
14

Stochastic Skylines

WENJIE ZHANG, The University of New South Wales
XUEMIN LIN, East China Normal University and The University of New South Wales
YING ZHANG and MUHAMMAD AAMIR CHEEMA, The University of New South Wales
QING ZHANG, The Australian EHealth Research Centre, CSIRO

In many applications involving multiple criteria optimal decision making, users may often want to make a
personal trade-off among all optimal solutions for selecting one object that fits best their personal needs.
As a key feature, the skyline in a multidimensional space provides the minimum set of candidates for
such purposes by removing all points not preferred by any (monotonic) utility/scoring functions; that is, the
skyline removes all objects not preferred by any user no matter how their preferences vary. Driven by many
recent applications with uncertain data, the probabilistic skyline model is proposed to retrieve uncertain
objects based on skyline probabilities. Nevertheless, skyline probabilities cannot capture the preferences of
monotonic utility functions. Motivated by this, in this article we propose a novel skyline operator, namely
stochastic skylines. In the light of the expected utility principle, stochastic skylines guarantee to provide
the minimum set of candidates to optimal solutions over a family of utility functions. We first propose
the lskyline operator based on the lower orthant orders. lskyline guarantees to provide the minimum set of
candidates to the optimal solutions for the family of monotonic multiplicative utility functions. While lskyline
works very effectively for the family of multiplicative functions, it may miss optimal solutions for other
utility /scoring functions (e.g., linear functions). To resolve this, we also propose a general stochastic skyline
operator, gskyline, based on the usual orders. gskyline provides the minimum candidate set to the optimal
solutions for all monotonic functions. For the first time regarding the existing literature, we investigate the
complexities of determining a stochastic order between two uncertain objects whose probability distributions
are described discretely. We firstly show that determining the lower orthant order is NP-complete with
respect to the dimensionality; consequently the problem of computing lskyline is NP-complete. We also show
an interesting result as follows. While the usual order involves more complicated geometric forms than
the lower orthant order, the usual order may be determined in polynomial time regarding all the inputs,
including the dimensionality; this implies that gskyline can be computed in polynomial time. A general
framework is developed for efficiently and effectively retrieving lskyline and gskyline from a set of uncertain
objects, respectively, together with efficient and effective filtering techniques. Novel and efficient verification
algorithms are developed to efficiently compute lskyline over multidimensional uncertain data, which run
in polynomial time if the dimensionality is fixed, and to efficiently compute gskyline in polynomial time
regarding all inputs. We also show, by theoretical analysis and experiments, that the sizes of lskyline and
gskyline are both quite similar to that of conventional skyline over certain data. Comprehensive experiments
demonstrate that our techniques are efficient and scalable regarding both CPU and IO costs.

W. Zhang was partially supported by ARC DE120102144 and DP120104168. X. Lin was partially supported
by ARC DP0987557, ARC DP110102937, ARC DP120104168, and NSFC61021004. Y. Zhang was partially
supported by DP110104880 and UNSW ECR grant PSE1799.
Authors’ addresses: W. Zhang, School of Computer Science and Engineering, The University of New South
Wales, Australia; email: zhangw@cse.unsw.edu.au; X. Lin (corresponding author), East China Normal Uni-
versity, China and the University of New South Wales, Australia; Y. Zhang and M. A. Cheema, School of
Computer Science and Engineering, The University of New South Wales, Australia; Q. Zhang, The Australian
EHealth Research Centre, CSIRO, Australia.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0362-5915/2012/05-ART14 $10.00

DOI 10.1145/2188349.2188356 http://doi.acm.org/10.1145/2188349.2188356

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:2 W. Zhang et al.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Search process; clustering

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Skyline, uncertain data, stochastic order

ACM Reference Format:
Zhang, W., Lin, X., Zhang, Y., Cheema, M. A., and Zhang, Q. 2012. Stochastic skylines. ACM Trans. Datab.
Syst. 37, 2, Article 14 (May 2012), 34 pages.
DOI = 10.1145/2188349.2188356 http://doi.acm.org/10.1145/2188349.2188356

1. INTRODUCTION

In a d-dimensional space Rd, the skyline is defined over given preferences of coordinate
values on each dimension (i.e., either smaller or larger coordinate values are preferred).
Without loss of generality, in the rest of the article we assume that smaller coordinate
values are preferred on each dimension and all points are in Rd

+ (i.e., coordinate values
are nonnegative). Given two points x and y in Rd

+, x dominates y if x is not greater than
y on each dimension and is smaller than y on one dimension. Given a set D of objects
(points) in Rd

+, the skyline of D consists of the points in D which are not dominated by
any other points in D.

When users want to select a top object (point) from a set D of objects (points) in
Rd

+ based on their preference of smaller values on each dimension, a point in D that
dominates every other point in D would be the best choice. Nevertheless, D may not
always contain such a point. Therefore, scoring functions are often required to rank
the points in D to generate-optimal solution. To capture the preference of smaller
values on each dimension and make the optimal solution with the maximum score, a
scoring function required to rank objects in D should be decreasing (see Section 2.2
for the precise definition). Clearly, a single scoring function on a point may be easily
affected by an outlier coordinate value of the point. Consequently, users may not be
content with the optimal solution based on a single decreasing scoring function and
may highly anticipate to make a personal trade-off to select one object which may best
fit their personal needs among the set S of points with the property that for each point
y ∈ D − S, there is a point x ∈ S such that f (x) ≥ f (y) for any decreasing function;
we call such an S a superior set of D. Clearly, a superior set S in D contains the
(score-based) optimal solutions over all possible decreasing scoring functions.

It is well-known [Börzsönyi et al. 2001; Steuer 1995] that x dominates y if and only
if for any decreasing function f , f (x) ≥ f (y); this is formally stated in page 266 of
Shaked and Shanthikumar [2007] if a point is regarded as an uncertain object with
only one instance that has the occurrence probability 1. Consequently, the skyline S
of D provides the superior set of D with the minimum size for users to make their
personal trade-offs. Such a personal trade-off is very effective especially when the
number of skyline points is small. For this reason, skyline computation over certain
data has received significant research attention in the last decade (e.g., Börzsönyi et al.
[2001], Kossmann et al. [2002], Papadias et al. [2003], Tan et al. [2001], and Zhang
et al. [2009]).

Expected Utility Principle. Ranking uncertain objects against multiple criteria has
a long history in economics, finance, and mathematics; see Levy [1992], Shaked and
Shanthikumar [2007], and Kijima and Ohnishi [1999] for example. The expected utility
principle is the most popular model [Levy 1992; Kijima and Ohnishi 1999] to select
the optimal uncertain object against multiple criteria. In the light of the expected
utility principle, given a function f , an uncertain object U with the maximum expected
utility is the optimal solution; that is, select U to maximize E [f (U)] for a given utility
function f .

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:3

h

t

A

B

C

a1

b1

a2

c2

b2

c1

(a)
1 2 3 4 5

1

2

3

4

5

h

t

a1

b1

a2

c2

b2

c1

(b)
1 2 3 4 5

1

2

3

4

5

x

Fig. 1. Motivating example for lskyline.

While the expected utility principle is widely believed the best scoring model when
the the world is rational, a single utility function to score an uncertain object U may
also be easily affected by outliers, including the outliers in the probability distributions
of U . To resolve this, in this article we propose to investigate the problem of efficiently
computing the stochastic-order-based skyline, following the aforesaid motivation of
skyline.

Stochastic Order. Stochastic orders have been effectively used in many real-life ap-
plications [Levy 1992; Shaked and Shanthikumar 2007; Kijima and Ohnishi 1999],
including economics, finance, and multicriteria statistic decision making to facilitate
the expected utility principle. Generally, a stochastic order may be defined over any
family F of functions as follows. Given a family F of utility (scoring) functions from all
users, an uncertain object (random variable) U stochastically dominates V regarding
F , denoted by U ≺F V if and only if E [f (U)] ≥ E [f (V)] for each f ∈ F (see Kijima
and Ohnishi [1999]); that is, all users prefer U to V according to the expected utility
principle.

Stochastic Skylines. Given a set U of uncertain objects, the stochastic-order-based
skyline, namely stochastic skylines regarding F , is the subset of U such that each
object U in the stochastic skylines is not stochastically dominated by any other object
in U regarding F . Based on the preceding definition of stochastic orders, it is immediate
that the stochastic skylines regarding F provide the minimum set of candidates to the
optimal solutions (maximum values) for all functions in F by removing the objects not
preferred by any function in F . Therefore, stochastic skylines provide the superior set
of objects in U , regarding F and the expected utility principle, with the minimum size
for users to make a personal trade-off to choose an object which fits best their individual
needs; thus, stochastic skylines regrading F are robust regarding outliers.

Several stochastic orders have been defined and their mathematical properties have
been well studied in the statistics literature [Shaked and Shanthikumar 2007; Kijima
and Ohnishi 1999]. Multiplicative nonnegative decreasing functions are a very popular
family F of scoring functions to rank an object in Rd

+, that is, F = {∏d
i=1 fi(xi)} where

each fi (for 1 ≤ i ≤ d) is nonnegative decreasing. In this article, we first investigate
the problem of efficiently computing the stochastic skylines regarding lower orthant
order [Shaked and Shanthikumar 2007], namely lskyline. Intuitively, an uncertain
object U stochastically dominates V regarding the lower orthant order if and only if the
probability mass of U is not smaller than the probability mass of V in any rectangular
region with the origin as the lower corner (e.g., the shaded region in Figure 1(b) and
Figure 2(a)). It is shown [Shaked and Shanthikumar 2007] that the lower orthant
order ≺F is the stochastic order defined over the family F of multiplicative decreasing
functions (see Section 2 for details); consequently, lskyline gives the superior set of

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:4 W. Zhang et al.

l

r

1 2 3 4

1

2

3

4

5

a1

a2

a3

b1

b2

c2

l

r

1 2 3 4

1

2

3

4

5

a1

a2

a3

b1

b2

c2

(a) (b)

c1c1

c3 c3B

C

A

Fig. 2. Motivating example for gskyline.

objects in a set U of uncertain objects, regarding the family of all negative multiplicative
decreasing functions and the expected utility principle, with the minimum size.

While lskyline works effectively for the family of multiplicative functions, it may miss
optimal solutions for other utility/scoring functions (say, linear functions). Motivated
by this, in this article we also study the problem of efficiently computing the stochastic
skyline based on the usual order [Shaked and Shanthikumar 2007], called “general
stochastic skyline” (gskyline). Intuitively, U dominates V regarding the usual order if
and only if the probability mass of U is not smaller than the probability mass of V
in any (possibly infinite) combination of the rectangular regions with the origin as the
lower corner (e.g., the shaded regions in Figure 2(a) and (b)). As shown in Shaked and
Shanthikumar [2007] and Section 2.2, the usual order is the stochastic order over the
family of all decreasing functions. Therefore, gskyline gives the superior set of objects
in a set U of uncertain objects, regarding the family of all decreasing functions and the
expected utility principle, with the minimum size.

pskyline vs lskyline. Driven by many recent applications involving uncertain data
(e.g., environment surveillance, market analysis, WWW, and sensor networks), re-
search in uncertain data management has drawn considerable attention from the
database community. The skyline analysis over uncertain data has been firstly pro-
posed in Pei et al. [2007] where the possible world semantics is adopted to calculate the
probabilities, namely skyline probabilities, of uncertain objects not being dominated
by other uncertain objects. In Pei et al. [2007], efficient techniques are developed to
retrieve uncertain objects with skyline probabilities greater than a given threshold,
namely, pskyline, while Atallah et al. [2011] provides efficient techniques to compute
skyline probabilities for all objects. While effectively capturing the possible dominance
relationships among uncertain objects, skyline probabilities do not provide the candi-
dature of optimal solutions regarding the expected utility principle; this is illustrated
by the following example.

Assume that a head coach wants to select the best high-jump athlete from all athletes
in her team to attend an international game and decides to evaluate the athletes
against their game performances in the recent years, say the last 3 years, where the
performance of each athlete in a game is recorded by the final height h and the total
number t of failed trials over all attempted heights before successfully passing the
final height (h, t). To conform with the preference of smaller values, assume that h is
recorded into 5 bands instead of actual value: band 1: within a reach of smashing the
current world record, band 2: world leading heights, band 3: good, band 4: fair, band
5: poor. The coach wants to select a player who is very stable (i.e., t is minimized)
and jumps high (i.e., h is minimized). Clearly, these two criteria might conflict with
each other. Consequently, a utility function f = f1(h) × f2(t) may be employed by
the coach to evaluate the overall performance of a player in a game, where f1 and

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:5

f2 are nonnegative decreasing functions, mapping [1, 5] to [0, 1] and [0,∞) to [0, 1],
respectively, with f1(1) = 1 and f2(0) = 1. The coach selects the athlete with the
maximum value of (f1(h) × f2(t)). Nevertheless, the game performance of an athlete
may fluctuate from game to game due to various reasons. Therefore, it is important
to evaluate players against their game performance statistic distributions. For this
purpose, an athlete U may be treated as an uncertain object and her performance
in each past game may be treated as an instance in a 2-dimensional space with the
same probability to occur if no other information is available. The coach could select a
player U such that E(f (U)) is maximized. Figure 1 gives a small-scale example where
3 players are involved.

As depicted in Figure 1(a), suppose that A, B, and C have 2 instances, respectively.
Each instance in objects A and B has the occurrence probability 1

2 . The occurrence
probabilities of c1 and c2 are 1

100 and 99
100 , respectively, assuming that the player C

has the same performance c2 for 99 games out of 100. While choosing an object U
from A, B, and C to maximize E [f (U)] in the light of the expected utility principle,
E [f (A)] = 1

2 f1(4) f2(1)+ 1
2 f1(2) f2(3), E [f (B)] = 1

2 f1(5) f2(2)+ 1
2 f1(3) f2(4), and E [f (C)] =

1
100 f1(1) f2(5) + 99

100 f1(4) f2(3). Note that nonnegative decreasing utility functions f1 and
f2 could be in any form depending on what kind of risks and trade-offs the coach wants
to take; for instance, f1 and f2 could be in exponential forms such as f1(h) = ea(1−h) and
f2(t) = e−bt where a > 0 and b > 0 may personally weigh the importance of h and t.

Nevertheless, Ais always preferred to Bsince E [f (A)] ≥ E [f (B)] for any nonnegative
decreasing functions f1 and f2, respectively. Suppose that f (h, t) = f1(h) f2(t) where
f1(h) = e1−h and f2(t) = e−t. It can be immediately verified that E [f (A)] > E [f (C)].
If the coach is taking more risks and only wants to select the athlete with a chance
to smash the world record, another nonnegative multiplicative decreasing function
f ′(h, t) = f ′

1(h) f ′
2(t) may be chosen such that f1 can be defined such that f ′

1(1) = 1 and
f ′
1(h) = 0 if h > 1 and f ′

2 still uses e−t. If f ′ is used, then C is the optimal solution since
E [f ′(A)] and E [f ′(B)] are 0. The example shows that A is preferred to B by any users
(i.e., by any such multiplicative decreasing utility functions) and should be excluded as
a candidate to any optimal solutions, while A and C should be kept as candidates. It is
immediate that lskyline serves for this purpose; that is, lskyline contains A and C but
excludes B.

While very useful in applications to determine probabilistic dominance relation-
ships, skyline probabilities cannot capture the preferences of utility (scoring) functions
regarding the expected utility principle. Regarding the example in Figure 1(a), it can
be immediately verified that the skyline probability of A is 1, the skyline probability
of B is 1

2 , and the skyline probability of C is 1
100 . Clearly, if we choose atheteses based

on skyline probability values, then B is always preferred to C; that is, there is no
chance to exclude B without excluding the object C. This is an inherent limitation of
the probabilistic skyline model.

Why gskyline? In what follows we show by an example that lskyline may miss the
optimal solutions for other utility/scoring functions (say, linear functions).

Assume the head coach in another team wants to select the best high-jump athlete
against game performance regarding the final rank r of an athlete in a game and
the rank l of the game; that is, each game performance of an athlete is recorded by
(r, l) where the lowest r and l values are 1 (the lower values, the better). Clearly, it is
desirable to select an athlete who always has the best performance in a top tournament;
that is, prefer lowest r and l. Similarly, r and l might often conflict with each other;
thus, a utility function f (r, l) may be employed to evaluate the overall performance of
an athlete in a game where f is nonnegative decreasing, mapping [1,∞) × [1,∞) to

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:6 W. Zhang et al.

[0, 1] with f (1, 1) = 1. For the same reason as before, an athlete may be treated as an
uncertain object U and her each game performance is treated as an instance in R2

+
with the same occurrence probability if there is no specific information. The coach may
select an athlete U with the maximal value of E [f (U)] based on the expected utility
principle. Figure 2(a) gives a small-scale example with 3 athletes A, B, and C.

In Figure 2, assume that A has 3 instances a1, a2, and a3 with the occurrence prob-
abilities 1

2 , 1
7 , 5

14 , respectively, assuming the game performance a1 occurs 7 times, a2
occurs 2 times, and a3 occurs 5 times. Suppose that B has 2 instances b1 and b2 with
the occurrence probabilities 1

2 and 1
2 , respectively; and C has 3 instances c1, c2, and c3

with the occurrence probabilities 1
8 , 1

8 , and 3
4 respectively. Immediately, the expected

utility of A regarding a utility function f is E [f (A)] = 1
2 f (a1) + 1

7 f (a2) + 5
14 f (a3) =

1
2 f (1, 4) + 1

7 f (2, 1) + 5
14 f (3, 2). Similarly, we can present E [f (B)] and E [f (C)].

A nonnegative decreasing utility function f may be in any form subject to the levels
of risks and trade-offs that the coach wants to take. For example, if the coach wants to
focus on the top 3 performances in ranks 1, 2, and 3 tournaments, f may be defined
as f (r, l) = 1

2
4−r

3 + 1
2

4−l
3 when r ≤ 3 and l ≤ 3 (the shaded area in Figure 2(a)) and 0

otherwise. It can be immediately verified that E [f (A)] = 25
84 is the maximum among the

3 objects; that is, A is optimal. If the coach wants to only count the top 3 performances
in rank 1 tournaments and the top 2 performances in rank 2 and 3 tournaments, f may
be defined as f (r, l) = 1

2
4−r

3 + 1
2

4−l
3 in the shaded area of Figure 2(b) and 0 otherwise; in

this case C is optimal since E [f (C)] = 1
6 is the maximum.

The example shows that A and C should be kept as candidates for users to make
a personal trade-off since A and C will be the optimal solutions for some nonnegative
decreasing utility functions, respectively, regarding the expected utility principle. It
can be immediately verified that for any nonnegative decreasing function f , E [f (A)] ≥
E [f (B)]; that is, A is always preferred to (better than) B. Consequently, B should be
excluded as a candidate for users to make a personal trade-off. These can be exactly
captured by gskyline.

Moreover, it can be immediately verified that the probability mass of A is not smaller
than the probability mass of C in any rectangular region with the origin as the lower
corner (e.g., the shaded region in Figure 2(a)); that is, A dominates C regarding the
lower orthant order. Thus, lskyline excludes C, and lskyline may miss the optimal
solutions for some utility/scoring functions. It can also be immediately verified that
the skyline probabilities of A, B, and C are 51

56 , 7
16 , and 3

14 , respectively. Clearly, B is
always preferred to C based on the skyline probability values; that is, it is impossible
to exclude the object B without excluding the object C based on skyline probabilities;
this demonstrates again that skyline probabilities do not guarantee candidatures of
optimal solutions regarding the expected utility principle.

Challenges and Contributions. While the two small-scale examples given earlier il-
lustrate the benefits of computing stochastic skylines, lskyline and gskyline are useful
tools in any application requiring to rank uncertain objects in the light of expected
utility principle. They also demonstrate that lskyline suits for the applications where
only nonnegative decreasing multiplicative ranking functions are involved, and gsky-
line suits for the applications where all monotonic ranking functions are involved.
Motivated by these, in the article we study the problem of efficiently computing both
lskyline and gskyline. Consider that in many applications, the probability distribution
of an uncertain object is described by a set of instances and their occurrence probabil-
ities (i.e., discrete cases). In the article, our investigation focuses on discrete cases of
the probability distributions of objects.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:7

The main challenge for computing stochastic skylines is to efficiently check the
stochastic dominance relationship between two uncertain objects U and V regard-
ing the lower orthant order and usual order, respectively. A naive way to check the
stochastic dominance relationship between two uncertain objects U and V regarding
the lower orthant order is to enumerate all rectangular regions with the origin as the
lower corner to determine the lower orthant order between two objects; this involves
testing an infinite number of regions. Enumerating all the combinations of such rect-
angular regions to determine usual order only incurs more costs. While testing the
stochastic dominance relationship between two uncertain objects U and V regarding
the lower orthant order and usual order, respectively, can be easily reduced to the finite
computation, trivially conducting such computation may involve exponential time. To
the best of our knowledge, this is the first attempt to introduce the stochastic skylines
model over uncertain data. Our principal contributions can be summarized as follows.

—We introduce a novel stochastic skyline model on uncertain data with the aim to
provide a minimum set of candidates to the optimal solutions for users to make their
personal trade-offs over the family of multiplicative decreasing scoring functions and
the family of general decreasing scoring functions, respectively.

—We are the first to show that the problem of determining the lower orthant order
between two objects is NP-complete regarding the dimensionality. A novel, efficient
algorithm is developed to verify if an uncertain object is stochastically dominated by
another object based on the lower orthant order. The algorithm runs in polynomial
time if the dimensionality is fixed.

—We are the first to show that the problem of testing the usual order can be solved
in polynomial time regarding all inputs, including the dimensionality, though it
involves more complex geometric forms in the definition than that in the definition
of the lower orthant order. We convert the problem to the max-flow problem, and
then propose novel techniques to effectively reduce the size of auxiliary networks to
significantly speed up the testing.

—To efficiently compute stochastic skylines among a large number of objects, following
the filtering verification paradigm we develop novel spatial- and statistics-based
filtering techniques to efficiently and effectively eliminate nonpromising uncertain
objects. Our filtering techniques are based on an R-Tree.

—We show, by a theoretical analysis and experiments, that the expected sizes of lskyline
and gskyline are bounded by that of skyline over certain data. Our experiments also
show that the sizes of lskyline and gskyline are similar, though in the worst case,
the size of gskyline could be much larger than that of lskyline. These guarantee that
stochastic skylines can be used as effectively as conventional skyline for personal
trade-offs.

Besides the theoretical results, our extensive experiments on real and synthetic data
are conducted to demonstrate the efficiency of our techniques.

The rest of the article is organized as follows. In Section 2, we formally define the
problem and present preliminaries including a size estimation of stochastic skylines.
In Section 3, we show that the problem of determining the lower orthant order between
two objects is NP-complete regarding the dimensionality, and then present an efficient
verification algorithm that runs in polynomial time if d is fixed. Section 4 shows the
problem of testing the usual order can be conducted in polynomial time and presents
a novel paradigm to speed up the testing algorithm. In Section 5, we present our
framework, and novel filtering techniques. Experiment results are presented in Section
6. Section 7 provides the related work and Section 8 concludes the work. Note that to
enhance the readability, we put some lengthy proofs in the Appendix.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:8 W. Zhang et al.

Table I. The Summary of Notations

Notation Definition
stochastic skylines stochastic skylines (e.g., lskyline and gskyline)
lskyline stochastic skyline based on lower orthant order
gskyline stochastic skyline based on usual order
U, V uncertain objects in Rd+
u, v (x, y) instances (points) of uncertain objects in Rd+
n number of uncertain objects
Umbb the MBB of U
Umax (Umin) upper (lower) corner of the Umbb
R(x, y) rectangular region with x (y) as lower (upper) corner
Rx rectangular region with the origin and x as lower and upper corners
U.cdf the cumulative distribution function of U
μi(U) the mean of U on the i-th dimension
σ 2

i (U) the variance of U on the i-th dimension
U ≺lo V U stochastically dominates V regarding lower orthant orders
U ≺uo V U stochastically dominates V regarding usual orders

2. BACKGROUND INFORMATION

Table I summarizes the mathematical notations used throughout this article.

2.1. Problem Definition

We use Rd
+ to denote the points in Rd with nonnegative coordinate values. Without loss

of generality, in the article we only consider the Rd
+ space. A point (instance) x referred

in the article, by default, is in Rd
+.

Let the ith coordinate value of x be denoted by xi. Given two points x and y, x
dominates y (denoted by x ≺ y) if xi ≤ yi for 1 ≤ i ≤ d and there is a j ∈ [1, d] such that
xj < yj . We use x � y to denote the case that either x equals y on each dimension or
x dominates y, and use R(x, y) to denote a rectangular region in Rd

+ where x and y are
lower and upper corners, respectively.

An uncertain object can be described either continuously or discretely. As discussed
earlier, in this article we focus on discrete cases and objects are on Rd

+. That is, an
uncertain object U consists of a set {u1, . . . , um} of instances (points) in Rd

+ where for
1 ≤ i ≤ m, ui is in Rd

+ and occurs with the probability pui (pui > 0), and
∑m

i=1 pui = 1.
For a point x ∈ Rd

+, the probability mass U.cdf (x) of U is the sum of the probabilities of
the instances in R((0, . . ., 0), x) where (0, 0, . . ., 0) is the origin in Rd; that is, U.cdf (x) =∑

u�x,u∈U pu.

Example 1. Suppose the instances of each object in Figure 1(b) have the appearance
probabilities as described in the example depicted in Figure 1(a). Then, A.cdf (x) = 1

2 ,
B.cdf (x) = 1

2 and C.cdf (x) = 1
100 .

Given a set S ⊆ Rd
+, U.cdf (S) denotes the probability mass of U restricted to S; that

is, U.cdf (S) = ∑
u∈S∩U pu.

Example 2. As depicted by Figure 2, there are 3 objects A, B, and C. Regarding
the shaded area S1 in Figure 2(a), A.cdf (S1) = 1

2 , B.cdf (S1) = 1
2 , and C.cdf (S1) = 1

4 ,
while regarding the shaded area S2 in Figure 2(b), A.cdf (S2) = 1

7 , B.cdf (S2) = 0, and
C.cdf (S2) = 1

4 .

The minimal bounding box Umbb of U is the minimal rectangular region S such that
U.cdf (S) = 1. For presentation simplicity, the lower (upper) corner of Umbb is denoted
by Umin (Umax) where the lower (upper) corner of Umbb is the point in Umbb with the

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:9

minimum (maximum) coordinate value on each dimension, and uncertain objects are
sometimes abbreviated to “objects”.

Lower Orthant Order and lskyline. We first present lower orthant orders [Shaked
and Shanthikumar 2007].

Definition 1 (Lower Orthant Order). Given two uncertain objects U and V , U
stochastically dominates V regarding the lower orthant order, denoted by U ≺lo V , if
U.cdf (x) ≥ V .cdf (x) for each point x ∈ Rd

+ and ∃y ∈ Rd
+ such that U.cdf (y) > V .cdf (y).

Definition 2 (lskyline). Given a set of uncertain objects U , U ∈ U is a lskyline object
if there is no object V ∈ U such that V ≺lo U . The set of all lskyline objects of U is the
lskyline of U .

Regarding the example in Figure 1, it can be immediately verified that A ≺lo B,
B �≺lo C, C �≺lo B, C �≺lo A, and A �≺lo C. lskyline consists of A and C. Regarding the
example in Figure 2, lskyline consists of only one object A.

Usual Order and gskyline. For the ease of a comparison with the lower orthant order,
we define the usual stochastic order [Shaked and Shanthikumar 2007] (usual order for
short) on lower sets.

Definition 3 (Lower Set). A set S of points in Rd
+ is a lower set if for each pair of

points x � y in Rd
+, y ∈ S implies x ∈ S.

Example 3. The shaded areas in Figure 2(a) and (b) are lower sets, respectively.

Definition 4 (Usual Order). Given two uncertain objects U and V , U stochastically
dominates an object V regarding the usual order, denoted by U ≺uo V , if U.cdf (S) ≥
V .cdf (S) for each lower set S ⊆ Rd

+ and U.cdf (S′) > V .cdf (S′) for a lower set S′ ⊆ Rd
+.

Example 4. Regarding the depicted lower set S1 (shaded area) in Figure 2(a), since
A.cdf (S1) = 1

2 and C.cdf (S1) = 1
4 , C.cdf (S1) < A.cdf (S1); thus, C �≺uo A. Regarding the

depicted lower set S2 (shaded area) in Figure 2(b), since A.cdf (S2) = 1
7 and C.cdf (S2) =

1
4 , A.cdf (S2) < C.cdf (S2); thus, A �≺uo C.

Note that the usual order in Shaked and Shanthikumar [2007] is defined over upper
sets; that is, in Definition 4, lower sets are replaced by upper sets, and ≥ and > are
replaced by ≤ and <, respectively. It is well-known (see wikipedia for example) that
the complement of any lower set is an upper set, and vice versa. Consequently, it is
immediate that Definition 4 is equivalent to the usual order definition in Shaked and
Shanthikumar [2007].

Definition 5 (gskyline). In a set U of uncertain objects, U ∈ U is a gskyline object if
there is no object V ∈ U such that V ≺uo U . The set of all gskyline objects of U is the
gskyline of U .

Problem Statement. In this article we investigate the problem of efficiently computing
lskyline and gskyline of a set of uncertain objects, respectively.

2.2. Preliminary

We say that U stochastically equals V regarding the lower orthant order, denoted by
U =lo V , if U.cdf (x) = V .cdf (x) for any point x ∈ Rd

+. Similarly, U stochastically equals
V regarding the usual order, denoted by U =uo V , if U.cdf (S) = V .cdf (S) for any lower
set S in Rd

+. Given two objects U and V , we define U = V if there is a one to one
mapping h from U to V such that for each instance u of U , u = h(u) and pu = ph(u);
that is, h preserves the locations and probabilities. The following lemma states that =lo

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:10 W. Zhang et al.

(=uo) is equivalent to = between two uncertain objects; it can be immediately verified
based on the definition of U.cdf and V .cdf .

LEMMA 1. Given two (uncertain) objects U and V , U =lo V (U =uo V) if and only if
U = V .

LEMMA 2. Given two objects U and V where U �= V , U ≺lo V (U ≺uo V) if and only
if for any x (lower set S) in Rd

+, U.cdf (x) ≥ V .cdf (x) (U.cdf (S) ≥ V .cdf (S)).

Lemma 2 states that when U �= V , we can remove the condition “ ∃y ∈ Rd
+ such

that U.cdf (y) > V .cdf (y)” from Definition 1, and “U.cdf (S′) > V .cdf (S′) for a lower set
S′ ⊆ Rd

+” from Definition 4, respectively.

Minimality of Stochastic Skylines. A function f in Rd
+ is decreasing if ∀x, y ∈ Rd

+, x � y
implies f (x) ≥ f (y). The following theorems are proved in Shaked and Shanthikumar
[2007, pages 309 and 266, respectively].

THEOREM 1. Let U = (U1, . . .,Ud) and V = (V1, . . ., Vd) be two d-dimensional inde-
pendent random vectors to describe objects U and V , respectively, where Ui and Vi are
subvariables of U and V on ith-dimension. Assuming U �= V , then U ≺lo V if and
only if E [

∏d
i=1 fi(Ui)] ≥ E [

∏d
i=1 fi(Vi)] for every collection { fi | 1 ≤ i ≤ d} of univariate

nonnegative decreasing functions where expectations exist.

Theorem 1 implies that the lower orthant order is the stochastic order over the family
of all nonnegative multiplicative decreasing functions. Consequently, lskyline provides
the superior set of objects in a set U of uncertain objects, regarding the expected utility
principle and all nonnegative multiplicative decreasing functions, with the minimum
size.

THEOREM 2. Let U and V be two d-dimensional independent random vectors to de-
scribe objects U and V , respectively. Assuming U �= V , then U ≺uo V if and only if
E [f (U)] ≥ E [f (V)] for any f in the family of nonnegative decreasing functions where
expectations exist.

Theorem 2 implies that the usual order is the stochastic order over the family of all
decreasing functions. Consequently, gskyline provides the superior set of objects in a
set U of uncertain objects, regarding the expected utility principle and all decreasing
functions, with the minimum size.

gskyline, lskyline, and pskyline. Recall that for an x ∈ Rd
+, Rx denotes the rectangular

region in Rd
+ where the origin (0, 0, . . ., 0) and x are lower and upper corners, respec-

tively (e.g., the shaded region in Figure 2(a)). Clearly, Rx is one type of lower sets. Thus,
U �≺lo V implies U �≺uo V . Therefore, lskyline is a subset of gskyline. Note that the
two examples in Section 1 show that a threshold-based probabilistic skyline (pskyline)
model [Atallah et al. 2011; Pei et al. 2007] is orthogonal to gskyline and lskyline mod-
els, respectively; that is, while precisely providing the skyline probabilities, pskyline
is not modeled to provide the candidature of optimal solutions regarding the expected
utility principle. Figure 3 summarizes the relationships among lskyline, gskyline, and
a threshold-based pskyline [Pei et al. 2007].

While lskyline provides the minimum candidate set to the optimal solutions of all
monotonic (decreasing) multiplicative functions, lskyline may fail to cover the optimal
solutions of some monotonic (decreasing) functions in other forms (e.g., linear functions)
as shown by the example in Section 1. Table II summarizes all the situations towards
whether gskyline (GS), lskyline (LS), and a threshold-based pskyline (PS) may serve
as a candidate set to the family of all monotonic functions (general F) and the family
of all monotonic multiplicative functions (m.p F), respectively.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:11

g s k y l i n e

l s k y l i n e

p s k y l i n e

Fig. 3. Relationship among 3 skylines.

Table II. Candidature of Different Skyline Models

GS LS PS
general F yes & minimum no N/A
m.p F yes yes & minimum N/A

Size Estimation. It tends to be quite complicated to estimate the size of lskyline (gsky-
line) of U when each object is described by discrete cases. Below, we show that if each ob-
ject U ∈ U follows a continuous distribution with the uniform assumption, the expected
number of lskyline (gskyline) objects is bounded by lnd(n)/(d+1)!, where lnd(n)/(d+1)!
is the expected size of conventional skyline in (d + 1) dimensional space [Chaudhuri
et al. 2006], and n is the number of objects in U .

THEOREM 3. Given a set of objects U , assume that MBBs of all objects are hyper-cubes.
We assume that the pdf of an object is continuous with the uniform distribution (i.e., a
constant in its MBB), and the lengths of the MBBs and lower corners of the MBBs on
each dimension are independent and follow the same distribution. Then the expected
sizes of lskyline and gskyline are both bounded by lnd(n)/(d + 1)!.

PROOF. ∀U ∈ U , let l(U) denote the length of the hyper-cubes respectively. Clearly,
(Umin, l(U)) is a point in (d+1)-dimensional space. Since the pdf of each object follows the
uniform distribution, it can be immediately verified that if (Umin, l(U)) ≺ (Vmin, l(V)),
then U stochastically dominates V . Consequently, the number of objects on gsky-
line of U is not greater than the size of skyline of {(Umin, l(U))|U ∈ U}. Since
{(Umin, l(U))|U ∈ U} is a set of points on a (d + 1)-dimensional space such that ev-
ery coordinate is independent and follows the same distribution, the expected skyline
size of {(Umin, l(U))|U ∈ U} is bounded by lnd(n)/(d + 1)! [Chaudhuri et al. 2006].

Immediately, the same argument also holds for gskyline. Thus, the expected size of
gskyline is also bounded by lnd(n)/(d + 1)!.

Note that in the worst case, the ratio of the size of gskyline over the size of lskyline
could be as bad as n, where n is the number of uncertain objects. Shortly we give such an
example by Figure 4; there are four objects and each object has two instances with the
same occurrence probability (0.5). According to the definition of lskyline and gskyline,
A is the only lskyline object and all objects (A,B,C,D) are gskyline objects. Following
the similar rationale, we can come up with the examples with n objects in which A
is the only lskyline object and all n objects are not dominated (general order) by any
other object if their coordinate values (except A) are in reverse order in dimension x
and dimension y.

Nevertheless, the empirical study in Section 6 shows that the size of lskyline and the
size of gskyline in a d-dimension space are very close in practice, and are most likely
bounded by the size of conventional skyline in a (d + 1)-dimensional space.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:12 W. Zhang et al.

1 2 3 4 5

1

2

3

4

5

A

B

a1

a2
b1

b2
x

y

C
D

c1

d1

d2 c2

Fig. 4. #gskyline VS #lskyline.

2.3. Framework

Our techniques for computing the lskyline (gskyline) of a set U of objects follow the
standard two-phase framework: pruning and verification. In the pruning phase, ef-
ficient and effective techniques are developed to prune nonpromising objects. In the
verification phase, we present novel and efficient algorithms to test if U ≺lo V and
U ≺uo V , respectively, for two uncertain objects U and V . The algorithm to test if
U ≺lo V runs in polynomial time regarding the number of instances in U and V when
the dimensionality is fixed; and the algorithm to test if U ≺uo V between two uncer-
tain objects runs in polynomial time regarding the dimensionality, and the number of
instances in U and V .

3. TESTING LOWER ORTHANT ORDER

According to Lemma 1, testing if U =lo V is equivalent to testing if U = V ; thus it can be
conducted in O(dmlog m) if instances are firstly sorted according to the lexicographic
order where m is the number of instances in U (V). Given two objects U and V , in
this section we present an efficient algorithm to determine whether U stochastically
dominates V if U �= V .

3.1. Testing Finite Number of Points Only

Naively following Definition 1 to compute U.cdf (x) and V .cdf (x) for every point x in
Rd

+ is computationally infeasible since an infinite number of check points is involved.
A point x ∈ Rd

+ is a violation point regarding U �lo V if U.cdf (x) < V .cdf (x).
Assuming that U �= V , it immediately follows from Definition 1 and Lemma 2 that
U does not stochastically dominate V regarding the lower orthant order if and only if
there is a violation point regarding U ≺lo V . Consequently, determining if U ≺lo V is
converted to determining if there is a violation point regarding U ≺lo V , given U �= V .

An intuitive way by checking every instance v in V to find a violation point does
not work. As depicted in Figure 5, U consists of two instances u1 and u2 with pu1 =
pu2 = 1

2 , V consists of 3 instances v1, v2, and v3 with pv1 = pv2 = pv3 = 1
3 , and v3 is

placed at the same position of u2. It can be immediately verified that for 1 ≤ i ≤ 3,
U.cdf (vi) ≥ V .cdf (vi). Nevertheless, we cannot conclude that U ≺lo V since x in Figure
5 is a violation point regarding U ≺lo V ; that is, V .cdf (x) > U.cdf (x).

For an object V in Rd
+, we use Di(V) (1 ≤ i ≤ d) to denote the set of all distinct ith

coordinate values of the instances of V . Then,
∏d

i=1 Di(V) forms a grid; see Figure 6(a)
as an example. Theorem 4 next states that we only need to check every (grid) point in
∏d

i=1 Di(V) to determine if there is a violation point regarding U ≺lo V .

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:13

1 2 3 4 5

1

2

3

4

5

V

u1

v1

v2

u2
v3

x U

Fig. 5. An example.

(a) (b)

x

i n s t a n c e s o f V i n s t a n c e s o f U

x ' x

x '
x

x '

Fig. 6. Grid points.

THEOREM 4. Suppose that U �= V . Then, V is not stochastically dominated by U
regarding the lower orthant orders if and only if there is a (grid) point x ∈ ∏d

i=1 Di(V)
that is a violation point regarding U ≺lo V (i.e., V .cdf (x) − U.cdf (x) > 0).

PROOF. The “if” part is immediate according to Definition 1. Next we prove the “only
if” part.

Suppose that V is not stochastically dominated by U regarding the lower orthant
orders. Then, based on Definition 1 and Lemma 2 there is a violation point regarding
U ≺lo V . It can be immediately verified that if there is a violation point regarding
U ≺lo V then there must be a violation point x in Vmbb. Let x′ be the lower corner
of the grid cell in

∏d
i=1 Di(V) which contains x; see Figure 6(a) for example. It is

immediate that V .cdf (x′) = V .cdf (x) and U.cdf (x′) ≤ U.cdf (x). Since U.cdf (x) <
V .cdf (x), U.cdf (x′) < V .cdf (x′).

Naive Algorithm. A naive algorithm is to check every grid point to calculate its U.cdf
and V .cdf ; it terminates when we find a violation point or all grid points are exhausted.
It is a correct algorithm, if U �= V , based on Theorem 4. Note that there are at most
md grid points in

∏d
i=1 Di(V) where m is the number of instances in V . Consequently,

the naive algorithm needs to check O(md) grid points for computing U.cdf and V .cdf .

3.2. NP-Completeness

In fact we can show that the exponential time complexity regarding d is unavoidable
by Theorem 5 given shortly. The proof of Theorem 5 is lengthy and nontrivial which

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:14 W. Zhang et al.

will be presented in Appendix A.1. The basic idea is to convert the minimum set
cover problem (decision version) [Garey and Johnson 1990] to a special case of testing
whether U �≺lo V .

THEOREM 5. Given two objects U and V , assume that U �= V . Then, the problem of
determining whether U �≺lo V is NP-complete regarding the dimensionality d.

3.3. Efficient Testing Algorithm

The NP-completeness implies that the exponential time complexity regarding d in the
worst case cannot be improved. In this section, we present two techniques that may
potentially reduce the number of grid points to be tested in practice.

Switching Distinct Values Only. For 1 ≤ i ≤ d, let the set of distinct values of V
on ith dimension, Di(V) = {a1, a2, . . ., al}, be sorted increasingly; that is, ai < ai+1 for
1 ≤ i ≤ l − 1. aj (1 ≤ j ≤ l) is a switching distinct value regarding U if there is at
least one value in Di(U) that is in [aj, aj+1] when j < l or in [al,∞) when j = l. Let
Ds

i (V) denote the set of switching distinct values of Di(V) regarding U . The following
theorem implies that only the (grid) points in

∏d
i=1 D s

i (V), instead of
∏d

i=1 Di(V), need
to be checked. For example, the grid framed by the solid lines in Figure 6(b) depicts
∏d

i=1 D s
i (V). Clearly, D s

i (V) ⊆ Di(V); consequently, we may significantly reduce the
number of grid points for testing.

THEOREM 6. Assume that U �= V . Then, V is not stochastically dominated by U
regarding the lower orthant orders if and only if there is a (grid) point x ∈ ∏d

i=1 D s
i (V)

such that V .cdf (x) − U.cdf (x) > 0.

PROOF. Note that
∏d

i=1 D s
i (V) ⊆ ∏d

i=1 Di(V). It can be immediately verified that
for each grid point x ∈ ∏d

i=1 Di(V) but not in
∏d

i=1 D s
i (V), there is a grid point x′ in

∏d
i=1 D s

i (V) such that x ≺ x′ and the instances of U falling in R((0, . . ., 0), x) are the
same as those of U falling in R((0, . . ., 0), x′); see such two pairs in Figure 6(b) for an
example. Therefore, U.cdf (x′) = U.cdf (x) and V .cdf (x′) ≥ V .cdf (x). Thus, this theorem
immediately follows from Theorem 4.

Discarding a Rectangular Region. Let R(x, y) denote a rectangular region in Rd
+

where the lower and upper corners are x and y, respectively. R(x, y) is valid regarding
U ≺lo V if each point in R(x, y) is valid regarding U ≺lo V . Theorem 7 provides a
sufficient condition for R(x, y) to be valid. Consequently, R(x, y) can be discarded from
the procedure of finding a violation point.

THEOREM 7. Given an R(x, y) ∈ Rd
+, suppose that U.cdf (x) ≥ V .cdf (y). Then, for every

point z in R(x, y) (i.e., x � z � y), U.cdf (z) ≥ V .cdf (z).

PROOF. Since x � z � y, U.cdf (z) ≥ U.cdf (x) and V .cdf (y) ≥ V .cdf (z). Thus, the
theorem holds.

To facilitate the observation in Theorem 7, our algorithm is partitioning-based, which
iteratively divides rectangular regions into disjoint subrectangular regions. We use a
queue Q to maintain a set of disjoint rectangular regions that cannot be discarded by
Theorem 7 (i.e., not yet valid regarding U ≺lo V). Then, for each rectangular region
R(x, y) ∈ Q the algorithm checks if one of the latest generated corner points of R(x, y)
is a violation point regarding U ≺lo V . If none of them is a violation point, then the
algorithm checks if R(x, y) should be discarded or should be split into two disjoint
subrectangular regions to be put into Q. Note that the corner points of a R(x, y) are
the points (z1, z2, . . ., zd) such that for 1 ≤ i ≤ d, zi is xi or yi where x = (x1, . . ., xd)

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:15

ALGORITHM 1: Verification(U ≺lo V)
Input : objects U and V
Output : if U ≺lo V (i.e., true or f alse)

1 for i = 1 to d do
2 D s

i (V) := getSwitchingDistinct(V , U);

3 if Initial Check (U ≺lo V) returns false then
4 return false

5 mark each corner point of Vmbb as new; Q := {Vmbb};
6 while Q �= ∅ do
7 r := Q.deque();
8 calculate V .cdf (x) and U.cdf (x) for each new corner point x of r;
9 if a new corner of r is a violation point then

10 return false ;

11 if r cannot be discarded and r is not an atom then
12 Q := Q∪ Split(r);

13 return true

and y = (y1, y2, . . ., yd). The algorithm terminates if a violation point is found or Q is ∅.
Algorithm 1 shortly presents our partitioning-based testing techniques. The algorithm
outputs “true” if U ≺lo V and “false” otherwise.

In Algorithm 1, line 2 is to get the set D s
i (V) of switching distinct values of V

regarding U on each dimension i. Line 3 conducts a quick check on each dimension
i as follows. Let U = (U1, . . .,Ud) and V = (V1, . . ., Vd) where Ui and Vi (1 ≤ i ≤ d)
are ith subvariables of U and V , respectively. For each distinct value aj in D s

i (V) (1 ≤
i ≤ d), Initial Check (U ≺lo V) calculates the total probability, denoted by V .cdf (Vi ≤
aj), of the instances of V with its ith-coordinate value not greater than aj ; similarly,
U.cdf (Ui ≤ aj) is also calculated for U . If V .cdf (Vi ≤ aj) > U.cdf (Ui ≤ aj) regarding
the currently encountered aj , then U �≺lo V and Initial Check (U ≺lo V) returns false.
The correctness of Initial Check (U ≺lo V) immediately follows from Definition 1.

Line 8 calculates V .cdf (x) and U.cdf (x) for a new corner x of r. Line 9 checks whether
one of the new corners (grid points) is a violation point and then removes their “new”
marks afterwards. In line 11, the algorithm checks whether r is valid regarding U ≺lo V
(i.e., the condition in Theorem 7) and thus can be discarded. r is an atom if it cannot
be further split to generate new grid points; that is, on each dimension i, r contains at
most 2 values from D s

i (V).
Split(r) in line 12 splits r into two subregions as follows. Note that for each dimension

i (1 ≤ i ≤ d), the values in D s
i (V) contained by r must be consecutive and are denoted

by r ∩ D s
i (V). Firstly, a dimension i is chosen such that |r ∩ D s

i (V)| is maximized. Then,
the two median values l1 < l2 in r ∩ D s

i (V) are chosen to split r into r1 and r2; that is,
the points in r with the ith coordinate value not greater than l1 belong to r1, and the
others in r belong to r2. The two median values are used for splitting since we want
to “maximize” the number of grid points to be discarded in case if one of r1 and r2 is
valid regarding U ≺lo V . Moreover, Split(r) also marks the newly generated corners
of r1 and r2; that is, the corners of r1 and r2 are not the corners of r. Note that there
is an extreme case; while splitting on the ith dimension, if r contains only 3 values in
D s

i (V), then splitting r into r1 and r2 on the ith dimension leads to that one of r1 and r2
degenerates into a rectangular region in a (d − 1) space.

Example 5. As depicted in Figure 7(a), assume that V has 5 switching distinct
values in each dimension. Algorithm 1 splits Vmbb into r1 and r2 in Figure 7(b). Suppose

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:16 W. Zhang et al.

(a) (b) (c) (d)

r1
r2

r3

r4 r5

r6

Fig. 7. An example for splitting.

that r1 is discarded by line 11. Algorithm 1 further splits r2 into r3 and r4 in Figure 7(c).
Again, assume that r3 is discarded. r4 is split into r5 and r6 by the algorithm where r6
is a line segment containing 3 grid points. Any further splitting on r6 will be conducted
on the line segment. In this example, at each iteration, solid points in Figure 7 indicate
the newly generated grid points.

Based on the correctness of Initial Check (U ≺lo V), Theorems 4, 6, and 7, Algorithm
1 is correct when U �= V .

Time Complexity. Algorithm 1 intensively involves the computation of cumulative
probabilities of U and V over a rectangular region. To speed up such computation,
the instances of each object U are organized by an in-memory aggregate R-tree, called
local aggregate R-tree of U , where each entry records the sum of the probabilities
of instances contained. Then, the window aggregate techniques in Tao and Papadias
[2012] are employed in our algorithm to calculate various U.cdf and V .cdf .

getSwitchingDistinct(V , U) is conducted as follows. Note that Di(V) is sorted in-
creasingly (1 ≤ i ≤ d). Let Di(V) = {a1, . . ., al}. Since the occurrence probability of each
instance is positive, based on the definition of switching distinct values it is immediate
that aj (j < l) is a switching distinct value if and only if U.cdf (Ui < aj) < U.cdf (Ui ≤
aj+1); here, we calculate U.cdf (Ui ≤ aj) and U.cdf (Ui < aj) by the window aggre-
gate techniques in Tao and Papadias [2012]. We also calculate V .cdf (Vi ≤ aj) for each
aj ∈ D s

i (V) to conduct Initial Check (U ≺lo V). Clearly, lines 1–4 totally run in time
O(dmlog m+ dm(T (Uartree) + T (Vartree))) where T (Uartree) and T (Vartree) are the costs to
conduct window aggregates over the local aggregate R-trees of U and V , respectively,
m is the number of instances in V , and O(mlog m) is the time complexity to get each
Di(V).

Assuming that D s
i (V) is stored in an array. Since it is sorted, it takes constant

time to find the two splitting values in Split(r) along a dimension. Since Algorithm
1 calculates U.cdf (x) and V .cdf (x) only once at each grid point x in

∏d
i=1 D s

i (V), the
total time spent in calculating U.cdf and V .cdf at all grid points is O((T (Uartree) +
T (Vartree))

∏d
i=1 ki) where ki = |D s

i (V)|. Clearly, checking if r is valid regarding U ≺lo V
is only invoked when one new grid point (corner) is generated; consequently, the total
time for such a check is O(

∏d
i=1 ki). Thus, the time complexity from line 5 to the end

is O((T (Uartree) + T (Vartree))
∏d

i=1 ki). The following theorem is immediate based on the
preceding discussions.

THEOREM 8. Algorithm 1 runs in time O(dmlog m+ md(T (Uartree) + T (Vartree))) where
m is the number of instances in V .

The naive algorithm in Section 4.1 can also employ the window aggregate techniques
in Tao and Papadias [2012] to calculate U.cdf and V .cdf . Although the time complexity
of Algorithm 1 is similar to that of the naive algorithm in the worst case, our experiment

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:17

) b () a (

Fig. 8. Lower sets.

in Section 6 demonstrates that the naive algorithm is impractical, while Algorithm 1
is very efficient in practice.

4. TESTING USUAL ORDER

In this section, we investigate the problem of efficiently testing if U ≺uo V . Based on
the definitions of the lower orthant order and the usual order, when U ≺lo V , it could
be either U ≺uo V or U �≺uo V as shown by the example in Figure 2. Therefore, the
testing techniques for the lower orthant order are not applicable to testing the usual
order.

In fact, the usual order involves more complicated geometric terms than the lower
orthant order as discussed in Section 1. It can be immediately verified that any combi-
nation of the rectangles with the origin as the lower corner is a lower set and vice versa.
As shown in Figure 8, a lower set can be as simple as one rectangle in Figure 8(a) and
as complex as the combination of an arbitrary (possibly infinite) number of rectangles
in Figure 8 (b), while the lower orthant order always involves a simple lower set: one
rectangle (e.g. the one in Figure 8(a)).

The techniques developed in the last section are based on finding a violation point;
that is, finding one rectangle with the origin as the lower corner and the violation point
as the upper corner that violates Definition 1. Nevertheless, trivially finding a lower
set that violates Definition 4 is computationally infeasible since even one lower set
could involve a combination of infinite number of rectangles as shown in Figure 8(b).
Shortly we show for the first time regarding the existing literature that testing if
U ≺uo V can be conducted in polynomial time, regarding the dimensionality and the
number of instances in U and V , in contrast to the complexity of testing U ≺lo V
which is shown NP-complete regarding the dimensionality. Without loss of generality,
we assume U �= V since testing U = V can be conducted in O(dmlog m) time by
firstly sorting instances according to the lexicographic order where m is the number of
instances in U and V .

4.1. Finite Computation

Naively following Definition 4 to determine if U ≺uo V involves enumerating an infinite
number of lower sets and each lower set may involve a combination of infinite number
of rectangles. Theorem 9 next shows that only a finite number of rectangles with the
origin as the lower corner should be involved.

THEOREM 9. Suppose that U �= V . U ≺uo V if and only if for each subset X of V ,
U.cdf (∪x∈XRx) ≥ V .cdf (∪x∈XRx).

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:18 W. Zhang et al.

PROOF. Recall that Rx is the rectangular region with the origin and x as lower and
upper corners, respectively. Since ∪x∈XRx is a lower set, the “only if” part immediately
follows from Definition 4.

Suppose that S is a lower set. Let LS = ∪x∈V ∩S Rx. Immediately, LS ⊆ S and
V .cdf (LS) = V .cdf (S). Since LS ⊆ S, U.cdf (S) ≥ U.cdf (LS). Since V ∩ S ⊆ V ,
U.cdf (LS) ≥ V .cdf (LS) based on the “if” condition in this theorem. Thus, U.cdf (S) ≥
V .cdf (S). Hence, the “if” part holds.

Although Theorem 9 states that the testing may be conducted in finite time, enu-
merating all subsets of V requires exponential time.

4.2. Reduction to Max-Flow

We convert the problem of testing if U ≺uo V to the max-flow problem. The max-flow
problem is to find a feasible flow through a single-source, single-sink network that is
maximized. It is formally defined as follows. Let G = (N, A) be a network with s, t ∈ N
being the source and sink, respectively, where N is the set of nodes and A is the set of
arcs. The capacity of an arc 〈u, v〉 is a nonnegative value w(u, v). A feasible flow f of G
maps each arc in A to a nonnegative value with the following constraints:

—Capacity Constraint: ∀〈u, v〉 ∈ A, f (u, v) ≤ w(u, v).
—Flow conservation: ∀u ∈ N − {s, t}, ∑

〈v,u〉∈A f (v, u) = ∑
〈u,v〉∈A f (u, v).

The value of a feasible flow f is | f | = ∑
〈s,v〉∈A f (s, v). The max-flow of G is a feasible

flow f such that | f | is maximized. It is well-known that the max-flow can be computed
in polynomial time (e.g., Hochbaum [2008]).

Reduction to Max-Flow. Next we convert testing if U ≺uo V to the problem of deter-
mining if an auxiliary network GU,V has a max-flow f with | f | = 1. We construct the
auxiliary network GU,V = (N, A) from U and V as follows.

—Each instance u ∈ U corresponds to the two nodes u1 and u2, and an arc 〈u1, u2〉 with
the capacity w(u1, u2) = pu in GU,V .

—Each instance v ∈ V corresponds to the two nodes v1 and v2, and an arc 〈v1, v2〉 with
the capacity w(v1, v2) = pv in GU,V .

—For each pair of vertices u ∈ U and v ∈ V , if u � v, there is an arc 〈v2, u1〉 in GU,V

with the capacity w(v2, u1) = 2.
—In GU,V , we make the source s connect to each v1 by an arc 〈s, v1〉 with the capacity

w(s, v1) = 2, and make each u2 connect to the sink t by an arc 〈u2, t〉 with the capacity
w(u2, t) = 2.

Example 6. The two objects U and V are shown in Figure 9(a) where the 4 instances
(u1, u2, u3, and u4) of U have the same probability 1

4 , and the 3 instances (v1, v2, and
v3) of V have the same probability 1

3 . Figure 9(b) shows the corresponding auxiliary
network GU,V together with the arc capacities labeled; note that the arcs without
capacity labeled in Figure 9(b) have the capacity 2.

The Theorem 10 shortly shows that determining if U ≺uo V is equivalent to testing
if the auxiliary network GU,V has a max-flow with the flow value 1. The detailed proof
of Theorem 10 will be presented in Appendix A.2.

THEOREM 10. Suppose that U �= V . U ≺uo V if and only if GU,V has a max-flow f
with | f | = 1.

Note that in the reduction to the max-flow problem, it is not necessary to split an
instance into two vertices. We present the reduction based on splitting instances for

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:19

u1

u3

v2u2

v1

u4

v3

1
1v

2
1v 2

2v 2
3v

1
2v 1

3v

1
1u 1

2u 1
3u 1

4u

2
1u 2

2u 2
3u 2

4u

s

t
(a) (b) G U , V

3
1

3
1

3
1

4
1

4
1

4
1

4
1

U V

Fig. 9. Reduction to max-flow.

ALGORITHM 2: BasicV (U ≺uo V)
Input : objects U and V
Output : if U ≺uo V (i.e., true or f alse)

. if Umin � Vmin & Umax � Vmax then

. Step 1: Construct GU,V .

. Step 2: Run max-flow algorithm [Hochbaum 2008] on GU,V to generate max-flow f . If
| f | = 1 then return true; otherwise, return f alse.
. else return f alse.

the ease of presenting our speedup technique in Section 4.4 and also because it does not
cause much extra costs according to the existing techniques to determine the max-flow.

4.3. Basic Verification Algorithm

Recall that Umin and Umax are lower and upper corners of Umbb; and Rx is the rectangular
region with the origin as the lower corner and x as the upper corner. We have the
following theorem.

THEOREM 11. Suppose that Umin �� Vmin or Umax �� Vmax. Then U �≺uo V .

PROOF. Note that U �= V . If Umax �� Vmax, then ∃u ∈ U such that u �∈ RVmax ; con-
sequently, U.cdf (RVmax) < 1. As V .cdf (RVmax) = 1, U.cdf (RVmax) < V .cdf (RVmax). Thus,
U �≺uo V as RVmax is a lower set.

If Umin �� Vmin, then ∃v ∈ V such that Umin �� v. Thus, Rv ∩U = ∅; that is, U.cdf (Rv) =
0. Since V .cdf (Rv) ≥ pv > 0, U.cdf (Rv) < V .cdf (Rv); this means U �≺uo V .

Based on Theorems 10 and 11, a basic version of our verification algorithm, Algo-
rithm 2, is outlined next. It outputs “true” if U ≺uo V and “false” otherwise.

The open source-code of the state-of-art max-flow algorithm in Hochbaum [2008] is
used in step 2 to compute the max-flow f of GU,V in Algorithm 2. It runs in O(nmlog m)
where n is the number of nodes and m is the number of arcs in GU,V . Therefore,
Algorithm 2 runs in time O(tG + nmlog n) where tG is the time to construct GU,V . Note
that the costs of determining the � relationship for every pair of instances in U × V
are dominant in constructing GU,V . Shortly, we present a popular R-tree-based level-
by-level paradigm [Brinkhoff et al. 1993] to determine the � relationship for every pair
of instances in U × V instead of naively enumerating every pair in U × V .

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:20 W. Zhang et al.

U 1

u1 u2

u3

V1v1 v2

v3

U 2u4 u5

u6

V2
v4 v5

v6

Fig. 10. Level-by-level.

ALGORITHM 3: Determining (FQ)
Input : TU (R-tree of U), TV (R-tree of V)
Output : FQ

1 (Umbb, Vmbb) → PQ;
2 while PQ �= ∅ do
3 dequeue (PQ) → (EU , EV) ;
4 for each child E of EU do
5 for child entry E′ of EV do
6 if E fully dominates E′ then
7 (E, E′) → FQ ;
8 else
9 if E partially dominates E′ then (E, E′) → PQ ;

Level-by-Level. In our algorithm, the instances in every object U are organized by an
in-memory R-tree TU . As depicted in Figure 10, TU has two intermediate entries U1
and U2, and TV has two intermediate entries V1 and V2. As none of the instances in
U2 dominates any instances in V1, the enumeration of pairs in U2 × V1 can be avoided;
the level-by-level paradigm can achieve this.

The notation that follows is needed. Given two entries in R-trees (i.e., rectangular
regions) E and E′, E fully dominates E′ if Emax � E′

min; E partially dominates E′ if
Emin � E′

max but Emax �� E′
min; E does not dominate E′ if Emin �� E′

max. Here, Emin (Emax)
is the lower (upper) corner of E. Note that if both E and E′ degrade to points, then
there is no partial domination, and that E fully dominates E′ is equivalent to the �
relationship between two points as defined in Section 2.

Example 7. Regarding Figure 10, U1 fully dominates V1, and partially dominates
V2; U2 does not dominate V1.

The level-by-level computation is outlined next in Algorithm 3. At each level, we
maintain a queue PQ to store pairs of entries (EU , EV) such that EU (∈ TU) partially
dominates EV (∈ TV). We also maintain a queue FQ to store pairs of entries (EU , EV)
such that EU (∈ TU) fully dominates EV (∈ TV). Algorithm 3 dequeues every pair in
PQ for a further exploration. Once PQ is exhausted, FQ stores all the information of
u � v in U × V to be used to construct GU,V .

Example 8. Regarding U and V in Figure 10, PQ is initialized into {(Umbb, Vmbb)}
by Algorithm 3. Then, line 3 dequeues PQ to get (Umbb, Vmbb). PQ becomes {(U1, V2)}
and FQ becomes {(U1, V1), (U2, V2)} after the first iteration (executing line 4 to line 9).

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:21

In the next iteration, line 3 dequeues PQ to get (U1, V2). Then the execution of line 4
to line 9 gives PQ = ∅ and updates FQ to {(U1, V1), (U2, V2), (u1, v6), (u2, v6)}. Algorithm
3 thus terminates since PQ = ∅.

Note that in Algorithm 3, a child entry of a leaf is the leaf itself. That is, if one of
TU and TV first reaches the leaf level then it stays at the leaf level while the other
continues to go down. The Pruning Rule 1 in Section 5.2 and Algorithm 2 ensure that
Umbb partially dominates Vmbb if U and V enter into step 1.

Theorem 12 can be immediately verified; it states that FQ generated by Algorithm 3
exactly captures all u � v relationships. Consequently, GU,V can be constructed based
on the � relationships captured by FQ. While Algorithm 3 runs in time O(d|U ||V |), it
is well-known that it can avoid the complexity �(d|U ||V |) in many cases in practice.

THEOREM 12. ∀u ∈ U and ∀v ∈ V , u � v if and only if there is a pair (EU , EV) ∈ FQ
such that u ∈ EU and v ∈ EV .

4.4. Simplifying Network for Quick Testing

Having a large number of arcs in an auxiliary network of U and V not only increases the
construction costs but also increases costs of computing the max-flow. While Algorithm
3 can avoid enumerating every pair of instances in EU ×EV when EU does not dominate
EV , it still has to enumerate every pair of instances in EU × EV for each (EU , EV) ∈ FQ.
Regarding Example 8, FQ leads to total 20 such pairs, including 9 from U1 × V1 and 9
by U2 × V2. The 20 pairs are converted to 20 arcs in GU,V . This is unavoidable due to
the requirement of constructing GU,V .

Shortly we propose a simplified auxiliary network G s
U,V by treating EU as a unit and

EV as another unit for each (EU , EV) ∈ FQ while constructing G s
U,V . Then we prove

U ≺uo V if and only if G s
U,V has a max-flow f with | f | = 1. Regarding Example 8, FQ

will lead to only 4 arcs in G s
U,V , one by (U1, V1), one by (U2, V2), one by (u1, v6), and one

by (u2, v6).
To construct G s

U,V , we treat each in-memory R tree TU as a network GU as follows.

—Each entry E ∈ TU , from the root to leafs, corresponds to the two nodes E1 and E2,
and an arc 〈E1, E2〉 with the capacity w(E1, E2) = pE where pE = ∑

u∈E pu.
—Each link from a parent entry E1 to a child entry E2 corresponds to an arc 〈E2

1 , E1
2〉

in GU with the capacity w(E2
1 , E1

2) = 2.

Example 9. Regarding the example in Figure 10, assume that u1, u2, and u3 have
the same probability 1

5 ; u4, u5, u6 have the same probability 2
15 ; vi (for 1 ≤ i ≤ 6) has

the probability 1
6 . GV and GU are depicted and framed by boxes in Figure 11(a) and

Figure 11(b) where U and V denote the roots of TU and TV , respectively. Note that the
arcs without capacities labeled have the capacity 2.

Constructing G s
U,V . As follows, G s

U,V is constructed by connecting GV to GU with the
arcs corresponding to pairs of entries in FQ.

—Connecting the source: Add an arc 〈s, V 1〉 to link the source s to the root V of TV with
the capacity w(s, V 1) = 2.

—Connecting the sink: Add an arc 〈u2, t〉 to link each leaf u in TU (i.e., an instance in
U) to the sink t with the capacity w(u2, t) = 2.

—Connecting GV to GU : Run Algorithm 3 to get FQ. For each pair (EU , EV) of entries
in FQ, add an arc 〈E2

V , E1
U 〉 to G s

U,V with the capacity w(E2
V , E1

U) = 2.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:22 W. Zhang et al.

1
1

V 1
2

V

2
1

V 2
2

V

1
1

v

2
1

v

1
2

v

2
2

v

1
3v

2
3v

1
2

u

2
2

u

1
3u

2
3u

1
4u

2
4u

1
1

u

2
1

u

1
1

U

2
1

U

1
2

U

2
2

U

t
(a) (b)

s

1
4v

2
4v

1
5v

2
5v

1
6v

2
6v

1
5u

2
5u 2

6u

1
6u5

3
5
2

5
1

5
1

5
1

1

15
2

15
2

15
2

1

2
1

2
1

6
1

6
1

6
1

6
1

6
1

6
1

V1

V2

U 1

U 2G V

G U

Fig. 11. G s
U,V .

Example 10. Continue Example 8 where the generated FQ is {(U1, V1), (U2, V2),
(u1, v6), (u2, v6)}. Consequently, the 4 arcs 〈V 2

1 ,U 1
1 〉, 〈V 2

2 ,U 1
2 〉, 〈v2

6, u1
1〉, 〈v2

6, u1
2〉 are added

to link GV and GU as described earlier. Figure 11 shows the result: G s
U,V .

Theorem 13 next states that testing if U �uo V , when U �= V , is equivalent to
determining if G s

U,V has a maximum flow f with | f | = 1. The proof of Theorem 13 is
presented in Appendix A.3.

THEOREM 13. Suppose that U �= V . U ≺uo V if and only if G s
U,V has a max-flow f

with | f | = 1.

QuickTest. (U ≺uo V) is a modification of the basic verification algorithm, Algorithm
2, where G s

U,V is constructed in step 1 and used in step 2 instead of GU,V . The correct-
ness of QuickTest immediately follows from Theorem 13.

At each intermediate entry E of an R-tree TU , we also keep pE to speed up the
construction of G s

U,V . While the worst-case time complexity of QuickTest remains the
same as that of Algorithm 2, our experiment demonstrates QuickTest can achieve a
speedup up to one order of magnitude against Algorithm 2. Note that in constructing
G s

U,V , we could reverse one of GU and GV or both; this gives 3 other ways to construct
G s

U,V . Nevertheless, our initial experiment shows that they have a similar performance.
We do not remove the non-s source nodes and non-t sink nodes from G s

U,V since any
nontrivial max-flow algorithm can efficiently handle this.

5. STOCHASTIC SKYLINES COMPUTATION

In this section, we present index-based efficient algorithms to compute two kinds of
stochastic skylines, lskyline and gskyline, respectively. They adopt the same framework
and same index. We first present the index to be used, followed by our index-based
framework, filtering techniques, and algorithm analysis.

5.1. Statistic R-Tree

As discussed in Sections 3.3 and 4.4, the instances of an object are organized into a
local aggregate R-tree. In our algorithm, we assume that a global R-tree is built on the
MBBs of each object; that is, the data entries (unit data) in the global R-tree are MBBs.
To facilitate our filtering techniques, we store the following statistic information at
each entry of the global R-tree.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:23

Suppose that U has m instances in Rd
+, u1, u2, . . . , um with the occurrence probabil-

ities p1, p2, . . . , pm, respectively.

Definition 6 (Mean μ). The mean of U , denoted by μ(U), is
∑m

i=1 pi × ui.

Note that μ(U) is in Rd
+. For 1 ≤ i ≤ d, μi(U) denotes the ith coordinate value of

μ(U).

Definition 7 (Variance σ 2). For 1 ≤ i ≤ d, σ 2
i (U) = ∑m

j=1 pj(uj,i − μi(U))2 where
each uj,i denotes the ith coordinate value of uj .

Suppose that an entry E of the global R-tree has l child entries {E1, E2, . . ., El}. E
stores the MBB of each child entry Ej (1 ≤ j ≤ l), as well as μi(Ej) and σ 2

i (Ej) for 1 ≤ i ≤
d. Here, for 1 ≤ i ≤ d, μi(Ej) = min{μi(V) | V ∈ Ej} and σ 2

i (Ej) = max{σ 2
i (V) | V ∈ Ej}

are called the mean and the variance of Ej on ith dimension, respectively.
The global R-tree, together with the aforesaid statistic information, is called a statis-

tic R-tree, denoted by sR-tree. Our algorithmic framework for computing stochastic
skylines is conducted against sR-tree of U . To correctly use the verification algorithms
(Algorithm 1 and QuickTest in Section 4.4, respectively) in this article we assume that
no two objects U and V in an sR tree of U are equal. In case that U contains equal
objects, we only index one of the equal objects and record the object IDs for others while
building an sR-tree of U .

5.2. Framework for Stochastic Skylines Computation

It is immediate that for any lower set S ∈ Rd
+, if U.cdf (S) ≤ V .cdf (S) and V .cdf (S) ≤

W.cdf (S) then U.cdf (S) ≤ W.cdf (S). Immediately, ≺uo has the transitivity. Since ≺lo
is defined on a specific type of lower sets, any rectangle with the origin as the lower
corner, ≺lo also has the transitivity. Consequently, the standard filtering paradigm is
applicable to computing both lskyline and gskyline; that is, if U ≺lo V (or U ≺uo V)
then V can be immediately removed since for any W , if V ≺lo W (or V ≺uo W) then
U ≺lo W (or V ≺uo W) and W can be pruned by U . Theorem 14 next shows that both
stochastic orders also “preserve” the distance.

THEOREM 14. For two objects U and V , if dist(Umin) < dist(Vmin) then V �≺lo U and
V �≺uo U, where dist(Umin) and dist(Vmin) denote the distances of Umin and Vmin to the
origin, respectively.

PROOF. Immediately, Vmin �≺ Umin and Vmin �= Umin. Thus, there must be an instance
u in U such that Vmin �≺ u and Vmin �= u. Therefore, U.cdf (Ru) > 0 and V .cdf (Ru) = 0
where Ru is the rectangle with the original and u as the lower and upper corners,
respectively. Note that Ru is also a lower set. Thus the theorem holds.

Our index-based algorithm, Algorithm 4, adopts the branch-and-bound search
paradigm [Papadias et al. 2003]. While Algorithm 4 that follows is presented against
computing lskyline, computing gskyline follows exactly the same procedures by re-
placing ≺lo with ≺uo, and storing gskyline in Rssky. Algorithm 4 iteratively traverses
on the global sR-tree to find the data entry (MBB) such that its lower corner has the
minimum distance to the origin. An advantage by doing this is that we can guarantee
that later accessed objects are with distances to the origin not smaller than those of
the earlier accessed objects. Consequently, based on Theorem 14 a later accessed object
is only possible to stochastically dominate an earlier accessed object when such dis-
tances from two objects are the same. Thus, our algorithm has a progressive nature if
all such distances are different. Moreover, when dist(Umin) �= dist(Vmin), our algorithm
only needs to test one of “if U stochastically dominates V ” and “if V stochastically
dominates U ” but not both.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:24 W. Zhang et al.

ALGORITHM 4: lskyline Computation(sR)
Input : sR (sR-Tree for U)
Output : Rssky (lskyline of U)

1 Rssky := ∅;
2 QUEUE(the root entry of sR) into a heap H;
3 while H �= ∅ do
4 E := H.deheap();
5 if NOT PRUNE (Rssky, E) then
6 if E is an MBB of a V (i.e a data entry) then
7 for each U ∈ Rssky do
8 if Verification(U ≺lo V) then
9 Goto Line 3;

10 else
11 if dist(Umin) = dist(Vmin) then
12 if Verification(V ≺lo U) then
13 Rssky := Rssky − {U } ;

14 Rssky := Rssky + {V };
15 else
16 QUEQUE(E) into H;

17 return Rssky

Lines 2 and 16 push each child entry descriptions of the root or E, including its
MBBs and the preceding statistic information, into the heap H. Here, H is a min-heap
built against the distances of the lower corners of the MBBs of entries to the origin.
PRUNE(Rssky, E) returns true if E is pruned by the current Rssky using our filtering
techniques in Section 5.3 for lskyline or the filtering techniques in Section 5.5 for
gskyline.

Line 8 (line 12) performs the verification algorithms, Algorithm 1 in Section 3.3 for
testing the lower orthant order in computing lskyline or the QuickTest algorithm in
Section 4.4 for testing the usual order in computing gskyline. Since U is accessed
earlier than V , U is impossible to be stochastically dominated by V unless dist(Umin) =
dist(Vmin) according to Theorem 14. When dist(Umin) = dist(Vmin), according to our
algorithm an object U involved in line 12 is not stochastically dominated by any objects
accessed earlier regarding the lower orthant order and the usual order, respectively,
including those in the current Rssky. Nevertheless, it is possible that V stochastically
dominates an earlier accessed object U with dist(Umin) = dist(Vmin); such U will be
detected and removed from Rssky by line 12 and line 13.

5.3. Filtering in Computing lskyline

A key in Algorithm 4 is to efficiently and effectively conduct PRUNE(Rssky, E). The
following two filtering techniques are developed to check if E can be pruned by U for
each object U in Rssky until Rssky is exhausted or E is pruned.

(1) MBB-Based Pruning. The following pruning rule is immediate according to Def-
inition 1 since each object contains at least 2 instances. Note that Emin denotes the
lower corner of the MBB of an entry E.

PRUNING RULE 1. If Umax ≺ Emin or Umax = Emin (i.e., Umax � Emin), then U stochas-
tically dominates every object in E regarding the lower orthant order; that is, E can be
pruned.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:25

U

V

Vm i n

Vm a x

U m a x

(a)

U

V

Vm i n

Vm a x

U m a x

(b)

1ia
2ia

ia

Fig. 12. Statistic pruning for lskyline.

(2) Statistic-Based Pruning. Our statistic-based pruning technique uses the observa-
tion in Theorem 7 combined with the Cantelli’s Inequality [Meester 2004].

Suppose that E cannot be pruned by U by Pruning Rule 1; that is, Umax �≺ Emin
and Umax �= Emin. Intuitively, E could still be pruned if U and E are “significantly”
separated from the statistic point of view; that is, Umax is significantly closer to Emin
than the mean of E. We show our basic ideas by the case when E is a data entry; that
is, E is Vmbb - the MBB of an object V .

Suppose that Umin � Vmin, Umax ≺ Vmax, and Umax �� Vmin. Let Umax = (a1, a2, . . ., ad),
Vmin = (b1, b2, . . ., bd), and I be the subset of {1, . . ., d} such that ai > bi if i ∈ I and
ai ≤ bi otherwise. Note that if I = ∅, then V is pruned by Pruning Rule 1. Figure 12
shows two cases in a 2-dimensional space where |I| = 2 in Figure 12(a) and |I| = 1 in
Figure 12(b).

Let k = |I|. We use the following k + 1 rectangular regions to cover Vmbb: ∀i ∈ I,
ri = {(x1, . . ., xd) | xi ≤ ai, (x1, . . ., xd) ∈ Vmbb}, and the (k + 1)th rectangular region is
R(Umax, Vmax). Note that for the ease of statistic estimation that follows, ri and rj (i, j ∈
I) share a common area. It can be immediately verified that R(Umax, Vmax) is always
a valid region regarding U ≺lo V . For each ri (i ∈ I), let the lower corner and upper
corner of ri be denoted by ri,min and ri,max, respectively. Clearly, ∀i ∈ I, V .cdf (ri,max) =
V .cdf (Vi ≤ ai) where Vi is the ith subvariable of V (i.e., V = (V1, . . ., Vd)), respectively.
Therefore, based on Theorems 7 and 4, if ∀i ∈ I, ri is valid regarding U ≺lo V then
U ≺lo V since ∪i∈Iri ∪ R(Umax, Vmax) covers Vmbb. Consider that Vmin = ri,min (∀i ∈ I).
Immediately, each ri is valid regarding U ≺lo V if

U.cdf (Vmin) ≥ max
i∈I

{V .cdf (Vi ≤ ai)}. (1)

In our pruning technique, we can precisely calculate U.cdf (Vmin) for both cases since
U ∈ Rssky is already read in memory; and the Cantelli’s Inequality [Meester 2004] is
employed to provide an upper bound for V .cdf (Vi ≤ ai). Let δ(x, y) be 1

1+ x2

y2

if y �= 0, 1 if

x = 0 and y = 0, and 0 if x �= 0 and y = 0.

THEOREM 15 (CANTELLI’S INEQUALITY [MEESTER 2004]). Suppose that t is a random
variable in R1 with mean μ(t) and variance σ 2(t), Prob(t − μ(t) ≥ a) ≤ δ(a, σ (t)) for
any a ≥ 0, where Prob(t − μ(t) ≥ a) denotes the probability of t − μ(t) ≥ a.

Note that Theorem 15 extends the original Cantelli’s Inequality [Meester 2004] to
cover the case when σ = 0 and/or a = 0. The following theorem provides an upper
bound for Prob(t ≤ b) when b ≤ μ.

THEOREM 16. Assume that 0 ≤ b ≤ μ(t). Then, Prob(t ≤ b) ≤ δ(μ(t) − b, σ (t)).

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:26 W. Zhang et al.

U

V

Vm i n

Vm a x

U m a x

(a) C a s e 1

U

V

Vm i n

Vm a x

U m a x

(b) Ca s e 2

1ia
2ia

U1 U2

U3 U4/ V 1 V2

V3 V4

U1 U2

V1 V2
1ia

Fig. 13. Statistic pruning for gskyline.

PROOF. Let t′ = 2μ(t) − t. It can be immediately verified that σ 2(t′) = σ 2(t) and
μ(t) = μ(t′). Applying Cantelli’s Inequality on t′, the theorem holds.

Now we generalize the previous observations formally into our second pruning rule.
Let Umax = (a1, a2, . . ., ad), Emin = (b1, b2, . . ., bd), and I is the subset of {1, . . ., d} such
that ai > bi if i ∈ I and ai ≤ bi otherwise. Let �(E,U) = maxi∈I{δ(μi(E) − ai, σi(E))} if
ai ≤ μi(E) for each i ∈ I; and �(E,U) = ∞ otherwise.

PRUNING RULE 2. Suppose that Umin � Emin and Umax ≺ Emax. If U.cdf (Emin) ≥
�(E,U), then every object in the entry E of the global R-tree is stochastically domi-
nated by U regarding the lower orthant order; that is, E can be pruned by U.

The proof of Pruning Rule 2 is presented in Appendix A.4.

5.4. Analysis of Algorithm 4 for Computing lskyline

Prune(Rssky, E) in Algorithm 4 is conducted as follows. For each object U in Rssky, we
first check Pruning Rule 1 and then Pruning Rule 2. It immediately terminates and
returns true if E is pruned. Clearly, Pruning Rule 1 runs in time O(d) and Pruning
Rule 2 runs in time O(d + T (Uartree)) for each U ∈ Rssky.

Correctness. Based on the correctness of our verification algorithm in Section 3.3,
and Pruning Rules 1 and 2, it can be immediately shown that Algorithm 4 is correct.

Access Order of Rssky. In Algorithm 4, the objects in Rssky can be accessed in any order.
Nevertheless, in our implementation, we access objects U in Rssky according to the
increasing order of dist(Umin) with the aim to maximize the chance that Verification(U ,
V) may terminate earlier and an entry may be pruned earlier.

5.5. Filtering in Computing gskyline

According to Definition 4, it is immediate that Pruning Rule 1 in computing lskyline,
the MBB-based Pruning in Section 5.3, can also be used as the first pruning rule
in computing gskyline. Nevertheless, Pruning Rule 2 in computing lskyline is not
applicable since U ≺lo V does not imply U ≺uo V . To follow is a new statistic-aggregate-
based pruning rule in computing gskyline.

Pruning Based on Statistic Aggregate. Suppose that E cannot be pruned by U by
Pruning Rule 1; that is, Umax �� Emin. Intuitively, E could still be pruned if Umax is very
“close” to Emin. Assuming E is an object V , the basic idea is to iteratively “trim” V by
U using Pruning Rule 1; if V can be completely trimmed off, then U ≺uo V (i.e., V is
pruned). What follows is an example.

Consider U and V in Figure 13(a). Clearly, U1 fully dominates V1 ∪ V2 and V1 ∪ V3,
respectively. If U.cdf (U1) ≥ V .cdf (V1 ∪ V2), then V1 ∪ V2 can be trimmed away from V .

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:27

Iteratively, since U1∪U3 fully dominates V3, V3 can be trimmed away if U.cdf (U1∪U3)−
V .cdf (V1 ∪ V2) ≥ V .cdf (V3), where U.cdf (U1 ∪ U3) − V .cdf (V1 ∪ V2) is the probability
mass of U in U1 ∪ U3 after discounting the trimming of V1 ∪ V2. Since V4 is fully
dominated by U and U.cdf (U) = V .cdf (V) = 1, we can claim U ≺uo V if V1 ∪ V2 ∪ V3 is
trimmed away. Similarly, for another possible trimming permutation, we need to test
if U.cdf (U1) ≥ V .cdf (V1 ∪ V3) and U.cdf (U1 ∪ U2) − V .cdf (V1 ∪ V3) ≥ V .cdf (V2) to
claim U ≺uo V . Pruning Rule 3 shortly formally presents this observation in Rd

+ based
on using Cantelli’s Inequality to provide an upper bound of the probability mass (see
Section 5.3).

We need the following notations to present Pruning Rule 3. Given U and V (U �= V),
let Umin � Vmin and Umax ≺ Vmax where Umax = (a1, a2, . . ., ad) and Vmin = (b1, b2, . . ., bd).
Assume that I (�= ∅) is the subset of {1, . . ., d} such that ai > bi for i ∈ I and ai ≤ bi
otherwise; note I = ∅ implies U ≺uo V based on Pruning Rule 1.

Let |I| = k, and {i1, i2, . . ., ik} is a permutation of I. For 0 ≤ j ≤ k − 1, RU
ij ,≤b denotes

the set of points (x1, . . ., xd) in Umbb such that xi ≤ bi if i ∈ {i j+1, . . ., ik}; that is, the
remaining of Umbb after its “right” parts are cut by the (k − j) hype-planes xi = bi for
i ∈ {i j+1, . . ., ik}, respectively; note that each point in RU

i0,≤b fully dominates Vmbb.

Example 11. Regarding the example in Figure 13, assume that the horizontal
dimension is 1 and the vertical dimension is 2. Clearly, I = {1, 2} for the two objects U
and V in Figure 13(a); and I = {1} for the example in Figure 13(b).

Regarding Figure 13(a), if (1, 2) is a permutation of I (i.e., i1 = 1 and i2 = 2), RU
i0,≤b is

U1, RU
i1,≤b is U1 ∪ U2.

Regarding Figure 13(b), as I only contains the dimension 1, there is only one permu-
tation; that is, i1 = 1. RU

i0,≤b is U1.

Given a U ∈ Rssky and an entry E in sR-tree, let Umin � Emin, and Umax ≺ Emax
where Umax = (a1, a2, . . ., ad) and Emin = (b1, b2, . . ., bd). For 1 ≤ i ≤ d, �i(E,U) =
δ(μi(E) − ai, σ

2
i (E)) when ai ≤ μi(E) and �i(E,U) = ∞ otherwise.

PRUNING RULE 3. Assume Umin � Emin, Umax ≺ Emax, and I is the subset of {1, . . ., d}
such that ai > bi for i ∈ I and ai ≤ bi otherwise. Suppose that {i1, . . ., ik} is a permutation
of I. If the following conditions hold, then for every object V in E, U ≺lo V ; that is, E
can be pruned by U.

(1) For each i ∈ I, ai < μi(E).
(2) For 1 ≤ j ≤ k, U.cdf (RU

ij−1,≤b) ≥ ∑ j
l=1 �il (E,U).

The proof of Pruning Rule 3 is presented in Appendix A.5.

5.6. Execution and Analysis of Algorithm 4 in Computing gskyline

Prune(Rssky, E) in Algorithm 4 is conducted as follows. For each entry E and each
object U in Rssky, we first check Pruning Rule 1 and then check Pruning Rule 3. It
terminates and returns true if E is pruned. Pruning Rule 1 runs in time O(d).

If a permutation of I is given, testing the conditions in Pruning Rule 2 can be
conducted in O(d + k × t(Urtree)) where O(t(Urtree)) is the average time complexity to
run the window aggregate techniques in Tao and Papadias [2012] to calculate U.cdf s
and k = |I|. In our implementation, we examine one particular permutation obtained
by the greedy paradigm such that iteratively, for 1 ≤ j ≤ k, we choose i j from I such
that (U.cdf (RU

ij−1,≤b) − ∑ j
l=1 �il (E,U)) is maximized and the pruning fails/terminates

immediately if it is negative. The complexity is O(d+ k2t(Urtree)) for each U ∈ Rssky and
each entry E.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:28 W. Zhang et al.

Note that using the permutation, generated by the greedy heuristic, may fail to
find a “feasible” permutation to meet the conditions in Pruning Rule 2. Nevertheless,
our initial experiment in a lower-dimensional space (d ≤ 4) shows that possible gains
in pruning powers are very small by exploring all permutations. We omit a further
improvement due to space limits.

Correctness. Based on the correctness of our verification algorithms (Section 4), and
Pruning Rules 1 and 3, Algorithm 4 for computing gskyline is correct.

Access Order of Rssky. We use the same access order as that in computing lskyline
with the same aim.

6. EMPIRICAL STUDY

We conduct a thorough performance evaluation on the efficiency and effectiveness of
our techniques to compute both lskyline and gskyline. Since this is the first work in
stochastic skyline computation, the performance evaluation is conducted against our
techniques only. We implement the following techniques.

—lsky. Algorithm 4 proposed in Section 5.2, together with the verification algorithm
(Algorithm 1) in Section 3.3 and Pruning Rules 1 and 2 in Section 5.3, to compute
lskyline.

—lsky-NoP. lsky without Pruning Rule 1 and 2.
—lsky-NoP2. lsky without Pruning Rule 2.
—lsky-NaiveV. lsky with the filtering techniques in Section 5.3 and the naive verifica-

tion algorithm in Section 4.1.
—gsky. Algorithm 4 proposed in Section 5.2, together with the verification algorithm

(QuickTest) in Section 4.4 and the two pruning rules (Pruning Rules 1 and 3) in
Section 5.5, to compute gskyline.

—gsky-NoP. gsky without two pruning rules - Pruning Rules 1 and 3.
—gsky-NoP3. gsky without the second pruning rule in computing gskyline- Pruning

Rule 3.
—gsky-BasicV. gsky with the filtering techniques in Section 5.5 and the basic verifica-

tion algorithm Algorithm 2 in Section 4.3.

6.1. Experiment Setup

All algorithms proposed in the article are implemented in standard C++ with STL li-
brary support and compiled with GNU GCC. Experiments are conducted on a PC with
Intel Xeon 2.4 GHz dual CPU and 4G memory under Debian Linux. In our implemen-
tation, MBBs of the uncertain objects are indexed by an sR-tree with page size 4096
bytes. The instances of an object are organized by a main-memory-based aggregate
R-tree with fan-out 4 and we load in the whole aggregate R-tree of V if V cannot be
pruned by the filtering techniques. The open source-code of the max-flow algorithm in
Hochbaum [2008] is used in our algorithm.

We use both real and synthetic datasets in our evaluation process.

The real dataset is extracted from NBA players’ game-by-game statistics from 1991
to 2005 (http://www.nba.com), containing 339, 621 records of 1, 313 players. A player
is treated as an uncertain object with the game records as its instances. Instances of
an object take equal probability. Three attributes are selected in our experiments: the
number of points, the number of assistances, and the number of rebounds. The NBA
dataset is employed since the MBBs of players have a very large overlapping degree;
thus it may give a good challenge to our techniques.

Synthetic data is generated by modifying the benchmark data generator
in Börzsönyi et al. [2001] with the following parameters. The centers of object MBBs

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:29

Table III. Parameters

edge length h 0.02, 0.04, 0.06, 0.08, 0.1
dimensionality d 2, 3, 4, 5
number of objects n 20k, 40k, 60k, 80k, 100k
number of instances m 200, 400, 600, 800, 1k
object center distribution anti, corr, inde
instance distribution unif, zipf, norm, mix

Table IV. pskyline vs Stochastic Skylines

hit of # hit of
p # psky lskyline gskyline

0.5 0 0 0
0.05 83 76 80
0.005 326 122 128

5 × 10−10 837 124 131

hit of # hit of
p # psky lskyline gskyline

0.8 3 3 3
0.08 190 146 152

0.008 427 201 217
3 × 10−10 1135 264 283

(a) NBA(# lskyline: 127, # gskyline: 135) (b) 3d (# lskyline: 283, # gskyline: 303)

follow Anti-correlated (anti), Correlated (corr), or Independent (inde) distributions with
the default anti. Each dimension value domain is (0, 1]. The MBBs of objects are
hyper-cube and their edge length randomly varies in (0, 2h] where the average length
h varies from 0.02 to 0.1 with the default 0.04. The average number m of instances in
each object varies from 200 to 1000 with the default 400. Instance locations of an object
follow one of the 4 distributions, uniform(uni f), normal(norm), zipf, or a mixture of
uni f , norm and zipf (mix). In uni f , the instances of an object are distributed uniformly
inside an MBB with the same occurrence probability. In zipf, one instance u of an object
is first randomly allocated and then the distances from all other instances to u follow
the zipfdistribution with z = 0.5 and the instance occurrence probabilities also follow
the same zipfdistribution. In norm, the instances follow the normal distribution inside
MBB with the standard deviation σ = 0.2 × h, and the occurrence probabilities are
the same. In mix, the preceding 3 distributions are mixed and each distribution has a
portion of 1

3 ; mix is used as the default in the experiment.
We also study the impact of other key parameters. Due to space limits, some exper-

iment results are presented in Appendix B. The dimensionality (d) varies from 2 to 5
with the default value 3. The number n of objects varies from 20k to 100k where the
default value is 20k.

Table III summarizes parameter ranges and default values (in bold font). Note that
in the default setting, the total number of instances is 8 millions. The maximal number
of total instances of the datasets is 40 millions. In the experiments that fellow, these
parameters use default values unless otherwise specified.

6.2. Size of Stochastic Skyline

pskyline, lskyline, and gskyline. We use the NBA data and a 3d synthetic dataset with
the centers of MBBs following the inde distributions. The experiment result in Table IV
shows the number of probabilistic skyline objects [Pei et al. 2007] (# psky), the number
of lskyline objects (# lskyline), and the number of gskyline objects (# gskyline) where p
indicates the threshold used in generating probabilistic skylines, and # hit of lskyline
and # hit of gskyline are the numbers of lskyline objects and gskyline objects contained
in the corresponding probabilistic skyline, respectively. It demonstrates that a non-
stochastic skyline object may have a quite large skyline probability, while a stochastic
skyline object may have very small skyline probability; that is, the probabilistic skyline
model is orthogonal to the stochastic skyline models.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:30 W. Zhang et al.

 0

 500

 1000

 1500

anti inde corr

S

ky
lin

e
O

bj
ec

ts 1589

907

110910721070

342 283 297 268 294

72 26 32 40 41

conv unif zipf norm mix

(a) # lskyline

 0

 500

 1000

 1500

anti inde corr

S

ky
lin

e
O

bj
ec

ts 1589

1132
12601184 1178

342 303 309 270 336

72 29 39 46 47

conv unif zipf norm mix

(b) # gskyline

Fig. 14. Skyline size vs different distributions.

Note that gskyline is a superset of lskyline (Section 2.2); the experiment also demon-
strates this. In our experiment, to retain the preference of the smaller values, we
change all statistics to negative values. We use the binary code in Pei et al. [2007] to
generate probabilistic skylines.

Figure 14(a) and Figure 14(b) report the sizes of lskyline and gskyline regarding
different distributions of instances locations and object MBB centers, respectively. The
x-coordinate in Figure 14 indicates different distributions of MBB centers. For each
distribution of MBB centers, we record the number of gskyline objects regarding a
distribution of instance locations. conv denotes the conventional skyline over the data
points in a 4d-space where each data point is the combination of the lower corner and
the edge length of an MBB. It demonstrates that the sizes of lskyline and gskyline may
be bounded by such conv in practice.

We further explore the size difference of lskyline and gskyline regarding the number
of objects, average number of instances per object, and the distribution of object MBBs’
centers. The results show that the difference is small in practice though theoretically
the ratio of #gskyline over #lskyline may equal the number of all uncertain objects.
Details are presented in Appendix B.1.

6.3. Evaluating Efficiency

We evaluate the performance of lsky, lsky-NoP2, gsky and gsky-NoP3 since the filtering
techniques combining naive verification algorithms (i.e., lsky-NaiveV and gsky-BasicV)
or the algorithms without filtering techniques (i.e., lsky-NoP and gsky-NoP) are very
inefficient (details are reported in Appendix B.2).

Figure 15 reports the evaluation of lsky, lsky-NoP2, gsky, and gsky-NoP3 against
different distributions of instance locations and NBA data. Both lsky and gsky are
quite efficient. It also shows that lsky and gsky always significantly outperform lsky-
NoP2 and gsky-NoP3, respectively; that is, the Pruning Rule 2 and Pruning Rule
3 are very effective in practice. Note that lsky is significantly more efficient than
gsky when the dimensionality is low, while the Appendix shows that gsky beats lsky

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:31

 0

 50

 100

 150

mix unif zipf norm nba

P
ro

ce
ss

in
g

T
im

e
(s

)

4.48.47.2
16.6

5.6
13.28.2

27.5

4.59.27.2
20.2

6.5
10.610.2

24.7
18.4

25.2
36.0

111.7

lsky
gsky

lsky-NoP2
gsky-NoP3

Fig. 15. Processing time regarding different distributions.

 0

 20

 40

20k 40k 60k 80k 100k

P
ro

ce
ss

in
g

T
im

e
(s

) lsky-NoP2
lsky

(a) #Objects of lskyline

 0

 50

 100

 150

20k 40k 60k 80k 100k

P
ro

ce
ss

in
g

T
im

e
(s

) gsky-NoP3
gsky

(b) #Objects of gskyline

Fig. 16. Processing time regarding #Objects.

 0

 20000

 40000

 60000

 80000

20k 40k 60k 80k 100k

I/O

 (
pa

ge
s)

lsky-NoP2
lsky

(a) # objects of lskyline

 0

 20000

 40000

 60000

 80000

20k 40k 60k 80k 100k

I/O

 (
pa

ge
s)

gsky-NoP3
gsky

(b) # objects of gskyline

Fig. 17. I/O costs regarding different parameters.

when the dimensionality increases to 7 due to the NP-completeness regarding the
dimensionality.

In Figure 16, we evaluate the scalability of our algorithms against different dataset
sizes. Figure 16(a) and (b) show that the performance of all algorithms degrades “lin-
early” with the growth of dataset size. The experiment is also conducted while varying
the number of instances, MBB sizes, and dimensionality; the results are presented in
Appendix B.2 and show that computing gskyline is more expensive than lskyline.

We further examine the effectiveness of the statistic pruning rules (i.e., Pruning
Rule 2 and Pruning Rule 3) by evaluating the I/O costs reduced. Figure 17 reports the
number of pages accessed in lsky, lsky-NoP2, gsky, and gsky-NoP3 regarding dataset
sizes. It shows that the Pruning Rule 2 and Pruning Rule 3 are very effective and lead

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:32 W. Zhang et al.

Table V. Time in Seconds (s)

20k 40k 60k 80k 100k
Filter 0.27 0.67 0.82 1.31 1.39
Verify 1.93 3.56 5.56 7.47 4.48

I/O 2.18 4.47 4.98 6.89 8.26

20k 40k 60k 80k 100k
Filter 0.46 1.34 1.81 3.60 4.70
Verify 5.70 14.34 20.80 38.20 45.84

I/O 2.27 4.67 5.19 7.15 8.58

(a) lsky (b) gsky

to around 2 times reduction of the number of pages accessed. A similar trend of I/O
costs is observed by varying dimensionality and we report the details in Appendix B.2.

Table V gives a breakdown information of the filtering, verification, and I/O time
(in seconds). The results are reported where we vary the number of objects from 20k
to 100k. The results show that the filtering costs are much smaller than the costs of
verification and I/O.

Note that Pruning Rule 3 can also be used in lsky instead of Pruning Rule 2. As ex-
pected, Pruning Rule 2 is more effective than Pruning Rule 3. Details of our experiment
results are presented in Appendix B.2.

7. RELATED WORK

Conventional Skyline Computation. Skyline computation over conventional (certain)
data has a long history. Börzsönyi et al. [2001] are the first to study the problem of
computing skylines in the context of databases and propose an SQL syntax for the
skyline query. They develop two computation techniques based on block nested loop
(BNL) and divide-and-conquer, respectively. Another BNL-based technique SFS (sort
filter skyline) is proposed in Chomicki et al. [2003] with the aim to improve BNL by
sorting a dataset first. SFS is then significantly improved by LESS (linear elimination
sort for skyline) in Godfrey et al. [2005]. Sort and limit skyline algorithm (SaLSa)
[Bartolini et al. 2008] aims to improve SFS or LESS by avoiding scanning the complete
set of sorted objects.

The index-based progressive techniques are firstly proposed in Tan et al. [2001]
where two data structures, Bitmap and Index, are proposed. Kossmann et al. [2002]
present another progressive technique based on the nearest-neighbor search technique.
A branch-and-bound (BBS) algorithm to progressively output skyline points based on
R-trees with the guarantee of minimal I/O cost is developed in Papadias et al. [2003].
Various advanced index-based techniques are recently developed (e.g., Lee et al. [2007]
and Zhang et al. [2009]).

Variations of skyline computation have also been extensively explored; for example,
skylines for partially ordered value domains[Chan et al. 2005] and skyline cubes [Pei
et al. 2006].

Skyline Computation over Uncertain Data. Considerable research effort has been
put into modeling and managing uncertain data in recent years due to many emerging
important applications (e.g., Boulos et al. [2005] and Sarma et al. [2006]).

Probabilistic skyline on uncertain data is first tackled in Pei et al. [2007] where
skyline objects are retrieved based on skyline probabilities. Efficient techniques are
proposed following the bounding-pruning-refining framework. Lian and Chen [2008]
combine reverse skyline with uncertain semantics and study the probabilistic reverse
skyline problem in both monochromatic and bichromatic fashion. In Atallah et al.
[2011], novel, subquadratic algorithms are developed to compute skyline probabili-
ties of every object. A stochastic skyline operator, lskyline, is studied in a prelimi-
nary version [Lin et al. 2011] of this article; nevertheless, lskyline only provides the
minimum candidate set for all multiplicative decreasing functions. This article is a
significant extension of the preliminary version [Lin et al. 2011] by including our

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

Stochastic Skylines 14:33

investigation of gskyline which gives the minimum candidate set for all decreasing
ranking functions.

8. CONCLUSION

In this article, we introduce a novel stochastic skyline model on uncertain data with the
aim to provide a minimum set of candidates to the optimal solutions over the family
of multiplicative decreasing scoring functions, as well as general decreasing scoring
functions, for users to make their personal trade-offs. We investigate the problem of
computing stochastic skyline regarding the lower orthant order and the usual order,
namely lskyline and gskyline. For the first time in the literature, we show that the
problem of determining the lower orthant order is NP-complete regarding the dimen-
sionality; consequently lskyline is NP-complete in the same sense. Then we show that
while the lower orthant order is much simpler than the usual order in terms of ge-
ometry, determining the usual order can be solved in polynomial time in contrast to
the complexity of determining the lower orthant order. We also develop novel and effi-
cient polynomial-time algorithms to compute the stochastic skyline regarding the lower
orthant order and usual order, respectively, over large datasets. Comprehensive exper-
iments are conducted on both real and synthetic data to demonstrate the efficiency of
our techniques.

Possible Future Work. In the article, we focus on discrete cases of PDF. The framework
and the pruning rules work for continuous PDF in principle; nevertheless the calcula-
tion of probability mass involves integration which is expensive. Moreover, verification
is a big challenge for usual order between two uncertain objects, while the partition-
ing paradigm in Section 3.3 works for determining lskyline though it may involve an
infinite number of partitions. As an alternative, we can discretize a continuous PDF
by sampling methods. While the framework is immediately applicable to the sampled
points, the main issue is to estimate the accuracy of a sampling method. This is one
possible future work.

Specifying stochastic skylines regarding other measures/variance is nontrivial; this
could be a very interesting future work. Another possible future work is to compute
lskyline and gskyline over any subspace [Pei et al. 2006]. While our verification tech-
niques between two objects are immediately applicable, developing effective index
techniques to support any subspace computation is a challenge. The next question is
how to compute representative stochastic skylines [Lin et al. 2007].

Finally, while our work in the article deals with independent uncertain objects, uncer-
tain objects are correlated in many applications. It is a challenge to specify stochastic
skylines against correlated data regarding the expected utility principle.

REFERENCES

ATALLAH, M. J., QI, Y., AND YUAN, H. 2011. Asymptotically efficient algorithms for skyline probabilities of
uncertain data. ACM Trans. Datab. Syst. 32, 2, 12.

BARTOLINI, I., CIACCIA, P., AND PATELLA, M. 2008. Efficient sort-based skyline evaluation. ACM Trans. Datab.
Syst. 33, 4.

BÖRZSÖNYI, S., KOSSMANN, D., AND STOCKER, K. 2001. The skyline operator. In Proceedings of the International
Conference on Data Engineering (ICDE’01). 421–430.

BOULOS, J., DALVI, N., MANDHANI, B., MATHUR, S., RE, C., AND SUCIU, D. 2005. MYSTIQ: A system for finding
more answers by using probabilities. In Proceedings of the ACM SIGMOD Conference on Management
of Data. 891–893.

BRINKHOFF, T., KRIEGEL, H.-P., AND SEEGER, B. 1993. Efficient processing of spatial joins using r-trees. In
Proceedings of the ACM SIGMOD Conference on Management of Data. 237–246.

CHAN, C.-Y., ENG, P.-K., AND TAN, K.-L. 2005. Stratified computation of skylines with partially ordered domains.
In Proceedings of the ACM SIGMOD Conference on Management of Data. 203–214.

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

14:34 W. Zhang et al.

CHAUDHURI, S., DALVI, N. N., AND KAUSHIK, R. 2006. Robust cardinality and cost estimation for skyline operator.
In Proceedings of the International Conference on Data Engineering (ICDE’06). 64.

CHOMICKI, J., GODFREY, P., GRYZ, J., AND LIANG, D. 2003. Skyline with presorting. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE’03). 717–719.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. 2001. Introduction to Algorithms 2nd Ed. The MIT
Press, Cambridge, MA.

GAREY, M. AND JOHNSON, D. 1990. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company.

GODFREY, P., SHIPLEY, R., AND GRYZ, J. 2005. Maximal vector computation in large data sets. In Proceedings of
the International Conference on Very Large Databases (VLDB’05). 229–240.

HOCHBAUM, D. 2008. The pseudoflow algorithm: A new algorithm for the maximum-flow problem. Oper. Res.
56, 4, 992–1009.

KIJIMA, M. AND OHNISHI, M. 1999. Stochastic orders and their applications in financial optimization. Math.
Methods Oper. Res. 50, 2, 351–372.

KOSSMANN, D., RAMSAK, F., AND ROST, S. 2002. Shooting stars in the sky: An online algorithm for skyline
queries. In Proceedings of the International Conference on Very Large Databases (VLDB’02).

LEE, K. C. K., ZHENG, B., LI, H., AND LEE, W. C. 2007. Approaching the skyline in z order. In Proceedings of the
International Conference on Very Large Databases (VLDB’07). 279–290.

LEVY, H. 1992. Stochastic dominance and expected utility: Survey and analysis. Manag. Sci. 38, 4, 555–593.
LIAN, X. AND CHEN, L. 2008. Monochromatic and bichromatic reverse skyline search over uncertain databases.

In Proceedings of the ACM SIGMOD Conference on Management of Data. 213–226.
LIN, X., YUAN, Y., ZHANG, Q., AND ZHANG, Y. 2007. Selecting stars: The k most representative skyline operator.

In Proceedings of the International Conference on Data Engineering (ICDE’07). 86–95.
LIN, X., ZHANG, Y., ZHANG, W., AND CHEEMA, M. A. 2011. Stochastic skyline operator. In Proceedings of the

International Conference on Data Engineering (ICDE’11). 721–732.
MEESTER, R. 2004. A Natural Introduction to Probability Theory. Birkhauser.
PAPADIAS, D., TAO, Y., FU, G., AND SEEGER, B. 2003. An optimal progressive algorithm for skyline queries. In

Proceedings of the ACM SIGMOD Conference on Management of Data. 467–478.
PEI, J., JIANG, B., LIN, X., AND YUAN, Y. 2007. Probabilistic skylines on uncertain data. In Proceedings of the

International Conference on Very Large Databases (VLDB’07). 15–26.
PEI, J., YUAN, Y., LIN, X., JIN, W., ESTER, M., LIU, Q., WANG, W., TAO, Y., YU, J. X., AND ZHANG, Q. 2006. Towards

multidimensional subspace skyline analysis. ACM Trans. Datab. Syst. 31, 4, 1335–1381.
SARMA, A. D., BENHELLOUN, O., HALEVY, A., AND WIDOM, J. 2006. Working models for uncertain data. In Pro-

ceedings of the International Conference on Data Engineering (ICDE’06). 7.
SHAKED, M. AND SHANTHIKUMAR, J. G. 2007. Stochastic Orders and Their Applications. Academic Press.
STEUER, R. E. 1995. Multi Criteria Optimization: Theory, Computation, and Application. John Wiley and

Sons.
TAN, K.-L., ENG, P.-K., AND OOI, B. C. 2001. Efficient progressive skyline computation. In Proceedings of the

International Conference on Very Large Databases (VLDB’01). 301–310.
TAO, Y. AND PAPADIAS, D. 2012. Range aggregate processing in spatial databases. IEEE Trans. Knowl. Data

Engin. 16, 12.
ZHANG, S., MAMOULIS, N., AND CHEUNG, B. W. 2009. Scalable skyline computation using object-based space

partitioning. In Proceedings of the ACM SIGMOD Conference on Management of Data. 483–494.

Received August 2011; revised January 2012; accepted March 2012

ACM Transactions on Database Systems, Vol. 37, No. 2, Article 14, Publication date: May 2012.

