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Abstract

Given a set of objects and a query q, a point p is called the reverse k nearest
neighbor (RkNN) of q if q is one of the k closest objects of p. In this paper,
we introduce the concept of influence zone which is the area such that every
point inside this area is the RkNN of q and every point outside this area is
not the RkNN. The influence zone has several applications in location based
services, marketing and decision support systems. It can also be used to effi-
ciently process RkNN queries. First, we present efficient algorithm to compute
the influence zone. Then, based on the influence zone, we present efficient al-
gorithms to process RkNN queries that significantly outperform existing best
known techniques for both the snapshot and continuous RkNN queries. We also
present a detailed theoretical analysis to analyse the area of the influence zone
and IO costs of our RkNN processing algorithms. Our experiments demonstrate
the accuracy of our theoretical analysis.



1 Introduction

The reverse k nearest neighbors (RkNN) query [1, 2, 3, 4, 5, 6, 7, 8] has received
significant research attention ever since it was introduced in [1]. A RkNN query
finds every data point for which the query point q is one of its k nearest neigh-
bors. Since q is close to such data points, q is said to have high influence on
these points. Hence, the set of points that are the RkNNs of a query is called its
influence set [1]. Consider the example of a gas station. The drivers for which
this gas station is one of the k nearest gas stations are its potential customers.
In this paper, the objects that provide a facility or service (e.g., gas stations)
are called facilities and the objects (e.g., the drivers) that use the facility are
called users. The influence set of a given facility q is then the set of users for
which q is one of its k closest facilities.

In this paper, we first introduce a more generic concept called influence zone

and then we show that the influence zone can be used to efficiently compute
the influence set (i.e., RkNNs). Consider a set of facilities F = {f1, f2, · · · , fn}
where fi represents a point in Euclidean space and denotes the location of ith

facility. Given a query q ∈ F , the influence zone Zk is the area such that for
every point p ∈ Zk, q is one of its k closest facilities and for every point p′ /∈ Zk,
q is not one of its k closest facilities.

The influence zone has various applications in location based services, mar-
keting and decision support systems. Consider the example of a coffee shop.
Its influence zone may be used for market analysis as well as targeted mar-
keting. For instance, the demographics of its influence zone may be used by
the market researchers to analyse its business. The influence zone can also be
used for marketing, e.g., advertising bill boards or posters may be placed in its
influence zone because the people in this area are more likely to be influenced
by the marketing. Similarly, the people in its influence zone may be sent SMS
advertisements.

Note that the concept of the influence zone is more generic than the influence
set, i.e., the RkNNs of q can be computed by finding the set of users that are
located in its influence zone. In this paper, we show that our influence zone based
RkNN algorithms significantly outperform existing best known algorithms for
both the snapshot and continuous RkNN queries (formally defined in Section 2).

Existing RkNN processing techniques [4, 5, 6, 9, 8] require a verification

phase to finalize the query results. Initially, the space is pruned by using the
locations of the facility points. Then, the users that are located in the un-
pruned space are retrieved. These users are the possible RkNNs and are called
candidates. Finally, in the verification phase, a range query is issued for every
candidate to check whether it is a RkNN or not.

In contrast to the existing approaches, our influence zone based algorithm
does not require the verification phase. Initially, we use our algorithm to ef-
ficiently compute the influence zone. Then, every user that is located in the
influence zone is reported as RkNN. This is because a user can be the RkNN if
and only if it is located in the influence zone. Similarly, to continuously monitor
RkNNs, initially the influence zone is computed. Then, to update the results
we only need to monitor the users that enter or leave the influence zone (i.e.,
the users that enter in the influence zone become the RkNNs and the users
that leave the influence zone are no more the RkNNs). To further improve the
performance, we present efficient methods to check whether a point lies in the
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influence zone or not.
It is important to note that the influence zone of a query is the same as the

Voronoi cell of the query when k = 1 [7]. For arbitrary value of k, there does not
exist an equivalent representation in literature (i.e., order k Voronoi cell is differ-
ent from the influence zone). Nevertheless, we show that a precomputed order
k Voronoi diagram can be used to compute the influence zone (see Section 5.1).
However, using the precomputed Voronoi diagrams is not a good approach to
process spatial queries as mentioned in [10]. For instance, the value of k is
not known in advance and precomputing several Voronoi diagrams for different
values of k is expensive and incurs high space requirement. In Section 5.1, we
state several other limitations of this approach.

Below, we summarize our contributions in this paper.

• We present an efficient algorithm to compute the influence zone. Based
on the influence zone, we present efficient algorithms that outperform best
known techniques for both snapshot and continuous RkNN queries.

• We provide a detailed theoretical analysis to analyse the IO costs of com-
puting the influence zone and our RkNN processing algorithms, the area
of the influence zone and the number of RkNNs. Our experiment results
show the accuracy of our theoretical analysis.

• Our extensive experiments on real and synthetic data demonstrate that
our proposed algorithms are several times faster than the existing best
known algorithms.

The rest of the paper is organized as follows. In Section 2, we define the
problem and briefly overview the related work. Section 3 presents our technique
to efficiently compute the influence zone. In Section 4, we present efficient
techniques to answer RkNN queries by using the influence zone. Theoretical
analysis is presented in Section 5 followed by the experiment results in Section 6.
Section 7 concludes the paper.

2 Preliminaries

2.1 Problem Definition

First, we define a few terms and notations. Consider a set of facilities F =
{f1, f2, · · · fn} and a query q ∈ F in a Euclidean space1. Given a point p, Cp

denotes a circle centered at p with radius equal to dist(p, q) where dist(p, q)
is the distance between p and q. |Cp| denotes the number of facilities that lie
within the circle Cp (i.e., the count of facilities such that for each facility f ,
dist(p, f) < dist(p, q)). Please note that the query q can be one of the k closest
facilities of a point p iff |Cp| < k. Now, we define influence zone and RkNN
queries.
Influence zone Zk. Given a set of facilities F and a query q ∈ F , the influence
zone Zk is the area such that for every point p ∈ Zk, |Cp| < k and for every
point p′ /∈ Zk, |Cp′ | ≥ k.

1Although, like existing techniques [6, 9], focus of this paper is 2-d location data, we show
in Appendix (Section 3.4) that the techniques can be extended to higher dimensions.
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Now, we define the reverse k nearest neighbor (RkNN) queries. RkNN
queries are classified [1] into bichromatic and monochromatic RkNN queries.
Below, we define both.
Bichromatic RkNN queries. Given a set of facilities F , a set of users U and
a query q ∈ F , a bichromatic RkNN query is to retrieve every user u ∈ U for
which |Cu| < k.

Consider that the supermarkets and the houses in a city correspond to the
set of facilities and users, respectively. A bichromatic RkNN query may be
used to find every house for which a given supermarket is one of the k closest
supermarkets.
Monochromatic RkNN queries. Given a set of facilities F and a query
q ∈ F , a monochromatic RkNN query is to retrieve every facility f ∈ F for
which |Cf | < k + 1.

Please note that for every f , Cf contains the facility f . Hence we have
condition |Cf | < k + 1 instead of |Cf | < k. Consider a set of police stations.
For a given police station q, its monochromatic RkNNs are the police stations
for which q is one of the k nearest police stations. Such police stations may seek
assistance (e.g., extra policemen) from q in case of an emergency event.
Snapshot vs continuous RkNN queries. In a snapshot query, the results
of the query are computed only once. In contrast, in a continuous query, the
results are to be continuously updated as the underlying datasets issue location
updates. Although extensions are possible, in this paper, we focus on a special
case of continuous RkNN queries where only the users issue location updates.

Given a set of facilities F , a query q ∈ F and a set of users U that is-
sues location updates, a continuous RkNN query is to continuously update the
bichromatic RkNNs of q.

A gas station may want to continuously monitor the vehicles for which it is
one of the k closest gas stations. It may issue a continuous RkNN query to do
so.

Throughout this paper, we use RNN query to refer to the RkNN query for
which k = 1. Table 2.1 defines other notations used throughout this paper.

Notation Definition

q the query point

Cp a circle centered at p with radius dist(p, q)

|Cp| the number of facilities located inside Cp

Bx:q a perpendicular bisector between point x and q

Hx:q a half-plane defined by Bx:q containing point x

Hq:x a half-plane defined by Bx:q containing point q

Table 2.1: Notations

2.2 Related work

First, we present related work for snapshot RkNN queries.
Snapshot RkNN Queries: Korn et al. [1] were first to study RNN queries.
They answer the RNN query by pre-calculating a circle for each data object p
such that the nearest neighbor of p lies on the perimeter of the circle. RNN of a
query q is every point that contains q in its circle. Techniques to improve their
work were proposed in [2, 3].
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Now, we briefly describe the existing techniques that do not require pre-
computation. All these techniques can be easily extended to answer the bichro-
matic RkNN queries. These techniques have three phases namely pruning, con-

tainment and verification. In the pruning phase, the space that cannot contain
any RkNN is pruned by using the set of facilities. In the containment phase, the
users that lie within the unpruned space are retrieved. These are the possible
RkNNs and are called the candidates. In the verification phase, a range query
is issued for each candidate object to check if q is one of its k nearest facility or
not.

First technique that does not need any pre-computation was proposed by
Stanoi et al. [4]. They solve RNN queries by partitioning the whole space
centred at the query q into six equal regions of 60◦ each (S1 to S6 in Fig. 2.1).
It can be proved that the nearest facility to q in each region defines the area
that can be pruned. In other words, assume that f is the nearest facility to q
in a region Si. Then any user that lies in Si and lies at a distance greater than
dist(q, f) from q cannot be the RNN of q. Fig. 2.1 shows nearest neighbors of q
in each region and the white area can be pruned. Only the users that lie in the
shaded area can be the RNNs. The RkNN queries can be solved in a similar
way, i.e., in each region, the k-th nearest facility of q defines the pruned area.

Tao et al. [5] proposed TPL that uses the property of perpendicular bisectors
to prune the search space. Consider the example of Fig. 2.2, where a bisector
between q and a is shown as Ba:q which divides the space into two half-spaces.
The half-space that contains a is denoted as Ha:q and the half-space that con-
tains q is denoted as Hq:a. Any point that lies in the half-space Ha:q is always
closer to a than to q and cannot be the RNN for this reason. Similarly, any point
p that lies in k such half-spaces cannot be the RkNN. TPL algorithm prunes
the space by the bisectors drawn between q and its neighbors in the unpruned
area. Fig. 2.2 shows the example where the bisectors between q and a, b and
c are drawn (Ba:q, Bb:q and Bc:q, respectively). The white area can be pruned
because every point in it lies in at least two half-spaces.
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Figure 2.1: Six-regions pruning
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Figure 2.2: TPL and FINCH

In the containment phase, TPL retrieves the users that lie in the unpruned
area by traversing an R-tree that indexes the locations of the users. Let m be
the number of facility points for which the bisectors are considered. An area
that is the intersection of any combination of k half-spaces can be pruned. The
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total pruned area corresponds to the union of pruned regions by all such possible
combinations of k bisectors (a total of m!/k!(m − k)! combinations). Since the
number of combinations is too large, TPL uses an alternative approach which
has less pruning power but is cheaper. First, TPL sorts the m facility points by
their Hilbert values. Then, only the combination of k consecutive facility points
are considered to prune the space (total m combinations).

As discussed above, to prune the entries, TPL uses m combinations of k
bisectors which is expensive. To overcome this issue, Wu et. al [6] proposed an
algorithm called FINCH. Instead of using bisectors to prune the objects, they
use a convex polygon that approximates the unpruned area. Any object that
lies outside the polygon can be pruned. Fig. 2.2 shows an example where the
shaded area is the unpruned area. FINCH approximates the unpruned area by
a polygon MNOP . Any point that lies outside this polygon can be pruned.
Clearly, the containment checking is easier than TPL because containment can
be done in linear time for convex polygons. However, please note that the area
pruned by FINCH is smaller than the area that actually can be pruned.

It is worth mentioning that some of the existing work focus on computing
Voronoi cell (or order k Voronoi cell) on the fly. More specifically, Stanoi et al. [7]
compute Voronoi cell to answer RNN queries. On fly computation of order k
Voronoi cell was presented in [10, 11] to monitor kNN queries. However, these
approaches are not applicable for RkNN queries.
Continuous RNN Queries: Benetis et al. [12] presented the first continuous
RNN monitoring algorithm. However, they assume that velocities of the objects
are known. First work that does not assume any knowledge of objects’ motion
patterns was presented by Xia et al. [13]. Their proposed solution is based on
the six 60o regions based approach described earlier in this section. Kang et

al. [8] proposed a continuous monitoring RNN algorithm based on the bisector
based (TPL) pruning approach. Both of these algorithms continuously monitor
RNN queries by monitoring the unpruned area.

Wu et al. [14] propose the first technique to monitor RkNNs. Their technique
is based on the six-regions based RNN monitoring presented in [13]. More
specifically, they issue k nearest neighbor (kNN) queries in each region instead
of the single nearest neighbor queries. The users that are closer than the k-th
NN in each region are the candidate objects and they are verified if q is one of
their k closest facilities. To monitor the results, for each candidate object, they
continuously monitor the circle around it that contains k nearest facilities.

Cheema et al. [9] propose Lazy Updates that is the best known algorithm to
continuously monitor RkNN queries. The existing approaches call the expensive
pruning phase whenever the query or a candidate object changes the location.
Lazy Updates saves the computation time by reducing the number of calls to
the expensive pruning phase. They assign each moving object a safe region and
propose the pruning techniques to prune the space based on the safe regions.
The pruning phase is not needed to be called as long as the related objects
remain inside their safe regions.
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3 Computing Influence Zone

3.1 Problem Characteristics

Given two facility points a and q, a perpendicular bisector Ba:q between these
two points divides the space into two halves as shown in Fig 3.1(a). The half
plane that contains a is denoted as Ha:q and the half plane that contains q is
denoted as Hq:a. The perpendicular bisector has the property that any point
p (depicted by a star in Fig. 3.1(a)) that lies in Ha:q is closer to a than q (i.e.,
dist(p, a) ≤ dist(p, q)) and any point y that lies in Hq:a is closer to q than a (i.e.,
dist(y, q) ≤ dist(y, a)). Hence, q cannot be the closest facility of any point p
that lies in Ha:q, i.e., Cp contains at least one facility a. We say that the point p
is pruned by the bisector Ba:q if p lies in Ha:q. In general, if a point p is pruned
by at least k bisectors then Cp contains at least k facilities (i.e., |Cp| ≥ k).

Existing work [5, 6, 9] use this observation to prune the space that cannot
contain any RkNN of q. More specifically, an area can be pruned if at least k
bisectors prune it. In Fig. 3.1, five facility points (q, a, b, c and d) are shown.
In Fig. 3.1(a) the bisectors between q and two facility points a and b are drawn
(see Ba:q and Bb:q). If k is 2, then the white area can be pruned because it lies
in two half-planes (Ha:q and Hb:q) and |Cp′ | ≥ 2 for any point p′ in it. The area
that is not pruned is called unpruned area and is shown shaded.

q

a

b

c
p

B
a:q

B
b:q

d

(a) Unpruned area is not influence zone

q

a

b

c

B
a:q

B
b:q

B
c:q

d

B
d:q

(b) Unpruned area is influence zone

Figure 3.1: Computing influence zone Zk (k = 2)

Although it can be guaranteed that for every point p′ in the pruned area
|Cp′ | ≥ k, it cannot be guaranteed that for every point p in the unpruned area
|Cp| < k. In other words, the unpruned area is not the influence zone. For
example, in Fig. 3.1(a), the point p lies in the unpruned area but |Cp| = 2 (i.e.,
Cp contains a and c). Hence, the shaded area of Fig. 3.1(a) is not the influence
zone.

One straight forward approach to compute the influence zone is to consider
the bisectors of q with every facility point f . If the bisectors of q and all facilities
are considered, then the unpruned area is the area that is pruned by less than k
bisectors. Fig. 3.1(b) shows the unpruned area (the shaded polygon) after the
bisectors Bc:q and Bd:q are also considered. It can be verified that the shaded

6



area is the influence zone (i.e., for every p in the shaded area |Cp| < 2 and for
every p′ outside it |Cp′ | ≥ 2).

However, this straight forward approach is too expensive because it requires
computing the bisectors between q and all facility points. We note that for some
facilities, we do not need to consider their bisectors. In Fig. 3.1(b), it can be
seen that the bisector Bd:q (shown in broken line) does not affect the unpruned
area (shown shaded). In other words, if the bisectors of a, b and c are considered
then the bisector Bd:q does not prune more area. Hence, even if Bd:q is ignored,
the influence zone can be computed.

Next, we present some lemmas that help us in identifying the facilities that
can be ignored. Since we use bisectors to prune the space, the unpruned area is
a polygon and is interchangeably called unpruned polygon hereafter. Below we
present several lemmas that not only guide us to the final lemma but also help
us in few other proofs in the paper.

Lemma 1 : A facility f can be ignored if for every point p of the unpruned
polygon, the facility f lies outside Cp.

Proof. As described earlier, a point p can be pruned by the bisector Bf :q iff
dist(p, f) < dist(p, q). In other words, the point p can be pruned iff Cp contains
f . Hence, if f lies outside Cp, it cannot prune p. If f lies outside Cp for every

point p, it cannot prune any point of the unpruned polygon and can be ignored
for this reason.

Checking containment of f in Cp for every point p is not feasible. In next few
lemmas, we simplify the procedure to check if a facility point can be ignored.

p

p'

q

Figure 3.2: Lemma 2 and 3

qA

B

p

Figure 3.3: Lemma 4

Lemma 2 : Let pq be a line segment between two points q and p. Let p′ be a
point on pq. The circle Cp′ is contained by the circle Cp.

Fig. 3.2 shows an example where the circle Cp′ (the shaded circle) is con-
tained by Cp (the large circle). The proof is straight forward and is omitted.
Based on this lemma, we present our next lemma.

Lemma 3 : A facility f can be ignored if, for every point p on the boundary

of the unpruned polygon, f lies outside Cp.
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Proof. We prove the lemma by showing that we do not need to check contain-
ment of f in Cp′ for any point p′ that lies within the polygon. Let p′ be a point
that lies within the polygon. We draw a line that passes through q and p′ and
cuts the polygon at a point p (see Fig. 3.2). From Lemma 2, we know that Cp

contains Cp′ . Hence, if f lies outside Cp, then it also lies outside Cp′ . Hence, it
suffices to check the containment of f in Cp for every point p on the boundary
of the polygon.

The next two lemmas show that we can check if a facility f can be ignored
or not by only checking the containment of f in Cv for every vertex v of the
unpruned polygon.

Lemma 4 : Given a line segment AB and a point p on AB. The circle Cp is
contained by CA ∪ CB , i.e., every point in the circle Cp is either contained by
CA or by CB (see Fig. 3.3).

Proof. Fig. 3.4 shows the line segment AB and the point p. It suffices to
show that the boundary of Cp is contained by CA ∪ CB . If q lies on AB, the
lemma can be proved by Lemma 2. Otherwise, we identify a point D such that
AB is a segment of the perpendicular bisector between D and q. Then, we draw
a line L that passes through points D and q. First, we show that the part of
the circle Cp that lies on the right side of L (i.e., the shaded part in Fig. 3.4(a))
is contained by CB . Then, we show that the part of the circle Cp that lies on
the left side of L (i.e., the shaded part in Fig. 3.4(b)) is contained by CA.

q

X

A

B

Ep
D

L

(a) For right side of L

q

X

A

B

p
D

L

(b) For left side of L

Figure 3.4: Illustration of Lemma 4

We can find the length of qB (denoted as qB) by using the triangle △qpB
and applying the law of cosines (see Fig. 3.4(a)).

qB =

√

(pB)2 + (pq)2 − 2 · pB · pq(Cos∡Bpq) (3.1)

For any point X that lies on the boundary of Cp and is on the right side of
L (i.e., the boundary of the shaded circle in Fig. 3.4(a)), consider the triangle
△ pXB. The length of BX can be computed using the law of cosines.

BX =

√

(pB)2 + (pX)2 − 2 · pB · pX(Cos∡BpX) (3.2)
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Please note that the triangles △qpB and △DpB are similar because Dp = qp
and DB = qB (any point on a perpendicular bisector Bu:v is equi-distant from
u and v). Due to similarity of triangles △qpB and △DpB, ∡Bpq = ∡BpD.

It can be shown that BX ≤ qB by comparing Eq. (3.1) and Eq. (3.2). This
is because pX = pq and ∡BpX ≤ (∡Bpq = ∡BpD). Since cosine monotonically
decreases as the angle increases from 0◦ to 180◦, BX ≤ qB. This means the
point X lies within the circle CB .

Similarly, for any X that lies on the part of circle Cp that is on left side of
the line L (see Fig. 3.4(b)) it can be shown that AX ≤ (AD = Aq). This can
be achieved by considering the triangles △pXA and △pDA and using law of
cosines to obtain AX and AD (the key observation is that ∡XpA ≤ ∡DpA).

Lemma 5 : A facility f can be ignored if, for every vertex v of the unpruned
polygon, the facility f lies outside Cv.

Proof. Let AB be an edge of the polygon. From Lemma 4, we know that if
a facility f lies outside CA and CB, then it lies outside Cp for every point p on
the edge AB. This implies that if f lies outside Cv for every vertex v of the
polygon then it lies outside Cp for every point p that lies on the boundary of
the polygon. Such facility f can be ignored as stated in Lemma 3.

Next lemma shows that we only need to check this condition for convex

vertices. First, we define the convex vertices.

definition 1 : Consider a polygon P where V is the set of its vertices. Let
Hcon be the convex hull of V . The vertices of Hcon are called convex vertices of
the polygon P and the set of the convex vertices is denoted as Vcon.

Fig. 3.5 shows an example where a polygon with vertices A to J is shown in
broken lines. Its convex hull is shown in solid lines which contains the vertices A,
C, E, G and I and these vertices are the convex vertices. Note that Vcon ⊆ V .

q
A

B

C

D

E

F

G

H

I

J

Figure 3.5: Convex Polygon

Lemma 6 : A facility f can be ignored if it lies outside Cv for every convex

vertex v of the unpruned polygon P .
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Proof. By definition of a convex hull, the convex hull Hcon contains the
polygon P . If a facility point f does not prune any point of the convex polygon
Hcon, it cannot prune any point of the polygon P because P ⊆ Hcon. Hence, it
suffices to check if f prunes any point of Hcon or not. From Lemma 5, we know
that f does not prune any point of Hcon if it lies outside Cv for every vertex v
of Hcon. Hence, f can be ignored if it lies outside every Cv where v is a vertex
of the convex polygon (i.e., v is a convex vertex).

The above lemma identifies a condition for a facility f to be ignored. Next
lemma shows that any facility that does not satisfy this condition prunes at
least one point of the unpruned area. In other words, next lemma shows that
the above condition is tight.

Lemma 7 : If a facility f lies in any Cv for any convex vertex v of the unpruned
polygon P then there exists at least one point p in the polygon P that is pruned
by f .

Proof. If f lies in Cv for any v ∈ Vcon, it means that dist(f, v) < dist(f, q).
Hence, f prunes the vertex v. Since Vcon ⊆ V , the vertex v is a point in the
polygon P .

3.2 Algorithm

Based on the problem characteristics we described earlier in this section, we
propose an algorithm to efficiently compute the influence zone. We assume that
the facilities are indexed by an R-tree [15]. The main idea is that the facilities
are iteratively retrieved and the space is iteratively pruned by considering their
bisectors with q. The facilities that are close to the query q are expected to
prune larger area and are given priority.

Algorithm 1 presents the details. Initially, the whole data space is considered
as the influence zone and the root of the R-tree is inserted in a min-heap h.
The entries are iteratively de-heaped from the heap. The entries in the heap
may be rectangles (e.g., intermediate nodes) or points. If a de-heaped entry e
completely lies outside Cv of all convex vertices of the current influence zone
(e.g., the current unpruned area), it can be ignored. Otherwise, it is considered
valid (lines 5 to 7). If the entry is valid and is an intermediate node or a leaf
node, its children are inserted in the heap (lines 8 to 10). Otherwise, if the
entry e is valid and is a data object (e.g., a facility point), it is used to prune
the space. The current influence zone is also updated accordingly (line 12). The
algorithm stops when the heap becomes empty.

The proof of correctness follows from the lemmas presented in the previous
section because only the objects that do not affect the unpruned area are ig-
nored. It is also important to note that the entries of R-tree are accessed in
ascending order of their minimum distances to the query. The nearby facility
points are accessed and the unpruned area keeps shrinking which results in a
greater number of upcoming entries being pruned. Hence, the entries that are
far from the query are never accessed.

Now, we briefly describe how to update the influence zone when a new facility
point f is considered (line 12 of Algorithm 1). The idea is similar to [6]. The
intersection points between all the bisectors are maintained. Each intersection
point is assigned a counter that denotes the number of bisectors that prune it.

10



Algorithm 1 Compute Influence Zone

Input: a set of objects O, a query q ∈ O, k
Output: Influence Zone Zk

1: initialize Zk to the boundary of data universe
2: insert root of R-tree in a min-heap h
3: while h is not empty do

4: deheap an entry e
5: for each convex vertex v of Zk do

6: if mindist(v, e) < dist(v, q) then

7: mark e as valid; break
8: if e is valid then

9: if e is an intermediate node or leaf then

10: insert every child c in h with key mindist(q, c)
11: else if e is an object then

12: update the influence zone Zk using e

Fig. 3.6 shows an example (k = 2) where three bisectors Ba:q, Bb:q and Bc:q

have been considered. The counter of intersection point v11 is 2 because it is
pruned by Bb:q and Bc:q. The counter of v8 is 1 because it is pruned only by
Bc:q. It can be immediately verified that the unpruned area can be defined by
only the intersection points with counters less than k [6] (see the shaded area
of Fig. 3.6).

q

v
1
 = 3

B
a:q

B
b:q

B
c:q

v
2
 = 1

v
3
 = 0v

6
 = 2 v

5
 = 1 v

4
 = 0

v
7
 = 0

v
8
 = 1

v
9
 = 0

v
10
 = 0

v
11
 = 2

v
12
 = 2

Figure 3.6: Counters
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Figure 3.7: Lemma 8

Next issue is to determine the convex vertices of the unpruned area. One
straight forward approach to determine the convex vertices is to compute the
convex hull of all intersection points that have counters less than k. However,
please note that the number of intersection points may be O(m2) where m is the
number of bisectors considered so far. In [6], the authors show that the number
of vertices can be reduced from O(m2) to O(m). However, the computation of
convex hull on these O(m) vertices costs O(m Log m). Following lemma shows
that we do not need to compute the convex hull (in contrast to [6]) to shortlist
the vertices that are possibly the convex vertices.
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Lemma 8 : Among the intersection points that do not lie on the boundary of
the data space, only the intersection points with counters equal to k − 1 can be
the convex vertices.

Proof. Any intersection that has a counter greater than k − 1 is pruned
by at least k objects hence cannot be on the boundary of the influence zone
(hence, cannot be a convex vertex). Now, we show that the intersections that
have counters less than k − 1 cannot be the convex vertices.

Consider the example of Fig. 3.7 where a vertex V has been shown which is
the intersection point of two bisectors Ba:q and Bc:q. Suppose that the counter
of the vertex V is n. Now, imagine a point p that lies on the line V N and is
infinitely close to the vertex V . Clearly, the point p is pruned by at most n + 1
bisectors1. This is because it is pruned by n bisectors that prune V and the
bisector Bc:q. Following the similar argument, we can say that any point e that
lies on the line V Z and is infinitely close to V has a counter at most n + 1.
The counter of any point that lies in the polygon V NY Z (white area) and is
infinitely close to V is at least n + 2 (it is pruned by Bc:q and Ba:q in addition
to all the bisectors that prune V ).

If the counter n of the vertex V is less than or equal to k − 2, then the line
V N has at least one point p that has counter at most k−1 (i.e., n+1 as shown
above). Hence, the line V N has at least one point p that lies in the influence
zone. Similarly, the line V Z has at least one point e that lies in the influence
zone. Clearly, the angle eV p is at least 180◦. By definition of a convex hull, no
internal angle of a convex hull can be greater than 1800. Hence, the vertex V
is not a convex vertex if its counter is less than or equal to k − 2.

In Fig. 3.6, the vertices v7 and v9 do not lie on the boundary and have
counters less than k−1 (where k = 2). Hence, they are not the convex vertices.
Among the points that lie on the boundary points and have counters less than k,
only the two extreme points for each boundary line can be the convex vertices.
For example, in Fig. 3.6, the lower horizontal boundary line contains 4 vertices
(v3, v4, v5 and v6). The vertex v6 has counter not less than k and can be
ignored. Among the remaining vertices, we consider the extreme vertices (v3

and v5) as the convex vertices. Following the above strategy, the convex vertices
in Fig. 3.6 are v3, v2, v8 and v5.

It can be shown that the number of possible vertices with counters equal to
k−1 are O(m) where m is the number of bisectors considered so far [6]. Hence,
checking whether an entry of the R-tree is valid or not requires O(m) distance
computations (see lines 5- 7 of Algorithm 1). Next, we present few observations
and show that we can determine the validity of some entries by a single distance
computation.

Lemma 9 : Let rmin be the minimum distance of q to the boundary of the
influence zone. Then, an entry e is a valid entry if mindist(q, e) < 2rmin

(Fig. 3.8 shows rmin).

Proof. To prove that e is a valid entry, we show that there exists at least
one point p in the influence zone such that Cp contains e. If e lies inside the

1In this proof, we assume that only two bisectors pass through the intersection point V .
For the special case, when more than two bisectors pass through a vertex V , we may choose
to treat V as a convex vertex. Note that this does not affect the correctness of the algorithm
because checking containment in a vertex that is not a convex vertex does not affect the
correctness.
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Figure 3.9: Lemma 10

influence zone then e is a valid entry because Ce contains e and e is a point in
the influence zone. Now, we prove the lemma for the case when e lies outside the
influence zone. Fig. 3.8 shows an entry e for which dist(q, e) < 2rmin. We draw
a line that passes through e and q and intersects the boundary of the influence
zone at a point p. Clearly, dist(p, e) = dist(q, e) − dist(p, q). We know that
dist(q, e) < 2rmin and dist(p, q) ≥ rmin. Hence, dist(p, e) ≤ rmin which implies
that dist(p, e) ≤ dist(p, q). Hence, e lies in Cp.

Lemma 10 : Let rmax be the distance of q to the furthest vertex of the influ-
ence zone. Then, an entry e of the R-tree is an invalid entry if mindist(e, q) >
2rmax.

Proof. Fig. 3.9 shows rmax and a point e such that dist(e, q) > 2rmax. Con-
sider a point p on the boundary of the influence zone. By the definition of
rmax, dist(p, q) ≤ rmax. Clearly, dist(p, q) + dist(p, e) ≥ dist(q, e) (this covers
both the cases when p lies on the line qe and when △qpe is a triangle). Since,
dist(p, q) ≤ rmax and dist(e, q) > 2rmax, dist(p, e) must be greater than rmax.
Hence, dist(p, e) > dist(p, q) which means e lies outside Cp. This holds true for
every point p on the boundary of the influence zone. Hence, e can be ignored
(i.e., e is invalid).

If an entry of the R-tree satisfies one of the above two lemmas, we can
determine its validity without computing its distances from the convex vertices.
Note that rmax and rmin can be computed in linear time to the number of edges
of the influence zone and are only computed when the influence zone is updated
at line 12 of Algorithm 1.

3.3 Checking containment in the influence zone

The applications that use influence zone may require to frequently check if a
point or a shape lies within the influence zone or not. Although the suitability
of a method to check the containment depends on the nature of the application,
we briefly describe few approaches.

One simple approach is to record all the objects that were accessed during
the construction of the influence zone (the objects for which the bisectors were
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considered). If a shape is pruned by less than k of these bisectors then the shape
lies inside the influence zone otherwise it lies outside the influence zone. This ap-
proach takes linear time in number of the accessed objects. Moreover, checking
whether a point is pruned by a bisector Ba:q is easy (e.g., if dist(p, a) < dist(p, q)
then the point p is pruned otherwise not). Hence, a point containment check
requires O(m) distance computations where m is the number of the accessed
objects.

Before we show that the point containment can be done in logarithmic time,
we define a star-shaped polygon [16]. A polygon is a star-shaped polygon if there
exists a point z in it such that for each point p in the polygon the segment zp
lies entirely in the polygon. The point z is called a kernel point. The polygon
shown in Fig. 3.8 is a star-shaped polygon and q is its kernel point. Fig. 4.1
shows a polygon that is not star-shaped (the segment qp does not lie entirely
in the polygon). Let n be the number of vertices of a star-shaped polygon.
After a linear time pre-processing, every point containment check can be done
in O(Log n) if a kernel point of the polygon is known [16].

Lemma 11 : The influence zone is always a star-shaped polygon and q is its
kernel point.

Proof. We prove this by contradiction. Assume that there is a point p in
the influence zone such that the segment pq does not lie completely within the
influence zone. Fig. 4.1 shows an example, where a point p′ lies on the segment
pq but does not lie within the influence zone. From Lemma 2, we know that
Cp contains Cp′ . Since p is a point inside the influence zone, |Cp| < k. As Cp′

is contained by Cp, |Cp′ | must also be less than k. Hence, p′ cannot be a point
outside the influence zone.

Following similar argument as in [6], it can be shown that the number of
vertices of the influence zone is O(m) where m is the number of the objects
accessed during the construction of the influence zone. Hence, the point con-
tainment check can be done in O(Log m).

Although we showed that the point containment in influence zone can be
checked in logarithmic time, we present two simple checks to reduce the cost
of containment check in certain cases by using rmax and rmin we introduced
earlier.

Let rmin and rmax be as defined in Lemma 9 and 10, respectively. Then
the circle centered at q with radius rmax (the big circle in Fig. 3.8) completely
contains the influence zone. Similarly, the circle centered at q with radius rmin

(the shaded circle in Fig. 3.8) is completely contained by the influence zone.
Hence, any point p that has a distance greater than rmax from q is not contained
by the influence zone and any point p′ that lies within distance rmin of q is
contained by the influence zone.

For the applications that allow relatively expensive pre-processing, the influ-
ence zone can be indexed (e.g., by a grid or a quad-tree) to efficiently check the
containment. For example, for the continuous monitoring of RkNN queries, we
use a grid to index the influence zone. The details are presented in next section.

3.4 Extension to higher dimensions

In this sectiom, we show that the proposed approach can be extended to high-
dimensional data. In higher dimensions, the bisectors are called half-spaces and
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the unpruned region is a polyhedron instead of a polygon [17]. The circle Cp

centered at p with radius dist(p, q) is called hypersphere. It can be shown that
Lemma 4 holds for higher dimensions. This can be proved, for each point of the
hypersphere, by projection on a two dimensional space.

The space is pruned in a similar way as by the bisectors. i.e., the space that
is pruned by at least k half-spaces is pruned. The following lemma holds for the
unpruned area which is a polyhedron.
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Figure 3.10: Lemma 12

Lemma 12 : A facility point f can be ignored if for every vertex v of the
unpruned polyhedron, f lies outside Cv.

Proof. We prove the lemma for a 3-dimensional polyhedron and the proof for
the arbitrary dimensionality is similar. Let p be any point inside the polyhedron
as shown in Fig. 3.10. We draw a line that passes through p and q and crosses
a face (the shaded face ABCD) of the polyhedron at a point M . For such
point M , we can always draw a line on this face of the polyhedron such that
it passes through M and intersects the edges of the face at points L and N as
shown in Fig 3.10. From Lemma 4, CA and CB contain CN . Similarly, CC

and CD contain CL. Again, from Lemma 4, CN and CL contain CM . Lastly,
CM contains Cp (Lemma 2). Hence, Cp is contained by the hyperspheres of the
vertices of the face ABCD (CA, CB, CC and CD). This holds for any arbitrary
point p inside the polyhedron. Hence, we only need to check the containment
in Cv for every vertex v of the polyhedron.

4 Applications in RkNN Processing

4.1 Snapshot Bichromatic RkNN Queries

Our algorithm consists of two phases namely pruning phase and containment

phase.
Pruning Phase. In this phase, the influence zone Zk is computed using the
given set of facilities.
Containment Phase. By the definition of influence zone Zk, a user u can be
the bichromatic RkNN if and only if it lies within the influence zone Zk. We
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assume that the set of users are indexed by a R-tree. The R-tree is traversed
and the entries that lie outside the influence zone are pruned. The objects that
lie in the influence zone are RkNNs.

4.2 Snapshot Monochromatic RkNN Queries

By definition of a monochromatic RkNN query (see Section 2.1), a facility f is
the RkNN iff |Cf | < k + 1. Hence, a facility that lies in Zk+1 is the monochro-
matic RkNN of q where Zk+1 is the influence zone computed by setting k to
k + 1. Below, we highlight our technique.
Pruning Phase. In this phase, we compute the influence zone Zk+1 using the
given set of facilities F . We also record the facility points that are accessed dur-
ing the construction of the influence zone and call them the candidate objects.
Containment Phase. Please note that every facility point that is contained
in the influence zone Zk+1 will be accessed during the pruning phase. This is
because every facility that lies in the influence zone cannot be ignored during
the construction of the influence zone (inferred from Lemma 1). Hence, the
set of candidate object contains all possible RkNNs. For each of the candidate
object, we report it as RkNN if it lies within the influence zone Zk+1.

4.3 Continuous monitoring of RkNNs

In this section, we present our technique to continuously monitor bichromatic
RkNN queries (see the problem definition in Section 2.1). The basic idea is
to index the influence zone by a grid. Then, the RkNNs can be monitored by
tracking the users that enter or leave the influence zone.
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Figure 4.1: Lemma 11
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Figure 4.2: Continuous Monitoring

Initially, the influence zone Zk of a query q is computed by using the set
of facility points. We use a grid based data structure to index the influence
zone. More specifically, a cell c of the grid is marked as an interior cell if it
is completely contained by the influence zone. A cell c′ is marked as a border

cell if it overlaps with the boundary of the influence zone. Fig. 4.2 shows an
example where the influence zone is the polygon ABCDFEGHI, interior cells
are shown in dark shade and the border cells are the light shaded cells.
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For each border cell, we record the edges of the polygon that intersect it.
For example, in c1, we record the edge AI and in c2 we record the edges AI and
HI. If a user u ∈ U is in an interior cell, we report it as RkNN of the query. If
a user lies in a border cell, we check if it lies outside the polygon by checking
the edges stored in this cell. For example, if a user lies in c1 and it lies inside
AI, we report it as RkNN.

5 Theoretical Analysis

We assume that the facilities and the users are uniformly distributed in a unit
space. The number of facilities is |F |. For bichromatic queries, the number of
users is |U |.

5.1 Area of Influence Zone

Before we analyse the area of the influence zone, we show the relationship be-
tween an order k Voronoi cell and the influence zone. We utilize this relationship
to analyse the area of the influence zone.

Relationship with order k Voronoi cell: An order k Vornoi diagram divides
the space into cells and we refer to each cell as a k-Voronoi cell. Each k-Voronoi
cell is related to a set of k facility points (denoted as Fk) such that for any
point p in this cell the k closest facilities are Fk. Fig. 5.1 shows an order 2
Voronoi diagram computed on the facility points a to i. Each cell c is related to
two facility points (shown as {fi, fj} in Fig. 5.1) and these are the two closest
facilities for any point p in c. For example, for any point p in the cell marked
as {a, e} the two closest facilities are a and e.

Clearly, when k = 1 the k-Vornoi cell related to q is exactly same as the
influence zone. For k > 1, the influence zone corresponds to the union of all
k-Voronoi cells that are related to q (i.e., have q in their Fk). For example, in
Fig. 5.1, the influence zone of the facility a is shown in bold boundary and it
corresponds to the union of the cells that are related to a.
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Figure 5.1: order 2 Voronoi diagram
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Now, we analyse the area of the influence zone.
As described earlier, the influence zone Zk is the union of k-Voronoi cells that

are related to q. The expected size of one k-Voronoi cell is 1
(2k−1)|F | [17]. Since

we assume a unit space, the total number of the cells in the Voronoi diagram
is (2k − 1)|F |. Each cell is related to k facilities, this means that the expected
number of cells related to q is k(2k − 1). Hence, the area of the influence zone
Zk is k/|F | which is computed by multiplying the number of cells related to q
with the area of one k-Voronoi cell.

Remark: The above discussion shows that the influence zone can be com-
puted by using a pre-computed order k Voronoi diagram. However, as mentioned
in [10], a technique that uses a pre-computed order k Voronoi diagram may not
be practical for the following reasons : i) the value of k may not be known in
advance; ii) even if k is known in advance, order k Voronoi diagrams are very
expensive to compute and incur high space requirement; iii) spatial indexes are
useful for all query types and pre-computed Voronoi diagrams may not be used
for all queries. In contrast, R-tree based indexes used by our algorithm are used
for many important queries.

5.2 Number of RkNNs

First, we evaluate the number of bichromatic RkNNs. We assume that the
users are uniformly distributed in the space. The number of users that lie in
the influence zone is the number of bichromatic RkNNs. Hence, the number of
bichromatic RkNNs is |U |.k/|F |.

The area of the influence zone Zk+1 for a monochromatic RkNN query is
(k + 1)/|F |. The number of facilities in this area is (k + 1) which includes the
query. Hence the expected number of monochromatic RkNNs is k.

5.3 IO cost of our algorithms

Before we analyse the IO costs of our proposed algorithms, we analyse the cost
of a circular range query. Then, we analyse the costs of our algorithms by using
the IO cost of the circular range queries.

IO cost of a circular range query: A circular range query [18] finds the
objects that lie within distance r of the query location. We assume that the
objects are indexed by an R-tree and analyse the number of nodes that lie
within the range of the query. Fig. 5.2 shows a circular range query where the
search area is the circle centered at q with radius r (the shaded circle). The
approach to analyse the IO cost of the circular range query is similar to the
IO cost analysis of window queries presented in [19]. Let Rl be the number of
rectangles at level l of the R-tree. Let sl be the side length of each rectangle
at level l (the rectangles of a good R-tree have similar sizes [20]). We assume
that the centers of rectangles at each level follow a uniform distribution. Let
dl be the diagonal length of each rectangle at level l. As shown in Fig. 5.2,
any rectangle that has its center c at a distance at most r + dl/2 intersects the
range query and should be accessed. Hence, the number of rectangles (nodes)
accessed at level l is π(r + dl/2)2Rl which is the number of center points c that
lie in the circle of radius r + dl/2 (the large circle in Fig. 5.2).

Now, we need to compute dl and Rl for each level l. Let S be the number of
objects indexed by the R-tree. Let f be the fanout of the tree. The number of

18



rectangles Rl at level l of the R-tree is S/f l (e.g., leaf nodes are at level 1 and the
number of leaf level rectangles is S/f). Since we assume uniform distribution of
points, each rectangle at level l contains f l points. In other words, the area of
each rectangle is f l/S. Assuming that the both sides of a rectangle are of same
size, the side length sl is

√

f l/S. Given sl, half of the diagonal length dl/2 can

be computed easily which is
√

f l/2S.
The total IO cost (the total number of nodes accessed) is obtained by apply-

ing the formula for each level l. The total number of levels excluding the root
is ⌊log

f
S⌋. The root is accessed anyway, so one is added to this cost. Hence,

the total IO cost is obtained by the following equation.

Range query cost = 1 +

⌊logf S⌋
∑

l=1

π(r +
√

f l/2S)2S/f l (5.1)

Based on this, first we analyse the cost of computing the influence zone and
then we analyse the costs of our RkNN algorithms.

IO cost of computing the influence zone: We approximate the influence zone
to a circular shape having the same area (we noted that as k gets larger the
shape of influence zone has more resemblance with a circle). Since the area
of the influence zone Zk is k/|F |, the radius of the circle can be computed as

rk =
√

k
π|F | . From Lemma 5, an object can be ignored if it lies at a distance

greater than dist(q, v) from every vertex v of the unpruned area. Since we
assume that each vertex is at same distance rk from the query (i.e., influence
zone is a circle), an object can be ignored if it lies at a distance greater than
2rk from q. Hence, the objects within the range 2rk of the query are accessed
during the computation of the influence zone. The IO cost can be found by

replacing r in Eq. (5.1) with 2rk = 2
√

k
π|F | and S with |F | (the number of the

facility points).
IO cost of a monochromatic RkNN query: The IO cost for monochromatic

RkNN query is same as computing the IO cost of the influence zone Zk+1. This
is because the R-tree is traversed only during the construction of the influence
zone (i.e., the containment phase does not access R-tree). Hence, IO cost can

be found by replacing r in Eq. (5.1) with 2rk+1 = 2
√

k+1
π|F | and S with |F |.

IO cost of a bichromatic RkNN query: The cost of the pruning phase is
same as the cost of computing the influence zone Zk which we have computed
earlier. The cost of the containment phase is the cost of accessing the users
that lie within the influence zone which can be computed in a similar way.
More specifically, only the users that lie within distance rk (the radius of the
influence zone) of q are accessed. Hence, the cost of the containment phase can

be computed by replacing r in Eq. (5.1) with rk =
√

k
π|F | and S with |U | where

|U | is the number of users indexed by the R-tree.

6 Experiments

In Section 6.1, we evaluate the performance of our algorithms for snapshot
RkNN queries. Since computation of the influence zone is a sub-task of the
snapshot RkNN queries, we evaluate the cost of computing influence zone while
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evaluating the performance of RkNN algorithms. In Section 6.2, we evaluate
the performance of our algorithm for continuous monitoring of RkNN queries.

6.1 Snapshot RkNN queries

For monochromatic and bichromatic RkNN queries, we compare our algorithm
with the best known existing algorithm called FINCH [6]. We use both syn-
thetic and real datasets. Each synthetic dataset consists of 50000, 100000,
150000 or 200000 points following either Uniform or Normal distribution. The
real dataset consists of 175, 812 extracted locations in North America1 and we
randomly divide these points into two sets of almost equal sizes. One of the
sets corresponds to the set of facilities and the other to the set of users. In
accordance with FINCH [6], the page size is set to 4096 bytes and the buffer
size is set to 10 pages which uses random eviction strategy. We use the two real
datasets to evaluate the performance unless mentioned otherwise. We vary k
from 1 to 16 and the default value is 8. From the set of facilities, we randomly
choose 500 points as the query points. The experiment results correspond to
the total cost of processing these 500 queries.

As stated in Section 2.2, FINCH has three phases namely pruning, contain-
ment and verification. Our algorithm has only pruning and containment phases.
We show the CPU and IO cost of each phase for the both algorithms. Exper-
iment results demonstrate that our algorithm outperforms FINCH in terms of
both CPU time and the number of nodes accessed. FINCH is denoted as FN in
the experiment figures.

Monochromatic RkNN queries

In Fig. 6.1, we vary the value of k and study the effect on the both algorithms.
The cost of containment phase is negligible for both of the algorithms. Note
that the pruning phase corresponds to the cost of computing the influence zone
for our algorithm. The cost of computing the influence zone is even smaller than
the pruning cost of FINCH which prunes less area than our algorithm. CPU
cost of our algorithm is lower mainly because we use efficient checks to prune
the entries of the R-tree and because we do not need to compute the convex
hull (in contrast to FINCH that computes a convex polygon to approximate the
unpruned area).
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Figure 6.1: Effect of k (monochromatic RkNN)

1http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm
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Although we access more facility points to prune the space, the IO cost of
computing the influence zone is slightly lower than the pruning cost of FINCH.
This is mainly because these facility points are usually found in 1 or 2 leaf nodes
which are accessed by FINCH anyway because they are too close to the query.
The unpruned area of our algorithm is smaller as compared to FINCH which
results in pruning more nodes of the R-tree.
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Figure 6.2: Effect of k (bichromatic RkNN)

Bichromatic RkNN queries

Fig. 6.2 studies the effect of k on the cost of bichromatic RkNN queries. The
CPU time taken by containment phase of our algorithm is much smaller as com-
pared to FINCH. This is mainly because i) the unpruned area of our algorithm
is smaller and ii) we use efficient containment checking to prune the entries and
the objects. IO cost of the containment phase is also smaller for our algorithm
because the unpruned area of our algorithm is smaller. Our algorithm does
not require the verification. On the other hand, FINCH consumes significant
amount of CPU time and IOs in the verification phase.
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Figure 6.3: Effect of number of users

Fig. 6.3 studies the effect of the number of the users on both of algorithms.
The set of facilities corresponds to the real dataset and the locations of the
users follow normal distribution. Our algorithm scales much better. On the
other hand, the cost of FINCH degrades with the increase in the number of
users because a larger number of users are within the unpruned area and require
verification.

In Fig. 6.4, we study the effect of the number of the facilities. The set of
the users correspond to the real dataset and the locations of the facilities follow
normal distribution. Both of the algorithms are not significantly affected by the
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increase in the number of the facilities and our algorithm performs significantly
better than FINCH.
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Figure 6.4: number of facilities
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Figure 6.5: Data distribution

Fig. 6.5 studies the effect of the data distribution on both of the algorithms.
The data distributions of the facilities and the users are shown in the form
(Dist1,Dist2) where Dist1 and Dist2 correspond to the data distribution of the
facilities and the users, respectively. U, R and N correspond to Uniform, Real
and Normal distributions, respectively. For example, (U,R) corresponds to the
case where the facilities follow uniform distribution and the users correspond
to the real dataset. Each dataset contains around 88, 000 objects. Our algo-
rithm outperforms FINCH both in terms of CPU time and the number of nodes
accessed for all of the data distributions.

Fig. 6.6 studies the effect of the buffer size on both of the algorithms. As the
pruning and the containment phases do not visit a node twice, our algorithm is
not affected by the buffer size. FINCH issues multiple range queries to verify
the candidate objects. For this reason, the cost of its verification phase depends
on the buffer size. Note that FINCH performs worse than our algorithm even
when it uses large buffer size. Number of nodes accessed by FINCH is around
194, 000 and 61, 000 when the buffer size is 2 and 5, respectively.
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Figure 6.6: Buffer size
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Figure 6.7: IO cost

Verification of theoretical analysis

In Fig. 6.7 and Fig. 6.8, we vary k and verify the theroetical analysis presented
in Section 5. In all three experiments, we run bichromatic RkNN queries on
uniform datasets consisting of 100, 000 facilities and the same number of users.

In Fig. 6.7, we compare the experimental value of total number of nodes
accessed with the theroetical value. Recall that the pruning phase of our algo-
rithm corresponds to the computation of the influence zone. Fig. 6.7 shows the
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accuracy of our theoretical analysis of the IO cost of computing the influence
zone and the total cost of our RkNN algorithm.
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Figure 6.8: Theoretical Analysis

In Fig. 6.8(a) and Fig. 6.8(b), we vary k and verify our theoretical analysis
of the area of the influence zone and the number of RkNNs, respectively. It can
be seen that the theoretical results are close to the experimental results and
follow the trend.

6.2 Continuous Monitoring of RkNN

As mentioned earlier, the problem addressed by the influence zone based algo-
rithm is a special case of the continuous RkNN queries. Hence, it is not fair
to use the existing best known algorithms without making any obvious changes
that improve the performance. As stated earlier in Section 2.2, Lazy Updates [9]
is the best known algorithm for continuous monitoring of RkNN queries (even
for this special case, we find that it outperforms other algorithms after neces-
sary changes are made to all the existing algorithms). Hence, we compare our
algorithm with Lazy Updates.

To conduct a fair evaluation, we set the size of the safe region for the Lazy
Updates algorithm to zero. This is because the facilities do not move and the
safe regions will not be useful in this case. We tested different possible sizes
of the safe region and confirmed that this is the best possible setting for Lazy
Updates for this special case of the continuous RkNN query.

Parameter Range

Number of users (×1000) 40, 60, 80, 100, 120

Number of facilities (×1000) 40, 60, 80, 100, 120

Number of queries 100, 300, 500, 700, 1000

k 1, 2, 4, 8, 16

Speed of objects (users) in km/hr 40, 60, 80, 100, 120

Mobility of objects (users) in % 5, 20, 40, 60, 80, 100

Table 6.1: System Parameters

Our experiment settings are similar to the settings used in [9] by Lazy Up-
dates. More specifically, we use Brinkhoff generator [21] to generate the users
moving on the road map of Texas (data universe is appx. 1000Km×1000Km).
The facilities are randomly generated points in the same data universe. Ta-
ble 6.1 shows the parameters used in our experiments and the default values are
shown in bold.
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Figure 6.9: Effect of k

The locations of the users are reported to the server after every one second
(i.e., timestamp length is one second). The mobility of the objects refers to the
percentage of the objects that report location updates at a given timestamp.
In accordance with [9], the grid cardinality of both of the algorithms is set to
64× 64. Each query is monitored for 5 minutes (300 timestamps) and the total
time taken by all the queries is reported.
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Figure 6.10: Mobility
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Figure 6.11: # of queries

In Fig. 6.9, 6.10, 6.11, 6.12 and 6.13, we study the effect of k, the data
mobility, the number of the queries, the number of the users and the number of
the facilities, respectively. Influence zone based algorithm is shown as InfZone.
Clearly, the influence zone based algorithm outperforms Lazy Updates for all
the settings and scales better. In Fig. 6.13, both of the algorithms perform
better as the number of facilities increases. This is because the unpruned area
becomes smaller when the number of facilities is large. Hence, a smaller area is
to be monitored by both the algorithms and it results in lower cost.
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Figure 6.12: # of users
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7 Conclusion

In this paper, we introduce the concept of an influence zone which does not only
have applications in target marketing and market analysis but can also be used
to answer snapshot and continuous RkNN queries. We present detailed theo-
retical analysis to study different aspects of the problem. Extensive experiment
results verify the theoretical analysis and demonstrate that influence zone based
algorithm outperforms existing algorithms.
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