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Abstract

In the past few years, continuous monitoring of spatial queries has received
significant attention from the database research community. In this paper,
we study the problem of continuous monitoring of reverse k nearest neighbor
queries. Existing continuous reverse nearest neighbor monitoring techniques
are sensitive towards objects and queries movement. For example, the results
of a query are to be recomputed whenever the query changes its location. We
present a framework for continuous reverse k nearest neighbor queries by assign-
ing each object and query with a rectangular safe region such that the expensive
recomputation is not required as long as the query and objects remain in their
respective safe regions. This significantly improves the computation cost. As a
by-product, our framework also reduces the communication cost in client-server
architectures because an object does not report its location to the server unless
it leaves its safe region or the server sends a location update request. We also
conduct a rigid cost analysis to guide an effective selection of such rectangu-
lar safe regions. The extensive experiments demonstrate that our techniques
outperform the existing techniques by an order of magnitude in terms of com-
putation cost and communication cost.



1 Introduction

Given a set of multidimensional points (objects) P and a point q ∈ P , a RkNN
(Reverse k Nearest Neighbors) query retrieves points p ∈ P such that for each
p, q is one of its k nearest points in P . Specifically, RkNN (q) = {p | p ∈
P & dist(p, q) ≤ dist(p, pk)} where dist is a distance metric that is assumed
to be Euclidean distance in the paper, and pk is the kth nearest point to p in
P − {q}; this is also called monochromatic RkNN. Throughout this paper, we
use RNN queries to refer to RkNN queries for which k = 1. RNN has received
considerable attention [8, 14, 1, 13, 10, 15, 17, 24, 23, 19] from database research
community based on the applications such as decision support, location based
service, resource allocation, profile-based management, etc.

With the availability of inexpensive mobile devices, position locators and
cheap wireless networks, location based services are gaining increasing popular-
ity. One example of an increasingly popular application domain is geosocial net-
working where geographic services and capabilities are used to enable additional
social services. Some of the famous applications on geosocial networking include
Google Latitude, Where, Whrrl, Zintin and Loopt etc. An increasing number
of location based applications is being developed each month and geosocial net-
working applications are the most popular after travel related applications1.
One of many popular features of these applications is to find proximity relation-
ships between the users and/or services based on their geographical locations.
An example of such applications is zhiing2. Consider that a user needs a taxi
and she sends her location to a taxi company’s dispatch center. The company
notifies to a taxi for which she is the closest passenger (the taxi is RNN of the
user).

Other examples of location based services include location based games, traf-
fic monitoring, location based SMS advertising, enhanced 911 services and army
strategic planning etc. These applications may require continuous monitoring of
reverse nearest moving objects. For instance, in reality games (e.g., BotFight-
ers, Swordfish), players with mobile devices search for other mobile devices in
neighborhood. For example, in the award winning game BotFighters, a player
gets points by shooting other nearby players via mobiles. In such an application,
some players may want to continuously monitor her reverse nearest neighbors
in order to avoid being shot by other players. In the sea-battlefield, a warship
may register a continuous RNN query to monitor other warships that might
seek assistances from it and then may contact them from time to time.

Driven by such applications, the continuous monitoring of reverse nearest
neighbors has been investigated and several techniques have been proposed re-
cently [1, 7, 18, 20] in the light of location-based services. The existing continu-
ous monitoring techniques [1, 7, 18, 20] adopt two frameworks based on different
applications. In [1], the velocity of each object is assumed to be explicitly ex-
pressed while [7, 18, 20] deal with a general situation where object velocities may
be impossible to be explicitly expressed. In this paper, our research is based on
the general situation; that is, object velocities are not explicitly expressible.

The techniques in [7, 18, 20] adopt a two-phase computation. In the filtering

phase, objects are pruned by using the existing pruning paradigms from [14,
15] and the remaining objects are considered as the candidate objects. In the

1http://www.skyhookwireless.com/locationapps/
2http://www.zhiing.com/how.php
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verification phase, every candidate object for which the query is its closest point
is reported as RNN. To update the results, at each time-stamp, if the set of
candidate objects is detected to be unchanged then only the verification phase
is called to verify the results. Nevertheless, both the filtering and verification
phases are required if one of the candidate objects changes its location or other
objects move into the candidate region. Similarly, a set of candidate objects is
needed to be re-computed (i.e. recall filtering) if the query changes its location.

Previous techniques[7, 20, 18] require expensive filtering if a query or any
candidate object changes its location. Our initial experiment results show that
the cost of verification phase is much lower than the filtering phase. In our
technique, we assign each query and object a safe region (a rectangular area).
The filtering phase for a query is not required as long as the query and its
candidate objects remain in their corresponding safe regions. This significantly
reduces the computation time of continuously monitoring RkNN queries.

As a by-product, our proposed framework also significantly reduces the com-
munication cost in a client-server architecture. In the existing techniques, every
object reports its location to the server at every time-stamp regardless whether
query results will be affected or not. Consequently such a computation model
requires transmission of a large number of location updates; doing this has a
direct impact on the wireless communication cost and power consumption -
the most precious resources in mobile environment [5]. In our framework, each
moving object reports its location update only when it leaves the region. This
significantly saves the communication costs.

Contributions. Below, we summarize our contributions:

1. We present a framework for continuously monitoring RNN together with
a novel set of effective pruning and efficient increment computation tech-
niques. It not only reduces the total computation cost of the system but
also reduces the communication cost.

2. We extend our algorithm for continuous monitoring of RkNN. Our al-
gorithm can be used to monitor both mono-chromatic and bichromatic

RkNN (to be formally defined in Section 2.1).

3. We provide a rigid analysis of the relationship between computation/com-
munication costs and the safe regions. This also guides us to effectively
select the safe regions.

4. Our extensive experiments demonstrate that the developed techniques
outperform the previous algorithms by an order of magnitude in terms
of computation cost and communication cost.

The remaining of the paper is organized as follows. In Section 2, we give
the problem statement, related work and motivation. Section 3 presents the
framework of our techniques and a set of novel pruning techniques. Section
4 presents our techniques for continuously monitoring RNN queries, as well
as a rigid cost analysis. Section 5 gives the extension of our techniques to
multidimensional space, to RkNN, and to Bichromatic RkNN. The experiment
results are reported in Section 6. Section 7 concludes the paper. Terms are
defined in Glossary (Section 8) and proofs are presented in Appendix (Section 9).
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2 Background Information

In this section, we give problem definition, a brief overview of related work and
motivations.

2.1 Problem Definition

There are two types of RkNN queries [8] namely, monochr-omatic and bichro-

matic RkNN queries. Below we define both.
Monochromatic RkNN query: Given a set of multidimensional points
P and a point q ∈ P , a monochromatic RkNN query retrieves points p ∈ P ,
dist(p, q) ≤ dist(p, pk) where dist is a distance metric, and pk is the kth nearest
point to p in P − {q}.

Note that, in such queries, both the data objects and the query objects
belong to the same class of objects. Consider an example of the reality game
BotFighters, where a player issues a query to find other players for whom she
is the closest person.
Bichromatic RkNN query: Given two sets O and P each containing differ-
ent types of objects, a bichromatic RkNN query for a point q ∈ O is to retrieve
every object p ∈ P such that dist(p, q) ≤ dist(p, ok) where ok is the kth nearest
point of p in O − {q}.

In contrast to monochromatic queries, the query and data objects belong to
two different classes. Consider the example of a battlefield where a medical unit
might issue a bichromatic RNN query to find the wounded soldiers for whom it
is the closest medical unit.

2.2 Related Work

First, we present pruning techniques for snapshot RNN queries. Snapshot RNN
queries report the results only once and do not require continuous monitoring.
Snapshot RNN Queries: Korn et al. [8] were first to study RNN queries.
They answer RNN query by pre-calculating a circle for each data object p such
that the nearest neighbor of p lies on the perimeter of the circle. RNN of a
query q are the points that contain q in its circle. Techniques to improve their
work were proposed in [22, 10].
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First work that does not need any pre-computation was presented by Stanoi
et al. [14]. They solve RNN queries by partitioning the whole space centred at
the query q into six equal regions of 60◦ each (S1 to S6 in Fig. 2.1). It can be
proved that only the nearest point to q in each partition can possibly be the
RNN. Consider the region S3 where c is the nearest object to q and d cannot
be the RNN because its distance to c is smaller than its distance to q. This
can be proved by the triangle ∆qcd where ∠dqc ≤ 60◦ and ∠dcq ≥ 60◦, hence
dist(d, c) ≤ dist(d, q). Fig. 2.2 shows the area (shown shaded) that cannot
contain RNN of q.

In filtering phase, the candidate RNN objects (a, b, c, e and f in our exam-
ple) are selected by issuing nearest neighbor queries in each region. In verifica-

tion phase, any candidate object for which q is its nearest neighbor is reported
as RNN (a and f). In this paper, we call this approach six-regions pruning

approach.
Tao et al. [15] use the property of perpendicular bisectors to answer RkNN

queries. Consider the example of Fig. 2.3, where a bisector between q and c is
shown that divides the space into two half-spaces (the shaded half-space and the
white half-space). Any point that lies in the shaded half-space Hc:q is always
closer to c than to q and cannot be the RNN for this reason. Their algorithm
prunes the space by the half-spaces drawn between q and its neighbors in the
unpruned region. Fig. 2.4 shows the example where half-spaces between q and
a, c and f (Ha:q, Hc:q and Hf :q, respectively) are shown and the shaded area
is pruned. Then, the candidate objects (a, c and f) are verified as RNNs if q
is their closest object. We call this approach half-space pruning approach. It is
shown in [15] that the half-space pruning is more powerful than the six-regions
pruning and it prunes larger area (compare the shaded areas of Fig. 2.2 and
Fig. 2.4).
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Figure 2.3: Half-space pruning
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Wu et. al [19] propose an algorithm for RkNN queries in 2d-space. Instead
of using bisectors to prune the objects, they use a convex polygon obtained from
the intersection of the bisectors. Any object that lies outside the polygon can
be pruned.
Continuous RNN Queries: Computation-efficient monitoring of continuous
range queries [3, 9], nearest neighbor queries [11, 25, 21, 6, 16] and reverse near-
est neighbor queries [1, 20, 7, 18] has received significant attention. Although
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there exists work on communication-efficient monitoring of range queries [5] and
nearest neighbor queries [5, 12], there is no prior work that reduces the commu-
nication cost for continuous RNN queries. Below, we briefly describe the RNN
monitoring algorithms that improve the computation cost.

Benetis et al. [1] presented the first continuous RNN monitoring algorithm.
However, they assume that velocities of the objects are known. First work that
does not assume any knowledge of objects’ motion patterns was presented by
Xia et al. [20]. Their proposed solution is based on the six-regions approach.
Kang et al. [7] proposed a continuous monitoring RNN algorithm based on the
half-space pruning approach. Consider the examples of Fig. 2.2 and Fig. 2.4,
the results of the RNN query may change in any of the following three scenarios:

1. the query or one of the candidate objects changes its location

2. the nearest neighbor of a candidate object is changed (an object enters or
leaves the circles shown in Fig. 2.2 and Fig. 2.4)

3. an object moves into the unpruned region (the areas shown in white in
Fig. 2.2 and Fig. 2.4)

Xia et al. [20] use this observation and propose a solution for continuous
RNN queries based on the six-regions approach. They answer RNN queries by
monitoring six pie-regions (the white areas in Fig. 2.2) and the circles around
the candidate objects that cover their nearest neighbors. Kang et al. [7] use
the same observation and propose a solution based on the half-space pruning
approach. They continuously monitor RNN queries by monitoring the unpruned
region (white area in Fig. 2.4) and the circles around the candidate objects that
cover their nearest neighbors. Both the approaches use a grid structure to store
the locations of the objects and queries. They mark the cells of the grid that lie
or overlap with the area to be monitored. Any object movement in these cells
triggers the update of the results.

To the best of our knowledge, there exists only one solution for continuous
monitoring of RkNN queries [18] which is similar to the six-regions based RNN
monitoring presented in [20]. Wu et al. [18] issue k nearest neighbor (kNN)
queries in each region instead of single nearest neighbor queries. The kNNs
in each regions are the candidate objects and they are verified if q is one of
their k closest objects. To monitor the results, for each candidate object, they
continuously monitor the circle around it that contains k nearest neighbors.

2.3 Motivation

Both the six-regions and the half-space based solutions have two major limita-
tions.
1. As illustrated in the three scenarios presented in the previous section, the
existing techniques are sensitive to object movement. If a query or any of its
candidate objects changes its location, filtering phase is called again which is
computationally expensive. For example, if a query is continuously moving, at
each timestamp both of the approaches will have to compute the results from
scratch. For example, in the half-space based approach, the half-spaces between
q and its previous candidates are redrawn and the pruning area is adjusted.
In our initial experiments, we find that the cost of redrawing the half-spaces
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(and marking and unmarking the relevant cells) is computationally almost as
expensive as the initial computation of the results.
2. The previous techniques require every object to report its exact location to
the server at every timestamp regardless whether it affects the query result or
not. This has a direct impact on the two most precious resources in mobile
environment, wireless communication cost and power consumption. Ideally,
only the objects that affect the query results should report their locations. For
example, in Fig. 2.4, as long as objects d, e and g do not enter into the white
region or the three circles, they do not affect the results of the query.

Motivated by these, we present a framework that provides a computation and
communication efficient solution. Note that, in some applications, the clients
may have to periodically report their locations to the server for other types
of queries. In this case, saving the communication cost is not possible. Nev-
ertheless, our framework significantly reduces the computation costs for such
applications1.

3 Framework

Each moving object and query is assigned a safe region of rectangular shape.
Although the clients may use their motion patterns to assign themselves better
safe regions, we assume that such information is not utilized by the clients or
the server. In our framework, the server recommends the side lengths of the
safe regions (a system parameter) to the clients. A client assigns itself a new
safe region such that it lies at the center of the safe region.

An object reports its location to the server only when it moves out of its safe
region. Such updates issued by the clients (objects) are called source-initiated

updates [5]. In order to update the results, the server might need to know the
exact location of an object that is still in its safe region. The server sends a
request to such object and updates the results after receiving its exact location.
Such updates are called server-initiated updates [5].

If an object stops moving (e.g., a car is parked), it notifies the server and
the server reduces its safe region to a point until it starts moving again.

In the previous approaches [20, 7], the pruned area becomes invalid if the
query point changes its location. On the other hand, in our framework, the
query is also assigned with a safe region and the pruned area remains valid
as long as the query and its candidate objects remain in their respective safe
regions and no other object enters in the unpruned region. Although the query
is also assigned with a safe region, it reports its location at every timestamp.
This is because its location is important to compute the exact results and a
server-initiated update would be required (in most of the cases) if it does not
report its location itself. Moreover, the number of queries in the system is
usually much smaller than the number of objects. Hence, location updates by
the queries do not have significant effect on the total communication cost.

Table 3.1 defines the notations used throughout this paper.

1In rest of the paper, we present our technique assuming that the clients send their locations
only for the RkNN query. For the case when the clients periodically send their locations for
other types of queries, our techniques can be easily applied. The only change is that the safe
regions are stored on the server which ignores the location updates from the objects that are
still in their safe regions. Experiment results show superioirty of our approach for both cases.
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Notation Definition

Bx:q a perpendicular bisector between point x and q

Hx:q a half-space defined by Bx:q containing point x

Hq:x a half-space defined by Bx:q containing point q

Ha:b ∩ Hc:d intersection of the two half-spaces

A[i] value of a point A in the ith dimension

maxdist(x, y) maximum distance between x and y (each of x and y is either
a point or a rectangle)

mindist(x, y) minimum distance between x and y (each of x and y is either
a point or a rectangle)

Rfil, Rcnd, Rq rectangular region of the filtering object, candidate object and
query, respectively

RH [i] highest coordinate value of a rectangle R in ith dimension

RL[i] lowest coordinate value of a rectangle R in ith dimension

Table 3.1: Notations

Our continuous monitoring algorithm consists of the following two phases.
Initial computation: When a new query is issued, the server first computes
the set of candidate objects by applying pruning rules presented in Section 3.1.
This phase is called filtering phase. Then, for each candidate object, the server
verifies it as RkNN if the query is one of its k closest points. This phase is called
verification phase.
Continuous monitoring: The server maintains the set of candidate objects
throughout the life of a query. Upon receiving location updates, the server
updates the candidate set if it is affected by some location updates. Otherwise,
the server calls verification module to verify the candidate objects and report
the results.

3.1 Pruning Rules

To the best of our knowledge, we are first to present novel pruning rules for
RNN queries that can be applied when locations of the objects are unknown
within their rectangular regions. These pruning rules can also be applied on the
minimum bounding rectangles of the spatial objects that have irregular shapes
(in contrast to the assumption that the spatial objects are points). In Section 5,
we extend the pruning rules for RkNN queries. We present the pruning rules
from the following orthogonal perspectives.

• Half-space based pruning that exploits geometrical properties (Section 3.1)

• Dominance based pruning that exploits topological properties (Section 3.1)

• Metric based pruning (Section 3.1)

In this section, the object that is used for pruning other objects is called
filtering object and the object that is being considered for pruning is called
candidate object.

Half-space Pruning

First, we present the challenges in defining this pruning rule by giving an ex-
ample of a simpler case where the exact location of a filtering object p is
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known but the exact location of q is not known on a line MN (shown in
Fig. 3.1). Any object x can be pruned if mindist(x, MN) ≥ dist(x, p) where
mindist(x, MN) is the minimum distance of x from the line MN . Hence, the
boundary that defines the pruned area consists of every point x that satis-
fies mindist(x, MN) = dist(x, p). Note that for any point x in the space on
right side of the line LN , mindist(x, MN) = dist(x, N). Hence, in the space
on right side of the line LN , the bisector between p and the point N satis-
fies the equation of the boundary (because for any point x on this bisector
dist(x, N) = dist(x, p)).

Similarly, on the left side of LM , the bisector between p and M satisfies the
condition. In the area between LM and LN , a parabola (shown in Fig. 3.1)
satisfies the equation of the boundary. Hence the shaded area defined by the
two half-spaces and the parabola can be pruned. Note that the intersection
of half-spaces Hp:N and Hp:M does not define the area correctly. As shown in
Fig. 3.1 , a point p′ lying in this area may be closer to q than to the point p.

p

M N
q

H
p:M

H
p:N

parabola

L
N

L
M

p'

Figure 3.1: The exact location of the
point q on line MN is not known

p

M N
q

H
p:M

H
p:N

L
N

L
M

A

B

Figure 3.2: Approximation of
parabola by a line

Unfortunately, the pruning of the shaded area is inefficient due to the pres-
ence of parabola. One solution is to approximate the parabola by a line AB
where A is the intersection of Hp:N and LN and B is the intersection of Hp:M

and LM . Fig. 3.2 shows the line AB and the pruned area is shown shaded.
Another solution is to move the half-spaces Hp:M and Hp:N such that both

pass through a point c that satisfies mindist(c, MN) ≥ dist(c, p) (e.g., any point
lying in the shaded area of Fig. 3.1). This approximation of the pruning area is
tighter if the point c lies on the boundary. Fig 3.3 shows the half-spaces Hp:M

and Hp:N moved to such point c. A half-space that is moved is called normalized

half-space and a half-space Hp:M that is moved is denoted as H ′

p:M . Fig. 3.3
shows the normalized half-spaces H ′

p:M and H ′

p:N and their intersection can be
pruned (the shaded area).

Among the two possible solutions discussed above, we choose normalized
half-spaces in developing our pruning rules for the following reason. In our rel-
atively simple example, the number of half-spaces required to prune the area
by using normalized half-space is two (in contrast to three lines for the other
solution). The difference between this number becomes significant when both
the query and filtering objects are represented by rectangles especially in mul-
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tidimensional space. This makes the pruning by normalized half-spaces a less
expensive choice.

Now, we present our pruning rule that defines the pruned area by using
two half spaces in two dimensional space and 2d half-spaces for d-dimensional
space when d > 2. After giving a formal description of our pruning rule in
d dimensional space, we briefly describe the reason of its correctness in two
dimensional space. First, we define the following concepts:
Antipodal Corners Let C be a corner of rectangle R1 and C′ be a corner
in R2, the two corners are called antipodal corners1 if for every dimension i
where C[i] = R1L[i] then C′[i] = R2H [i] and for every dimension j where
C[j] = R1H [j] then C′[j] = R2L[j]. For example, in two dimensional space,
a lower-left corner of R1 is the antipodal corner of upper-right corner of R2.
Fig. 3.4 shows two rectangles R1 and R2. The corners B and M are two
antipodal corners. Similarly, other pairs of antipodal corners are (D, O), (C, N)
and (A, P ).
Antipodal Half-Space A half-space that is defined by the bisector between
two antipodal corners is called antipodal half-space. Fig. 3.4 shows two antipodal
half-spaces HM :B and HO:D.

p

M N
q

H’
p:M

H
p:N

H’
p:N

H
p:M

c

Figure 3.3: Defining pruned region
by moving half-spaces

O

AB

C D

M

N

P

H
M:B

H’
M:B

H
O:D

R
1

R
2

c
H’
O:D

Figure 3.4: Antipodal corners and
normalized half-spaces

Normalized Half-Space Let B and M be two points in hyper-rectangles
R1 and R2, respectively. The normalized half-space H ′

M :B is a space defined
by the bisector between M and B that passes through a point c such that
c[i] = (R1L[i] + R2L[i])/2 for all dimensions i for which B[i] > M [i] and c[j] =
(R1H [i] + R2H [j])/2 for all dimensions j for which B[j] ≤ M [j]. Fig. 3.4 shows
two normalized (antipodal) half-spaces H ′

M :B and H ′

O:D. The point c for the two
half-space is also shown. The inequalities (3.1) and (3.2) define the half-space
HM :B and its normalized half-space H ′

M :B, respectively.

d
∑

i=1

(B[i] − M [i]) · x[i] <

d
∑

i=1

(B[i] − M [i])(B[i] + M [i])

2
(3.1)

1RL[i] (RH [i]) is the lowest (highest) coordinate of a hyper-rectangle R in ith dimension
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d
∑

i=1

(B[i] − M [i]) · x[i] <

d
∑

i=1

(B[i] − M [i])×











(R1L[i] + R2L[i])

2
, if B[i] > M [i]

(R1H [i] + R2H [i])

2
, otherwise

(3.2)

Note that the right hand side of the Equation (3.1) cannot be smaller than the
right hand side of Equation (3.2). For this reason H ′

MB ⊆ HMB. Now, we
present our pruning rule.

Pruning Rule 1 : Let Rq and Rfil be the rectangular regions of query q

and filtering object p, respectively. For any point p′ that lies in
⋂2d

i=1 H ′

Ci:C′

i

,

mindist(p′, Rq) > maxdist(p′, Rfil) where H ′

Ci:C′

i

is normalized half-space be-

tween Ci (the ith corner of the rectangle Rfil) and its antipodal corner C′

i in
Rq. Hence p′ can be pruned.

O

AB

C D

M

N

P

H’
M:B

R
q

R
fil

c
H’
O:D

H’
N:C

H’
P:A

Figure 3.5: Pruning area of half-
space pruning and dominance prun-
ing

O

A B

CD

M

N

P

H’
N:C

H’
M:BH’

P:A

H’
O:DR

q

R
fil

c
1c

2

c

Figure 3.6: Any point in shaded area
cannot be RNN of q

Fig. 3.5 shows an example of the half-space pruning where the four normal-
ized antipodal half-spaces define the pruned region (the area shown shaded).
The proof of correctness is given in Appendix (Lemma 5 in Section 9). Below,
we present the intuitive justification of the proof.

Intuitively (as in example of Fig. 3.3), if we draw all possible half-spaces
between all points of Rq and Rfil and move them to a point c for which
mindist(c, Rq) ≥ maxdist(c, Rfil), then the intersection of these half-spaces
correctly approximates the pruned region. Also note that in two dimensional
space, at most two normalized spaces define such area. Consider the example of
Fig. 3.5, where only H ′

O:D and H ′

M :B define the pruned region (the reason is that
these two have largest and smallest slopes among all other possible half-spaces).
In fact, the antipodal corners are defined such that the half-spaces having largest
and smallest slopes are among the four antipodal half-spaces. Moreover, the
point c shown in Fig. 3.5 satisfies mindist(c, Rq) = maxdist(c, Rfil) because
normalized half-spaces are defined such that c lies at the middle of line that
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joins corners A and N . Hence the four normalized antipodal half-spaces cor-
rectly approximate the pruned region.

For ease of explanation, in Fig. 3.5, we have shown an example where
the two rectangles Rq and Rfil do not overlap each other in any dimension.
If the two rectangles overlap each other in any dimension (as in Fig. 3.6),
the four half-spaces do not meet at the same point. In Fig. 3.6, H ′

O:D and
H ′

P :A are moved to c1 and H ′

N :C and H ′

M :B are moved to point c2. How-
ever, it can be verified by calculating the intersection that the half-spaces that
define the pruned region (H ′

M :B and H ′

P :A) meet at a point c that satisfies
mindist(c, Rq) ≥ maxdist(c, Rfil).

Dominance Pruning

We first give the intuition behind this pruning rule. Consider the example of
Fig. 3.5 again. The normalized half-spaces are defined such that if Rfil and Rq

do not overlap each other in any dimension then all the normalized antipodal
half-spaces meet at same point c. We also observe that the angle between the
half-spaces that define the pruned area (shown in grey) is always greater than
90◦. Based on these observations, it can be verified that the space dominated by
c (the dotted-shaded area) can be pruned. Formal proof is given in Appendix
(Lemma 6 in Section 9.
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Figure 3.7: Shaded areas can be
pruned
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Figure 3.8: Rcnd can be pruned by
R1 and R2

Let Rq be the rectangular region of q. We can obtain the 2d regions as
shown in Fig. 3.7. Let Rfil be the rectangular region of a filtering object that
lies completely in one of the 2d regions. Let f be the furthest corner of Rfil

from Rq and n be the nearest corner of Rq from f . A point Fp that lies at the
centre of the line joining f and n is called a frontier point.

Pruning Rule 2 : Any candidate object p′ that is dominated by the frontier
point Fp of a filtering object cannot be RNN of q.

Fig. 3.7 shows four examples of dominance pruning (one in each region). In
each partition, the shaded area is dominated by Fp and can be pruned. Note that
if Rfil overlaps Rq in any dimension, we cannot use this pruning rule because
the normalized antipodal half-spaces in this case do not meet at the same point.
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For example, the four normalized antipodal half-spaces intersect at two points
in Fig. 3.6. In general, the pruning power of this rule is less than that of the half-
space pruning. Fig. 3.5 shows the area pruned by the half-space pruning (the
shaded area) and dominance pruning (the dotted area). The main advantage of
this pruning rule is that the pruning procedure is computationally more efficient
than the half-space pruning, as checking the dominance relationship is easier.

Metric Based Pruning

Pruning Rule 3 : A candidate object can be pruned if maxdist(Rcnd, Rfil) <
mindist(Rcnd, Rq) where Rcnd is the rectangular region of the candidate object.

This pruning approach is the least expensive because it does a simple dis-
tance comparison. Recall that the half-space (or the dominance) pruning defines
a region such that any point p′ that lies in it is always closer to the filtering
object than to q. Metric based pruning checks this by a simple distance com-
parison. However, this does not mean that metric based pruning has at least as
much pruning power as half-space or dominance pruning. This is because the
half-space and dominance pruning can trim the rectangular region of a candi-
date object that lies in the pruned region. It may lead to pruning of a candidate
object when more than one filtering objects are considered.

Consider the example of Fig. 3.8, where two rectangles R1 and R2 of two
filtering objects are shown. The rectangle Rcnd cannot be pruned when half-
space pruning is applied on R1 or R2 alone. However, the rectangle Rcnd can be
pruned when both R1 and R2 are considered. As in [15], we use loose trimming
of the rectangle by using trimming algorithm [4]. The trimming algorithm trims
a part of the rectangle that cannot be pruned. First Rcnd is pruned by the half-
spaces of R1 and the trimming algorithm trims the rectangle that lies in the
pruned region. The unpruned rectangle R′

cnd (shown with dotted shaded area)
is returned. This remaining rectangle completely lies in the area pruned by R2

so the candidate object is pruned. Note that metric based pruning cannot prune
Rcnd.

Also note that if the exact location of the candidate object is known (Rcnd

is a point) and metric based pruning fails to prune the object then half-space
pruning and dominance pruning also fail to prune the object. Hence, half-space
pruning and dominance pruning are applied only when the exact location of
candidate object is not known.

Pruning if exact location of query is known

If the exact location of the query or a filtering object is known, previous pruning
rules can be applied by reducing the rectangles to points. However, a tighter
pruning is possible if exact location of the query is known. Below, we present a
tighter pruning rule for such case.

Pruning Rule 4 : Let Rfil be a hyper-rectangle and q be a query point. For

any point p that lies in
⋂2d

i=1 HCi:q (Ci is the ith corner of Rfil), dist(p, q) >
maxdist(p, Rfil) and thus p cannot be the RNN of q.

Proof. Maximum distance between a rectangle Rfil and any point p is the
maximum of distances between p and the four corners, i.e., maxdist(p, Rfil) =
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max(dist(p, Ci)) where Ci is the ith corner of Rfil. Any point p that lies in a
half-space HCi:q satisfies dist(p, q) > dist(p, Ci) for the corner Ci of Rfil. Hence

a point p lying in
⋂2d

i=1 HCi:q, satisfies dist(p, q) > maxdist(p, Rfil).

q

H
M:q

M

N

H
P:q

H
O:q

O

P
H
N:q

R
filp'

Figure 3.9: Half-space pruning when exact location of query is known

Consider the example of Fig. 3.9 that shows the half-spaces between q and
the corners of Rfil. Any point that lies in the shaded area is closer to every
point in rectangle Rfil than to q.

It is easy to prove that the pruned area is tight. In other words, any point p′

that lies outside the shaded area may possibly be the RNN of q. Fig. 3.9 shows
such point p′. Since it does not lie in HP :q it is closer to q than to the corner
P . Hence it may be the RNN of q if the exact location of the filtering object is
at corner P .

Integrating the pruning rules

Algorithm 1 is the implementation of all the pruning rules presented. Specif-
ically, we apply pruning rules in increasing order of their computational costs
(i.e., metric based pruning, dominance pruning and then half-space pruning).
While simple pruning rules are not as restricting as more expensive ones, they
can quickly discard many non-promising candidate objects and save the overall
computational time.

Three subtle optimizations in the algorithm are:

• As stated earlier, if the exact location of the candidate object is known
then only metric based pruning is required. So, we do not consider domi-
nance and half-space pruning for such candidates (line 7).

• If mindist(Rcnd, Rfil) > maxdist(Rq, Rcnd) for a given MBR Rfil, then
Rfil cannot prune any part of Rcnd. Hence such Rfil is not considered for
dominance and half-space pruning (lines 4-5).

• If the frontier point Fp1
of a filtering object Rfil1 is dominated by the

frontier point Fp2
of another filtering object Rfil2 , then Fp1

can be re-
moved from Sfil because the area pruned by Fp1

can also be pruned by
Fp2

. However, note that a frontier point cannot be used to prune its own
rectangle. Therefore, before deleting Fp1

, we use it to prune the rectan-
gle belonging to Fp2

. This optimization reduces the cost of dominance
pruning.
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Algorithm 1 : Prune(Rq, Sfil, Rcnd)

Input: Rq : rectangular region of q ; Sfil: a set of filtering objects ; Rcnd: the rectangular
region of candidate object

Output: returns true if Rcnd is pruned; otherwise, returns false
Description:

1: for each Rfil in Sfil do

2: if maxdist(Rcnd , Rfil) < mindist(Rq , Rcnd) then // Pruning rule 3

3: return true
4: if mindist(Rcnd, Rfil) > maxdist(Rq , Rcnd) then

5: Sfil = Sfil − Rfil // Rfil cannot prune Rcnd

6: if exact location of cnd is known then

7: return false // the object cannot be pruned

8: for each Rfil in Sfil do

9: if Rfil is fully dominated by Rq in a partition P then // Pruning rule 2

10: trim the part of Rcnd that is dominated by Fp

11: return true if Rcnd is pruned
12: return

13: for each Rfil in Sfil do

14: Trim using half-space pruning // Pruning rule 1

15: return true if Rcnd is pruned
16: return false

4 Continuous RNN Monitoring

In this section, we present our algorithm for continuous monitoring of RNN
queries. We call it SAC (Swift And Cheap) due to its computational efficiency
and communication cost saving. First, we present the data structure used and
then we present the algorithms.

4.1 Data Structure

Our system has an object table and a query table. Object table (query table)
stores the id and the rectangular region for each object (query). In addition,
the query table stores a set of candidate objects Scnd for each query.

Like existing continuous monitoring techniques, we choose grid-based data
structure to store the locations and rectangular regions of moving objects and
queries. Each cell contains two lists: 1) object list 2) influence list. Object list
of a cell c contains object id of every object whose rectangular region overlaps
the cell c. This list is used to identify the objects that may be located in this
cell. Influence list of a cell c contains query ids of all queries for which this cell
lies in (or overlaps with) the unpruned region. The intuition is that if an object
moves into this cell, we know that the queries in the influence list of this cells
are affected.

Range queries and constrained NN queries (nearest neighbors in constrained
region) are issued to compute RNNs of a query (e.g., six constrained nearest
neighbor queries are issued in the six-regions based approach). In our algorithm,
we also need an algorithm to search the nearby objects in a constrained area (the
unpruned region). Several continuous nearest neighbors algorithms [25, 11, 21]
based on grid-based index have been proposed. However, the extension of these
grid-access methods for queries on constrained area becomes inefficient. i.e.,
the cells around queries are retrieved even if they lie in the pruned region. To
efficiently search nearest neighbors in a constrained area, we propose a grid-
based access method where the grid is treated as a conceptual tree.
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Figure 4.2: Illustration of filtering
phase

Fig. 4.1 shows an example of the conceptual grid-tree of a 4 × 4 grid. For
a grid-based structure containing 2n × 2n cells where n ≥ 0, the root of our
conceptual grid-tree is a rectangle that contains all 2n × 2n cells. Each entry
at l-th level of this grid-tree contains 2(n−l) × 2(n−l) cells (root being at level
0). An entry at l-th level is divided into four equal non-overlapping rectangles
such that each such rectangle contains 2(n−l−1) × 2(n−l−1) cells. Any n-th level
entry of the tree corresponds to one cell of the grid structures. Fig. 4.1 shows
root entry, intermediate entries and the cells of grid. Note that the grid-tree
does not exist physically, it is just a conceptual visualisation of the grid.

The nearest neighbors algorithms that can be applied on R-tree can easily
be applied on the conceptual grid tree. The advantage of using this grid-tree
over previously used grid-based access methods is that if an intermediate entry
of the tree lies in the pruned region, none of the cells inside it are accessed.
Our experiment results (Fig. 6.8) demonstrate that grid-tree is more efficient
for constrained NN queries than the existing grid access methods [25, 11].

4.2 Initial Computation

The initial computation consists of two phases namely filtering and verification.
Below we discuss them in detail.

Filtering

In this phase (Algorithm 2), the grid-tree is traversed to select the candidate
objects and these objects are stored in Scnd. These candidate objects are also
used to prune other objects. Initially, root entry of the grid-tree is inserted in
a min-heap H. We try to prune every de-heaped entry e (line 6) by using the
pruning rules presented in the previous section. If e is a cell and cannot be
pruned, we insert the objects into heap that are in its object list. Otherwise, if
e is an intermediate entry of the grid-tree, we insert its four children into the
heap H with key mindist(c, Rq). If e is an object and is not pruned, we insert
it into Scnd. The algorithm stops when the heap becomes empty.

Fig. 4.2 shows an example of the filtering phase. For better illustration,
the grid is not shown. Objects are numbered in order of their proximity to q.
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Algorithm 2 : Filtering

1: for each query q do
2: Scnd = φ

3: Initialize a min-heap H with root entry of Grid-Tree
4: while H is not empty do

5: de-heap an entry e

6: if (not Pruned(Rq , Scnd, e)) then // Algorithm 1
7: if e is a cell in Grid then

8: for each object o in object list of e do

9: insert o into H if not already inserted
10: else if e is an intermediate entry of grid-tree then

11: for each of its four children c do

12: insert c into H with key mindist(c, Rq)
13: else if e is an object then

14: Scnd = Scnd ∪ {e}

Algorithm iteratively finds the nearest objects and prunes the space accordingly.
In the example of Fig. 4.2, the algorithm first finds o1 and prunes the space.
Since the next closest object o2 lies in the pruned space, it is not considered and
o3 is selected instead. The algorithm continues and retrieves o4 and o5 and the
shaded area is pruned. The algorithm stops because there is no other object in
the unpruned area (the white area). The rectangles of the pruned objects are
shown in broken lines.

One important note is that in this phase, the call to pruning algorithm at
line 6 does not consider the exact locations of any object or query for pruning
even if the exact location is known. This is because we want to find a set of can-
didate objects Scnd such that as long as all of them remain in their rectangular
regions and no other object enters in the unpruned area, the set of candidate
objects is not affected. For example, the set of candidate objects {o1, o3, o4, o5}
will not change unless q or any candidate object moves out of its rectangular
region or any of the remaining objects (o2 and o6) moves in the unpruned area
(the white area).
Marking the cells in unpruned area: To quickly identify that an object has
moved into the unpruned area of a query q, each cell that lies in the unpruned
area is marked. More specifically, q is added in the influence list of such cell.
We mark these cells in a hierarchical way by using the grid-tree. For example,
if an entry completely lies in the unpruned region, all the cells contained by it
are marked. The cells are unmarked similarly.

Verification

At this stage, we have a set of candidate objects Scnd for each query. Now,
we proceed to verify the objects. Since every query q reports its location to
the server at every timestamp, we can use its location to further refine its
Scnd. More specifically, any object o ∈ Scnd cannot be the RNN of q for which
mindist(o, q) ≥ maxdist(o, o′) for any other o′ ∈ Scnd. If the object cannot
be pruned by this distance based pruning, we try to prune it by using pruning
rule 4. For every query q, its candidate objects that cannot be pruned are stored
in a list Sglobal.

The server sends messages to every object in Sglobal for which the exact
location is not known. The objects send their exact locations in response. For
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Figure 4.3: Illustration of verification phase

each query q, the list of candidate objects is further refined by using these exact
locations. As noted in [14], at this stage, the number of candidate objects for
a query cannot be greater than six in two dimensional space. We verify these
candidate objects as follows.

Algorithm 3 : Verification
1: Refine Scnd using the exact location of q

2: Request objects in Scnd to send their exact locations
3: Select candidate objects based on exact location of the objects
4: Verify candidate objects (at most six) by issuing boolean range queries

For a candidate object o, we issue a boolean range query [13] centered at o
with range dist(o, q). In contrast to the conventional range queries, a boolean
range query does not return all the objects in the range. It returns true if an
object is found within the range, otherwise it returns false. Fig. 4.3 shows an
example, where candidate objects are o1 to o4. The object o3 cannot be the
RNN because o6 (for which we know the exact location) is found within the
range. Similarly, o4 cannot be the RNN because the rectangular region of o6

completely lies within the range. The object o2 is confirmed as RNN because
no object is found within the range. The only candidate object for which the
results is undecided is o1 because we do not know the exact location of object o5

which may or may not lie within the range. The server needs its exact location
in order to verify o1. For each query q, the server collects all such objects.
Then, it sends messages to all these objects and verifies all undecided candidate
objects upon receiving the exact locations.

Note that, to compute the results of all queries, the server issues at most
two request streams and receives at most two response streams.

4.3 Continuous Monitoring

The set of candidate objects Scnd of a query changes only when the query or
one of the candidate objects leaves its rectangular region or when any other
object enters into the unpruned region. If Scnd is not affected, we simply call
the verification phase to update the results. Otherwise, we have to update Scnd.
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One approach to update Scnd is to prune the area using current rectangular
regions of q and its candidate objects. Any object that is found in the unpruned
region is included in Scnd. The cells that correspond to the old unpruned regions
are unmarked and the cells that lie in or overlap with the new region are marked.
In our experiments, we found that this update of Scnd and grid cells is almost
as expensive as computing the Scnd from scratch. Below, we show that if we
choose to compute Scnd from scratch, we may save computation cost in next
timestamps.

When a query or one of its candidate objects leaves its rectangular region,
other candidate objects may also have moved and are likely to leave their re-
gions in next few timestamps which will trigger the expensive filtering phase
again. Since we have to communicate with these candidate objects in verifica-
tion phase anyway, we ask them to not only send their exact locations but also
their new rectangles. After receiving these new rectangular regions, we compute
the results of queries as in initial computation. Now all the candidate objects
have new safe regions and the set of candidate objects is expected to remain
unchanged for longer.

Suppose that an object o is candidate for two queries q1 and q2 and Scnd

of q1 is affected by a location update of any other object o′. We cannot ask o
to update its rectangular region because it will affect Scnd of query q2 as well.
Hence, the server only asks an object to update its rectangular region if it does
not affect other queries.

4.4 Cost Analysis

In this section, we analyse the computation and communication cost for our
proposed solution. First, we present a pruning rule based on six-regions ap-
proach and compute the communication cost. Then, we show that the pruning
rules used in our technique are superior. Hence the communication cost gives
an upper bound. Then, we analyse the computation cost.
Assumptions: We assume that the system contains N objects in a unit space
(extent of the space on both dimensions is from 0 to 1). Each rectangular region
is a square and width of each side is w. The centers of all rectangular regions
are uniformly distributed.
Communication cost: Consider the example of Fig. 4.4 where a 60◦ region
bounded by the angle ∠EqC is shown in thick lines. Suppose that we find a
filtering object whose rectangular region Rfil is fully contained in the region.
Any object o′ can be pruned if dist(o′, q) ≥ maxdist(Rfil, q). In other words,
the possible candidates may lie only in the space defined by qEC where EC is
an arc and qC = qE = maxdist(Rfil, q).

Let r be the distance between q and the center of Rfil. Then, maxdist(Rfil, q)
≤ r + w/

√
2 where w/

√
2 is the half of the diagonal length of Rfil. Since, all

objects are represented by rectangular regions, any object is possible RNN can-
didate that has its centre at a distance not greater than w/

√
2 from the region

qEC. So, the range becomes (r +
√

2w). Total number of candidates that
overlap or lie within the region qEC is

π(r +
√

2w)2N

6

Let R be the maximum of r of all six regions, the total number of candidate
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objects is bounded by
| Scnd |= π(R +

√
2w)2N (4.1)

The server sends request to all these candidate objects and receives their
exact locations. So the total number of messages M1 at this stage is bounded
by

M1 = 2π(R +
√

2w)2N (4.2)

After receiving the updates, the server eliminates the candidate objects that
cannot be the RNN (based on their exact locations). As proved in [14], the
number of candidate objects cannot be greater than six. Hence, the server needs
to verify those six candidate objects. In order to verify a candidate object o, the
server issues a range query of distance dist(o, q) centered at o. In worst case, all
the objects that lie within this range must report their exact locations. Total
number of objects that overlap or lie within the range is

π(dist(o, q) + w/
√

2)2N

Since these candidate objects belong to the nearest neighbors in each region,
dist(o, q) corresponds to the distance of closest object in the region. For all six
regions, the maximum of dist(o, q) is the distance of sixth nearest neighbor from
q (assuming uniform distribution). So the maximum range is the radius of a
circle around q that contains six objects. As we assume a unit space, the radius

of such circle that contains six objects is
√

6
Nπ

. So the maximum number of

messages M2 required to verify all six candidate objects is

M2 = 6 × 2π(

√

6

Nπ
+ w/

√
2)2N

M1 + M2 are the messages required to retrieve the server-initiated updates.
Let M3 be the number of source-initiated updates (the objects that leave their
rectangular regions). Let v be the average speed of objects. An object starting at
center of the square of width w and moving with speed v will take at least w/2v
time to leave the region. So, total number of updates M3 at each timestamp is

M3 = N × min(
2v

w
, 1)

Note that the equation bounds the number of source-initiated updates by
N . The total communication cost per timestamp (M1 + M2 + M3 + 1) where 1
denotes the location update of the query. Note that if w is small, the number
of source-initiated updates M3 increases and if w is large, the number of server-
initiated updates (M1 + M2) increases.

Now, we find R. Note that to use the pruning of Fig. 4.4, we had assumed
that Rfil completely lies in the 60 degree region EqC. Hence r in Equation (4.1)
corresponds to the distance of the closest object in each region that completely
lies in it. Similarly, R is the maximum of r of each region.

Fig. 4.5 shows a region DqE and a rectangular region Rfil of a filtering
object (shown in broken line). Note that any rectangular region of side length
w with center lying in ABC (the shaded area) will completely lie in the region
DqE. In other words, r corresponds to the closest object of q in the region that
has center lying in ABC.
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Let r = qH = qJ as shown in Fig. 4.5. Let the radius belonging to area
AMN be r′. The radius r′ can be computed as r′ = r − qA where qA =
qG + GA = qG + w/2. The length of qG = 0.866w which can be found by the
triangle FGq where FG = w/2 and ∠GFq = 60◦. Hence r′ = r − 1.366w.

It can be verified that when r =
√

6
Nπ

+1.366w, then π(r′)2N = 6. In other

words when radius is r, one object in each region will be found such that it
completely lies in the region. So M1 can be rewritten as

M1 = 2π(

√

6

Nπ
+ 2.78w)2N

The cost (M1 + M2 + M3 + 1) is the cost for one RNN query. The cost of
multiple RNN queries is | Q | ·(M1 + M2 + 1) + M3 where | Q | is the number
of queries.

Now, we show that the area pruned by our proposed approach (pruning
rule 4) contains the area pruned by previously described six regions based ap-
proach. Consider the example of Fig. 4.4 where Rfil completely lies in the
region. The area pruned by six-regions approach is the area of region outside
qCE where CE is an arc and qC = maxdist(Rfil, q). Our pruning approach
prunes the area defined by the intersection of the four half-spaces between q
and the corners of Rfil. Fig. 4.4 shows a half-space H (shown in broken line)
that crosses the region at a point G such that qG > qC. This half-space fails to
prune some area pruned by the six region based approach (the six region based
approach prunes the shaded area which this half-space H fails to prune).

In order to prove that our pruning approach always contains the area pruned
by the six-region based approach, we need to show that all four half-spaces
between q and the corners of Rfil cross the region at a point B such that
qB ≤ qC. Fig. 4.4 shows a half-space HD:q between corner D and q. Consider

the right triangle qAB where ∠BqA ≤ 60◦. The length of qB is qA
cos(∠BqA) . The

maximum possible value of qB is 2× qA when ∠BqA is 60◦. Since 2× qA = qD
and qD ≤ qC = maxdist(Rfil, q), so qB ≤ qC. Similarly, it can be proved that
qF ≤ qE. Hence all the four half-spaces contain the area pruned by the region
based approach.
Computation cost: Now, we analyse the computation cost for a query. Let
Cfil and Cver be the costs of the filtering phase and the verification phase,
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respectively. The computation cost at each timestamp is ρ×Cfil + Cver where
ρ is the probability that at a given timestamp at least one of the following three
events happens: i) the query leaves its safe region; ii) any of the candidate
objects leaves its safe region; iii) any other object enters in the unpruned region
of the query.

The verification cost includes using the exact locations of M1 objects to
further refine the set of candidate objects and using boolean range queries to
verify the remaining candidate objects (at most six). Let the cost of refining an
object be Cref and the cost of a boolean range query be Cbr , the verification
cost is Cver = M1 × Cref+ | Scnd | ×Cbr where | Scnd |≤ 6.

5 Extensions

Since our proposed pruning rules can be applied in multidimensional space,
the extension of our algorithm to arbitrary dimensionality is straightforward.
Below, we present extension of our algorithm to RkNN monitoring.
RkNN Pruning: An object cannot be RkNN of a query if it is pruned by
at least k filtering objects. We initialize a counter to zero and trim Rcnd by
each filtering object. When the whole rectangle is trimmed, the counter is
incremented and the original rectangle is restored. We continue this process by
trimming with remaining filtering objects. If the counter becomes equal to k,
the object is pruned.

R
q

R
1

R
2

R
cnd

R’
cnd

R
3

Figure 5.1: RkNN Pruning

Suppose k is 2 and consider the example of Fig. 5.1 where Rcnd and three
filtering objects R1, R2 and R3 are shown. Filtering objects are considered in
order R1, R2 and R3. Rcnd is trimmed to R′

cnd when R1 is used for pruning.
R′

cnd is completely pruned by R2. The counter is incremented to one and the
original rectangle Rcnd is restored. Now, Rcnd is trimmed by R3 and the counter
is incremented to two because whole rectangle is trimmed. The algorithm prunes
Rcnd because it has been pruned two times.

Note that if the filtering objects are processed in order R1, R3 and R2,
the candidate object cannot be pruned. Finding the optimal order is difficult
and trying all possible orders is computationally expensive. This will make
filtering of this candidate object more expensive than its verification. Hence, if
a candidate object is not pruned by the above mentioned pruning, we consider

21



it for verification.
RkNN Verification: An object o cannot be RkNN if the range query centered
at o with range dist(o, q) contains greater than or equal to k objects. Other-
wise, the object is reported as RkNN. Location updates are collected for the
undecided objects. Suppose k is 2 and consider the example of Fig. 4.3 again.
The candidate objects o2 and o3 are confirmed as R2NNs because there are less
than 2 objects within their ranges. The object o1 is also confirmed because at
most one object (o5) lies within the range. The result for o4 is undecided, so
the location of o7 is requested. Note that we do not need to request the exact
location of o6.
Bichromatic Queries: Now, we briefly present the extension of our proposed
solution to bichromatic queries. Let there be two sets of objects O and P and
query q belongs to O. The area is pruned by iteratively finding nearby filtering
objects that belong to O and lie in unpruned region. The pruning of area is
stopped when there is no filtering object in the unpruned region. The objects
of type P that lie in unpruned regions are the candidate objects. The server
asks these candidate objects to report their exact locations. Upon receiving the
exact locations, any candidate object p is reported as RNN if there does not lie
an object of type O within a circle with radius dist(p, q) centered at p. If the
result is undecided, type O objects that have rectangles overlapping with the
circles are requested to send their locations. Based on these received locations,
the result is computed and reported to the client.

6 Experiment Results

All the experiments were conducted on Intel Xeon 2.4 GHz dual CPU with 4
GBytes memory. For RNN queries (k = 1), we compare our algorithm with
state-of-the-art algorithm (IGERN) [7] which has been shown superior to other
RNN monitoring algorithms [20, 18]. For RkNN queries (k > 1), we compare
our algorithm with CRkNN [18] which is the only available RkNN monitoring
algorithm. In accordance with work in [7] and [18], we choose 64 × 64 grid
structure for IGERN and 100×100 grid structure for CRkNN. For our algorithm,
the grid cardinality is 64× 64.

We simulated moving cars by using the spatio-temporal data generator [2].
Input to the generator is road map of Texas1 and output is a set of cars (objects
and queries) moving on the roads. The size of data universe is 1000 Km× 1000
Km. The parameters of datasets are shown in Table 6.1 and default values are
shown in bold.

Parameter Range

Number of objects (×1000) 40, 60, 80, 100, 120

Number of queries 100, 300, 500, 700, 1000

Average speed (in Km/hr) 40, 60, 80, 100, 120

Side length of safe region (in Km) 0.2, 0.5, 1, 2, 3, 4

Mobility (%) 5, 20, 40, 60, 80, 100

Table 6.1: System Parameters

1http://www.census.gov/geo/www/tiger/
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The server reports the results continuously after every one second (i.e., the
timestamp length is 1 sec). Both the objects and queries are cars moving on
roads, so they have similar properties (e.g., average speed, mobility). Mobility
refers to the percentage of objects/queries that are moving at any timestamp
(percentage of objects/queries that change their locations between two consec-
utive timestamps). All queries are continuously monitored for five minutes (300
timestamps) and the results shown correspond to total CPU time and total
communication cost. Communication cost is the total number of messages sent
between clients and server.

As discussed in Section 2.3, there may be some applications where the objects
have to report their locations to the server for other types of queries like range
queries, nearest neighbor queries etc. In such case, the server is responsible for
checking whether an object lies in the safe region or not. In order to show the
superiority of our technique in all kinds of applications, the computation costs
shown in the experiments include the cost of checking whether each object lies
in its safe region or not. Obviously, the computation cost would be lesser for
the case when the clients report their locations only when they leave their safe
regions.

Fig. 6.1(a) shows the effect of the safe region size on computation time. The
computation cost consists of update handling cost, filtering cost and verification
cost. The update handling cost includes the cost of checking whether an ob-
ject/query is in its safe region or not and updating the underlying grid structure
if the object/query leaves the safe region. If the safe region is too small, the
set of candidate objects is affected frequently and the filtering is required more
often. Hence, the cost of the filtering phase increases. On the other hand, if the
safe region is too large, the number of candidate objects increases and the ver-
ification of these candidates consumes more computation time. Also, the cost
of filtering phase increases because lesser space can be pruned if the safe region
is large. The update handling cost is larger for smaller safe regions because the
objects and queries leave the safe regions more frequently.
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Figure 6.1: Effect of safe region size

Fig. 6.1(b) studies the effect of safe region size on communication cost. As
studied in Section 4.4, the number of source-initiated updates increases if side
length of the safe region is small. On the other hand, if the safe region is large,
the number of server-initiated updates increases. Fig. 6.1(b) verifies this. In
current experiment settings, our algorithm performs best when the side length
of the safe region is 1Km so we choose this value for the remaining experiments.

Fig. 6.2 shows the effect of the number of objects. Our algorithm not only
outperforms IGERN but also scales better. The composition of CPU time is not
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Figure 6.2: Effect of datasize

shown due to huge difference in the performance of both algorithms. However,
the composition of CPU time is similar to Fig. 6.1(a) for our algorithm. For
IGERN, the filtering phase takes 95% to 99% of the total cost in all experiments.
This is because the expensive filtering phase is called frequently. Note that
IGERN calls the filtering phase whenever the query or any candidate object
changes its location or any other object moves into the unpruned region.
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Figure 6.3: Effect of Speed

Fig. 6.3 studies the effect of the average speed of queries and objects. Fig. 6.3(a)
shows that the computation time increases for both approaches as the speed in-
creases. For our approach, the time increases because the objects and queries
leave their respective safe regions more frequently and the filtering phase is
called more often. Fig. 6.3(b) shows that IGERN requires an order of magni-
tude more messages than our approach. The communication cost for our ap-
proach increases due to larger number of source-initiated updates as the speed
increases.
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Figure 6.4: Effect of data mobility
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Fig. 6.4(a) compares the computation time for increasing data mobility. As
expected, IGERN performs good when the object mobility is low (e.g., 5%).
However, its computation cost increases significantly as the object mobility
increases. Our algorithm performs better for all cases and scales decently.
Fig. 6.4(b) studies the effect of objects and queries mobility on the commu-
nication cost. Since only the moving objects report their locations, the number
of messages increase with the increase in mobility. However, our algorithm con-
sistently gives improvement of more than an order of magnitude compared to
IGERN.
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Figure 6.5: Effect of number of queries

Fig. 6.5 studies the effect of number of queries. Fig. 6.5(a) shows that our
algorithm gives more than an order of magnitude improvement over IGERN
in terms of CPU time and scales better. In accordance with the analysis in
Section 4.4, Fig. 6.5(b) show that the communication cost of our approach
increases with the number of queries.
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Figure 6.6: Effect of k

Fig. 6.6 studies the effect of k on communication and computation time.
Fig. 6.6(a) compares our approach with [18] referred as CRkNN. Computa-
tion cost of both approaches increases with increase in k. However, our al-
gorithm scales better (note the log scale). CRkNN continuously monitors 6k
range queries to verify the candidate objects. To monitor these queries, it keeps
a counter for the number of objects leaving and entering within the range.
However, this information becomes useless when the candidate object or query
changes its location. As shown in Fig. 6.6(b), communication cost for our ap-
proach increases for larger values of k. This is mainly because the number of
candidate objects that require verification increases with k.

Fig. 6.7 shows the effectiveness of pruning rules for different safe region sizes.
Pruning rules are applied in the same order as in Algorithm 1. If a pruning rule
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fails to prune an entry (an object or a node of the grid-tree), the next pruning
rule is used to prune it. Fig. 6.7 shows that a greater number of entries are
pruned if the safe region size is small. Majority of the entries are pruned by the
metric based pruning (pruning rule 3) when the safe regions are small.

Now, we show the effectiveness of grid-tree over previous proposed grid access
methods CPM [11] and YPK [25]. Fig. 6.8 shows the total CPU time for our
RNN monitoring algorithm when the underlying constrained nearest neighbor
algorithm (and marking and unmarking of cells) use CPM, YPK and grid-tree.
We change the grid size from 8× 8 to 256× 256. It can be noted that grid-tree
based RNN monitoring algorithm scales much better with increase in number
of cells.

7 Conclusion

In this paper, we studied the problem of continuous reverse k nearest neigh-
bor monitoring. Existing approaches require expensive recomputation of the
query results whenever the query or a candidate object changes its location.
In contrast, we assign each object and query a safe region and the expensive
recomputation is not required as long as the query and its candidate objects
remain in their respective safe region and no other object moves in the un-
pruned region. This not only significantly improves the computation cost but
also reduces the communication cost for client-server architectures because an
object does not report its location to the server unless it leaves the safe region
or the server sends a location update request. Experiment results demonstrate
an order of magnitude improvement in terms of both the computation time and
the communication cost.
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8 Glossary

Antipodal Corners: Let C be a corner of rectangle R1 and C′ be a corner in R2, the
two corners are called antipodal corners if for every dimension i where C[i] = R1L[i]
then C′[i] = R2H [i] and for every dimension j where C[j] = R1H [j] then C′[j] =
R2L[j]. Fig 8.1 shows two rectangles R1 and R2. The corners D and O are antipodal
corners. Similarly, other pairs of antipodal corners are (B, M), (C, N) and (A, P ).
Antipodal Half-Space: A half-space that is defined by the bisector between two
antipodal corners is called antipodal half-space. Fig 8.1 shows two antipodal half-spaces
HM:B and HP :A.
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Figure 8.1: Antipodal corners and
half-spaces

Normalized Half-Space: Let M and B be two points in hyper-rectangles R and Q,
respectively. The normalized half-space H ′

M:B is a space defined by a bisector between
M and B that passes through a point c such that c[i] = (QL[i] + RL[i])/2 for all
dimensions i for which B[i] > M [i] and c[j] = (QH [i] + RH [j])/2 for all dimensions j
for which B[j] ≤ M [j]. Fig 8.1 shows two normalized (antipodal) half-spaces H ′

M:B and
H ′

P :A. The point c for each half-space is also shown. The inequalities (8.1) and (8.2)
define the half-space HM:B and its normalized half-space H ′

M:B, respectively.

d
X

i=1

(B[i] − M [i]) · x[i] <
d

X

i=1

(B[i] − M [i])(B[i] + M [i])

2
(8.1)

d
X

i=1

(B[i] − M [i]) · x[i] <

d
X

i=1

(B[i] − M [i]) ×

8

>

<

>

:

(QL[i] + RL[i])

2
if B[i] > M [i])

(QH [i] + RH [i])

2
otherwise

9

>

=

>

;

(8.2)

Note that the right hand side of the inequality (8.1) can never be smaller than the
right hand side of inequality (8.2) because M and B both lie in hyper-rectangles R
and Q, respectively. For this reason H ′

M:B ⊆ HM:B.
Set of More Expressive Half-Spaces: A set of half-spaces S1 = {Hi:q, ..., Hn:q} is
more expressive than any other half-space Hj:q if it holds that ∩n

x=iHx:q ⊆ Hj:q. Note
that if S1 is a set of more expressive half-spaces then ∩n

x=iHx:q ∩ Hj:q = ∩n
x=iHx:q.

For example, the set of half-spaces {HM:q, HN:q} in Fig. 9.1 is more expressive than
the half-space HL:q and the shaded area is HM:q ∩ HN:q ∩ HL:q = HM:q ∩ HN:q.
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9 Appendix: Proofs

Lemma 1 : Let there be two subspaces SP1 and SP2;

SP1 ⇒ y < Ax + B (9.1)

SP2 ⇒ y < Cx + D (9.2)

where x and y are variables and A, B, C and D are constants. Both the subspaces
intersect each other at x = Ix = D−B

A−C
. If the whole space is partitioned into two

partitions Pn1 and Pn2 such that Pn1 contains all the points for which x ≥ Ix and
Pn2 contains all the points where x ≤ Ix. Then we can say;

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

8

>

<

>

:

SP1 ⊆ SP2; in Pn1

AND

SP2 ⊆ SP1; in Pn2

9

>

=

>

;

if C > A

8

>

<

>

:

SP2 ⊆ SP1; in Pn1

AND

SP1 ⊆ SP2; in Pn2

9

>

=

>

;

otherwise

9

>

>

>

>

>
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>

>

=

>
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>

>

>

>

>

>

>

;

Proof. We prove the case when C > A and the proof of the other case is similar.
Note that for x = Ix, the right hand sides of both the inequalities (9.1) and (9.2)
would be equal and for x > Ix the right hand side of the inequality (9.2) is greater
than right hand side of inequality (9.1) because C > A. This means every point that
lies in Pn1 and satisfies inequality (9.1) would also satisfy the inequality (9.2). Hence
SP1 ⊆ SP2 in space where x ≥ Ix. Similarly, it can be proved that SP2 ⊆ SP1 in
space where x ≤ Ix. Also the proof for the case when C ≤ A is similar.

Lemma 2 : Let there be three half-spaces SP1, SP2 and SP3 defined by the following
inequalities;

SP1 ⇒ y < Ax + B (9.3)

SP2 ⇒ y < Cx + D (9.4)

SP3 ⇒ y < Ex + F (9.5)

where x and y are variables and A, B, C, D, E and F are constants. The set of
half-spaces {SP1, SP2} is always more expressive1 than SP3 if both of the following
are true;

1. A > E > C

2. F−B
A−E

≥ D−F
E−C

Proof. Since A > E > C, we can obtain from Lemma 1;

SP2 ⊆ SP3; if x ≥
D − F

E − C
(9.6)

SP3 ⊆ SP2; if x ≤
D − F

E − C
(9.7)

SP3 ⊆ SP1; if x ≥
F − B

A − E
(9.8)

SP1 ⊆ SP3; if x ≤
F − B

A − E
(9.9)

Since F−B
A−E

≥ D−F
E−C

, we obtain by joining the inequalities (9.6) and (9.8);

1The set of more expressive half-spaces is defined in Glossary (Section 8).
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SP2 ⊆ SP3 ⊆ SP1; if x ≥
F − B

A − E
(9.10)

From inequalities (9.10) and (9.9), it can be noted that in the whole space SP3 is
either a superset of SP1 or SP2. Hence SP1 ∩ SP2 ⊆ SP3.

Lemma 3 : Let M and N be two points in d-dimensional space such that M [i] = N [i]
for all except one dimension j. Let q be a query point and MN be the line joining
the points M and N . The set of half-spaces {HM:q, HN:q} is more expressive than
any HL:q where L is any point on the line segment MN . Fig. 9.1 shows the line and
half-spaces in 2d space.
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Proof. The half-subspace HN:q and HM:q are defined by inequality (9.11) and
inequality (9.12), respectively;

d
X

i=1,i6=j

(q[i] − N [i]) · x[i] < (N [j] − q[j]) · x[j] +
d

X

i=1

(q[i]2 − N [i]2)/2 (9.11)

d
X

i=1,i6=j

(q[i] − M [i]) · x[i] < (M [j] − q[j]) · x[j] +
d

X

i=1

(q[i]2 − M [i]2)/2 (9.12)

Let A = (N [j] − q[j]), B =
Pd

i=1(q[i]
2 − N [i]2)/2, C = (M [j] − q[j]) and D =

Pd

i=1(q[i]
2 − M [i]2)/2 be constants and y =

Pd

i=1,i6=j
(q[i] − M [i]) · x[i] be a variable.

Note that M [i] = N [i] for all except jth dimension, so we can write inequalities (9.11)
and (9.12) as;

HN:q ⇒ y < A · x[j] + B (9.13)

HM:q ⇒ y < C · x[j] + D (9.14)

For any point L on the line MN , let E = (L[j]−q[j]) and F =
Pd

i=1(q[i]
2−L[i]2)/2

be a constant. Then HL:q is represented by the inequality (9.15);

HL:q ⇒ y < E · x[j] + F (9.15)
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Without loss of generality, if we assume M < L < N then A > E > C. Since
M [i] = N [i] = L[i] for all except jth dimension, we calculate F−B

A−E
and D−F

E−C
which

are (N [j] + L[j])/2 and (M [j] + L[j])/2, respectively. Since F−B
A−E

> D−F
E−C

, it is proved
from Lemma 2 that the set of half-spaces {HM:q, HN:q} is more expressive than any
HL:q.

Lemma 4 : Let q be a query point, R be a hyper-rectangle in d-dimensional space
and {C1, C2, ..., C2d} be its corners. The set of half-spaces {HC1:q, HC2:q, ..., HC

2d :q}
is more expressive than every other half-space HL:q where L is any point in the hyper-
rectangle R.

Proof. We present the proof for a 2d-rectangle and it can be extended to prove
the Lemma for high-dimensional hyper-rectangles. In Fig. 9.2, a rectangle has been
shown with four corners M , N , O and P . Note that for every point L in rectangle there
exist two points J and K on the boundary of rectangle such that {HJ:q, HK:q} is more
expressive than HL:q (Lemma 3). For the same reasoning, note that {HN:q, HO:q} is
more expressive than HK:q and {HM:q, HP :q} is more expressive than HJ:q. Hence
{HM:q, HN:q, HO:q, HP :q} is a set of more expressive half-spaces than every half-space
HL:q. It is easy to see that this reasoning can be extended to prove the Lemma for
hyper-rectangles in higher-dimensions.

Lemma 5 : Let there be two d dimensional hyper-rectangles Q and R. The set of
normalized half-spaces {H ′

C1:C′

1

, ..., H ′
C

2d :C′

2d

} is more expressive than any half-space

HM:N where Ci is ith corner of R and C′
i is its antipodal corner in Q.

Proof. Let M be any point in hyper-rectangle R and N be any point in hyper-
rectangle Q. If we prove that the set of normalized half-spaces {H ′

C1:C′

1

, ..., H ′
C

2d :C′

2d

}

is more expressive than any normalized half-space H ′
M:N , we can say that it is more

expressive than the half-space HM:N because H ′
M:N ⊆ HM:N by the definition of

normalized half-spaces.
Unless the two points M and N are antipodal corners, it holds true that there exist

two points Y and Z in R and Q, respectively, such that for all dimensions i except
j, Y [i] = M [i] and Z[i] = N [i] and for dimension j at least one of the following two
holds true;
Case 1: (Y [j] = RH [j]) > M [j] and (Z[j] = QH [j]) > N [j]
Case 2: (Y [j] = RL[j]) < M [j] and (Z[j] = QL[j]) < N [j]

We present the proof for case 1 and the proof for case 2 is similar. Let A, B, C,
D, E, F and G be constants and y be variable defined as;

y =
d

X

i=1,i6=j

(N [i] − M [i]) · x[i]

A = Y [j] − N [j] = RH [j] − N [j]

C = M [j] − Z[j] = M [j] − QH [j]

E = M [j] − N [j]

G =

d
X

i=1,i6=j

N [i] − M [i]

2
×

(

(QL[i] + RL[i]); if N [i] > M [i]

(QH [i] + RH [i]); otherwise

)

B = G +
N [j] − Y [j]

2
×

(

(QL[j] + RL[j]); if N [j] > Y [j]

(QH [j] + RH [j]); otherwise

)
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D = G +
Z[j] − M [j]

2
×

(

(QL[j] + RL[j]); if Z[j] > M [j]

(QH [j] + RH [j]); otherwise

)

F = G +
N [j] − M [j]

2
×

(

(QL[j] + RL[j]); if N [j] > M [j]

(QH [j] + RH [j]); otherwise

)

The normalized half-spaces H ′
Y :N , H ′

M:Z and H ′
M:N are defined by the following

inequalities.
H ′

Y :N ⇒ y < A · x[j] + B (9.16)

H ′
M:Z ⇒ y < C · x[j] + D (9.17)

H ′
M:N ⇒ y < E · x[j] + F (9.18)

According to the Lemma 2, if A > E > C and F−B
A−E

≥ D−F
E−C

then the set of normalized

half-spaces {H ′
Y :N , H ′

M:Z} is more expressive than the normalized half-space H ′
M:N .

It is easy to observe that A > E > C now we compute F−B
A−E

and D−F
E−C

. There are two
possibilities.

Possibility 1: N [j] ≤ M [j]; In this case N [j] is always less than Y [j] and F−B
A−E

=
(QH [i]+RH [i])

2
. On the other hand Z[j] might be greater, lesser or equal to M [j]. To

maximize D−F
E−C

, we assume that Z[j] > M [j] and compute D−F
E−C

= (QL[i]+RL[i])
2

. Hence
F−B
A−E

> D−F
E−C

.
Possibility 2:N [j] > M [j]; In this case Z[j] is always greater than M [j]. We

can compute that D−F
E−C

= (QL[i]+RL[i])
2

. On the other hand N [j] might be greater,

lesser or equal to Y [j]. To minimize F−B
A−E

, we assume that N [j] > Y [j] and compute
F−B
A−E

= (QL[i]+RL[i])
2

. Hence F−B
A−E

≥ D−F
E−C

.

We have proved that the set of normalized half-spaces {H ′
M:Z , H ′

Y :N} is more ex-
pressive than the normalized half-space H ′

M:N . It can be found that for any such
H ′

M:Z (or H ′
Y :N), there exists a set of normalized half-spaces that is more expressive

unless M and Z (or Y and N) are two antipodal corners. Hence the set of antipodal
normalized half-spaces {H ′

C1:C′

1

, ..., H ′
C

2d :C′

2d

} is more expressive than any other nor-

malized half-space H ′
M:N where M and N are the points in hyper-rectangle R and Q,

respectively. Since H ′
M:N ⊆ HM:N , we can say that the set {H ′

C1:C′

1

, ..., H ′
C

2d :C′

2d

} is

more expressive than any half-space HM:N . This completes the proof.

Lemma 6 : Let Q and R be two hyper-rectangles in d dimensional space such that
for every dimension i, either RH [i] ≤ QL[i] or QH [i] ≤ RL[i] and for at least one
dimension j either RH [j] < QL[j] or QH [j] < RL[j] (i.e; there exists a dominance
relationship such that R is dominated by Q). Let Fp and p be two points such that
p > (Fp[i] = (QH [i] + RH [i])/2) for any dimension i for which QH [i] ≤ RL[i] and
p < (Fp[j] = (QL[j] + RL[j])/2) for any dimension j for which RH [j] ≤ QL[j] (i.e;
p is dominated by Fp in the same way as R is dominated by Q). Then we can say
maxdist(p,R) > mindist(p,Q).

Proof. We can prove the lemma by showing that the point p lies in every normalized
half-space H ′

M:N where M is a point in R and N is a point in Q. The normalized
half-space can be defined as;

d
X

i=1

(N [i] − M [i]) · x[i] <

d
X

i=1

(N [i] − M [i]) ×

8

>

<

>

:

(QL[i] + RL[i])

2
if N [i] > M [i])

(QH [i] + RH [i])

2
otherwise

9

>

=

>

;

(9.19)
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We evaluate the left hand side of the inequality (9.19) w.r.t Fp (e.g; x[i] = Fp[i]);

d
X

i=1

(N [i] − M [i]) ×

8

>

<

>

:

QL[i] + RL[i])

2
if QL[i] ≥ RH [i]

QH [i] + RH [i])

2
if RL[i] ≥ QH [i]

9

>

=

>

;

(9.20)

It can be observed that the value in (9.20) is always equal to the RHS of the inequal-
ity (9.19) because M is a point in R and N is a point in Q. So for any dimension i
where QL[i] ≥ RH [i], N [i]−M [i] is always positive. Similarly, for any dimension j for
which RL[i] ≥ QH [i], N [i] − M [i] is always negative.

Furthermore, it can be noted by the definition of the point p that the LHS of the
inequality (9.19) when evaluated w.r.t p is always less than what we obtained in (9.20).
Hence p lies in every normalized half-space H ′

M:N .

33


