oyi]

algorithm returns firsk pairs and requests oracle to stop.
Clearly, the query answering cost of the supreme algorithm
is O(k) that meets the lower bound.

As implied by Theorem 1, every algorithm must maintain
gqe pairs inK-skyband for exact answering of tdppairs
rgxéJreries. To maintaink -skyband, the supreme algorithm
yses Algorithm 3 and computes only line 2 and line 3. The
remaining steps are answered by the oracle in no time. Note
that the skyband maintenance of the supreme algorithm

Note that the scoring functiosy, retrieves thek-closest
pairs ands, retrieves thek-furthest pairs according to the
Manhattan distance between the pairs. Analogousland
s4 retrieve topk similar pairs and topge dissimilar pairs,
respectively, according to the product of the differences
the attributes. We conducted experiments for several ot
scoring functions and obtained results similar to the on
reported in this paper.

[ Parameter | Range | meets the lower bound a@(N).
Data distribution | real, uniform, correlated, anticorrelated _ . _
# of attributes (d)] 2,3,4,5,6 " JNaive —o— Supreme 10° |7 Nave —o— Supreme
N (in thousands) | 10, 50, 100, 500, 1000 3 3 10
K 1, 5, 10,20, 50, 100 210" @ 10
3 102 107
TABLE 1 .ENS E10°
Experiment Parameters for Top-k Pairs Queries . 10
10 11020 50 100 10 100 500 1000
Unless mentioned otherwise, for a fixed valuekofnd (a) Varying K (b) Varying N (in thousands)

n, we issue four querie§ y ,, .), one for each of the four Fig. 8. Overall cost evaluation on the real data
scoring functions, and report the average query cost pefin Fig. 8, we compare our algorithm with other algo-
object update. The table 1 shows the different parameteitams using the real sensor data set. We issi@ top-«
used in our experiments and the bold values are the defgsdirs querie) ;. ,, sy Wherek < K andn < N are ran-
values used in the experiments unless mentioned otherwigemly chosen for each query. Our algorithm demonstrates
two to three orders of magnitude improvement over the
7.1.2 Evaluating overall cost naive algorithm and performs reasonably well as compared
To the best of our knowledge, we are the first to studp the supreme algorithm. Fa¥ > 500,000, the naive
the problem of topk pairs over data stream. This problen@lgorithm did not complete its execution in 7 days and the
is inherently different from other related problems suc@stimated completion time was around 2 months. Therefore,
as k-closest pairs queries on moving objects [16], [14)ve do not show results for the naive algorithm for the larger
static topk pairs queries [1] and incremental distance¥alues ofN.

join [2] etc. Although at first it may seem easy to extend Naive o Supreme —=— 10t [ Nave —o— Supreme ——
previous techniques, a careful analysis demonstratethihatg 1 | = 2100} oo

extension of these techniques to answlosest (or topk) £ 210t {

pairs queries over sliding windows is either non-trivial og0” g’

inefficient. F10° e

We evaluate our algorithm (Algorithm 3) that answers 10*
the queries involving arbitrarily complex scoring functio i . .
Sincc(]a it uses d(-staircase to maintai?] th&-skyband, our _. (a) Varying K (b) Vary”.]gN (in thousands)
algorithm is calledSCase For an extensive evaluation ofF'g‘ 9. Effect of K and N on synthetic data
our algorithm, we carefully design two competitors called In Fig. 9 and Fig. 10, we perform experiments on
Naive and SupremeBelow, we present the details. synthetic data sets to conduct a more detailed evaluation.
Naive Algorithm. A naive approach to answer continuouSince we also want to observe the performance of the
top-k pairs query is to maintain atD(N?) pairs in sorted algorithms for varying: and varyingk, we decide not to
order of their scores. However, this approach appearedremdomly generate. and k. Instead, in each experiment,
be too slow. Another serious drawback is that the spawg run four queries each using a fixed valuenofind &
complexity is quadratic and is prohibitive for large sligin and using one of the four scoring functions,(s2, s3 and
windows. Therefore, we devised a better naive approagl) presented in Section 7.1.1. In Fig. 9(a) and Fig. 9(b),
that usesD(K N) space. For each newly arrived objekt, we study the effect o and N on both algorithms. For
pairs related to it with the smallest scores are computeghch query, we set = N (the largest sliding window) and
All O(KN) pairs are kept sorted on their scores. Wheh = K (the largest possible value @f). The results are
an objecto; expires, all the pairs related to it are deletedsimilar to the results obtained using the real data set.
Note that the objech; may be among the top- pairs of In Fig. 10, we study the effect of and n. As stated
an unexpired object;. After we delete the pairs related toearlier, our algorithm does not know the values:odnd &

0;, we need to update the tdppairs of every such object
0. 2. Note that the performance of an algorithm also dependfi®nvay

Supreme algorithm. We assume that there exists an oraclg!s impemented. However, we remark thlatbt{?g/ supreme E'US”S. a
. . .. -reasonaple benchmark to evaluate the scalapility of ouroagp. Raving
that answers questions without requiring any Compumt'g?%d this, for a fair evaluation, the supreme algorithm iglemented by

time. We use this oracle such that the supreme algorithiging the code that is a subset of the code used by our algorith

11020 50 100 10 100 500 1000
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®
o

Naive++ —e— 10° Naive++ —o— 15 Linear —e— — Linear —e—
1 SCase —»— SCase —=— o Snapshot —<— [ Snapshot —<—
5107 | Supreme++ —a— <510 | Supreme++ —a— glo Supreme —-&— @60 Superme —&—
[ Q = =
£102 2102 9/ 2 240
~ ~ c c
[} 1093 < 5 <
E 100 E g g2o
N 10 F F
10 10° 20 50 70 100 10 100 500 1000
15 10 20 1 5 10 (a) Varying i (b) Varying N(in th ds)
. ) ) a) Varying arying N (in thousands
(a) Varying k (b) Varying n. (in thousands)
. . 30 7 -
Fig. 10. Effect of & and n on synthetic data Snapenat 15 Snapmy 5

Superme —&— Supreme —&—

20

[N
o

in advance hence maintainsi-skyband for most recent §

N objects. In contrast, for a more strict evaluation of ou€so

algorithm, we assume that both the naive and the supreme M/

algorithms know the values ef andk in advance. In effect, ° T 2 50 100 T 3 5 7 10

the supreme algorithm njaintairksskyband (note that < (c) Varying k (d) Varying n (in thousands)

K) for most recentn objects only. The naive algonthmFig 11. Linear vs Snapshot Algorithm

uses onlyO(kn) memory instead 0O (K N) memory. We

call these variations of the supreme and naive algorithf®ost equal ton. The algorithm is expected to terminate

assupreme++and naive++ respectively. earlier whenn is large. Note that whem = N the cost
The results are reported in Fig. 10(a) and Fig. 10(t9f linear algorithm isO(k) which is impossible to be

In Fig. 10(a), the naive++ algorithm performs better foputperformed. _ .

k = 1 because it needs to maintain onfy(n) pairs in Recall that our complexity analysis shows that the cost of

total whereas we need to maintaif-skyband & = 20) Shapshot algorithm i®(log(log n) +log K + k). As antic-

for most recentV = 10, 000 objects. ipated by our complexity analysis, the cost of our snapshot
Fig. 10(b) shows that our algorithm outperforms naive-+agorithm increases with increase in(see Fig. 11(c)) but

algorithm even forn = 1000 although it incurs mainte- is not significantly affected by a moderate increasirr

nance cost to maintain &-skyband for a window siz&v 7 (see Fig. 11(a) and Fig. 11(d)).

of 10,000. Note that the complexity of supreme++@5n) Continuous Query Answering Next, we evaluate the

and the complexity of our algorithm i@(N - (log (log N)+ Performance of our continuous query algorithm which is

log K). Hence, the cost of supreme++ increases with iflenoted ascontinuousin the figures. The supreme algo-

crease inn whereas the cost of our algorithm remaingthm for continuous query answering assumes that the

o

Time (in micro sec)

o

unaffected. oracle notifies it whenever a pair is deleted or added to
the existing answer and the supreme algorithm updates the
7.1.3 Evaluating query answering module results accordingly. We also choose the linear algorithm

and the snapshot algorithm as competitors such that these
algorithms compute the results from scratch whenever the
Pesults are to be updated.

In Fig. 12(a), we show the effect df on the continuous

ery algorithm for 1000 queries that randomly choose
e values ofn and k. Fig. 12(a) shows the average cost
r’Lger guery per object update. Clearly, our continuous query

algorithm (Algorithm 2) is calledsnapshat We study the . : ;
effect of each of the parametek§ N, k andn, separately. alr?do !tcharlnes? ltJ)tepttteerﬁorms the linear and snapshot algorithms

In Fig. 11(a) and Fig. 11(b), we study the effect of 1, — T
varying K and NV, respectively. The default value ofis  §s| _snapshor —— o Snapshot —x—
1000 and the default value df is 20. As expected, the cost § s Supreme —&— Supreme —+=
of supreme algorithm is negligible. This is because, in af «
the experiments, the supreme algorithm needs to iterate oe:

Snapshot Query Answering We compare our query an-
swering algorithm with the supreme query answering alg
rithm as well as another algorithm callédear algorithm.

The linear algorithm is the approach we discussed in t
first paragraph of Section 4.1 and it takes time linear to tl?
size of K-skyband in the worst case. Our query answeri

i
S

Time (in milli sec)
1N}
8

a link list of sizek. The snapshot algorithm outperforms the o mefo——g 0'a s St
linear algorithm and scales better with the increase in the (a) Varying K (b) Varying | Q| (in thousands)

values of K or N. The cost of linear algorithm increases._. . . . .
because the size df-skyband increases with the increas ig. 12. Evaluation of continuous queries algorithm
in K or N. Fig. 12(b) shows the performance of the algorithms for
In Fig. 11(c) and Fig. 11(d), we fix the values &f the increasing number of queries. Each qu@yy,, ;) uses
and N and study the effect of and n on both of the a randomly chosen value df and n. Fig. 12(b) shows
algorithms. The default value oK is chosen to be00 the total cost for all the queries per object update. Our
so that we can answer the queries with &ny 100. The continuous query algorithm outperforms the linear and
snapshot algorithm performs better than the linear algorit snapshot approaches.
for varying k. . .
Fig. 11(d) shows that the linear algorithm performg.1.4 Evaluating skyband maintenance module
slightly better than the snapshot algorithm when the valle this section, we evaluate our skyband maintenance mod-
of n is close toN. This is because the linear algorithrrule. We compare four algorithms. Ti8Casealgorithm is
accesses the pairs iK-skyband in ascending order ofthe Algorithm 3 which uses K-staircase and can be applied
scores and terminates whénpairs are found with age aton any arbitrarily complex scoring function. THeasic
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algorithm is the same as Algorithm 3 but does not ud®y our algorithm is quite close to the lower bound memory
K-staircase. As stated in Section 2.1, previous algorithmaquired. The tables also compare the theoretical value
to maintain K -skyband [6], [8] cannot be directly applied.of K-skyband size with the experimental value &f-
Nevertheless, we embedded all applicable optimizatioekyband size (average size &f-skyband for all queries
(e.g., dominance counter) of their techniques in biasic in the system). Note that in our theoretical analysis (The-
algorithm. TheTA algorithm is Algorithm 5 which is ap- orem 2), we state that the expected sizeko&kyband is
plicable only on the queries using global scoring function®) (K (In N — InvK)) = O(K log (N/K)). Our exper-
The supreme algorithm maintains the skyband as discusé®énts show that the actual size &f-skyband is about
in Section 7.1.2. Note that TA has an advantage over allK (in N — Inv/K)); this confirms the correctness of our
other algorithms (including the supreme algorithm) that theoretical analysis.
knows that the scoring function is a global scoring function Below is the explanation of the legend used in the tables.
and uses its properties. LB: Lower bound memory usage (in MB)

In Fig. 13(a) and Fig. 13(b), we study the affect & OUR: The memory used by our algorithm (in MB).
and N, respectively. As expected, the TA algorithm alwaysSKB|: Experimental value of average K-skyband size (in
outperforms the basic and SCase algorithms. This showsmber of pairs)
the effectiveness of using optimizations for global scgrinT = K (In N — InVK).

functions. Also, note that SCase algorithm outperforms the [k T T8 (n MB) | OUR (in MB) | [SKB[ | 2T |
basic algorithm which shows the effectiveness of using the T 0.46 0.461 17.4 18.42
K-staircase. TA outperforms even the supreme algorithm [ 5 0.46 0.467 82.3 84.05
when window sizeN is large. This is because TA utilizes [ 10 0.46 0.473 158.9 | 16118
; ; . 20 0.46 0.486 308.5 | 308.50
the properties of the global scoring function and does not = 076 0577 7306 | 72543
compute the score of afD(N) objects when a new object 100 0.46 0.58 1398.0 | 138155
arrives. TABLE 2
10° S%?a\?sig i Supre%@ - 10° S%?a\?sig i Supre%@ - Varying K (N =10, 000)
g10? 8 101 f
gmz 210 [N [ LB(in MB) | OUR(in MB) [ [SKB[ [ 2T ]
s = — 1000 0.04 0.058 2165 | 216.40
- 5000 0.23 0.254 280.8 | 280.77
11020 50 100 10 100 500 1000 10000 0.46 0.486 308.5 | 308.50
. . . 22 2312 72. 73.
(2) Varying K (b) Varying N(in thousands) S o e o
Basc o= TR 5= P 500000 22.88 22.920 465.7 | 465.98
0 | SCase —— Supreme —o— e o 1000000 | 45.78 45.822 496.8 | 492.71
1072 TABLE 3

Varying N (K = 20)

Time (in sec)

[
=)
[

%

2 3 4 5 6 uniform corr anti-corr sensor
(c) # of attributes (d) (d) Varying Distributions 7.2 Top-k objects queries
Fig. 13. Skyband maintenance techniques We compare our proposed algorithm .With the ;tate-of-the
) i art algorithm SMA (Skyband Monitoring Algorithm) [6]

In Fig. 13(c), we vary the number of attributésised by hat answers to- object queries for monotonic scoring
the scoring functions and study the effect on the algorithmg nctions. We obtain the source code of SMA from the
The performance of TA degrades as the number of attributg$inors and perform the experiments using the settings
incrgases. This verifies our complexity anqusis_given Bmilar to those used in [6]. We use the synthetic data
Section 5.2. The cost of supreme algorithm increasgs; that follows anti-correlated distribution and corssist
mainly because the cost of computing the score of a paify mjllions objects. We also conducted experiments for
increases as the number of attributes increases. The bagifar data distributions and observed similar trends.€Tdbl
and SCase algorithms are not affected by the number Qfo\s the parameters used in experiments and the default

attributes because the main cost in these two algorithmsi§,,es are shown in bold. The scoring function we used in
not the cost of computing the scores of the pairs. the experiment i (o) = Zd oli]
- =1 )

In Fig. 13(d), we show the effect of data distribution on

.
S,
IS

the algorithms. TA consistently performs better than SCasg 2ameter | Range |
and the basic algorithm on each different data set. Al nﬁ ?.fnafﬂ.ﬁﬁﬁ?) (@) i g’g 52 65
glggﬁ?hﬁ!'gorlthm performs significantly better than thecbasi 1" 5’, 1’0,2’0, 50100
' TABLE 4
7.1.5 Evaluating memory and theoretical analysis Parameters for Top-k Objects Queries
p

Table 2 and 3 evaluate the memory cost of our algorithm

and our theoretical analysis for varying and varying o

N, respectively (other settings are default). The tablds2.1 Running time

compare our memory usage with the lower bound memoRyg. 14 compares our algorithm with SMA for a single top-
required (as per Theorem 3). Note that the memory usgdabject query where the window sizeis equal toN. Note
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that our algorithm maintains PST to support any window 1c | NgPST = SMA —a— 16 [ NOPST 7 SMA —=—
sizen < N. If n = N, our algorithm is not required tog' ™|, —s—=—= 7| gloM
store the PST and the query can be answered by retunﬁr@ e lfm
first k objects from thek'-skyband which is kept sorted or§L 100K §1oo;<
scores by the skyband maintenance module. We use this« 10K o
optimization to answer the query where= N and call this K. s 4 s M 4 s e

algorithmNo- PST. The algorithm that uses PST is_called () Varying N' (in millions)  (b) Varying number of attributesl
SCase. No- PST outperforms the other two algorlthms.Fig. 16. Evaluating the memory usage

The cost ofSCase is higher than the cost of other two _ .

algorithms because it needs to maintain the PST to suppb@ each object that arrives late, we randomly generate a

anyn < N. valuey betweenl to N and delay it by a valug (e.g., its

2 ePsT o SMA | 2 [ePST o SMA o= age when it arrives |_@). Fig.. 17(a) and Fig. 17(b) show

8 SCase —— 8 SCase —— the results for tope pairs queries and top-objects queries,

g 1 — g s W respectively.x% denotes that: percentage of the objects

E E arrive late. Note tha6% corresponds to the in-order data

2 Yoo e 2 ol [P streams. In each experiment, we rLov queries and report

F s F s the overall running time. As anticipated by our theoretical
1 50 100 12 3 4 05 analysis, the performance of the algorithms is better fer th

(a) Varying K (b) Varying N (in millions) cases when more objects arrive late.
Fig. 14. Top-k objects queries forn = N 4 T a0 = 8% 4 T a0 = 8%

20% -= 60% & 100% —+

==

11020 50 100 0 11020 50 100
(a) Top# pairs (varyingK) (b) Top+ objects (varyingK)

20% -= 60% & 100% —+

Next, we compare our algorithm with SMA for the
qgueries with window sizess < N. We extend SMA so
that it can also support any < N. Specifically, to support
any query withn < N, SMA ignores every object that
has age greater tham during the computation of top-
queries. In Fig. 15, we randomly generdt@00 queries
with each query using randomly generated valbemndn
(k < K andn < N). Although our proposed algorithm isgjg 17, Out-of-order data streams
more general and can support arbitrarily complex scori tch ing. W ¢ luat tech-
functions and out-of-order streams, the results demaestrd. ch query processing. WWe next evaluaté our tec

: que for the batch query processing algorithm proposed
that our proposed algorithm outperforms SMA and scal«?né Section 6.3. The algorithm that uses the batch query

Time (in milli sec)

Time (in micro sec)
N

better. 50 processing is denoted as B-snapshot. Note that the com-
50 VA o T 4| SCase o plexity of the snapshot algorithm fotQ| queries is
20 o2 £ 3 O((log|SKB| + k)|Q|) whereas the complexity of B-
£ E snapshot i8D(|SK B| + k|Q|). According to this analysis,
20 2 B-snapshot performs better whg@| is large enough such
£ , o that|Q|log |SK B| > |SK B|. Fig. 18(a) compares the cost
11020 50 100 1100200 400 600 800 1000  Of snapshot and B-snapshot algorithms and verifies the
(a) Varying K (b) Varying the number of queries complexity analysis that B-snapshot performs better when
Fig. 15. Top-k queries for randomly generated k and »  the number of queries is large.
20 8 Homochromatic —8—
Snapshot —8— o Heterochromatic —&—
7.2.2 Memory usage By | TSP 8,
In this section, we show that the memory consumed by E
our algorithm is much lower than the memory used by g1
SMA. This is because our algorithm maintains only thet ° E
K-skyband whereas SMA indexes alN objects in a ° . .7 3 & s s S 10

grid data structure. Fig. :_I-G(a) and Fig' 16(b) ShQW t ) Batch processing for varyinfp) Chromatic queries for varying
memory used by the algorithms for varyifdg and varying |Q|(in thousands) number of colors

d (number of attributes used in the scoring functionkig. 18. Batch processing and chromatic queries

Lesﬁgftiv?g; Zhﬁogetrr?gtrxou?egalgy' SMA(; dis ?Egif:ﬁimlhesults for chromatic queries.In Fig. 18(b), we vary the
'9 db (p PSST' I thgriSSCa '?) used). the f Heimber of colors (each object is randomly assigned one
used byNo- IS smatler tha S€ because the Ormercolor) and study the performance of our algorithms for

ggﬁzur:gt tr?sr?d(;f() ;:\%Ae ti?]irgrellggtsy \?v?t?]rc,{;]geii'c-rr;]:sgn;;n‘Pl%(terochromatic and homochromatic queries. Note that the
ptio! ) S . . homochromatic query is the same as a non-chromatic query
b_ecaused-d|men5|onal grid is feq“'f?d which CONSUMEg, ., q only one color is used. The cost of both homochro-
Elgger memory. In contrast, our algorithms are not affect atic and heterochromatic queries is lower than the cost of
yd. non-chromatic queries. The cost of homochromatic queries
decreases with the increase in number of colors because
the number of valid pairs decreases. In contrast, the cost of

Results for out-of-order streams.We present the results neterochromatic queries increases because the number of
for out-of-order data streams where objects may arrive late

7.3 Miscellaneous
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valid pairs increases when the number of colors is large

8 CONCLUSION

We present efficient techniques to answer a broad class
top-k pairs and topk objects queries over sliding windows.
The efficiency of the proposed techniques is evaluated b
detailed complexity analysis and an extensive experinhen
study. The proposed framework can handle arbitrary scorir.g
functions, supports queries with any window size and works
for out-of-order data streams.
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