
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

A Generic Framework for Top-k Pairs and
Top-k Objects Queries over Sliding Windows

Zhitao Shen, Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang and Haixun Wang

Abstract—Top-k pairs and top-k objects queries have received significant attention by the research community. In this paper,
we present the first approach to answer a broad class of top-k pairs and top-k objects queries over sliding windows. Our
framework handles multiple top-k queries and each query is allowed to use a different scoring function, a different value of k
and a different size of the sliding window. Furthermore, the framework allows the users to define arbitrarily complex scoring
functions and supports out-of-order data streams. For all the queries that use the same scoring function, we need to maintain
only one K-skyband. We present efficient techniques for the K-skyband maintenance and query answering. We conduct a
detailed complexity analysis and show that the expected cost of our approach is reasonably close to the lower bound cost. For
top-k pairs queries, we demonstrate the efficiency of our approach by comparing it with a specially designed supreme algorithm
that assumes the existence of an oracle and meets the lower bound cost. For top-k objects queries, our experimental results
demonstrate the superiority of our algorithm over the state-of-the-art algorithm.

Index Terms—top-k pairs, top-k objects, sliding windows, data streams, top-k queries.

✦

1 INTRODUCTION

Given a scoring functions(oi) that computes the score
of an objectoi, a top-k objects query returnsk objects
with the smallest scores. Given a scoring functions(oi, oj)
that computes the score of a pair of objects(oi, oj), a
top-k pairs query returnsk pairs with the smallest scores
among all possible pairs of objects.k closest pairs queries,
k furthest pairs queries and their variants are some well
studied examples of top-k pairs queries that rank the pairs
on distance functions.

Due to the importance of the top-k queries, numerous
algorithms have been proposed to answer several variants
of the top-k objects and top-k pairs queries [1], [2], [3],
[4], [5], [6]. Our focus in this paper is on developing
efficient techniques for top-k queries over sliding windows.
Top-k objects queries over sliding windows have many
applications and have received significant research attention
in the past few years [7], [6], [8]. However, Top-k pairs
query over sliding windows has not been studied well.
Therefore, our main focus in this paper is on presenting
the techniques for top-k pairs queries. Then, we show that
the framework can be used to answer top-k objects queries.

Top-k pairs queries have many interesting applications in
different areas such as wireless sensor network, stock mar-
ket, traffic monitoring and internet applications etc. For in-
stance, top-k pairs queries can be used forpair-trading [9].
Pair-trading is a market neutral strategy according to which
two correlated stocks that follow same day-to-day price
movement (e.g., Coca-Cola and Pepsi) may be used to earn
profit when the correlation between them weakens, i.e., one
stock goes up and the other goes down. The profit can be

• Zhitao Shen, Muhammad Aamir Cheema and Wenjie Zhang are with
the University of New South Wales, Australia.
E-mails: {shenz,macheema,zhangw}@cse.unsw.edu.au

• Xuemin Lin is with East China Normal University, China and the
University of New South Wales, Australia.
E-mail: lxue@cse.unsw.edu.au

• Haixun Wang is with Microsoft Research Asia.
E-mail: haixunw@microsoft.com

earned by buying the underperforming stock and selling
it when the divergence between the two stocks returns to
normal. A top-k pairs query can be issued to obtain the
pairs of stocks that are correlated (e.g., they belong to the
same business sector and have similar fundamentals such
as market caps, dividends etc.) and display different trends.
Pair-trading can be profitable only if the trader is the first
one to capitalize on the opportunity [9]. Hence, the trader
may want to continuously monitor the top-k pairs from the
most recent data (e.g., a sliding window containing most
recentn items).

Consider another example of an online auction website.
A user may be interested in finding the pairs of products
that have similar specifications but are sold at very different
prices (i.e., different final bids). Such pairs may be used to
understand the users behavior and market trends, e.g., suit-
able bidding time for buyers and suitable bidding closing
time for sellers etc. An analyst or a user may issue the
following query to obtain top-k pairs of such products sold
during last 7 days.

Q1:
Select a.id, b.id from auction a, auction b
where a.id < b.id
order by dist(a.spec,b.spec) - |a.bid - b.bid|
limit k
window [7 days]

Heredist(a.spec, b.spec) computes the distance (or dif-
ference) between their specifications and|a.bid − b.bid|
denotes the absolute difference between the final bids they
receive. Note that the query prefers the pairs of products
that have small difference between their specifications but
have large difference between their selling prices. The
condition a.id < b.id ensures that a pair(a, b) is not
repeated as(b, a).

While the above example shows a simple scoring func-
tion, in real-world applications, the users may specify a
more sophisticated scoring function. Our framework allows
the users to define arbitrarily complex scoring functions. A
query that retrieves top-k pairs among the most recentn

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

data items (i.e., sliding window of sizen) and uses the
scoring functions is denoted asQ(k,n,s).

1.1 Contributions
Our framework that handles top-k pairs queries has the
following features.
Unified framework. To the best of our knowledge, we are
the first to study top-k pairs queries over sliding windows.
We present a unified framework that efficiently solves
the top-k pairs queries involvingany arbitrarily complex
scoring function. In our framework, the server maintainsN
most recent objects whereN indicates the size of the largest
sliding window any query is allowed to use. Each object has
D attributes and the users may define any scoring function
that usesd ≤ D of these attributes to compute the scores.
Our framework handles multiple top-k pairs queries where
each query is allowed to use a different scoring function,
a different size of sliding windown ≤ N and a different
value ofk.

Intuitively, it may be possible to improve the perfor-
mance if the scoring functions satisfy certain properties.
We propose optimizations to significantly enhance the
performance for a broad class of scoring functions called
global scoring functions[1]. We remark thatk-closest
pairs queries,k-furthest pairs queries and their variants are
among many of the popular queries that use the global
scoring functions.
Low storage requirement.Our system usesO(ND) space
to maintain the most recentN objects. The system may
receive different queries (issued by a single user or different
users) and several queries having different values ofk
and n may share the same scoring function. For each
unique scoring function, our system maintains a small
subset of candidate pairs calledK-skyband(to be formally
introduced in Section 3). All the queries that use this
scoring function are answered using only the pairs in theK-
skyband. We show that the expected size of theK-skyband
is O(K log (N/K)) whereK is the maximum value ofk
of the queries that use this scoring function andN is the
size of the largest sliding window any query is allowed
to use. Hence, in addition toO(ND) memory space, our
system usesO(K log (N/K)) memory for each unique
scoring function. Note that the total number of possible
pairs is O(N2) and O(K log (N/K)) is much smaller.
Later, we show thatO(ND) is the lower bound storage
requirement (see Theorem 3).
Efficient skyband maintenance.As the new objects arrive
and the old objects expire, the skyband is needed to be
maintained. Based on a novel concept ofK-staircase, we
present efficient techniques to maintain theK-skyband. We
show thatO(N) is a lower bound cost for maintaining
theK-skyband for arbitrarily complex scoring functions or
when the system is unaware of the properties of the scoring
functions. For this case, the expected cost of our algorithm
is O(N(log (logN)+logK)) which is reasonably close to
the lower bound cost. Note that, in practice,K is usually
small (e.g., less than1000) and log (logN) is less than2
even for a very large value ofN (e.g.,N = 1099).
Efficient query answering. We propose efficient tech-
niques to answer the top-k pairs queries using theK-
skyband. Given aK-skyband, the complexity of our tech-
nique to answer a top-k pairs query isO(log |SKB|+k) in

the worst case where|SKB| is the size of theK-skyband.
The expected cost of our technique isO(log (logn) +
logK + k) wheren is the size of the sliding window used
by the query andK is the largest value ofk any query may
use. Note that the lower bound cost for query answering is
O(k) and the expected cost of our algorithm is reasonably
close.
Extensive evaluation and analysis.As discussed above,
we conduct a detailed complexity analysis to evaluate our
algorithms and demonstrate that the cost of our proposed
approach is reasonably close to the lower bound cost. To
experimentally verify this, we design an algorithm called
supremealgorithm that assumes the existence of an oracle
that can conduct certain calculations without requiring
any computation time. The usage of oracle allows the
supreme algorithm to meet the lower bound. Our extensive
experiments on real and synthetic data demonstrate that
our algorithm performs reasonably well as compared to
the supreme algorithm and is more than three orders of
magnitude faster than a naı̈ve algorithm.

This paper is an extended version of our previous
work [10]. In this extended paper, we make the following
new contributions.
Support for top-k objects queries.We present techniques
for answering top-k objects queries over sliding windows
(Section 6.2). In contrast to the existing techniques, our
framework allows arbitrarily complex scoring functions,
supports out-of-order data streams and can answer top-k
objects queries involving any value ofk and n such that
k ≤ K andn ≤ N . The experimental results demonstrate
the superiority of our algorithm over the state-of-the-art
algorithm [6] in terms of running time as well as memory
consumption.
Handling out-of-order streams. In Section 6.1, we show
that our proposed techniques for top-k pairs queries can
be applied on out-of-order data streams. The experimental
results demonstrate that the performance of our algorithm
is better for the out-of-order streams as compared to that
of in-order streams.
Batch query processing.We present a new batch process-
ing algorithm that computes the results of multiple top-
k queries in a batch (Section 6.3). The amortized cost of
the algorithm meets the lower bound costO(k) when the
number of queries is larger than the number of elements in
theK-skyband.
Support for chromatic queries. We show that our tech-
niques can handle bothchromaticandnon-chromaticvari-
ants of top-k pairs queries [1]. For more details, see
Section 6.4.

2 BACKGROUND INFORMATION

2.1 Related Work
Top-k objects queries. The top-k objects queries have
been extensively studied [6], [11], [12]. Fagin’s algorithm
(FA) [11], threshold algorithm (TA) (independently pro-
posed in [11], [12], [13]) and no-random access (NRA) [11]
propose some of the top-k processing algorithms that
combine multiple ranked lists and return the top-k objects.
Top-k pairs queries.The database community has devoted
significant research attention to the processing ofk-closest
pairs queries[2], [3], [5] and their variants [14], [15]. All

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

of the above mentioned techniques are applicable only to
the k-closest pairs queries or their variants. Cheema et
al. [1] propose a unified framework to efficiently answer a
broad class of the top-k pairs queries including the queries
mentioned above.k-closest pairs queries on moving objects
are studied in [16], [14]. However, the extension of these
techniques to answerk-closest (or top-k) pairs queries over
sliding windows is either non-trivial or inefficient.
Queries on data streamsProcessing the top-k objects
queries andk nearest neighbor queries [6], [8], [17], [18] on
the data stream has received significant attention. Moura-
tidis et al. [6] propose an efficient technique to compute
top-k objects queries over sliding windows. They make
an interesting observation that a top-k objects query can
be answered from a small subset of the objects calledk-
skyband [19]. Our algorithm is similar in the sense that we
also maintain theK-skyband to answer the top-k queries.
However, we use a singleK-skyband to answer multiple
queries having different values ofk ≤ K and different sizes
of the sliding windows. Also, the previous techniques [6],
[8] to maintainK-skyband are not applicable to our prob-
lem because the techniques rely on the fact that the newly
arrived objects cannot be dominated by any of the existing
objects. Hence, these techniques unconditionally include
the newly arrived objects in theK-skyband. We remark that
this observation does not hold for out-of-order data streams
which renders the existing techniques invalid for out-of-
order streams. Furthermore, in our problem, even for the
in-order streams, the newly formed pairs may or may not
be dominated by the existing pairs, which make the request
of online maintenance technically more challenging.

2.2 Preliminaries

Sliding windows. Consider a stream of objects. For a fixed
number N , a count-basedsliding window contains the
most recentN objects of the data stream. Similarly, for
a fixed valueT , a time-basedsliding window contains the
objects that arrive within lastT time units. For the ease of
presentation, in the rest of the paper, we consider only the
count-based windows. However, our techniques can also
be applied to answer the top-k pairs queries over the time-
based sliding windows.
Age of a pair of objects. Let o be the ith most recent
object. We say that the age of the objecto is i and we
denote the age of an object aso.age. Note that a sliding
window of sizeN consists of every objecto for which
o.age ≤ N . We say that an objecto has been expired if
o.age > N .

A pair of objects(oi, oj) expires if at least one of the
objectsoi andoj expire. Note that the age of a pair(oi, oj)
is max(oi.age, oj.age). For the simplicity of the notations,
we denote the age of a pairp asp.age. A sliding window
of sizeN contains every pairp for which p.age ≤ N .
Score of a pair. Given a scoring functions(·, ·), the score
of a pair(oi, oj) is s(oi, oj). For the simplicity of notations,
the score of a pairp is denoted asp.score.
Top-k pairs query. A top-k pairs queryQ(k,n,s) takes three
parametersk, n and s and considers a set of pairsP that
consists of every pairx for which x.age ≤ n. The query
Q(k,n,s) returns an answer set fromP that consists ofk
pairs such that for every pairp in the answer set and for

any other pairp′ ∈ P , p.score ≤ p′.score (the scores are
computed using the scoring functions).
Snapshot vs continuous queries.Note that the set of
objects in the sliding window changes dynamically as the
new objects arrive and the old objects expire from the
sliding window. Hence, some users may be interested in
continuous update of the results. In contrast, some users
may only be interested in retrieving the top-k pairs from the
current sliding window. The queries that require continuous
updates of the results are called continuous queries and
the queries that compute the results only once are called
snapshot queries.

3 SOLUTION OVERVIEW

Before we present our framework, we revisit the concept
of K-skyband [19]. Then, we prove thatK-skyband is the
minimal set of pairs required to be maintained in order to
answer top-k pairs queries.
K-Skyband. Let x andy be two points ind dimensional
space. For any pointx, x[i] denotes the value ofx in ith

dimension. A pointx dominates a pointy if for every
dimensioni, x[i] ≤ y[i] and for at least one dimensionj,
x[j] < y[j]. Given a set of pointsP , aK-skyband consists
of every pointx ∈ P that is dominated by at most(K−1)
other points ofP .

2

p1

p2

p3

p4
p5

p6

4 6 8 10

2

4

6

8

Age
Fig. 1. K-skyband (K=2)

Consider the example of Fig. 1 that shows six pointsp1 to
p6 in a two-dimensional space. The pointp6 is dominated
by two pointsp3 and p4. Hence, theK-skyband (K=2)
does not contain the pointp6. The 2-skyband consists of
the pointsp1, p2, p3, p4 andp5 because each of these points
is dominated by at most one other point.

Given a pair of objectsp = (oi, oj) and a scoring
function s, the pair can be mapped to a two dimensional
age-score space where score isp.score = s(oi, oj) and age
is p.age = max(oi.age, oj.age). Fig. 1 shows six pairs of
objects shown in the age-score space.

Theorem 1:Let P be the set of all possible pairs of most
recentN objects and each pair be mapped to the age-
score space using a scoring functions1. Let SKB(K,s1)

be the K-skyband ofP in the age-score space. Every
top-k pairs queryQ(k,n,s1) can be answered using the
pairs in SKB(K,s1) if k ≤ K andn ≤ N . Furthermore,
SKB(K,s1) is a minimal set of pairs required to be main-
tained in order to guarantee the correctness.

The theorem is proved in [10]. Consider the example of
Fig. 1. Any top-k pairs queryQ(k,n,s) can be answered by
considering only the pairsp1 to p5 wherek ≤ (K = 2),
n ≤ (N = 10) and s is the scoring function used to map
the pairs to the age-score space.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

3.1 Expected size of K-skyband

Existing analysis to estimate the expected size ofK-
skyband (e.g., [20]) assumes that i) the values of objects
in one dimension are independent of their values in the
other dimensions and ii) the values of the objects on each
dimension are unique. Unfortunately, the existing analysis
cannot be directly applied to our problem because the
second assumption does not hold in our problem settings.
This is because many pairs have the same value on the
age dimension (i.e., have the same age). Nevertheless, we
conduct an analysis and show that the expected size of the
K-skyband we need to maintain isO(K log (N/K)).

We assume that the scores of pairs are independent of
their ages. This is a reasonable assumption for the scoring
functions that do not use ages of the objects to determine
the scores of pairs.

Lemma 1:Let p be a pair with agex. Assuming that the
scores of pairs are independent of their ages, the probability
that p is in K-skyband ismin(K/x2, 1).

Proof: Consider an objectoi and assume thatoi.age =
x. Every pair(oi, oj) for which oj .age < oi.age has age
equal tooi.age. Hence, the number of pairs with age equal
to x is (x − 1). Also, for any pairp with p.age = x, the
number of pairs that have age less thanx is 1+2+· · ·+(x−
2) = O(x2). Let p′ be one of theseO(x2) pairs. Note that
the pairp is dominated byp′ iff p′.score ≤ p.score. Hence,
the probability that a pair with agex is not dominated by
any other pair in the sliding window is1/x2 assuming that
every pair is equally probable to have the smallest score.
Similarly, the probability that a pair with agex is dominated
by at mostK other pairs ismin(K/x2, 1).

Theorem 2:Assuming that the scores of pairs are inde-
pendent to the ages of the pairs, the expected size of the
K-skyband isO(K log (N/K)).

Proof: From Lemma 1, the probability that a pair
p with age x is dominated by at mostK other pairs is
min(K/x2, 1). As stated in the proof of Lemma 1, the
number of pairs with age equal tox is (x− 1). Hence, the
expected number of pairs that have age equal tox and are in
K-skyband is(x− 1)×min(K/x2, 1). The expected total
number of pairs that are inK-skyband is approximately
∑N

x=2 x ·min(K/x2, 1). Let y = ⌊
√
K⌋. This expression

can be simplified as follows.

N
∑

x=2

min(
K

x
, x) ≈

y
∑

x=2

x+

N
∑

x=y+1

K

x

≈ K +K

N
∑

x=y+1

1

x

≈ K +K(HN −Hy)

where HN =
∑N

x=1 1/x and is calledN th harmonic
number. For the case wheny = 1 (i.e., K < 4) , the
term

∑y
x=2 x is considered zero and note that this does not

affect our complexity analysis.
It is well known thatHN grows almost as fast as natural

log of N. More precisely,HN is known to be (e.g., see [21])
approximately equal toln(N) + γ where γ ≈ 0.577 is
Euler’s constant. Hence,HN andHy can be approximated
to ln(N) andln(y), respectively . So, the expected number

of pairs in K-skyband isO(K · (ln(N) − ln(
√
K)) or

O(K log (N/K)).

3.2 Framework
In real world scenarios, different users have different re-
quirements. Therefore, different users may choose different
scoring functions each involving a different set of attributes.
Similarly, different users (or even a single user) may issue
the top-k pairs queries with different values ofk andn. We
present a framework that aims to handle all these different
queries efficiently. Our framework consists of the following
three modules:
1. Stream Manager. Assume that each object hasD
attributes and every query issued on the system can use
d ≤ D of these attributes in its scoring function. Moreover,
suppose thatN is the maximum size of the sliding window
any query is allowed to use. The stream manager maintains
(D + 1) lists each consisting ofN elements. For every
0 < i ≤ D, the i-th list stores the objects sorted in
ascending order ofi-th attribute values of the objects. The
(D + 1)-th list is sorted in ascending order of the ages
of the objects. Clearly, the storage requirement isO(ND).
The theorem below shows that this is the minimum amount
of storage required to answer the top-k pairs queries.

Theorem 3:To answer a top-k pairs query over the
sliding window of sizeN , the lower bound on storage
requirement isO(ND) whereD is the number of attributes
involved in the scoring function.

Proof: Assume that an objecto is deleted such that
o.age ≤ N . Since the values of the newly arrived objects
are unknown, a new objecto′ may arrive in the stream such
that s(o, o′) is minimum (i.e., the pair(o, o′) is one of the
top-k pairs). If the objecto is deleted from the stream, this
pair will not be considered and the system will miss the
correct answer. Hence, the objecto must not be deleted.
Moreover, the system must store allD attribute values of
each object because the scoring functions may involve
d ≤ D attributes. Hence, the lower bound on the storage
requirement isO(ND).
2. Skyband Maintenance Module.Let S = {s1, · · · , sm}
be the set of unique scoring functions used by different
queries. For each scoring functionsi, the skyband mainte-
nance module maintains a set of skyband pairsSKB(Ki,si)

whereKi is the maximum value ofk for any query that
uses the scoring functionsi (see Fig. 2).

Stream

Manager

{o1,�,oN}

Skyband1

for K1, s1

Data Stream Skyband2

for K2, s2

Skybandm

for Km, sm

Queries

using s1

with k≤K1

Queries

using s2

with k≤K2

Queries

using sm

with k≤Km

New scoring

functions

Fig. 2. Framework
If a user issues a queryQ(k,n,si) that uses a scoring

functionsi not being used by any of the existing queries in
the system, the skyband maintenance module creates a new
skybandSKB(Ki,si) for this new scoring function. Upon
receiving the object updates and new queries, the skyband
maintenance module updates all the skybands in the system.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

3. Query Answering Module. The query answering mod-
ule is responsible for answering the snapshot or continuous
top-k pairs queries. A queryQ(k,n,si) is answered using
the skybandSKB(Ki,si).

In Section 4, we present the details of the query an-
swering module. The details of the skyband maintenance
module is presented in Section 5. The techniques for stream
manager are simple and are omitted due to the space
limitations.

4 QUERY ANSWERING MODULE

In this section, we present our query answering technique.
As discussed earlier, to answer a queryQ(k,n,si), the query
answering module uses the skybandSKB(Ki,si). For the
ease of presentation, we denoteKi asK andSKB(Ki,si)

as skyband in this section.

4.1 Snapshot Top-k Pairs Queries
A straight forward approach to answer a top-k query is to
scan the list of skyband pairs in increasing order of their
scores. Any pairp for which p.age > n is ignored. The
algorithm stops whenk pairs with age at most equal ton are
retrieved. Thesek pairs are reported. Note that the cost of
this algorithm isO(|SKB|) in the worst case where|SKB|
is the size of theK-skyband. Next, we present an approach
that answers the top-k pairs query inO(log |SKB|+ k) in
the worst case.

To enable efficient computation of the queries, the sky-
band maintenance module indexes all theK-skyband pairs
in a priority search tree (PST) [22]. Algorithm 1 shows
the PST construction algorithm and Fig. 4 shows a PST
constructed using the pairs in2-skyband of Fig. 3. The pairs
are labeled such that the age of a pairpi is i. The number
inside each node corresponds to its score. For each node,
PST also stores the median value used to split the left and
right subtrees (see line 3 of Algorithm 1). For example, the
age of root nodep1 is 1, its score is6 and the left and right
subtrees are decided based on the median score4 (shown
under the dotted line).

Algorithm 1 PrioritySearchTree(P)
1: if P is emptythen return NULL
2: Choose an elementp with smallest age amongP
3: median = median of score values of elements inP
4: PR = {elements inP with score greater thanmedian}
5: PL = P − PR − {p}
6: p.right-subtree = PrioritySearchTree(PR)
7: p.left-subtree = PrioritySearchTree(PL)
8: returnp

Before we describe the properties of PST, we define a
few terms. Ancestor of a node is its parent or (recursively)
the parent of its ancestor. For example, in Fig. 4, the nodes
p1 andp2 are the ancestors of the nodep3. Two nodes are
called cousins to each other if they have a common ancestor
and they do not have a child-ancestor relationship with each
other. For example, the nodesp4 andp6 are cousins to each
other because they have a common ancestorp1. A nodex
is called a left cousin of a nodey if they share a common
ancestore andx is in the left subtree ofe andy is in the
right subtree ofe. Right cousins are defined similarly. In
Fig. 4, the nodep6 is a left cousin of the nodep4 and the
nodep4 is a right cousin of the nodep6.

2

p1

p2

p3

p4

p5

p6

4 6 8 10

2

4

6

8

Age

p7
p8

Fig. 3. 2-skyband

p1

p5
4

2p7

1 p8

p6

p2

8p3

5
p4

6

3

1 4

2

9

8

5

Fig. 4. Priority Search
Tree

The priority search tree has the following properties: 1)
the age of a node cannot be smaller than the age of its
ancestor (e.g., the age ofp3 is larger than the ages of its
ancestorsp1 andp2), 2) the score of a node is always greater
than the scores of its left cousins and is always smaller than
the scores of its right cousins (e.g., the score ofp6 is greater
than the scores of its left cousins (p7 andp8) and is smaller
than the scores of its right cousins (p2, p3 and p4). Note
that the score of a child may be smaller or larger than (or
even equal to) the score of its ancestor.

We utilize the above mentioned properties to efficiently
answer a top-k pairs queryQ(k,n,s). Algorithm 2 shows
our query processing algorithm that traverses the PST in
an order very similar to thepost-ordertraversal. In a post-
order traversal, for any nodee, its left subtree is visited
before its right subtree and the nodee is visited in the end.
Our algorithm traverses the PST in the post-order except
the following two differences: i) it only considers the nodes
that lie in the sliding window (see lines 9 and 10) and ii)
the algorithm terminates whenk objects are visited in the
post-order (line 3). It can be proved that the top-k pairs are
among the pairs that are either visited or are among the
marked nodes in the stackS (line 11). Finally, the set of
candidates is scanned andk pairs with the smallest scores
are obtained (line 12).

Algorithm 2 TopPairs(PST,k, n)
1: visitedSet =φ
2: if root.age≤ n then insert root in a stackS
3: while visitedSet.size< k AND S is not emptydo
4: e = top element ofS
5: if e is a leaf OR is markedthen
6: inserte in visitedSet and remove fromS
7: else
8: mark e
9: if e.rightChild.age≤ n then push e.rightChild inS

10: if e.leftChild.age≤ n then push e.leftChild inS
11: candidates = visitedSet ∪ marked nodes in stackS
12: visit candidates to obtaink pairs with smallest scores

Example 1:Consider the2-skyband shown in Fig. 3 and
the PST shown in Fig. 4. Consider a query that wants to
retrieve top-2 pairs in the sliding window of size7. The
post-order traversal returns two nodesp7 and p6 and the
stack contains the nodesp1, p5 andp2. The nodesp1 and
p5 are the marked nodes andp2 is not a marked node.
The top-2 pairs arep7 andp5 which are selected from the
candidates (p7, p6, p1 and p5). Note that our algorithm
does not consider the nodep8 because it does not lie in the
sliding window.

Proof of correctness.The algorithm returnsk nodes in
post-order traversal. Letx be the node with the largest score
among thesek nodes. Any other nodey that has score

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

smaller thanx.score must satisfy one of the followings: 1)
y is one of the left cousins ofx; 2) y is a child ofx or 3)
y is an ancestor ofx. Since our algorithm visits the nodes
in post-order, any node that satisfies the condition 1 or 2 is
either visited by our algorithm or is not visited because it
does not lie in the sliding window (its age is greater than
n). Hence, any node that lies in the sliding window and
may possibly have score smaller than the score ofx is one
of its ancestors. Note that the stack contains the unvisited
ancestors of all the visited nodes. Moreover, every ancestor
of a visited node is a marked node in the stack (see line 8)
and our algorithm considers all the marked nodes of the
stack (see line 11 of Algorithm 2). Hence, our algorithm
correctly determines the top-k pairs.
Complexity analysis. Priority search tree is always a
balanced tree [22] because the left subtree and right subtree
of a node are determined based on the median score.
Therefore, the height of the tree in the worst case is
O(log |SKB|) where|SKB| is the number of pairs stored
in PST. Hence, the number of candidates at line 11 of
Algorithm 2 is O(log |SKB| + k). This is because the
number of elements in stack at any time is bounded by the
height of the tree. To obtain the top-k pairs, we use the the
median of medians selection algorithm [23] to obtain the
k pairs in time linear to the number of candidates. Hence
the complexity of the algorithm isO(log |SKB| + k) in
the worst case.

As shown earlier, the expected size ofK-skyband for
a sliding window of sizeN is O(K · log (N/K)) (Theo-
rem 2). Note that our algorithm does not access a nodee
and its children ife does not lie in the sliding window of
size n. This means that we essentially consider only the
pairs inK-skyband that lie in the sliding window of size
n. Hence, the expected cost isO(log |SKBn| + k) where
|SKBn| is the size ofK-skyband for the sliding window of
sizen. Hence, the expected cost isO(log (K · log (n/K))+
k) = O(log (logn) + logK + k). We remark that in the
worst case the expected cost isO(log (logN)+ logK+k)
because the maximum size of the stack in the worst case
may still be O(log |SKB|) even though we ignore the
nodes with age greater thann. This is because the PST
is a balanced tree with respect to the overall data set and
may not necessarily be balanced for a subset of the data.

4.2 Continuous Top-k Pairs Queries

The initial results of a continuous top-k pairs query are
computed using the algorithm presented earlier for com-
puting the snapshot queries. The results of a queryQ(k,n,s)

may change if one of the top-k pairs expires or if a new pair
has a score smaller than the score of one of the existing top-
k pairs. We first handle the expired pairs and then handle
the new pairs.
Handling pairs expired from K-skyband.For each query
Q(k,n,s), we maintain two lists of top-k pairs one sorted on
their ages and the other sorted on their scores. We use the
list of top-k pairs that is sorted on the ages to determine
when a pair expires. Letp be an expired pair. We deletep
from both of the sorted lists.
Handling new pairs in K-skyband. The skyband main-
tenance module provides a list of new pairs added to the
K-skyband. The list is provided sorted in ascending order

of the scores of the new pairs. We scan the list in ascending
order and every pairp is added to the answer of the query
if p.score < scorek where scorek is the largest score
among the scores of the top-k pairs. Whenever such a pair
p is added to the answer, the pair with the largest score
in the top-k pairs is deleted and thescorek is updated
accordingly. The algorithm stops scanning the sorted list
whenp.score ≥ scorek. This is because all the remaining
pairs are guaranteed to have scores greater thanscorek and
are not needed to be considered.

Note that after handling the expired pairs and the newly
arrived pairs, the answer set of a query may contain less
than k pairs (e.g., when the number of deleted pairs is
greater than the number of pairs added in the answer set).
In such cases, we call Algorithm 2 to compute the top-k
pairs from scratch inO(log |SKB|+ k).
Complexity analysis.In the worst case, the complexity of
updating the results isO(log |SKB|+ k) because we call
Algorithm 2 when the number of deleted pairs is greater
than the number of inserted pairs. This worst case may
happen only when one or more pairs are deleted from
the top-k pairs. We analyse the probability of this case to
happen.

For any objectoi, the number of pairs containingoi in
the sliding window of sizen is O(n). The total number of
possible pairs in sliding window isO(n2). The probability
that any of the pairs related to an objectoi has the
smallest score among all possible pairs isn/n2 = 1/n.
The probability that any of the pairs related to the object
oi is one of the top-k pairs isk/n. Hence, the probability
that any of the expired pairs is among the top-k pairs is
k/n. Therefore, the probability of the worst case to happen
is k/n and the expected amortized complexity of updating
the results isO(k/n(log |SKB|+ k)) per update.

5 SKYBAND MAINTENANCE MODULE

5.1 Handling arbitrary scoring functions

In this section, we present the details of skyband main-
tenance module (SMM) for arbitrarily complex scoring
functions. TheK-skyband needs to be updated when an
object expires or when a new object arrives. Below, we
describe how to handle both of the cases.
Handling when an object expires.Handling an expired
object is easy because we only need to delete the relevant
pairs from theK-skyband. Note that the age of an expired
objectoi is the largest among all the objects in the sliding
window. Moreover, every pair that is to be deleted has age
equal tooi.age. We keep a list ofK-skyband pairs sorted
on their ages and for each pair in the list we store a pointer
to the relevant node in the PST. We use this list to delete
every pairp for which p.age = oi.age.
Handling when an object arrives. When a new object
oi arrives, we may need to update theK-skyband. For
arbitrarily complex scoring functions, we need to consider
all valid pairs ofoi with the existing objects in the sliding
window. The number of pairs to be considered in this
case isO(N). Note thatO(N) is the lower bound cost
for handling a new object because, for arbitrarily complex
scoring functions, if we do not consider a pair(oi, oj) then
we may miss the correct result because(oi, oj) may be one
of the top-k pairs.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

Algorithm 3 Handling new object (o)
1: Let S be the pairs inK-skyband sorted on scores
2: for each new pairp of the objecto do
3: compute the score and age ofp
4: if p is not dominated byK-skybandthen
5: insertp in S in sorted order
6: UpdateSkybandAndStaircase(S)/* Algorithm 4 */

Algorithm 3 shows the details of handling a newly
arrived objecto. We say that a pairp is dominated by a
K-skyband if there are at leastK pairs in theK-skyband
that dominatep. For each new pairp, we first need to check
whether it is dominated by the existingK-skyband or not
(line 4). The pairs that are not dominated by theK-skyband
are added to the existingK-skyband which is kept sorted in
ascending order of the scores of pairs (line 5). After all the
pairs are considered, the algorithm updates theK-skyband
(line 6).

As mentioned earlier, for each new pairp, we need to
check whether it is dominated by the existingK-skyband
or not (line 4). A naı̈ve approach to do so is to consider all
the pairs in the existingK-skyband and count the number
of pairs that dominatep. If the number of dominating pairs
is less thanK then the pairp is not dominated by the
K-skyband. Note that the complexity of this approach is
linear to the size of theK-skyband, i.e.,O(|SKB|). Next,
we present an approach that checks whether a pairp is
dominated by theK-skyband or not inO(log |SKB|. First
we introduce the concept ofK-staircase.

2

p1

p2

p3

p4
p5

4 6 8 10

2

4

6

8

Age

s1

s2

p6

Fig. 5. 2-staircase

5.1.1 K-staircase
Given a set of pointsP , theK-staircase is a set of points
SCase such that if a pointp is dominated byanypointx ∈
SCase then there areat leastK points inP that dominate
p. Moreover, for any pointp′, if there does not existany
point x ∈ SCase that dominatesp′ then there areat most
K − 1 points inP that dominatep. Note that the points
in theK-staircase can be used to check whether a point is
dominated by theK-skyband or not. More specifically, a
point p is dominated by theK-skyband if and only if it is
dominated by at least one point of theK-staircase.

Fig. 5 shows a set of pointsP = {p1, · · · , p6}. The
K-staircase (K = 2) is also shown which consists of the
points p1, p5, s1 and s2 (shown as stars). Note that the
points in the staircase are not necessarily the points in the
set P (sees1 and s2). Before we show our algorithm to
compute theK-staircase, we present the intuition.

Consider a pointp3 that is in K-skyband (K = 2) as
shown in Fig. 5. Among the points that have scores at most
equal top3.score, we identify a point that hasKth smallest
age. In Fig. 5, the points that have scores at most equal
to p3.score are p3, p4 and p5 and the pointp4 has the

Kth (K = 2) smallest age among these points. Based on
p3 andp4, we determine aK-staircase points1 such that
s1.score = p3.score ands1.age = p4.age. Please note that
such a points1 is dominated by at leastK points ofP .
Hence, any point that is dominated bys1 is dominated by at
leastK points ofP . Moreover, any point that dominatess1
is dominated by at mostK−1 points ofP . To constructK-
staircase, we repeat the above procedure for every point of
theK-skyband and determine a relevantK-staircase point.
Below, we present the details.

5.1.2 Updating K-skyband and K-staircase
Recall that in Algorithm 3, we need to update theK-
skyband andK-staircase after all the new pairs are added
to the existingK-skyband (see line 6). In this section, we
present our technique to efficiently update theK-skyband
andK-staircase. In [24], the authors presented an algorithm
to construct theK-skyband from a set of two-dimensional
pointsP . Since our algorithm to construct theK-staircase
has a similar structure, we embed the two algorithms to
construct both theK-skyband andK-staircase in parallel. If
the points in the datasetP are sorted in the ascending order
of their scores, the algorithm constructs theK-skyband and
K-staircase inO(|P | · logK) where|P | is the number of
points inP .

Algorithm 4 UpdateSkybandAndStaircase(P)
1: Initialize a max-heapH with key set to age of elements
2: Let P be sorted in ascending order of scores
3: for each pairp in P do
4: if |H | < K then
5: addp to SKBK

6: insertp in H
7: if |H | = K then
8: insert (p.score,H.top().age) into K-staircase
9: else

10: if p.age ≥ H.top.age then
11: discardp
12: else
13: addp to SKBK

14: insertp in H
15: H.pop()/* delete top element of H */
16: insert (p.score,H.top().age) into K-staircase
17: outputSKBK andK-staircase.

Algorithm 4 presents the details. The points inP are
accessed in ascending order of their scores (if two points
have the same score, the point with the smaller age is
accessed first). An accessed pointp cannot be theK-
skyband point if the algorithm has accessed at leastK
other points with age at most equal top.age (line 10).
This is because all of theseK points have scores at most
equal top.score (recall that the points are being accessed
in ascending order of scores).

If a point p is in K-skyband then we identify aK-
staircase pointx such thatx.score = p.score andx.age =
H.top().age whereH.top().age is the maximum age of
a pair in the heap (line 16). Note that the heap stores
K smallest ages andH.top().age corresponds to theKth

smallest age among the points that have been accessed (i.e.,
have scores smaller thanp.score).
Checking dominance usingK-staircase.We say that a
point p is dominated by theK-staircaseSCase if and only
if there exists a pointx ∈ SCase that dominates the point
p. As stated earlier, a pointp is dominated byK-skyband
if and only if p is dominated by theK-staircase. Next, we

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

show that checking whether a pointp is dominated by the
K-staircase can be done inO(log |SKB|).

Note that the points of theK-staircase returned by
Algorithm 4 are sorted on their scores. To check whether
a pointp is dominated by theK-staircase or not, we do a
binary search on the points in theK-staircase and retrieve
a pointx that has score smaller thanp.score and the point
next tox in theK-staircase has score greater thanp.score.
It can be proved that ifp is not dominated byx then the
point is not dominated by any point in theK-staircase.
This is because all the points of theK-staircase that have
scores smaller thanx have age greater thanx.age (see
the K-staircase of Fig. 5). Since the size ofK-staircase
is bounded by the size ofK-skyband, checking whether a
point is dominated byK-staircase takesO(log |SKB|).

5.1.3 Complexity analysis

The following lemma is important in analysing the com-
plexity.

Lemma 2:When a new object arrives, the expected
number of new pairs that are not dominated by the existing
K-skyband isO(K).

Proof: For a newly arrived objectonew, there are
O(N) new pairs in the sliding window. Letpx be a
new pair with age equal tox. The set of new pairs
is {p2, p3, · · · , pN}. From Lemma 1, a pair with agex
has probabilitymin(K/x2, 1) not to be dominated by
K-skyband. Hence,

∑N
x=2 min(K/x2, 1) gives the num-

ber of new pairs that are not dominated by theK-
skyband. The summation can be approximated to

√
K +

K ·∑N
x=

√
K+1 1/x

2. This is reduced to
√
K+K ·C where

C is a constant smaller thanπ2/6 (see Basel’s problem1).
Hence, the number of such pairs isO(K).
Cost of handling a new object. We analyse the complexity
of Algorithm 3.

lines 2 to 4: For a newly arrived object, Algorithm 3
considersO(N) new pairs (line 2). For each of these pairs,
the algorithm checks whether it is dominated by theK-
staircase or not. Hence, the total cost of these lines isO(N ·
log |SKB|).

line 5: According to Lemma 2, the number of pairs
that are not dominated by theK-skyband isO(K). These
O(K) pairs are inserted in theK-skyband setS. The cost
of each such operation is logarithmic to the size ofS.
Hence, the cost of line 5 isO(K ·log (|SKB|+K)) where
O(|SKB|+K) is the expected size ofS after allK pairs
are added.

line 6: At line 6, Algorithm 4 is called. The cost of
Algorithm 4 to compute theK-skyband and theK-staircase
for a sorted dataset of size|S| is O(|S| · logK) [24]. Since
the size ofS is O(|SKB|+K), the cost of computing the
K-skyband and theK-staircase (line 6 of Algorithm 3) is
O((|SKB|+K) · logK). After theK-skyband is updated,
the new pairs inserted in theK-skyband are inserted in the
priority search tree (PST) and the pairs that are not among
the K-skyband pairs anymore are deleted from the PST.
Since the size of theK-skyband is expected to remain the
same before and after the update, the number of new pairs
is equal to the number of pairs deleted from the PST, i.e.,

1. http://en.wikipedia.org/wiki/Baselproblem

O(K) according to Lemma 2. The cost of inserting and
deleting these pairs from the PST isO(K · log |SKB|).

Overall cost of Algorithm 3:The above analysis demon-
strates that the overall complexity of Algorithm 3 isO(N ·
log |SKB|+K ·log (|SKB|+K)+(|SKB|+K)·logK).
Since |SKB| is larger thanK and N is larger than
|SKB| if K ≪ N (which is usually the case), the overall
complexity of Algorithm 3 isO(N · log (|SKB|)).
Cost of handling an expired object. When an objectoi
expires, the number of pairs that are to be deleted from
the K-skyband is at mostK. This is because theK-
skyband contains at mostK pairs that have equal age (the
K pairs with the smallest scores). Recall that each deletion
and insertion on PST takesO(log |SKB|). In the worst
case,K pairs are to be deleted and the worst case cost is
O(K · log |SKB|).
Overall cost. Note that the cost of handling a new object
dominates the cost of handling an expired object. Hence,
the overall cost isO(N · log |SKB|). Since the expected
size of |SKB| is O(K · log (N/K)), the overall expected
complexity isO(N · (log (logN) + logK)).

5.2 Optimization for certain scoring functions
In the previous subsection, we showed that the skyband can
be maintained by consideringO(N) new pairs when a new
object arrives in the data stream. In this section, we show
that for a broad class of scoring functions we can reduce the
number of considered pairs. We call these scoring functions
the global scoring functions. The global scoring functions
are based on monotonic and loose monotonic functions as
defined in [1] and can be used to model several important
queries such ask-closest pairs queries,k-furthest pairs
queries and their variants. Due to space limitations, we omit
the details of global scoring functions and refer the readers
to [1] (see Section II).

(a) Sorted Lists

(o1,o7) 2

(o1,o6) 2

(o1,o3) 3

(o1,o4) 3

(o1,o2) 5

(o1,o5) 6

(o1,o7) 1

(o1,o5) 1

(o1,o4) 2

(o1,o2) 3

(o1,o6) 4

(o1,o3) 5

(o1,o2) 2

(o1,o3) 3

(o1,o4) 4

(o1,o5) 5

(o1,o6) 6

(o1,o7) 7

LS1(x,y) = LS2(x,y) = |x-y|
age(x,y) = max(x,y)

Threshold Algorithm

Scoring Function Manhattan Distance

(b) Applying TA

Fig. 6. Optimization for global scoring functions

5.2.1 Technique
Let D be the total number of attributes of the objects. As
described in Section 2 and shown in Fig. 6(a), the stream
manager maintains(D+1) sorted lists (D lists each sorted
on one of the attributes and one list sorted on the ages).
The global score (i.e., final score) of a pair is computed by
combiningd ≤ D local scores where thei-th local score
corresponds to the score of a pair on thei-th attribute.

For a newly arrived objecto and for an attributei, we
can incrementally retrieve the pairs of objects related to the
objecto in ascending order of theiri-th local scores (see [1]
for details). Fig. 6(b) shows an example where, for a newly
arrived objecto1, the lists can be used to incrementally
retrieve the pairs ofo1 in sorted order of the scores. We

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

iteratively retrieve these pairs in ascending order of scores
for each attributei and then apply an algorithm similar to
the threshold algorithm (TA) [11] to terminate the algorithm
before visiting allO(N) new pairs of the newly arrived
object.

Algorithm 5 presents the details. The algorithm accesses
the pairs in round-robin fashion from thed + 1 attributes
where the(d + 1)th attribute corresponds to the age of a
pair (line 4). Each accessed pairp is mapped to age-score
space and is inserted inS if it is not dominated by the
K-staircase (line 6).

Algorithm 5 handling new objecto)
1: S = points inK-skyband sorted on scores
2: dummy point= (0, 0)
3: while dummy point not dominated byK-staircasedo
4: for i = 1 to i = d+ 1 do
5: access next best pairp of o in ascending order ofith

local score
6: if p is not dominated byK-staircasethen
7: insertp in S in sorted order of scores
8: Let lsi be the score of last pair seen forith attribute
9: Let age be the age of last pair seen from the age list

10: dummy point =(age, gsf(ls1, · · · , lsd))
11: UpdateSkybandAndStaircase(S)

Let lsi be the local score of the last retrieved pair
for the ith attribute andage be the age of the last pair
retrieved for the age attribute. Note thatlsi corresponds
to the smallest possible local score of any unseen pair for
the ith attribute. Hence,gsf(ls1, · · · , lsd) is the smallest
possible final score of any unseen pair wheregsf() denotes
the global scoring function. Similarly,age is the smallest
possible age of any unseen pair. Hence, we map a dummy
point (see line 10) to the age-score space with the smallest
possible age and the smallest possible score. If this dummy
point is dominated by theK-staircase then any unseen pair
will also be dominated by theK-staircase. For this reason,
we do not need to consider remaining unseen pairs (see
line 3) if the dummy pair is dominated by theK-staircase.

5.2.2 Complexity analysis
Note that the main difference between Algorithm 3 and
Algorithm 5 is that Algorithm 3 considersO(N) new pairs
when a new object arrives whereas Algorithm 5 considers
fewer pairs by using the threshold algorithm (TA). LetM
be the number of the pairs considered by Algorithm 5.
We estimate the value ofM and obtaining the overall
complexity is similar to that of the Algorithm 3.

We access the pairs in round robin fashion for thed+1
attributes. Note that the algorithm may terminate if at least
K pairs have been seen for each of thesed+ 1 attributes.
This is because for any unseen pair there would be at least
K pairs that have both the score and age less than it. Fagin
showed that the number of elements accessed from thed+1
lists in such case isM = (d+1) ·Nd/(d+1) ·K1/(d+1) [11].

6 EXTENSIONS

6.1 Handling out-of-order streams

In many real-world applications, the objects do not arrive
in correct order due to various reasons such as network
delay and data sent from different sources [25], [26]. Such
streams are called out-of-order data streams. In out-of-order

streams, the age of an object does not denote the time since
it has been in the sliding window (i.e., the time since it
was received) but it denotes the time since it was sent to
the server. Hence, the age of a newly received object may
be larger than the age of objects received earlier.

As mentioned in [26], various stream processing tech-
nologies experience significant challenges when faced with
out-of-order data streams. Our proposed techniques do not
rely on the assumption that the age of a newly received
object is the smallest among the existing objects. Hence,
all of our proposed techniques can be directly applied
on out-of-order data streams. In fact, one optimization is
possible in the skyband maintenance module (Algorithm 3).
Specifically, for out-of-order data streams, we updateK-
skyband andK-staircase (line 6 of Algorithm 3) only if the
setS is changed due to insertion of any pair at line 5. In
contrast, for in-order data streams, when an object arrives,
there is at least one new pair that has the smallest age
among all existing pairs in the sliding window. Hence, for
in-order streams,S is always updated due to the insertion
of such pair and this requires update ofK-skyband and
K-staircase.

Our theoretical analysis and experimental evaluation
demonstrate that our proposed techniques perform better for
out-of-order streams. This is due to Lemma 3 that states that
if an object arrives late (i.e., out-of-order), the new pairs
have lesser chance to be in theK-skyband which implies
low maintenance cost of theK-skyband.

Lemma 3:Assume that the age of a newly received
object onew is y. The expected number of new pairs that
are not dominated by the existingK-skyband is inversely
proportional to the value ofy.

Proof: If y > N , then every new pair has age greater
thanN and can be ignored. Otherwise, there areO(N) new
pairs in the sliding window. There are(y−1) pairs with age
equal toy (the pairs ofonew with every objecto that has age
smaller thany). The remaining pairs can be denoted as a set
{py+1, py+2, · · · , pN} wherepx denotes that the age of pair
px is x. From Lemma 1, a pair with agex has probability
min(K/x2, 1) not to be dominated byK-skyband. Hence,
(y − 1) × min(K/y2, 1) +

∑N
x=y+1 min(K/x2, 1) is the

expected number of new pairs that are not dominated by the
K-skyband. Clearly, this value is inversely proportional to
the value ofy, i.e., the expected number of new pairs that
are not dominated by theK-skyband is larger for smaller
values ofy and vice versa.

6.2 Top-k objects queries

Given a scoring function that computes the score of an
object, a top-k objects query retrievesk objects with the
smallest scores. A top-k objects query over sliding windows
considers the objects in the current sliding window (e.g.,
the most recentn objects) and returnsk objects with the
smallest scores. Such queries have many applications and
have received significant research attention [7], [6], [8].

In this section, we present techniques to efficiently han-
dle top-k objects queries that outperform state-of-the-art
algorithm [6] in terms of both running time and memory
consumption. We remark that our proposed algorithm has
the following novel features not considered/supported by
the existing algorithms: 1) It supports arbitrarily complex

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

scoring functions whereas the existing algorithms only
support either monotonic functions [6] orkNN queries [7],
[8]; 2) It can answer top-k objects queries having any
window sizen ≤ N in contrast to the previous techniques
that focus only onn = N ; 3) Our proposed techniques can
handle out-of-order data streams.

Our framework is similar to the framework we presented
to answer top-k pairs queries. Specifically, each object is
mapped to a score-age space and aK-skyband is main-
tained by the skyband maintenance module. The query
answering module uses theK-skyband to answer snapshot
and continuous top-k objects queries for anyk ≤ K
and anyn ≤ N . The query answering module (and its
complexity analysis) is exactly the same as presented in
Section 4. The skyband maintenance module is different
and is presented below.

6.2.1 Skyband maintenance for top-k objects
Note that if the data stream is in-order then the newly
arrived object has the smallest age and cannot be dominated
by any existing object in the sliding window. Hence, the
newly arrived object must always be inserted inK-skyband.
This observation was exploited in the existing work [6].
In contrast, for out-of-order data streams, a newly arrived
object may or may not be dominated by theK-skyband.
We present the techniques for out-of-order streams which
can be directly applied for in-order streams.

A straightforward approach to maintainK-skyband is to
insert the newly arrived objecto in the K-skyband (if it
is not dominated byK-skyband) and remove every object
o′ that is dominated byo and (K − 1) existing objects.
To efficiently check whether the newly arrived object is
dominated by theK-skyband, we can useK-staircase.
This straightforward approach may be expensive because
it requires updatingK-skyband andK-staircase every time
a new object arrives. Therefore, we adopt a lazy-update
approach shown in Algorithm 6 that updates theK-skyband
andK-staircase only if the size ofK-skyband increases by
a parameterx.

Algorithm 6 computes the score and age of the newly
arrived objecto and checks whether it is dominated by
K-staircase or not (line 3). Ifo is not dominated, it is
inserted inS and the priority search tree (line 4). Letx be
a parameter and|SKB| denote the size ofK-skyband after
the last update ofK-skyband andK-staircase (line 7). If
after the insertion ofo in S, the size ofS becomes larger
thanx + |SKB| then Algorithm 4 is called to update the
K-skyband andK-staircase.

Algorithm 6 Handling new object(o)
1: Let S be the objects inK-skyband sorted on scores
2: compute the score and age ofo
3: if o is not dominated byK-Staircasethen
4: inserto into S and PST
5: if |S| > x+ |SKB| then
6: UpdateSkybandAndStairCase(S)/* Algorithm 4 */
7: |SKB| = size ofK-skyband

Complexity analysis. The cost of line 3 isO(log |SKB|).
The insertion cost of each object intoS and PST is at
most O(log (x+ |SKB|)) (line 4). The cost of line 6 is
O((x + |SKB|) logK) wherex + |SKB| is the number
of elements inS at the timeK-skyband andK-staircase
is updated (see the cost of Algorithm 4 presented in

Section 5.1.1). Since line 6 is called after at leastx new
arrivals, the amortized cost of line 6 is(x+|SKB|) logK

x .
Hence, the amortized cost of the whole algorithm is
O(log (x+ |SKB|) + 1

x (x + |SKB|) logK). Assuming
that x = |SKB|, the amortized cost of the algorithm is
O(log |SKB|+ logK) = O(log |SKB|).
Optimizing the value of x. Intuitively, if we choose larger
x, the cost of line 4 increases whereas the amortized cost
of line 6 is reduced (and vice versa). Next, we show how
to choose an optimal value ofx. Let Cost(x) denote the
amortized cost of the algorithm for valuex.

Cost(x) = log (x+ |SKB|) + (x+ |SKB|) logK
x

(1)

To minimize the cost, we take the derivative ofCost(x)
and set it equal to0.

1

x+ |SKB| −
|SKB| logK

x2
= 0

The optimal value ofx is then obtained by solving the
above equation.

x =
|SKB| × (logK +

√

logK(4 + logK))

2

Note that the above analysis is valid forK > 1. For a
more accurate analysis that is also applicable forK = 1,
O(logK) in Eq. (1) is to be replaced byO(C + logK)
whereC is a constant.

6.3 Batch processing for multiple queries
In this section, we present a query processing algorithm
that answers multiple snapshot queries in a batch. Suppose
Q is a set of queries that share the same scoring function.
For a queryQi ∈Q, ki andni denote the values ofk andn
used forQi, respectively. Algorithm 7 presents the details
of the technique.

Algorithm 7 Batch(SKB, Q)
1: for each pairp in SKB in ascending order of scoresdo
2: for eachQi in descending order of window lengthsni do
3: if p.age > ni then
4: break;
5: insertp into Qi.topK
6: if |Qi.topK| = ki then
7: reportQi.topK and removeQi from Q

Recall that the skyband maintenance module stores the
pairs inK-skyband in sorted order of scores. The algorithm
accesses the pairs in ascending order of scores (line 1).
For each accessed pairp, it accesses the queries inQ in
descending order of the window lengths (line 2). Note that
if the age ofp is greater than the window lengthni of an
accessed query thenp cannot be an answer of any of the
remaining queries (because the age ofp would be larger
than the window lengths of such queries). This observation
is exploited at line 4 of Algorithm 7, i.e., the algorithm
stops considering a pairp if its age is greater than the
window lengthni of the query currently being accessed.

If p.age ≤ ni then p is added to a linked listQi.topK
that stores the answer ofQi (line 5). This is because the
pairs that are to be accessed afterp (at line 1) cannot have
scores smaller thanp, hence,p is one of the top-k pairs.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

If Qi.topK containski pairs then its results are reported
and Qi is removed fromQ so that it is not considered
in future (line 7). We remark that the algorithm for top-
k objects queries is exactly the same except that pair is
replaced with object in the pseudocode.
Complexity Analysis. For the sake of simplicity, assume
that each query has the same value ofk. The total number
of results isk|Q| because each query hask pairs. Since
the cost of a single execution of line 5 isO(1), the total
cost of line 5 for the complete execution of the algorithm
is O(k|Q|). The total cost of line 6 is the same as line 5,
i.e., O(k|Q|). The total cost of line 7 is at mostO(|Q|)
because this line is executed at most|Q| times.

For each pairp accessed at line 1, the algorithm checks
the condition of line 3. Ifp does not satisfy this condition,
then lines 5 to 7 are executed and this cost has already been
included in the cost shown in the paragraph above. Ifp
satisfies this condition then the algorithm stops considering
it. Hence, the total cost of line 4 is at mostO(|SKB|). So,
the overall cost of this algorithm isO(|SKB|+ k|Q|).

Note that, when|Q| is larger than|SKB|, the amortized
cost for each query isO(k) which meets the lower bound
query processing cost.

6.4 Handling chromatic Top-k pairs queries

The top-k pairs queries can be classified into chromatic and
non-chromatic top-k pairs queries [1]. Chromatic queries
are further classified intohomochromaticand heterochro-
matic queries. Assume that each object in the stream is as-
signed a color. A homochromatic top-k pairs query returns
the top-k pairs among the pairs that contain two objects
having the same color. In contrast, a heterochromatic top-k
pairs query considers only the pairs that contain two objects
with different colors. The top-k pairs queries that consider
all the pairs (i.e., the colors are not taken into consideration)
are called the non-chromatic queries.

Consider the query Q1 shown in Section 1 and assume
that a user wants to consider only the pairs of prod-
ucts that were auctioned by different sellers. The user
may issue a heterochromatic query by adding a condition
a.seller 6= b.seller. Similarly, a user who wants
to consider the pairs of products sold by the same seller
may issue a homochromatic query by adding a condition
a.seller=b.seller. In this section, we propose ex-
tension to handle chromatic top-k pairs queries.

Recall that stream manager receives the data stream and
maintains the most recentN objects. As showed in Sec-
tion 5.2, the skyband maintenance module can efficiently
maintainK-skyband for a broad class of scoring functions
if the objects are sorted on their attribute values as well
as on their ages. Next, we show that the stream manager
can store the objects in sorted order in a way that enables
the system to efficiently handle both the non-chromatic and
chromatic top-k pairs queries.

For each ofD attributes and the age, the stream manager
stores three doubly linked lists as shown in Fig. 7. Fig. 7
shows an example where three lists are shown for the
objects sorted on their ages. Some objects are assigned grey
color (o2, o4 ando5) and the others are assigned white color
(o1, o3, o6). Below, we describe the structure of each of the
three lists.

o1 o2 o3 o4 o5 o6

(a)

(c)

o1 o2 o3 o4 o5 o6

o1 o2 o3 o4 o5 o6

(b)

1 2 3 4 5 6

31 2 4 5 6

31 2 4 5 6

Fig. 7. Sorted lists (a) non-chromatic (b) heterochro-
matic (c) homochromatic

Non-chromatic list. Since non-chromatic queries do not
impose any restriction on the colors of the objects in the
pair, the non-chromatic list links the adjacent objects to
each other (see Fig. 7 (a)).
Homochromatic list. For any new objectoi, we only
need to consider its pairs with the objects that have the
same color as that ofoi. Hence, for every objectoi, the
homochromatic list provides the links to its adjacent objects
(in sorted order) of the same color. For example, in Fig. 7
(b), the right adjacent object ofo3 is o6 and its left adjacent
object iso1.
Heterochromatic list. For every objectoi, the heterochro-
matic list provides links to its adjacent objects (in sorted
order) having different colors. For example, in Fig. 7 (c),
the right adjacent object ofo4 is o6 and the left adjacent
object of o4 is o3. These links are used to access the
heterochromatic pairs related tooi in constant time [1].

As the new object arrives or the old object expires,
the lists and affected links to the adjacent objects are
updated. This can be done inO(logN) for each object
update. To answer the chromatic queries, the skyband
maintenance module only uses the relevant lists to maintain
the K-skyband. For example, to maintain aK-skyband
for the homochromatic top-k pairs queries, the skyband
maintenance module only uses the homochromatic lists.
The query answering module does not require any change.

7 EXPERIMENTS

7.1 Top-k Pairs Queries

7.1.1 Experimental settings
Real data. We use a publicly available data set [27] col-
lected from 54 sensor nodes deployed in the Intel research
lab in Berkeley between February 28th and April 5th,
2004. Each node measures environment readings such as
temperature, humidity and light. The data set consists of
2.3 million records collected from these sensors. We use
the following scoring function.
s(ox, oy) =

|ox.time−oy.time|
|ox.temp−oy.temp||ox.humidity−oy.humidity|

The scoring function prefers the pairs of sensor readings
that are taken within small duration of time and report quite
different temperature and humidity. We remark that we tried
several other inherently different scoring functions and the
experimental results demonstrated similar trends.
Synthetic data.We generate synthetic data following uni-
form, correlated and anti-correlated [28] distributions and
each data set consists of2 million objects. Let o[i] be
the value of the objecto in ith dimension. For a scoring
function that usesd dimensions, we use the following four
different scoring functions.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

s1(ox, oy) =
∑d

i=1 |ox[i]− oy[i]|
s2(ox, oy) = −∑d

i=1 |ox[i]− oy [i]|
s3(ox, oy) =

∏d
i=1 |ox[i]− oy[i]|

s4(ox, oy) = −
∏d

i=1 |ox[i]− oy[i]|
Note that the scoring functions1 retrieves thek-closest

pairs ands2 retrieves thek-furthest pairs according to the
Manhattan distance between the pairs. Analogously,s3 and
s4 retrieve top-k similar pairs and top-k dissimilar pairs,
respectively, according to the product of the differences of
the attributes. We conducted experiments for several other
scoring functions and obtained results similar to the ones
reported in this paper.

Parameter Range
Data distribution real, uniform , correlated, anticorrelated
of attributes (d) 2, 3, 4, 5, 6
N (in thousands) 10, 50, 100, 500, 1000
K 1, 5, 10,20, 50, 100

TABLE 1
Experiment Parameters for Top-k Pairs Queries

Unless mentioned otherwise, for a fixed value ofk and
n, we issue four queriesQ(k,n,si), one for each of the four
scoring functions, and report the average query cost per
object update. The table 1 shows the different parameters
used in our experiments and the bold values are the default
values used in the experiments unless mentioned otherwise.

7.1.2 Evaluating overall cost
To the best of our knowledge, we are the first to study
the problem of top-k pairs over data stream. This problem
is inherently different from other related problems such
as k-closest pairs queries on moving objects [16], [14],
static top-k pairs queries [1] and incremental distance
join [2] etc. Although at first it may seem easy to extend
previous techniques, a careful analysis demonstrates thatthe
extension of these techniques to answerk-closest (or top-k)
pairs queries over sliding windows is either non-trivial or
inefficient.

We evaluate our algorithm (Algorithm 3) that answers
the queries involving arbitrarily complex scoring function.
Since it uses aK-staircase to maintain theK-skyband, our
algorithm is calledSCase. For an extensive evaluation of
our algorithm, we carefully design two competitors called
Näıve andSupreme. Below, we present the details.
Naı̈ve Algorithm. A naı̈ve approach to answer continuous
top-k pairs query is to maintain allO(N2) pairs in sorted
order of their scores. However, this approach appeared to
be too slow. Another serious drawback is that the space
complexity is quadratic and is prohibitive for large sliding
windows. Therefore, we devised a better naı̈ve approach
that usesO(KN) space. For each newly arrived object,K
pairs related to it with the smallest scores are computed.
All O(KN) pairs are kept sorted on their scores. When
an objectoi expires, all the pairs related to it are deleted.
Note that the objectoi may be among the top-K pairs of
an unexpired objectoj . After we delete the pairs related to
oi, we need to update the top-k pairs of every such object
oj .
Supreme algorithm.We assume that there exists an oracle
that answers questions without requiring any computation
time. We use this oracle such that the supreme algorithm

meets the lower bound cost2. More specifically, for query
answering, we assume that the supreme algorithm requests
oracle to return, in sorted order of scores, only the pairs
of K-skyband that lie in the sliding window. The supreme
algorithm returns firstk pairs and requests oracle to stop.
Clearly, the query answering cost of the supreme algorithm
is O(k) that meets the lower bound.

As implied by Theorem 1, every algorithm must maintain
the pairs inK-skyband for exact answering of top-k pairs
queries. To maintainK-skyband, the supreme algorithm
uses Algorithm 3 and computes only line 2 and line 3. The
remaining steps are answered by the oracle in no time. Note
that the skyband maintenance of the supreme algorithm
meets the lower bound ofO(N).

10-4

10-3

10-2

10-1

100

1 10 20 50 100

T
im

e
(in

 s
ec

)

Naive
SCase

Supreme

(a) VaryingK

10-4

10-3

10-2

10-1

100

101

10 100 500 1000

T
im

e
(in

 s
ec

)

Naive
SCase

Supreme

(b) Varying N (in thousands)

Fig. 8. Overall cost evaluation on the real data
In Fig. 8, we compare our algorithm with other algo-

rithms using the real sensor data set. We issue100 top-k
pairs queriesQ(k,n,s) wherek ≤ K andn ≤ N are ran-
domly chosen for each query. Our algorithm demonstrates
two to three orders of magnitude improvement over the
naı̈ve algorithm and performs reasonably well as compared
to the supreme algorithm. ForN ≥ 500, 000, the naı̈ve
algorithm did not complete its execution in 7 days and the
estimated completion time was around 2 months. Therefore,
we do not show results for the naı̈ve algorithm for the larger
values ofN .

10-4

10-3

10-2

10-1

100

101

1 10 20 50 100

T
im

e
(in

 s
ec

)

Naive
SCase

Supreme

(a) VaryingK

10-4

10-3

10-2

10-1

100

101

10 100 500 1000

T
im

e
(in

 s
ec

)

Naive
SCase

Supreme

(b) Varying N (in thousands)

Fig. 9. Effect of K and N on synthetic data

In Fig. 9 and Fig. 10, we perform experiments on
synthetic data sets to conduct a more detailed evaluation.
Since we also want to observe the performance of the
algorithms for varyingn and varyingk, we decide not to
randomly generaten and k. Instead, in each experiment,
we run four queries each using a fixed value ofn and k
and using one of the four scoring functions (s1, s2, s3 and
s4) presented in Section 7.1.1. In Fig. 9(a) and Fig. 9(b),
we study the effect ofK andN on both algorithms. For
each query, we setn = N (the largest sliding window) and
k = K (the largest possible value ofk). The results are
similar to the results obtained using the real data set.

In Fig. 10, we study the effect ofk and n. As stated
earlier, our algorithm does not know the values ofn andk

2. Note that the performance of an algorithm also depends on the way
it is implemented. However, we remark that the supreme algorithm is a
reasonable benchmark to evaluate the scalability of our approach. Having
said this, for a fair evaluation, the supreme algorithm is implemented by
using the code that is a subset of the code used by our algorithm.

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

10-4

10-3

10-2

10-1

1 5 10 20

T
im

e
(in

 s
ec

)

Naive++
SCase

Supreme++

(a) Varyingk

10-5

10-4

10-3

10-2

10-1

100

1 5 10
T

im
e

(in
 s

ec
)

Naive++
SCase

Supreme++

(b) Varying n (in thousands)

Fig. 10. Effect of k and n on synthetic data

in advance hence maintains aK-skyband for most recent
N objects. In contrast, for a more strict evaluation of our
algorithm, we assume that both the naı̈ve and the supreme
algorithms know the values ofn andk in advance. In effect,
the supreme algorithm maintainsk-skyband (note thatk ≤
K) for most recentn objects only. The naı̈ve algorithm
uses onlyO(kn) memory instead ofO(KN) memory. We
call these variations of the supreme and naı̈ve algorithms
assupreme++andnaı̈ve++, respectively.

The results are reported in Fig. 10(a) and Fig. 10(b).
In Fig. 10(a), the naı̈ve++ algorithm performs better for
k = 1 because it needs to maintain onlyO(n) pairs in
total whereas we need to maintain20-skyband (K = 20)
for most recentN = 10, 000 objects.

Fig. 10(b) shows that our algorithm outperforms naı̈ve++
algorithm even forn = 1000 although it incurs mainte-
nance cost to maintain aK-skyband for a window sizeN
of 10, 000. Note that the complexity of supreme++ isO(n)
and the complexity of our algorithm isO(N ·(log (logN)+
logK). Hence, the cost of supreme++ increases with in-
crease inn whereas the cost of our algorithm remains
unaffected.

7.1.3 Evaluating query answering module
Snapshot Query Answering. We compare our query an-
swering algorithm with the supreme query answering algo-
rithm as well as another algorithm calledlinear algorithm.
The linear algorithm is the approach we discussed in the
first paragraph of Section 4.1 and it takes time linear to the
size ofK-skyband in the worst case. Our query answering
algorithm (Algorithm 2) is calledsnapshot. We study the
effect of each of the parametersK, N , k andn, separately.

In Fig. 11(a) and Fig. 11(b), we study the effect of
varying K andN , respectively. The default value ofn is
1000 and the default value ofk is 20. As expected, the cost
of supreme algorithm is negligible. This is because, in all
the experiments, the supreme algorithm needs to iterate over
a link list of sizek. The snapshot algorithm outperforms the
linear algorithm and scales better with the increase in the
values ofK or N . The cost of linear algorithm increases
because the size ofK-skyband increases with the increase
in K or N .

In Fig. 11(c) and Fig. 11(d), we fix the values ofK
and N and study the effect ofk and n on both of the
algorithms. The default value ofK is chosen to be100
so that we can answer the queries with anyk ≤ 100. The
snapshot algorithm performs better than the linear algorithm
for varyingk.

Fig. 11(d) shows that the linear algorithm performs
slightly better than the snapshot algorithm when the value
of n is close toN . This is because the linear algorithm
accesses the pairs inK-skyband in ascending order of
scores and terminates whenk pairs are found with age at

 0

 5

 10

 15

20 50 70 100

T
im

e
(in

 m
ic

ro
 s

ec
) Linear

 Snapshot
 Supreme

(a) VaryingK

 0

 20

 40

 60

 80

10 100 500 1000

T
im

e
(in

 m
ic

ro
 s

ec
) Linear

 Snapshot
 Superme

(b) Varying N (in thousands)

 0

 10

 20

 30

1 10 20 50 100

T
im

e
(in

 m
ic

ro
 s

ec
) Linear

 Snapshot
 Superme

(c) Varying k

 0

 5

 10

 15

1 3 5 7 10

T
im

e
(in

 m
ic

ro
 s

ec
) Linear

 Snapshot
 Supreme

(d) Varying n (in thousands)

Fig. 11. Linear vs Snapshot Algorithm

most equal ton. The algorithm is expected to terminate
earlier whenn is large. Note that whenn = N the cost
of linear algorithm isO(k) which is impossible to be
outperformed.

Recall that our complexity analysis shows that the cost of
snapshot algorithm isO(log(logn)+ logK+k). As antic-
ipated by our complexity analysis, the cost of our snapshot
algorithm increases with increase ink (see Fig. 11(c)) but
is not significantly affected by a moderate increase inK or
n (see Fig. 11(a) and Fig. 11(d)).
Continuous Query Answering. Next, we evaluate the
performance of our continuous query algorithm which is
denoted ascontinuousin the figures. The supreme algo-
rithm for continuous query answering assumes that the
oracle notifies it whenever a pair is deleted or added to
the existing answer and the supreme algorithm updates the
results accordingly. We also choose the linear algorithm
and the snapshot algorithm as competitors such that these
algorithms compute the results from scratch whenever the
results are to be updated.

In Fig. 12(a), we show the effect ofK on the continuous
query algorithm for 1000 queries that randomly choose
the values ofn and k. Fig. 12(a) shows the average cost
per query per object update. Clearly, our continuous query
algorithm outperforms the linear and snapshot algorithms
and scales better.

 0

 2

 4

 6

 8

 10

1 10 20 50 100

T
im

e
(in

 m
ic

ro
 s

ec
) Linear

 Snapshot
 Continuous

 Supreme

(a) VaryingK

 0

 20

 40

1 2 3 4 5

T
im

e
(in

 m
ill

i s
ec

)

 Linear
 Snapshot

 Continuous
 Supreme

(b) Varying |Q| (in thousands)

Fig. 12. Evaluation of continuous queries algorithm

Fig. 12(b) shows the performance of the algorithms for
the increasing number of queries. Each queryQ(k,n,s) uses
a randomly chosen value ofk and n. Fig. 12(b) shows
the total cost for all the queries per object update. Our
continuous query algorithm outperforms the linear and
snapshot approaches.

7.1.4 Evaluating skyband maintenance module
In this section, we evaluate our skyband maintenance mod-
ule. We compare four algorithms. TheSCasealgorithm is
the Algorithm 3 which uses K-staircase and can be applied
on any arbitrarily complex scoring function. Thebasic

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

algorithm is the same as Algorithm 3 but does not use
K-staircase. As stated in Section 2.1, previous algorithms
to maintainK-skyband [6], [8] cannot be directly applied.
Nevertheless, we embedded all applicable optimizations
(e.g., dominance counter) of their techniques in thebasic
algorithm. TheTA algorithm is Algorithm 5 which is ap-
plicable only on the queries using global scoring functions.
The supreme algorithm maintains the skyband as discussed
in Section 7.1.2. Note that TA has an advantage over all
other algorithms (including the supreme algorithm) that it
knows that the scoring function is a global scoring function
and uses its properties.

In Fig. 13(a) and Fig. 13(b), we study the affect ofK
andN , respectively. As expected, the TA algorithm always
outperforms the basic and SCase algorithms. This shows
the effectiveness of using optimizations for global scoring
functions. Also, note that SCase algorithm outperforms the
basic algorithm which shows the effectiveness of using the
K-staircase. TA outperforms even the supreme algorithm
when window sizeN is large. This is because TA utilizes
the properties of the global scoring function and does not
compute the score of allO(N) objects when a new object
arrives.

10-4

10-3

10-2

10-1

100

1 10 20 50 100

T
im

e
(in

 s
ec

)

Basic
SCase

TA
Supreme

(a) VaryingK

10-3

10-2

10-1

100

10 100 500 1000

T
im

e
(in

 s
ec

)

Basic
SCase

TA
Supreme

(b) VaryingN (in thousands)

10-4

10-3

10-2

10-1

2 3 4 5 6

T
im

e
(in

 s
ec

)

Basic
SCase

TA
Supreme

(c) # of attributes (d)

10-4

10-3

10-2

10-1

uniform corr anti-corr sensor

T
im

e
(in

 s
ec

)

Basic

SCase

TA

Supreme

(d) Varying Distributions

Fig. 13. Skyband maintenance techniques

In Fig. 13(c), we vary the number of attributesd used by
the scoring functions and study the effect on the algorithms.
The performance of TA degrades as the number of attributes
increases. This verifies our complexity analysis given in
Section 5.2. The cost of supreme algorithm increases
mainly because the cost of computing the score of a pair
increases as the number of attributes increases. The basic
and SCase algorithms are not affected by the number of
attributes because the main cost in these two algorithms is
not the cost of computing the scores of the pairs.

In Fig. 13(d), we show the effect of data distribution on
the algorithms. TA consistently performs better than SCase
and the basic algorithm on each different data set. Also,
SCase algorithm performs significantly better than the basic
algorithm.

7.1.5 Evaluating memory and theoretical analysis
Table 2 and 3 evaluate the memory cost of our algorithm
and our theoretical analysis for varyingK and varying
N , respectively (other settings are default). The tables
compare our memory usage with the lower bound memory
required (as per Theorem 3). Note that the memory used

by our algorithm is quite close to the lower bound memory
required. The tables also compare the theoretical value
of K-skyband size with the experimental value ofK-
skyband size (average size ofK-skyband for all queries
in the system). Note that in our theoretical analysis (The-
orem 2), we state that the expected size ofK-skyband is
O(K(ln N − ln

√
K)) = O(K log (N/K)). Our exper-

iments show that the actual size ofK-skyband is about
2(K(ln N − ln

√
K)); this confirms the correctness of our

theoretical analysis.
Below is the explanation of the legend used in the tables.

LB: Lower bound memory usage (in MB)
OUR: The memory used by our algorithm (in MB).
|SKB|: Experimental value of average K-skyband size (in
number of pairs)
T = K(ln N − ln

√
K).

K LB (in MB) OUR (in MB) |SKB| 2T
1 0.46 0.461 17.4 18.42
5 0.46 0.467 82.3 84.05
10 0.46 0.473 159.9 161.18
20 0.46 0.486 308.5 308.50
50 0.46 0.522 730.6 725.43
100 0.46 0.58 1398.0 1381.55

TABLE 2
Varying K (N = 10, 000)

N LB(in MB) OUR(in MB) |SKB| 2T
1000 0.04 0.058 216.5 216.40
5000 0.23 0.254 280.8 280.77
10000 0.46 0.486 308.5 308.50
50000 2.28 2.312 372.9 373.88
100000 4.58 4.614 399.8 400.60
500000 22.88 22.920 465.7 465.98
1000000 45.78 45.822 496.8 492.71

TABLE 3
Varying N (K = 20)

7.2 Top-k objects queries
We compare our proposed algorithm with the state-of-the
art algorithm SMA (Skyband Monitoring Algorithm) [6]
that answers top-k object queries for monotonic scoring
functions. We obtain the source code of SMA from the
authors and perform the experiments using the settings
similar to those used in [6]. We use the synthetic data
set that follows anti-correlated distribution and consists of
10 millions objects. We also conducted experiments for
other data distributions and observed similar trends. Table 4
shows the parameters used in experiments and the default
values are shown in bold. The scoring function we used in
the experiment iss(o) =

∑d
i=1 o[i].

Parameter Range
of attributes (d) 2, 3, 4, 5, 6
N (in millions) 1, 2, 3, 4, 5
K 1, 5, 10,20, 50, 100

TABLE 4
Parameters for Top-k Objects Queries

7.2.1 Running time
Fig. 14 compares our algorithm with SMA for a single top-
k object query where the window sizen is equal toN . Note

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 15

that our algorithm maintains PST to support any window
size n ≤ N . If n = N , our algorithm is not required to
store the PST and the query can be answered by returning
first k objects from theK-skyband which is kept sorted on
scores by the skyband maintenance module. We use this
optimization to answer the query wheren = N and call this
algorithmNo-PST. The algorithm that uses PST is called
SCase. No-PST outperforms the other two algorithms.
The cost ofSCase is higher than the cost of other two
algorithms because it needs to maintain the PST to support
anyn ≤ N .

 0.5

 1

 1.5

 2

1 50 100

T
im

e
(in

 m
ic

ro
 s

ec
) No-PST

SCase
SMA

(a) VaryingK

 0.5

 1

 1.5

 2

1 2 3 4 5

T
im

e
(in

 m
ic

ro
 s

ec
) No-PST

SCase
SMA

(b) Varying N (in millions)

Fig. 14. Top-k objects queries for n = N

Next, we compare our algorithm with SMA for the
queries with window sizesn ≤ N . We extend SMA so
that it can also support anyn ≤ N . Specifically, to support
any query withn < N , SMA ignores every object that
has age greater thann during the computation of top-k
queries. In Fig. 15, we randomly generate1000 queries
with each query using randomly generated valuesk andn
(k ≤ K andn ≤ N). Although our proposed algorithm is
more general and can support arbitrarily complex scoring
functions and out-of-order streams, the results demonstrate
that our proposed algorithm outperforms SMA and scales
better.

 0

 20

 40

 60

1 10 20 50 100

T
im

e
(in

 m
ic

ro
 s

ec
) SMA

 SCase

(a) VaryingK

 0

 10

 20

 30

 40

 50

1100 200 400 600 800 1000

T
im

e
(in

 m
ic

ro
 s

ec
) SMA

 SCase

(b) Varying the number of queries

Fig. 15. Top-k queries for randomly generated k and n

7.2.2 Memory usage
In this section, we show that the memory consumed by
our algorithm is much lower than the memory used by
SMA. This is because our algorithm maintains only the
K-skyband whereas SMA indexes allN objects in a
grid data structure. Fig. 16(a) and Fig. 16(b) show the
memory used by the algorithms for varyingN and varying
d (number of attributes used in the scoring function),
respectively. The memory used by SMA is significantly
higher (please note that log-scale is used). The memory
used byNo-PST is smaller thanSCase because the former
does not need to store the priority search tree. The memory
consumption of SMA increases with the increase ind
becaused-dimensional grid is required which consumes
higher memory. In contrast, our algorithms are not affected
by d.

7.3 Miscellaneous
Results for out-of-order streams.We present the results
for out-of-order data streams where objects may arrive late.

1K

10K

100K

1M

10M

100M

1G

1 2 3 4 5

S
pa

ce
 (

by
te

)

No-PST
Scase

SMA

(a) VaryingN (in millions)

1K

10K

100K

1M

10M

100M

1G

2 3 4 5 6

S
pa

ce
 (

by
te

)

No-PST
Scase

SMA

(b) Varying number of attributesd

Fig. 16. Evaluating the memory usage

For each object that arrives late, we randomly generate a
valuey between1 to N and delay it by a valuey (e.g., its
age when it arrives isy). Fig. 17(a) and Fig. 17(b) show
the results for top-k pairs queries and top-k objects queries,
respectively.x% denotes thatx percentage of the objects
arrive late. Note that0% corresponds to the in-order data
streams. In each experiment, we run100 queries and report
the overall running time. As anticipated by our theoretical
analysis, the performance of the algorithms is better for the
cases when more objects arrive late.

 1

 2

 3

 4

1 10 20 50 100

T
im

e
(in

 m
ill

i s
ec

)

0%
20%

40%
60%

80%
100%

(a) Top-k pairs (varyingK)

 0

 1

 2

 3

 4

1 10 20 50 100

T
im

e
(in

 m
ic

ro
 s

ec
) 0%

20%
40%
60%

80%
100%

(b) Top-k objects (varyingK)

Fig. 17. Out-of-order data streams
Batch query processing. We next evaluate our tech-
nique for the batch query processing algorithm proposed
in Section 6.3. The algorithm that uses the batch query
processing is denoted as B-snapshot. Note that the com-
plexity of the snapshot algorithm for|Q| queries is
O((log |SKB| + k)|Q|) whereas the complexity of B-
snapshot isO(|SKB|+ k|Q|). According to this analysis,
B-snapshot performs better when|Q| is large enough such
that |Q| log |SKB| > |SKB|. Fig. 18(a) compares the cost
of snapshot and B-snapshot algorithms and verifies the
complexity analysis that B-snapshot performs better when
the number of queries is large.

 0

 5

 10

 15

 20

0.1 0.5 1 2 3 4 5

T
im

e
(in

 m
ill

i s
ec

)

 Snapshot
 B-Snapshot

(a) Batch processing for varying
|Q|(in thousands)

 0

 1

 2

 3

1 2 3 5 7 10

T
im

e
(in

 m
ill

i s
ec

)

Homochromatic
Heterochromatic

(b) Chromatic queries for varying
number of colors

Fig. 18. Batch processing and chromatic queries
Results for chromatic queries.In Fig. 18(b), we vary the
number of colors (each object is randomly assigned one
color) and study the performance of our algorithms for
heterochromatic and homochromatic queries. Note that the
homochromatic query is the same as a non-chromatic query
when only one color is used. The cost of both homochro-
matic and heterochromatic queries is lower than the cost of
non-chromatic queries. The cost of homochromatic queries
decreases with the increase in number of colors because
the number of valid pairs decreases. In contrast, the cost of
heterochromatic queries increases because the number of

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 16

valid pairs increases when the number of colors is larger.

8 CONCLUSION
We present efficient techniques to answer a broad class of
top-k pairs and top-k objects queries over sliding windows.
The efficiency of the proposed techniques is evaluated by a
detailed complexity analysis and an extensive experimental
study. The proposed framework can handle arbitrary scoring
functions, supports queries with any window size and works
for out-of-order data streams.
Acknowledgments: We are really thankful to the au-
thors of [6] for providing us the source code of their
algorithm. The research of Xuemin Lin is supported by
ARCDP0987557, ARCDP110102937, ARCDP120104168
and NSFC61021004. Wenjie Zhang is supported by AR-
CDP120104168 and ARCDE120102144.

REFERENCES
[1] M. A. Cheema, X. Lin, H. Wang, J. Wang, and W. Zhang, “A unified

approach for computing top-k pairs in multidimensional space,” in
ICDE, 2011.

[2] G. R. Hjaltason and H. Samet, “Incremental distance joinalgorithms
for spatial databases,” inSIGMOD, 1998.

[3] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopou-
los, “Closest pair queries in spatial databases,” inSIGMOD, 2000.

[4] M. Smid, “Closest-point problems in computational geometry,” in
Handbook on Computational Geometry, 1997.

[5] C. Yang and K.-I. Lin, “An index structure for improving nearest
closest pairs and related join queries in spatial databases,” in IDEAS,
2002.

[6] K. Mouratidis, S. Bakiras, and D. Papadias, “Continuousmonitoring
of top-k queries over sliding windows,” inSIGMOD, 2006.

[7] K. Mouratidis and D. Papadias, “Continuous nearest neighbor
queries over sliding windows,”IEEE TKDE, 2007.

[8] C. Böhm, B. C. Ooi, C. Plant, and Y. Yan, “Efficiently processing
continuous k-NN queries on data streams,” inICDE, 2007.

[9] G. Vidyamurthy,Pairs Trading: quantitative methods and analysis.
John Wiley & Sons, Inc., 2004.

[10] Z. Shen, M. A. Cheema, X. Lin, W. Zhang, and H. Wang, “Efficiently
monitoring top-k pairs over sliding windows,” inICDE, 2012.

[11] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms
for middleware,”JCSS, 2003.

[12] S. Nepal and M. V. Ramakrishna, “Query processing issues in image
(multimedia) databases,” inICDE, 1999.

[13] U. Güntzer, W.-T. Balke, and W. Kießling, “Optimizingmulti-feature
queries for image databases,” inVLDB, 2000.

[14] L. H. U, N. Mamoulis, and M. L. Yiu, “Continuous monitoring of
exclusive closest pairs,” inSSTD, 2007.

[15] F. Angiulli and C. Pizzuti, “An approximate algorithm for top-k
closest pairs join query in large high dimensional data,”DKE, 2005.

[16] P. Zhou, D. Zhang, B. Salzberg, G. Cooperman, and G. Kollios,
“Close pair queries in moving object databases,” inGIS, 2005.

[17] G. Das, D. Gunopulos, N. Koudas, and N. Sarkas, “Ad-hoc top-k
query answering for data streams,” inVLDB, 2007.

[18] Z. Shen, M. A. Cheema, and X. Lin, “Loyalty-based selection:
Retrieving objects that persistently satisfy criteria,” in CIKM, 2012.

[19] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems,”TODS, 2005.

[20] W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. X. Yu, “Probabilistic
skyline operator over sliding windows,” inICDE, 2009.

[21] D. E. Knuth,The Art of Computer Programming, Volume I: Funda-
mental Algorithms, 2nd Edition. Addison-Wesley, 1973.

[22] E. M. McCreight, “Priority search trees,”SIAM Journal on Comput-
ing, vol. 14, no. 2, pp. 257–276, May 1985.

[23] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan,
“Time bounds for selection,”JCSS, 1973.

[24] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava,
“Ranked join indices,” inICDE, 2003.

[25] G. Cormode, F. Korn, and S. Tirthapura, “Time-decayingaggregates
in out-of-order streams,” inPODS, 2008, pp. 89–98.

[26] M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and K. T.
Claypool, “Sequence pattern query processing over out-of-order
event streams,” inICDE, 2009, pp. 784–795.

[27] “http://db.csail.mit.edu/labdata/labdata.html.”
[28] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,”

in ICDE, 2001, pp. 421–430.

Zhitao Shen is currently a PhD student in
the School of Computer Science and Engi-
neering, the University of New South Wales,
Australia. He received his Master of Sci-
ence in Computer Science from University of
Tsukuba, Japan in 2009. He completed his
B.E. in Electrical Engineering from Shanghai
Jiaotong University, China in 2006. His cur-
rent research interests include spatiotempo-
ral databases, location-based services, data
stream processing and data quality.

Muhammad Aamir Cheema is a research
fellow in the School of Computer Science
and Engineering, the University of New
South Wales (UNSW), Australia. He ob-
tained his PhD from UNSW Australia in
2011. His current research interests include
spatio-temporal databases, location-based
services, mobile and pervasive computing
and probabilistic databases. His PhD thesis
was judged to be the best PhD thesis of 2012
in Faculty of Engineering at UNSW and he

received The 2012 Malcolm Chaikin Prize for Research Excellence in
Engineering. Two of his ICDE papers were shortlisted for best paper
awards and were invited to IEEE-TKDE special issues on the best
papers of ICDE 2010 and 2012, respectively. He also received two
CiSRA best research paper awards (2009 and 2010) and the best
research paper award of Autralasian Database Conference 2010.

Xuemin Lin is a Professor in the School
of Computer Science and Engineering, the
University of New South Wales. He has been
the head of database research group at
UNSW since 2002. Before joining UNSW,
Xuemin held various academic positions at
the University of Queensland and the Uni-
versity of Western Australia. Dr. Lin got his
PhD in Computer Science from the Univer-
sity of Queensland in 1992 and his BSc in
Applied Math from Fudan University in 1984.

During 1984-1988, he studied for PhD in Applied Math at Fudan
University. He currently is an associate editor of ACM Transactions
on Database Systems. His current research interests lie in data
streams, approximate query processing, spatial data analysis, and
graph visualization.

Wenjie Zhang is currently a lecturer in
School of Computer Science and Engineer-
ing, the University of New South Wales, Aus-
tralia. She received PhD in computer sci-
ence and engineering in 2010 from the Uni-
versity of New South Wales. Since 2008,
she has published more than 20 papers in
SIGMOD, VLDB, ICDE, TODS, TKDE and
VLDBJ. She is the recipient of Best (Student)
Paper Award of National DataBase Confer-
ence of China 2006, APWebWAIM 2009,

Australasian Database Conference 2010 and DASFAA 2012, and
also co-authored one of the best papers in ICDE2010, ICDE 2012
and DASFAA 2012. In 2011, she received the Australian Research
Council Discovery Early Career Researcher Award.

Haixun Wang is a senior researcher at Mi-
crosoft Research Asia, where he manages
the Data Management, Analytics and Ser-
vices group. Before joining Microsoft, he had
been a research staff member at IBM T. J.
Watson Research Center for 9 years. Haixun
Wang has published more than 120 research
papers in referred international journals and
conference proceedings. He is associate ed-
itor of Distributed and Parallel Databases
(DAPD), IEEE Transactions of Knowledge

and Data Engineering (TKDE), Knowledge and Information System
(KAIS), Journal of Computer Science and Technology (JCST). He is
PC co-Chair of CIKM 2012, ICMLA 2011, and WAIM 2011.

