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Abstract Privacy has become a major concern for the users of location-based services
(LBSs) and researchers have focused on protecting user privacy for different location-based
queries. In this paper, we propose techniques to protect location privacy of users for trip
planning (TP) queries, a novel type of query in spatial databases. A TP query enables a user
to plan a trip with the minimum travel distance, where the trip starts from a source location,
goes through a sequence of points of interest (POIs) (e.g., restaurant, shopping center), and
ends at a destination location. Due to privacy concerns, users may not wish to disclose their
exact locations to the location-based service provider (LSP). In this paper, we present the
first comprehensive solution for processing TP queries without disclosing a user’s actual
source and destination locations to the LSP. Our system protects the user’s privacy by send-
ing either a false location or a cloaked location of the user to the LSP but provides exact
results of the TP queries. We develop a novel technique to refine the search space as an el-
liptical region using geometric properties, which is the key idea behind the efficiency of our
algorithms. To further reduce the processing overhead while computing a trip from a large
POI database, we present an approximation algorithm for privacy preserving TP queries.
Extensive experiments show that the proposed algorithms evaluate TP queries in real time
with the desired level of location privacy.

Keywords Location-based services · privacy · trip planning queries

1 Introduction

Due to the exponential increase in the usage of smartphones and other GPS enabled devices,
cheap wireless network bandwidth and the availability of huge amount of data related to
the locations, location-based services (LBSs) have become immensely popular. Despite the
usefulness of LBSs, privacy concerns are serious and cannot be ignored [27]. To access an
LBS (e.g., asking for a nearest point of interest (POI) such as a restaurant or a gas station), a
user provides her location to a location-based service provider (LSP) and the LSP returns the
query answer based on the location. The LSP may infer private information about a user’s
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health, habits and preferences from the user’s revealed location. For example, if a user is
located at a heart clinic while requesting an LBS then the LSP may predict that the user is
suffering from a heart disease. Similarly, the LSP may also predict user’s home and work
address and sell it to marketing companies.

An important and widely used type of LBS is to provide the users with information
of their nearby POIs using nearest neighbor queries and their variants. In recent years, re-
searchers have developed privacy preserving techniques for nearest neighbor queries. In this
paper, we focus on protecting location privacy of users for a novel variant of nearest neigh-
bor queries, trip planning (TP) queries [4,25,36]. For example, a user may plan a trip to
go to a shopping center from her workplace, then have a dinner at a restaurant and finally
watch a movie in a movie theater before returning home. A TP query enables the users to
plan such a trip with the minimum trip distance.

Specifically, in a TP query, a user sends to LSP her source and destination locations, and
the required types of POIs she wants to visit (e.g., a restaurant, a movie theater, a shopping
centre). The LSP returns the locations of POIs that minimize the user’s trip distance, where
the trip starts from the user’s source location, passes through at least one POI of each type,
and ends at the user’s destination. For example, in Figure 1, POIs p1, p2, and p3 provide a
user with the smallest trip distance.

A TP query is called a sequenced TP query if the sequence of visiting the types of
POIs is fixed, e.g., first a shopping center, then a restaurant, and a movie theater at the end.
Although we focus on sequenced TP queries in this paper, our solution can be easily applied
to general TP queries when the sequence of visiting POI types is not fixed.

Due to the privacy concerns, users may not want to disclose their source and destination
locations. In this paper, we assume that the users do not worry about disclosing the types
of POIs they are planning to visit. This is because, unlike source and destination locations,
a user may or may not visit a specific POI even if returned by the LSP. Moreover, usually
the users do not mind revealing the types of POIs they are interested in (e.g., restaurants,
shopping centers etc.). To protect a user’s location privacy, revealing a user’s false or cloaked
location instead of the exact one has been shown to be an effective technique [6,13,28,
38] in the literature. We are the first to propose efficient privacy preserving algorithms to
evaluate TP queries with respect to both false and cloaked locations of users. Next, we
briefly highlight our techniques for both of the cases.

1.1 Protecting privacy by sending a false location

Our first approach evaluates TP queries based on a user’s false location, i.e., the user pro-
vides a false location instead of her actual source and destination to the LSP. The key idea
of our approach is to incrementally retrieve the nearest POIs of different types with respect
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to the false location from the LSP until the POIs that minimize the trip distance with re-
spect to the user’s actual source and destination locations have been identified. According to
the elliptical property, the trip distance from a user’s source to destination through any POI
outside an ellipse is larger than the length of the major axis of the ellipse if the foci of the
ellipse are at the user’s source and destination, respectively. We set the length of the major
axis of this ellipse as the minimum trip distance computed from the retrieved POIs from
the LSP, and thus, the elliptical region represents the required POI search space as any POI
outside the ellipse cannot further minimize the computed minimum trip distance. With the
incremental retrieval of POIs, the length of the major axis, i.e., the minimum trip distance,
remains constant or reduces, which in turn shrinks the area of the ellipse. The search for the
optimal answer terminates when all POIs inside the ellipse are retrieved.

Though a user does not reveal her actual locations, the LSP can infer the user’s location
from other revealed information such as retrieved POIs and the technique used by the user to
determine the optimal answer for actual locations. We quantify the level of location privacy
of a user in terms of the obfuscation level [13], the area in the total space that is refined
as the user’s location. Our approach allows a user to specify her required privacy level and
guarantees that the achieved obfuscation level is greater than or equal to the specified one.

1.2 Protecting privacy by sending cloaked locations

Our second approach is based on cloaked location where a user sends a cloaked location
(e.g., an MBR) that contains her actual location. Specifically, a user sends her source and
destination regions containing her actual source and destination locations, respectively. The
LSP returns a candidate POI set to the user that includes optimal answers for all possible
source-destination pairs within the revealed regions. The user knows her actual source and
destination locations and finds the required answer from the candidate answer set. In this
approach, the level of privacy, i.e., the obfuscation level, is measured in terms of the area of
the cloaked location with respect to the total space.

Evaluating optimal answer for every possible source destination pairs within the source
and destination regions independently would be prohibitively expensive. We refine the POI
search space with respect to a user’s source and destination regions by integrating the ellip-
tical property with the concept of triangular inequalities. We develop an efficient algorithm
to evaluate the candidate POI set that includes optimal answers for all possible source-
destination pairs with a single search on the database. The key advantage of our solution
based on the cloaked location is that the user needs a single communication with the LSP to
have the answer. On the other hand, for our solution based on false location, the user needs
multiple communications with the LSP.

1.3 Approximate results

Computing the exact answer for TP queries is computationally expensive and is shown to be
NP-hard [4,25]. Although the optimal solutions can still be computed if the number of POIs
and types of POIs are not large, the cost may still be quite high especially if the privacy
is also to be preserved and the sequence of visiting POI types is not fixed. Therefore, we
develop approximation algorithms that might be preferable when a trip is computed from
a large POI database or the required privacy level is high. We allow the user to input her
desired accuracy guarantee and the proposed techniques optimize the query processing while
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satisfying the desired accuracy guarantee. For example, if a user’s required accuracy level
is 90%, our approximation algorithm ensures that the optimal trip distance is not less than
90% of the returned trip distance. Our experimental study shows that our approximation
algorithms actually return answers with better accuracy than the guaranteed accuracy. Our
proposed approximation algorithms can compute trips for both false and cloaked locations.

1.4 Contributions

To the best of our knowledge, we are the first to address the privacy issues for TP queries.
Unlike expensive cryptographic techniques, our approach does not guarantee strong location
privacy [31] to the users with a modified system architecture. Our approach aims to develop
a practical solution that trades privacy with query processing cost. An important benefit of
our solutions is that they do not require any modification in the existing framework and
indexing method that an LSP uses for processing traditional incremental nearest neighbor
queries [18]. Similar to existing solutions [29,38] in the literature, in our privacy preserv-
ing approaches, the query processing overhead is shared between the LSP and the user who
requests the TP query. With the continuous advancement of mobile devices and communica-
tion media, we envision that the processing power of mobile devices and the communication
bandwidth would not cause any bottleneck to deploy our approach in reality.

In summary, our contributions are as follows:

– We develop novel techniques to refine the search space for privacy preserving TP queries
by exploiting elliptical properties and triangular inequalities.

– We develop efficient algorithms to evaluate optimal answer for TP queries with respect
to both false and cloaked locations of users.

– We present approximation algorithms to compute trips from a large POI database with
reduced processing overhead in a privacy preserving manner.

– We conduct extensive experiments to show that our approaches can evaluate TP queries
in real time even for a high level of location privacy. We present a comparative anal-
ysis of our proposed approaches in terms of both computational and communication
overhead.

The remainder of the paper is organized as follows. In Section 2, we formulate the re-
search problem. Section 3 provides an overview of the related work. In Sections 4 and 5,
we present privacy preserving algorithms for computing exact results of TP queries for false
and cloaked locations, respectively. In Section 6, we present efficient privacy preserving
algorithms for computing approximate results of TP queries satisfying specified accuracy
guarantees. Section 7 presents experimental results and a comparative analysis of our ap-
proaches. Section 8 concludes the paper and presents future research directions.

2 Problem Formulation

Let D represent a set of POIs in a 2 dimensional space, pi represent the location of a POI of
type i in D, and dist(., .) denote the Euclidean distance between two points. The computation
of the trip distance T dist(s,d,P) for a set of m types (e.g., restaurant, movie theater) of POIs
P = {p1, p2, . . . , pm} ∈ D with respect to a source s and a destination d, differs based on
whether the sequence of visiting POI types has been specified by the user or not. For m = 3,
if the user specified sequence is p1, p3, p2, the trip distance T dist(s,d,P) is computed as

https://www.researchgate.net/publication/220538839_Nearest_Neighbor_Search_with_Strong_Location_Privacy?el=1_x_8&enrichId=rgreq-ee2c467f814e930efad5adb206c5d181-XXX&enrichSource=Y292ZXJQYWdlOzI5NjYzMjQwNTtBUzo0MTU4NjU2MTE4MDA1NzdAMTQ3NjE2MTQ5Njk0Ng==
https://www.researchgate.net/publication/220225469_Distance_Browsing_in_Spatial_Databases?el=1_x_8&enrichId=rgreq-ee2c467f814e930efad5adb206c5d181-XXX&enrichSource=Y292ZXJQYWdlOzI5NjYzMjQwNTtBUzo0MTU4NjU2MTE4MDA1NzdAMTQ3NjE2MTQ5Njk0Ng==
https://www.researchgate.net/publication/220538870_The_VDiagram_A_query-dependent_approach_to_moving_KNN_queries?el=1_x_8&enrichId=rgreq-ee2c467f814e930efad5adb206c5d181-XXX&enrichSource=Y292ZXJQYWdlOzI5NjYzMjQwNTtBUzo0MTU4NjU2MTE4MDA1NzdAMTQ3NjE2MTQ5Njk0Ng==
https://www.researchgate.net/publication/4331039_SpaceTwist_Managing_the_Trade-Offs_Among_Location_Privacy_Query_Performance_and_Query_Accuracy_in_Mobile_Services?el=1_x_8&enrichId=rgreq-ee2c467f814e930efad5adb206c5d181-XXX&enrichSource=Y292ZXJQYWdlOzI5NjYzMjQwNTtBUzo0MTU4NjU2MTE4MDA1NzdAMTQ3NjE2MTQ5Njk0Ng==


Trip Planning Queries with Location Privacy in Spatial Databases 5

dist(s, p1)+ dist(p1, p3)+ dist(p3, p2)+ dist(p2,d). On the other hand, if the sequence of
visiting POI types is not fixed, the trip distance is computed for every possible sequence of
POI types and the minimum of these computed distances is considered as the trip distance
T dist(s,d,P) for P.

A trip planning (TP) query is formally defined as follows:
Definition 1. Given a source s and a destination d, and m types of POIs, a TP query

returns a set of POIs P = {p1, p2, . . . , pm} from D, one POI from each type, that minimizes
the trip distance, i.e, T dist(s,d,P) ≤ T dist(s,d,P′) for any other set of POIs of m types
P′ ∈ D.

A user may be interested in k sets of POIs {p1
1, p1

2, . . . , p1
m},{p2

1, p2
2, . . . , p2

m}, . . . ,
{pk

1, pk
2, . . . , pk

m} that have the k smallest trip distances for the trip. The user then selects
one set by considering other priorities such as cost and recommendations. If a user queries
for k sets of POIs then the query is called a k trip planning (kTP) queries. We remark that
the source and destination may refer to the same location, e.g., a user may want to return to
the source location after the trip.

For privacy preserving kTP (PkTP) queries, the kTP query is evaluated without disclos-
ing a user’s actual source and destination locations to the location-based service provider
(LSP). We assume that users are connected to the LSP via mobile networks or the Inter-
net for communication purpose and the locations and types of POIs are indexed using an
R-tree [10] on the LSP’s database.

The symbols used in this paper are summarized in Table 1.

Table 1 Notations and their meanings

Symbol Meaning
s and d Source and destination locations of a user

m The number of required POI type
k The number of required sets of POIs

pi The location of a POI of type i
dist The Euclidean distance between two points

T dist The trip distance
f A false location

sr and dr Source and destination rectangles of a user

2.1 Privacy Model

In this paper, we consider the scenario where the users consider locations as sensitive data
but are not concerned about revealing other information such as the types of POIs or their
identities. Note that, in many real world applications, it is not always possible to hide iden-
tities from the LSP due to authentication issues [39] and personalized services [16].

2.1.1 Adversaries

We consider the LSP as the adversary. We do not consider an eavesdropper as a separate
adversary because the maximum knowledge about a user’s location that an eavesdropper
can have is no more than that of the LSP. We assume that the adversary does not have any
background knowledge about a user’s location (e.g., distribution). For our approach based
on a false location, a user sends a false location instead of her actual source and destination
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locations to the LSP and retrieves nearest POIs with respect to the false location. Thus, the
LSP only knows the false location and the returned POIs to a user. On the other hand, for
our approach based on cloaked location, a user sends source and destination rectangles to
the LSP and retrieves a candidate answer set. Thus, in this case the LSP knows the source
and destination rectangles and the returned candidate answer set to a user. Our approaches
guarantee a user’s required privacy level and provide the user with accurate answers for TP
queries.

2.1.2 Privacy Level

We quantify the level of location privacy in terms of obfuscation level (ol). Although the
LSP cannot determine the exact location of a user, it can infer that the exact location of a
user is contained in a region R, e.g., in the cloaked region. Assuming that the area of the
whole data space is 1 and y is the area of the region R. The obfuscation level is y%. Please
note that larger the obfuscation level the better it is from the user’s perspective. For the case
when the user reports cloaked location, the obfuscation level can be easily determined using
the area of the cloaked region. For the case when the reported location is a false location,
the details on how to compute the obfuscation level are given in Section 4.5.

3 Related Work

In Section 3.1, we discuss existing work on trip planning queries and in Section 3.2, we
present privacy preserving techniques for other type of queries.

3.1 Trip Planning Queries

A large body of research works focus on developing algorithms for processing route and
trip planning queries [4,30,36]. In [36], Sharifzadeh et al. have developed algorithms to
evaluate an optimal sequenced route (OSR) query that returns a route with the minimum
length passing through a set of POIs in a particular order from the source location of a user,
where both order and type of POIs are specified by the user. Chen et al. [4] have proposed a
generalization of the trip planning query, called multi-rule partial sequenced route (MRPSR)
query. A MRPSR query provides a uniform framework to evaluate both OSR query [36] and
trip planning query [25]. In [30], the authors propose a method that plans a trip by searching
the shortest route from the current position with stops at one of each specified POI type from
the visiting sequence before reaching the final destination. In [2,11,12,32], the authors have
developed trip planning algorithms for groups.

A keyword-aware optimal route (KOR) query [3] returns an optimal route that starts
from a user’s source, passes through the locations that match with the user’s specified key-
words such as a restaurant, a shopping mall, and ends at the target destination of the user
within a budget constraint. For example, a user may want to maximize the popularity of a
route while satisfying a budget constraint (e.g., duration of the trip). In [3], Cao et al. have
developed approximation algorithms to evaluate KOR queries. In [26], Li et al. have ex-
tended KOR queries by integrating preferences for the specified keywords (e.g., a user may
have the highest preference for the shopping mall).

On the other hand, the proliferation of GPS-enabled mobile devices enables users to
share trajectory data and thus, facilitates trajectory matching queries in trajectory databases.
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In [33,34], the authors have proposed trajectory matching approaches, where a user can
specify her preferences for different locations of a trajectory and the trajectory matching
query returns the set of trajectories from the datbase that are similar to the user’s given
trajectory and preferences. These types of personalized trajectory matching can be used for
route recommendations to the users.

However, none of the above mentioned variants of route and TP queries consider a
user’s location privacy, i.e., the LSP is aware of user’s exact source and destination. These
existing trip planning techniques can not provide optimal answer without knowing user’s
actual source-destination and thus are not suitable for our privacy preserving kTP queries.

Shortest path and distance queries and route planning for two fixed locations have
also been extensively studied in the literature [35,37,40,41]. Shortest path and distance
queries [40,41] return the shortest path between two points in a road network and the length
of the shortest path, respectively. In [35], Shang et al. have proposed an approach to plan
a route from a source to a destination by avoiding the potential traffic congestions. In [37],
Wang et al. have proposed algorithms to identify routes between two stations in a public
transport network based on different criteria such as earliest arrival time, latest departure
path and shortest duration path. These approaches are different from trip planning queries
as they do not consider the selection of POIs of required types while planning a route and
the route between two fixed locations does not pass through the POIs.

3.2 Location Privacy

In the literature, there exist a number of privacy models that include K-anonymity [20,28],
obfuscation [6,38], space-transformation [21,22] and cryptography [8].

In a K-anonymity technique, a user provides a region that includes the locations of
K− 1 users in addition to the user’s location and the user becomes k-anonymous. In the
k-anonymity technique, though a user is not identified even if an adversary knows the loca-
tions of all users included in the rectangle. However, it incurs high processing overhead and
requires involving other parties to compute the user’s K-anonymous location. In an obfus-
cation technique, a user reveals her false or cloaked location to the LSP and does not need
any third party to compute her cloaked or false location. Thus, K-anonymity and obfusca-
tion techniques apply for two different scenarios. In this paper, we assume that adversaries
do not have any knowledge about a user’s location and the user reveals her identity while
requesting TP queries, and thus we adopt obfuscation model to protect the user’s location
privacy.

With the space transformation strategy, the query is evaluated in a transformed space
and a key drawback of this technique is that the query results may not always be accurate.
On the other hand, as shown in [7] cryptographic techniques provide strong location privacy
in return of high query processing overhead for nearest neighbor queries. Since we aim for a
lightweight solution for trip planning queries, a complex variant of nearest neighbor queries,
we adopt the obfuscation technique as our privacy model.

Researchers have developed privacy preserving techniques for variant spatial
queries [15,16,19,28]. Some of these privacy preserving algorithms [28] provide exact an-
swers and others [23] provide approximate answers for requested queries. We develop the
first privacy preserving algorithm for TP queries that provide users with the exact answer
for both cloaked and false locations.

Efficient approaches [5,9,24,38] have been developed for nearest neighbor queries and
group nearest neighbor queries for both false and cloaked locations. However, these solu-
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tions do not apply for TP queries, as nearest and group nearest neighbor queries involve
finding the nearest POI of a specific type, whereas TP queries identify POIs of different
types that minimize the trip distance with respect to source and destination locations of a
user. On the other hand, nearest neighbor and group nearest neighbor queries evaluate the
answer with respect to a single location, i.e., current location of the user.

4 Our Solution : False Location

In this section, we present a solution to evaluate kTP queries based on a user’s false location
revealed to the LSP. The key idea of our algorithm is to incrementally retrieve the nearest
POIs with respect to a false location f from the LSP until the POIs that minimize the trip
distances have been identified. We exploit elliptical properties to determine the optimal trip
with respect to s and d from the retrieved POIs.

The user computes the known region [38] using the retrieved POIs from the LSP. The
known region is the area, where locations of all POIs of required types are known. Then the
user identifies the POIs (one from each required type) within the known region that minimize
the kth smallest trip distance with respect to s and d. Based on the current minimum trip
distance and the source-destination pair, the user determines the search region [38], the area
where the user needs to know locations of all POIs of required types. The search region is
an ellipse and we prove that the user’s trip through a POI outside the ellipse cannot provide
the minimum trip distance. More specifically, the elliptical search region contains the POIs
that minimize the user’s trip distance with respect to s and d among all POIs on the LSP’s
database.

With the incremental retrieval of POIs, the known region expands and the search region
shrinks or remains same. The search for optimal answer terminates when the known region
includes the search region.

In Sections 4.1, and 4.2, we discuss techniques to compute known region and search
region, respectively. In Section 4.3, we present the terminating condition of the search for
POIs. In Sections 4.5 and 4.6, we present the technique to compute privacy level of users
and the privacy analysis for our approach based on a user’s false location, respectively.
Appendix A presents the detailed algorithms, pseudocodes, and descriptions for processing
PkTP queries with respect to a false location.

https://www.researchgate.net/publication/4331039_SpaceTwist_Managing_the_Trade-Offs_Among_Location_Privacy_Query_Performance_and_Query_Accuracy_in_Mobile_Services?el=1_x_8&enrichId=rgreq-ee2c467f814e930efad5adb206c5d181-XXX&enrichSource=Y292ZXJQYWdlOzI5NjYzMjQwNTtBUzo0MTU4NjU2MTE4MDA1NzdAMTQ3NjE2MTQ5Njk0Ng==
https://www.researchgate.net/publication/4331039_SpaceTwist_Managing_the_Trade-Offs_Among_Location_Privacy_Query_Performance_and_Query_Accuracy_in_Mobile_Services?el=1_x_8&enrichId=rgreq-ee2c467f814e930efad5adb206c5d181-XXX&enrichSource=Y292ZXJQYWdlOzI5NjYzMjQwNTtBUzo0MTU4NjU2MTE4MDA1NzdAMTQ3NjE2MTQ5Njk0Ng==


Trip Planning Queries with Location Privacy in Spatial Databases 9

s d

p1
p2

p1

p2

'

'

Fig. 3 Search region that includes all POIs of required types

4.1 Computing Known Region

The known region is a circle with center at f and radius r f equal to the distance between f
and the farthest retrieved POI from f . With the incremental retrieval of nearest POIs with
respect to f , r f gradually increases and the known region expands.

Figure 2 shows an example, where m = 2 and k = 1. In the first iteration, the user re-
trieves 1st and 2nd nearest POIs p1 and p2 with respect to f from the LSP. The dotted circle
represents the known region since the locations of POIs of type 1 and 2 are known to the
user. There is no other POI of type 1 and 2 within this area because if there exists such a
POI, the POI’s distance from f would be less than that of p2 and the LSP must have returned
that POI before p2. In the next iteration, the known region (shown with solid line) expands
by receiving the 3rd nearest POI p

′
1 from the LSP.

4.2 Computing Search Region

Using the retrieved POIs from the LSP, the user computes the search region using elliptical
properties. The elliptical property states that the distance from one focus of the ellipse to
the other through any point outside the ellipse is larger than the length of the major axis of
the ellipse. We adopt this property to compute the search region, which is elaborated in the
following lemma:

Lemma 1 Let s and d represent foci of an ellipse with the major axis equal to the kth

smallest trip distance computed from the retrieved POIs in the known region. The ellipse
is the search region that includes all POIs of required types that provide k smallest trip
distances with respect to s and d.

Proof (By contradiction) Let p′1 be a POI located outside the ellipse and minimizes the
user’s kth smallest trip distance for source destination pair s and d. Assume that POIs of
other required types are located in the Euclidean path between p′1 and d (see Figure 3) so
that they do not add extra distances.

According to the elliptical property, the trip distance from s to d through p′1 is larger
than the length of the major axis, which is the upper bound of the kth smallest trip distance.
Thus, p′1 cannot further minimize the trip distance, which contradicts the assumption. The
ellipse is the search region that includes all POIs of required types that provide k smallest
trip distances with respect to s and d. ut

Therefore, the search region is an ellipse with two foci at source s and destination d of
the user. The major axis of the search region ellipse is the upper bound of the kth smallest
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trip distance, which is computed based on the POIs of the required types retrieved from the
LSP. The length of the major axis gradually reduces or remains same with the retrieval of
more POIs from the LSP.

Figure 2 also shows a search region for k = 1 and m = 2. The upper bound of the kth

smallest trip distance is computed as T dist(s,d,{p1, p2}). Thus, the search region is an
ellipse with two foci at s and d and the major axis equal to T dist(s,d,{p1, p2}).

4.3 Terminating Condition

With the incremental retrieval of nearest POIs from f , the known region gradually expands
and when the known region includes the search region, all POIs within the search region
have been retrieved. The incremental retrieval of nearest POIs continues until the known re-
gion includes the search region because at this stage, the POIs of required types that produce
the optimal answer with respect to s and d, have been identified (see Figure 4).

4.4 An Example

In this section, we explain the steps of our approach with an example. Figure 5 shows a
scenario for k = 1, m = 2 and the sequence of visiting POI type is first 2 then 1. First time,
the LSP returns 3 POIs p1, p2, p′2 of two types 1 and 2 with respect to a user’s false location
f . The known region is the circle with radius r f and center f as shown in Figure 5(a),
where r f is set to the distance between f and p1 because p1 is the farthest POI from f .
The search region is computed by selecting the POIs p2, p1 that minimize the total travel
distance. The major axis dmin of the search region, i.e, ellipse, is the total distance returned
by T dist(s,d,{p2, p1}) and the foci are the user’s actual source and destination s and d. Note
that at this stage of the evaluation the search region is not included in the known region. The
TP query answer is initialized as {p2, p1}.

In the next phase, in Figure 5(b), the next nearest POI p′1 from f is retrieved from the
LSP and the known region expands. We observe that, POI p′1 further minimizes the trip
distance because T dist(s,d,{p2, p′1}) < T dist(s,d,{p2, p1}). Thus the length of the major
axis dmin is updated as T dist(s,d,{p2, p′1}) and the search region shrinks. The TP query
answer is updated as {p2, p′1}.

Finally, the user retrieves the next nearest POI p′′2 (see Figure 5(c)) from f and the known
region expands. Since the POI p′′2 does not minimize the trip distance for any combination
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of POIs, the search region remains same. Dotted regions represent the previous positions of
the known and search regions. As the expanded known region encloses the search region,
the terminating condition satisfies and we get p2, p′1 as the final POI set that minimizes the
trip distance from s to d.
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Fig. 5 An example of PkTP query evaluation process for k = 1.

4.5 Computing the Obfuscation Level ol

Though the user reveals a false location instead of her actual source and destination locations
to the LSP, the LSP can refine the user’s actual source destination pair within a set of source
destination pair from other revealed information. During an access of a kTP query, the LSP
can have the following information: f , k, POIs retrieved by the user, and the termination
condition of the search.

The LSP can compute the known region in the similar way to the user from the set of
POIs retrieved by the user. However, the LSP cannot compute the search region as it does
not know the actual source destination pair of the user. Since the LSP knows the terminating
condition, i.e., the search terminates when the known region covers the search region, the
LSP may take a source destination pair s′ and d′ randomly within the known region and
compute the search region, where the foci of the search region are s′ and d′ and the major
axis is equal to the kth smallest trip distance from s′ to d′ via the POIs of required types in
the known region. Then the LSP checks whether the search region is included in the known
region. If yes, then the LSP considers the selected source destination pair as a candidate
for the actual source destination pair. The LSP repeats the process for all possible source
destination pair within the known region and refines the user’s actual source destination pair
in a set of candidate source destination pairs.

We express the level of location privacy in terms of the obfuscation level, where the
obfuscation level (ol) is the percentage of the area covering the refined set of source desti-
nation pairs with respect to the total space. The uncertainty increases with the increase of
the obfuscation level. The larger the known region, the higher the percentage of location
pairs that satisfy the terminating condition. Thus, to increase the level of location privacy, a
user may continue the search, even if the current known region includes the user’s required
search region. More specifically, when the known region covers the user’s search region, the
user can determine her obfuscation level achieved at that stage of the PkTP query evaluation
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process. If the achieved obfuscation level is less than the required one, the user can continue
to request additional POIs to the LSP for an arbitrary number of times until the obfuscation
level reaches a satisfactory value.

4.6 Privacy Analysis

The following lemma shows that our approach based on a user’s false location guarantees a
user’s required level of obfuscation (ol) and the LSP cannot reduce the user’s privacy level
by reverse engineering the proposed privacy preserving technique.

Lemma 2 Let ol represent a user’s required privacy level, f the user’s false location, and
s-d the user’s actual source destination pair. Then our approach based on a user’s false
location satisfies the user’s required obfuscation level ol .

Proof The LSP knows a user’s false location f , the distribution of returned POIs to the user,
and the technique to find the optimal answer of a TP query. From these revealed informa-
tion, the LSP can compute the refined set SD of source destination pairs that include the
user’s actual source destination pair, when our approach based on a user’s false location
terminates. A source destination pair (s′,d′) is included in SD, if an ellipse with foci at s′

and d′, respectively, is located within the known region, where the major axis of the ellipse
equals to the smallest trip distance from s′ to d′ via the POIs of required types among the
retrieved set of POIs from the LSP. Our approach based on a user’s false location continues
until the cardinality of SD becomes large enough to satisfy the user’s required obfuscation
level ol .

Further, our technique to compute a false location f ensures that the LSP cannot prune
any source destination pair from SD. The false location is randomly selected on the boundary
of an ellipse, whose foci are located at the user’s actual source destination pair and the
length of the major axis is randomly set from a range of the distance between s and d to
the maximum distance between two points in the total space. Since the length of the major
axis can vary, for any source destination pair (s′,d′) in SD, the LSP can find an ellipse
with foci at s′ and d′ such that f resides on the boundary of that ellipse. Thus, the LSP
cannot exclude any source destination pair s′ and d′ from SD by reverse engineering the
computation technique of f .

In summary, our approach based on a user’s false location computes obfuscation level
with respect to SD, terminates when the obfuscation level is equal to or higher than the
user’s required obfuscation level. Since the LSP cannot further refine SD using f , Algorithm
1 guarantees the user’s required obfuscation level ol . ut

5 Our Solution: Cloaked Location

In this section, we present a solution to evaluate kTP queries based on a user’s cloaked
locations. In our solution based on the cloaked location of a user, we determine the obfusca-
tion level as the percentage of the source/destination rectangle area with respect to the total
space. Thus, to request a kTP query, a user computes two rectangles sr and dr that include
the user’s source location s and destination location d, respectively, and satisfy the user’s
required obfuscation level. The user sends sr, dr, and the required types to the LSP. The LSP
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returns candidate POIs that provide k smallest trip distances for all possible source destina-
tion pairs within sr and dr, respectively. The user finds the POIs from the candidate answer
set that minimize trip distances for her actual source and destination s and d.

The major challenge to evaluate the candidate answer set is to find k optimal trips for
all possible source destination pairs within sr and dr, respectively. Evaluating the POIs for
each source destination pair independently would be prohibitively expensive. In this paper,
we develop an approach to evaluate the candidate answer set that includes optimal answers
for all source destination pairs with a single search on the database. Based on elliptical
properties and triangular inequalities, we gradually refine the search space, which plays a
key role to reduce the processing overhead significantly.

Similar to our approach for a user’s false location, the LSP (instead of the user) updates
the known region and the search region with the incremental retrieval of POIs from the
database. The candidate answer set is identified when the known region covers the search
region.

The LSP incrementally finds nearest POIs with respect to the midpoint mp of the centers
sc and dc of rectangles sr and dr, respectively. The known region is centered at mp and
the radius is the distance between mp and the furthest POI from mp. With the incremental
retrieval of POIs, the LSP updates the radius of the known region and the kth smallest travel
distance from sc to dc via POIs of required types inside the known region. The required
search region is an ellipse, which is defined by the following lemma:
Lemma 3 Let sc and dc represent foci of an ellipse with the major axis equal to d+2×(d1+
d2), where d is the upper bound of the kth smallest trip distance with respect to the source
destination pair sc and dc, and d1 (d2) is the distance between sc (dc) and the corner point
of the rectangle sr (dr). The ellipse is the search region that includes all POIs of required
types that provide k smallest trip distances with respect to all possible source destination
pairs in sr and dr, respectively.

Proof (By contradiction) Let p′1 be a POI located outside the ellipse and minimizes the kth

smallest trip distance with respect to a source destination pair a and b, where a and b are
corners of sr and dr, respectively. Assume that POIs of other required types are located in
the Euclidean path between p′1 and dc (please see Figure 6) so that they do not add extra
distances.

According to the elliptical property, the trip distance from sc to dc through p′1, (dsc +ddc)
is larger than the length of the major axis, which is d +2× (d1 +d2).

(dsc +ddc)> d +2× (d1 +d2) (1)
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Let da and db represent the distances from a and b to p′1, respectively. According to
triangular inequalities, (da +d1)> dsc and (db +d2)> ddc . Thus from Equation 1, we have

(da +d1 +db +d2)> d +2× (d1 +d2)
B(da +db)> d +d1 +d2
Given that d is the upper bound of the kth smallest trip distance with respect to the source

destination pair sc and dc. Thus according to the triangular inequality, the upper bound of
the kth smallest trip distance with respect to source destination pair a and b is d +d1 +d2.

We already have (da + db) > d + d1 + d2. Thus, p′1 cannot further minimize the trip
distance for source destination pair a and b, which contradicts the assumption.

Further a and b are the farthest points within sr and dr from sc and dc, respectively. Thus
for any other source destination pair s′ and d′ within sr and dr, the distances between s′ and
sc, and d′ and dc are less then d1 and d2, respectively.

The elliptical search region with foci sc and dc, and the major axis equal to d+2×(d1+
d2) include all POIs of required types that provide k smallest trip distances with respect to
all possible source destination pairs in sr and dr, respectively. ut

In the next section, we present the privacy analysis for our approach based on a user’s
cloaked locations. Appendix B presents the detailed algorithms, pseudocodes, and descrip-
tions for processing PkTP queries with respect to a cloaked location.

5.1 Privacy Analysis

The following lemma shows that our approach based on a user’s cloaked locations guaran-
tees a user’s required level of obfuscation (ol) and the LSP cannot reduce the user’s privacy
level by reverse engineering the proposed privacy preserving technique.

Lemma 4 Let ol represent a user’s required privacy level, sr and dr the user’s source and
destination rectangles, s-d the user’s actual source destination pair. Our approach based on
a user’s cloaked locations satisfies the user’s required obfuscation level ol .

Proof A user computes her source and destination rectangles sr and dr and sends them to
the LSP. The LSP returns a candidate answer set that includes POIs for TP query answer
for every possible source-destination pair within sr and dr, respectively. The area of sr (or
dr) represents ol% area with respect to the total space. Since the LSP does not know about
which POIs are selected by the user, the LSP cannot refine the user’s actual source and
destination pair s-d within sr and dr, respectively. Even if the candidate answer set includes
a single set of POIs of required types, that POI set is the TP query answer for all possible
source-destination pairs within sr and dr and thus, the LSP cannot refine the user’s actual
source and destination pair s-d within sr and dr, respectively. Thus, our approach based on
a user’s cloaked locations guarantees the user’s required obfuscation level ol . ut

6 Approximation Solutions

As discussed earlier, computing the exact answer for TP queries may be computationally
expensive especially when the desired level of privacy is high (e.g., large cloaked region)
and the sequence of visiting POI types is not fixed. A user may be willing to compromise the
accuracy of the returned results in order to improve the query processing cost, e.g., a user
may be happy to obtain a trip that is similar to the optimal trip but is retrieved much quickly.
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Motivated by this, in this section, we extend our solutions proposed in the previous sections
to enable a user to specify the required level of accuracy for the answer and in return reduce
the query processing overhead significantly.

Let x be the desired accuracy level. We propose approximate algorithms that guarantee
that the optimal trip distance is not smaller than x% of the distance of the trip returned by the
proposed approximate algorithms. For example, if a user’s required accuracy level is 90, our
approximation algorithm guarantees that if the trip distance for the approximated answer is
10 km, the trip distance for the optimal answer is not less than 9 km.

Our approximation algorithm to process a PkTP query with respect to a user’s false
location works in a similar way to the optimal solution proposed in Section 4 except that the
major axis of the search region (i.e., ellipse) is set as the x% of the current best kth smallest
trip distance. The trip distance via any POI outside the search region is greater than x% of
the current best kth smallest trip distance. The following lemma shows the correctness of our
approximation algorithm.

Lemma 5 Let s, d and x represent the source, destination and accuracy level specified by
a user. The optimal trip distance is not less than x% of k smallest trip distances returned by
our approximation algorithm to process a kTP query with respect to a user’s false location.

Proof The approximation algorithm incrementally retrieves POIs from the LSP until the
known region includes the search region. The search region is an ellipse with foci at s and d
and the major axis equal to x% of the current kth smallest trip distance computed from the
already retrieved POIs. For every retrieved POI, the algorithm checks whether it is in the
search region and minimizes the current kth smallest trip distance. If yes, the length of the
major axis of the search region is updated.

A POI outside the ellipse cannot provide a trip distance less than the length of the major
axis of the ellipse. Let p′1 be a POI located outside the ellipse and POIs of other required
types are located in the Euclidean path between p′1 and d so that they do not add extra
distances. According to the elliptical property, the distance of a trip from s to d via p′1
is greater than the length of the major axis of the ellipse, i.e., x% of the kth smallest trip
distance computed from the retrieved POIs. Thus, the optimal trip distance is not less than
x% of k smallest trip distances returned by our approximation algorithm to process a kTP
query with respect to a user’s false location. ut

The approximation solution for a user’s cloaked location works in a similar way to the
optimal solution proposed in Section 5 except that the LSP returns POIs that provide trip
distances with a guaranteed accuracy level x with respect to all possible source-destination
pairs in sr and dr, respectively. To ensure the approximation of the answer with a x% accu-
racy level instead of the optimal answer, d is changed to x% of the current best kth smallest
trip distance with respect to the source destination pair sc and dc, and the length of the major
axis is set as d + 2× (d1 + d2). Due to similarity with Lemma 5, we omit the correctness
proof of the approximation algorithm for processing a PkTP query with respect to a user’s
cloaked location.

7 Experiments

In this section, we evaluate the performance of our proposed algorithms using false and
cloaked locations through an extensive set of experiments. In our experiments, we use both
real and synthetic data sets. The real dataset [1] consists of 100K POIs of 63 different types
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from California. We generate two synthetic POI data sets U and Z using uniform and Zipfian
distribution, respectively. We vary the size of datasets U and Z as 15000, 30,000, 60,000,
and 120,000 POI locations. For all data sets, the data space is normalized into a span of
10,000 x 10,000 square units. The location of POIs of all types are indexed using a single
R*-trees. Though using an independent R*-tree for every type may reduce query processing
time, it is not realistic to deploy such a large number of R*-trees; for example, in case of
California dataset, it would require 63 independent R*-trees for 63 POI types. Further, using
separate R*-tree for every POI type would increase the IO cost significantly.

Since there is no existing algorithm to process trip planning queries with location pri-
vacy, in our experiments, we perform a comparative analysis of our proposed algorithms for
false and cloaked locations in terms of IO costs, query processing time, and communication
overhead. In all experiments, we measure the query processing time for the LSP and the user
independently to measure the efficiency of our algorithms. Our solution based on cloaked
locations requires a single communication between a user and the LSP, whereas our solution
based on a false location requires several communications between a user and the LSP. We
also measure the answer set size returned to the user as the answer set size can be used to
approximate the communication overhead irrespective of the bandwidth of the network used
for communicating with the LSP.

Table 2 Experimental Setup

Parameter Range Default
Distance between s and d (in %) 2, 4, 8, 16, 32, 64 8
Type m 1, 2, 3, 4, 5 3
k 2, 4, 8, 16 4
Obfuscation level (ol) 0.004%,0.006%,0.008%, 0.01% 0.01%
Data set size (Synthetic) 15K, 30K, 60K, 120K 30K

We vary different parameters: the distance between source s to destination d, the number
of required type (m), the number of required sets of POIs (k), obfuscation level (ol) and the
dataset size in different sets of experiments. Table 2 summarizes the range of values used
for each parameter in our experiments and their default values. We set 0.01% of the total
data space as the default area for the obfuscation level as it represents around 20 km2 with
respect to the total area of California, which is even larger than the area of a small suburb
in California. We also choose default values for other parameters considering practical sce-
narios. We run the experiments on a desktop with a Intel Core 2 Duo 2.40 GHz CPU and 4
GBytes RAM.

We vary the distance between source and destination as 2%, 4%, 8%, 16%, 32%, and
64% of the maximum distance between two pints in the total space. For every source-
destination distance, we generate 100 sample TP queries by computing the source, desti-
nation, and false locations randomly in the total space and take the average of their perfor-
mances in terms of IO costs, query processing time, and communication overhead. Specif-
ically, we first randomly generate the source point inside the total space and then we gen-
erate the destination point randomly in the total space at the required distance from the
source location. Since the focus of this paper is on sequenced kTP queries, we also consider
sequenced kTP queries for our experiments.

In Sections 7.1, 7.2, 7.3, 7.4, and 7.5, we present our experimental results for our optimal
algorithms for varying distance between s to d, m, k, ol and dataset size, respectively. In
Section 7.6, we perform a comparative analysis between our proposed algorithms for false
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and cloaked locations based on the experimental results. In Section 7.7, we present our
experimental results for our approximation algorithms for varying the accuracy level.
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Fig. 7 Effect of varying distance between s and d on California dataset

7.1 Effect of Distance between s and d

The experimental results of varying distance between s and d have been shown in the Fig-
ure 7. In Figure 7(a), the LSP side processing time for our approach based on a user’s
cloaked location, PkTP cloaked is higher than that of our approach based on a user’s false
location, PkTP false. For the user side time, IOs, and answer set size, our approach based
on cloaked locations outperforms the privacy protection technique based on a false location
(see Figures 7(b)-(d)).

This is because for PkTP cloaked, the LSP side algorithm performs most of the complex
and time consuming tasks. The trends in graphs show that the LSP side processing time,
user side processing time, IOs and answer set size increase with the increase of the distance
between source-destination.

7.2 Effect of m

Figures 8(a), (b) and (c) show the effect of varying m from 1 to 5 on the LSP and user side
processing time and IO cost, respectively, for California dataset. The experimental results
show that the privacy protection technique based on cloaked location PkTP cloaked, outper-
forms the privacy protection technique based on false location, PkTP false in terms of IO
cost and user processing time. We also measure the communication cost and answer set size
for varying m. From Figure 8(d), we see that the answer set size increases with the increase
of m. On average PkTP cloaked requires 1.6 times more LSP side processing time whereas
PkTP false requires 2.2 times more user side processing time. IO cost and answer set size
are on average 1.4 times higher for PkTP false than those of PkTP cloaked.
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Fig. 8 Effect of varying m on California dataset
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Fig. 9 Effect of varying k on California dataset

7.3 Effect of k

In this set of experiments, we vary the number of required sets of POIs (k) to observe its
effect on LSP and user side processing time, IO costs, and answer set size. Both user side
processing cost and IO cost increase with k (see Figure 9(b)-(c)). The answer set size also
shows the same behavior in Figure 9(d). Our privacy protection technique based on cloaked
location PkTP cloaked outperforms our privacy protection technique based on false location
PkTP false in terms of all parameters except the LSP side processing time (Figure 9(a)) for
the same reason explained above in Section 7.1. The rate of change in the LSP side process-
ing time, IO cost and answer set size is almost same for both PkTP false and PkTP cloaked.
On the other hand, the rate of change in the user side processing time is high for PkTP false.
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Fig. 10 Effect of varying ol on California dataset

7.4 Effect of Obfuscation Level (ol)

In this set of experiments, we vary the obfuscation level from 0.004% to 0.01%. For
PkTP false, a user approximates her obfuscation level (ol) with monte carlo simulation. The
process of retrieving POIs from the LSP continues until a user’s approximated obfuscation
level meets the required obfuscation level.

For PkTP cloaked, we generate a cloaked region which is a rectangle. To compute the
rectangles according to the privacy requirements, we use the algorithm proposed in [13,14].

A larger obfuscation level ol ensures a higher level of privacy which also comes with
higher processing time and IO costs (see Figures 10(a), (b), (c)). The answer set size also
increases with the increase of the obfuscation level for both solutions based on cloaked and
false locations (Figure 10(d)).
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7.5 Effect of Data Set Size

In this set of experiments, we vary the dataset size for both uniform (U) and Zipfian (Z)
distributions. Figures 11(a)-(d) show the LSP and user processing time, IO cost and answer
set size respectively, for different data set sizes with U distribution and Figures 12(a)-(d)
show the experimental results for Z distribution. The experimental results show that the pri-
vacy protection technique based on cloaked location PkTP cloaked, outperforms the privacy
protection technique based on false location, PkTP false in terms of IO cost, LSP and user
side processing time. Specially the user side processing time is much higher for PkTP false
due to the obfuscation level computation overhead in the user side. We observe that the
experimental results for Z distribution follow similar trends to U distribution.
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7.6 Comparative Analysis

From our experimental results we observe that the privacy preserving technique based on
the cloaked location performs better than the privacy preserving technique for the false
location in terms of IOs, user side processing time and communication overhead. On the
other hand, the privacy preserving technique for the false location incurs less LSP side pro-
cessing time than that of the privacy preserving technique based on the cloaked location.
Though the processing overhead in terms of computational and communication overhead of
both PkTP false and PkTP cloaked increase with the increase of different parameters such
as m, k, ol , the rate of increase of the processing overhead for PkTP cloaked is less than
PkTP cloaked. Thus, PkTP cloaked is more scalable than PkTP false.

The LSP side processing time for PkTP cloaked is on average 1.6 times more than that
of PkTP false but the user side processing time is on average 3.02 times less than that of
PkTP false. This is because, PkTP false only retrieves POIs of required types from the
database of the LSP and performs other computations on the user’s mobile device. On the
other hand, in addition to retrieving POIs from the database, PkTP cloaked performs the
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checking whether the required POIs to compute k optimal trips for all possible source des-
tination pairs within source and destination regions have been retrieved. On the other hand,
the reason behind such a high processing time on the user side for PkTP false is in ad-
dition to computing optimal answer with respect to the actual source destination pair, the
algorithm also checks whether the user’s required obfuscation level is satisfied using monte
carlo simulation, which consumes most of the user side processing time.

The experimental results show that PkTP cloaked always outperforms PkTP false in
terms of both IOs and answer set size for any parameter. On an average PkTP cloaked needs
1.6 times less IOs for finding the answer set. Similarly, the answer set size is on average 1.5
times larger for PkTP false than that of PkTP cloaked. PkTP false needs to retrieve more
POIs than PkTP cloaked even for similar obfuscation level because of the techniques used
to compute obfuscation levels in these two algorithms.

Further, for PkTP cloaked, the user communicates once with the LSP, whereas for
PkTP false, the user needs to communicate several times with the LSP.

In summary, we conclude that a user with high performance mobile device may go for
the privacy preserving technique using a false location. Otherwise the privacy preserving
technique based on the cloaked location is in general a good option due to its less commu-
nication and computational overhead.
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Fig. 13 Effect of varying the guaranteed accuracy level on California dataset when the sequence of visiting
POI types is fixed

7.7 Approximation Algorithm

In this set of experiments, to observe the effect of reducing the accuracy level on the query
performance, we set the obfuscation level to the minimum value, i.e., 0.004%, of the used
range because to ensure a higher obfuscation level, our privacy preserving technique based
on the false location often requires to retrieve the same number of POIs from the LSP ir-
respective of the required accuracy level. The other parameters are set into default values
according to Table 2. Since the benefit of using an approximation algorithm is more pro-
nounced when the sequence of visiting POI types is not fixed, in this set of experiments,
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Fig. 14 Effect of varying the guaranteed accuracy level on California dataset when the sequence of visiting
POI types is not fixed

we consider both scenarios, i.e., by keeping the sequence of visiting POI types fixed and
flexible.

Figures 13(a)–(d) show the effect of varying the guaranteed accuracy level on LSP and
user side processing time, IO cost and answer set size, respectively for California dataset
when the sequence of visiting POI types remains fixed. The performance of both privacy
preserving techniques improve with the decrease of the guaranteed accuracy level. For ex-
ample, for sacrificing 10% accuracy, the LSP side processing time decreases 53% and 19%
for our techniques based on false and cloaked locations, respectively.

Figures 14(a)–(d) show the experimental results for the scenario when the sequence of
visiting POI types is not fixed. In Figures 14(a) and 14(b), we observe that the LSP side
processing time for our approach based on cloaked locations and the user side processing
time for both of our approaches based on false and cloaked locations are higher than those
shown in Figures 13(a) and 13(b), respectively. This is expected because when the sequence
of visiting POI types is not fixed, our approach requires to consider all possible sequences of
POI types while computing the trip distance. However, in Figures 14(a) and 14(b), we find
that both LSP and user side processing time decrease significantly in return of sacrificing
the accuracy of query answers.

The actual accuracy of the returned query answer to the user is greater than or equal to
the guaranteed accuracy level achieved using our approximation algorithms. For example,
for a guaranteed accuracy level 80%, if the trip distance for the returned approximated an-
swer is 100 meter, the trip distance for the optimal answer can be greater than or equal to
80 meter. In our experiments, we observe that the actual accuracy is higher than the guaran-
teed accuracy most of the times. Figures 15 shows the average actual accuracy obtained for
varying the guaranteed accuracy level. For example, for 80% guaranteed accuracy level, the
actual accuracy achieved, on average, is 92%.



Trip Planning Queries with Location Privacy in Spatial Databases 23

 70

 75

 80

 85

 90

 95

 100

60 70 80 90 100

A
ct

u
al

 A
cc

u
ra

cy
 (

in
 %

)

Guaranteed Accuracy (in %)

 70

 75

 80

 85

 90

 95

 100

60 70 80 90 100

A
ct

u
al

 A
cc

u
ra

cy
 (

in
 %

)

Guaranteed Accuracy (in %)

(a) (b)
Fig. 15 Guaranteed Accuracy vs. Actual Accuracy when the sequence of visiting POI types is (a) fixed and
(b) not fixed

8 Conclusion

In this paper, we have proposed the first comprehensive solution for privacy preserving k trip
planning (PkTP) queries. We have developed both optimal and approximation algorithms to
evaluate kTP queries with respect to false and cloaked locations of users. We have exploited
geometric properties to refine the search space and reduce the query processing overhead,
which is a major challenge for a privacy preserving queries as a user does not reveal her lo-
cation to the LSP. Experiments show that our approach can provide users the optimal answer
with a reduced communication and computational overhead for a high level of location pri-
vacy and the processing overhead can be further reduced with the proposed approximation
algorithms in return of sacrificing the accuracy of the query answer slightly. Our comparative
analysis through experiments reveals that the privacy protection technique based on a user’s
cloaked location is scalable and outperforms the privacy protection technique based on a
user’s false location in terms of IOs, communication and user side computational overhead.

Though we have shown experiments in the Euclidean space, our approach can be also
adopted in road networks. In future, we have plan to protect user privacy for kTP queries
with other privacy models such as K-anonymity and cryptographic approach.

Appendix A Detailed Algorithm: False Location

In this section, we present the detailed algorithm to evaluate a PkTP query based on false location. Algorithm
1, PkTP false, shows the pseudocode to process a PKTP query that runs on a user’s mobile device. Inputs of
the algorithm are k, required types {1,2, . . . ,m}, a user’s actual source s and destination d, and the obfuscation
level ol . The output is Rs = {p1

1, p1
2, . . . , p1

m},{p2
1, p2

2, . . . , p2
m}, . . . ,{pk

1, pk
2, . . . , pk

m}, k sets of POIs that have
the k smallest trip distances from s to d.

The notations that we have used for this algorithm are as follows:

– MinD[1..k]: An array of k entries, where MinD[ j] represents the jth smallest trip distance from s to d
via visiting POIs of required types, where 1 ≤ j ≤ k. MinD[ j] is updated with the incremental retrieval
of POIs from the LSP. In addition, MinD[k] represents the length of the major axis of the search region
(ellipse).

– r f : The distance between f and the farthest retrieved POI from f . It also represents the radius of the
known region (circle) centering at f .

– IsInsideKnownRegion(s,d,MinD[k], f ,r f ): A function that checks whether the known region(circle) cov-
ers the search region(ellipse) or not and returns yes or no, respectively.

– P
′
: A set that stores all POIs retrieved from the LSP, which fall inside the search region.

The first step of our algorithm is the computation of the false location f based on the source s and
destination d of a user. Any irreversible technique to compute the false location can be used for this purpose. In
our implementation, we have used the following technique to compute the false location. At first an ellipsoid
area is calculated with two foci at s and d respectively. The length of the major axis is randomly selected
from a range that can vary from the distance between s and d to the maximum distance between two points
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Algorithm 1 PkTP false (input : k,{1,2, . . . ,m},s,d,ol )
1: f ←Compute(s,d)
2: Rs← { /0}
3: MinD[1...k]← {∞}
4: r f ← 0
5: P

′ ← /0
6: f lag← 0
7: repeat
8: P← INN( f ,k,m, f lag)
9: update (r f )

10: P← IsInsideSearchRegion(s,d,MinD[k],P)
11: S← GenerateSet(P,P

′
,m,s,d,MinD[k], f lag)

12: for each set S
′ ∈ S do

13: if T dist(s,d,S
′
)< MinD[k] then

14: update (Rs,MinD)
15: end if
16: end for
17: P

′ ← IsInsideSearchRegion(s,d,MinD[k],P
′
)

18: f lag← 1
19: until IsInsideKnownRegion(s,d,MinD[k], f ,r f )=0
20: while ol < CompObLev() do
21: D← INN( f ,k,m, f lag)
22: end while
23: Return Rs

in the total space, which ensures that four extreme points of the ellipse, remain within the total space. Then a
false location is chosen randomly on the boundary of the ellipsoid area. Intuitively, if s, d and f are close then
POIs are retrieved in low cost. To reduce query processing cost, the length of the major axis can be also set
by the user instead of computing randomly. The output array Rs is initialized with { /0}, the entries of distance
array MinD are initialized with in f inity, and r f is initialized with 0.

Next, a query is sent to the LSP using a function INN with the parameters f , k, m and f lag. INN
incrementally retrieves nearest POIs from f . Any existing nearest neighbor algorithm [17] can be used for
the function INN. For the first time f lag = 0 and INN returns at least k POIs of one type and at least one
POI of remaining types, which are sufficient to get k initial POI sets. For rest of the time f lag will be 1 and
INN returns k POIs, where POIs can be of any of the required types 1,2, . . . ,m. In Line 8, the retrieved POIs
with respect to f are stored in P. Each time P contains the latest POIs retrieved from the LSP. For a dense
distribution of POIs, the known region may expand slowly and require a large number of communications
between the user and the LSP. To avoid such a scenario, the user may adjust the number of POIs that need to
be retrieved incrementally as k+δ instead of k in Function INN, where δ is a positive integer. The parameter
r f is updated as the distance between f and the farthest POI from f in P.

After retrieving POIs from the LSP, Function IsInsideSearchRegion checks and prunes the newly re-
trieved POI in P, if any POI falls outside the overlapping region of the known region and the search region.
For the first time, no POI is pruned as the search region has not been yet computed, i.e., MinD[k] is ∞.

Then the algorithm computes S, all possible new eligible candidate sets of POIs computed with POIs in P
and P

′
using the function GenerateSet. Note that P and P

′
store all POIs retrieved from the LSP in the current

iteration and previous iterations, respectively, which fall inside the search region. In addition to computing
S, the function GenerateSet also updates P

′
by adding POIs in P to P

′
. The pseudocode for GenerateSet is

shown in Algorithm 2 (please see Section Appendix A.1).

For each set S
′ ∈ S, the algorithm computes the trip distance T dist(s,d,S

′
) and updates Rs and MinD, if

T dist(s,d,S
′
)< MinD[k]. At this stage, IsInsideSearchRegion function again prunes the POIs of P

′
because

MinD[k] may have been reduced, which means the area of the search region may have been reduced. A
POI that was previously inside the search region may now go outside of the search region. At the end, the
IsInsideKnownRegion function checks whether the known region(circle) covers the search region(ellipse) or
not. If yes, the loop terminates, otherwise the loop continues and repeats the process by retrieving more POIs
from the LSP. When the known region covers the search region, the k optimal POI sets have been found and
stored in Rs.

https://www.researchgate.net/publication/221471565_Ranking_in_Spatial_Databases?el=1_x_8&enrichId=rgreq-ee2c467f814e930efad5adb206c5d181-XXX&enrichSource=Y292ZXJQYWdlOzI5NjYzMjQwNTtBUzo0MTU4NjU2MTE4MDA1NzdAMTQ3NjE2MTQ5Njk0Ng==
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After that the algorithm checks whether the privacy level achieved so far is greater than or equal to ol
using the function CompObLev. The incremental retrieval of POIs from the LSP continues until the user
specified privacy level ol is achieved by expanding the known region. To compute the obfuscation level,
CompObLev needs to check whether a source destination pair within the known region satisfies the termi-
nating condition of the search and CompObLev needs to repeat the test for all possible source destination
pairs within the known region, which is computationally very expensive. Thus, to make the process faster, in
our proposed approach, a user approximates her obfuscation level with monte carlo simulation. For this, we
randomly generate 1 million source destination pairs within the known region and compute the percentage of
source destination pairs that satisfy the termination condition, and thereby approximate the area of known re-
gion that can be considered by adversaries as a refined location of a user. Finally, we compute the obfuscation
level as the percentage of the area considered as the user’s refined location with respect to the total space.

Appendix A.1 GenerateSet

Algorithm 2 GenerateSet (P,P
′
,m,s,d,MinD[k], f lag)

1: S←{ /0}
2: if f lag = 0 then
3: S← GetSet(NULL,P,m)
4: P

′ ← P
5: end if
6: if f lag = 1 then
7: for each POI p ∈ P do
8: S← S∪ GetSet(p,P

′
,m)

9: P
′ ← p∪P

′

10: end for
11: end if
12: for each set S

′ ∈ S do
13: if (OneSetDist(S

′
)> MinD[k]) then

14: Remove S
′

from S
15: end if
16: end for
17: Return S

The GenerateSet function takes the parameters m, P, P
′
, MinD[k] and f lag and returns all possible

eligible candidate sets of POIs from the retrieved dataset. Note that for sequenced kTP queries, the algorithm
considers the sequence while generating the sets and if the sequence is not fixed, the algorithm considers all
possible sequences of visiting POIs while generating the sets. Algorithm 2 describes the detailed steps of the
function.

For the first time f lag = 0 and P
′

is empty. Thus, sets are generated using the POIs in P with the function
GetSet, stored in S and P is copied in P

′
.

For subsequent call of the algorithm, f lag = 1 and P contains the latest POIs retrieved from the LSP
and P

′
contains the previously retrieved POIs. For each POI p ∈ P, all possible sets are generated with p and

other POIs in P
′

with the function GetSet, sets are added in S, and p is added in P
′
.

After generating the sets, OneSetDist calculates the distance for each set of POIs. For example, if a set
is {p1, p2, p3}, the distance is computed as dist(p1, p2)+dist(p2, p3) The distances of eligible sets are also
stored to avoid recomputation for future trip distance computation (not shown in Algorithm 2).

For better understanding, Table 3 represents a simulation of function GenerateSet with an example
scenario for k = 1 and m = 2. The table is divided into two parts based on values of f lag (0 or 1). First time
when GenerateSet is called, MinD[k] is ∞ and f lag is 0. The first part of the table assumes P = {p1, p2, p

′
2}.

After execution of GetSet, S includes sets {(p1, p2),(p1, p
′
2)} (as shown in Line 3 of Table 2). Then P

′
keeps

a copy of P for future use. In Line 12.(a), for set {(p1, p2)}, calculated distance from OneSetDist is less than
MinD[k] because MinD[k] is in f inity. Thus, the condition of Line 13.(a) is False. Same for Lines 12.(b) and
13.(b). Hence no set will not be removed from S and it contains {(p1, p2),(p1, p

′
2)}.
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Table 3 GenerateSet : Simulation with example

Line Variable Value
1. S /0
3. S {(p1, p2),(p1, p

′
2)}

4. P
′ {p1, p2, p

′
2}

12.(a) S
′ {(p1, p2)}

13.(a) Condition False
12.(b) S

′ {(p1, p
′
2)}

13.(b) Condition False
17. S {(p1, p2),(p1, p

′
2)}

1. S /0
6. f lag 1

7.(a) p p1
′

8.(a) S {(p
′
1, p2),(p

′
1, p

′′
2)}

9.(a) P
′ {p1, p

′
1, p2, p

′
2}

7.(b) p p2
′′

8.(b) S {(p
′
1, p2),(p

′
1, p

′′
2), (p1, p

′′
2),(p

′
1, p

′′
2)}

9.(b) P
′ {p1, p

′
1, p2, p

′
2, p

′′
2}

12.(a) S
′ {(p

′
1, p2)}

13.(a) Condition True
14.(a) S {(p

′
1, p

′′
2), (p1, p

′′
2),(p

′
1, p

′′
2)}

12,13,14... ... ...
17. S {(p1, p

′′
2)}

We assume that the trip distance via (p1, p2) and (p1, p
′
2) are 10 and 20, respectively. Thus, the next

time when GenerateSet is called MinD[k] is 20 and f lag is 1. The second part of the table assumes P =

{p
′
1, p

′′
2}. In Line 7.(a), for p = p1

′, two sets {(p
′
1, p2),(p

′
1, p

′′
2)} are generated and stored in S. After that

p1
′ is added to the P

′
which stores all the retrieved POIs. Following the same procedure for p

′′
2 , S contains

sets {(p
′
1, p2),(p

′
1, p

′′
2), (p1, p

′′
2),(p

′
1, p

′′
2)} and all the POIs are added to P

′
. Assume that for set {(p

′
1, p2)} in

13.(a), OneSetDist distance, say 30, is greater then MinD[k]. Thus, the condition is true and this set will be
removed from S. Present S contains {(p

′
1, p

′′
2), (p1, p

′′
2),(p

′
1, p

′′
2)} in Line 14.(a). Similar process continues

for each remaining sets in S. After pruning all the unnecessary sets, finally S contains {(p1, p
′′
2)}.

Appendix B Detailed Algorithm: Cloaked Location

In this section, we present our algorithm to evaluate a PkTP query based on the cloaked location
of the user. Algorithm 3, PkTP cloaked User, shows the pseudocode to process a PKTP query that
runs on a user’s mobile device. Similar to Algorithm 1, inputs of the algorithm are k, required types
{1,2, . . . ,m}, a user’s actual source s and destination d, and the obfuscation level ol . The output is Rs =
{p1

1, p1
2, . . . , p1

m},{p2
1, p2

2, . . . , p2
m}, . . . ,{pk

1, pk
2, . . . , pk

m}, k sets of POIs that have the k smallest trip distances
from s to d.

In the first step of the algorithm, the function GenerateRectangle generates the source and destination
rectangle sr and dr based on the user defined obfuscation level ol . We use the algorithm proposed in [13,
14] to randomly compute the rectangles according to the privacy requirements. Then the algorithm retrieves
a candidate answer set that includes optimal answers for all possible source-destination pairs in sr and dr ,
respectively, using the function PkTP cloaked LSP (discussed in detail in the later part of this section). The
candidate POIs are stored in P.

In Line 5, the function ComputeSet is called to generate all possible sets with POIs in P and the sets
are stored in S. After that for each set S

′
in S, the algorithm computes the trip distance with respect to s to

d. If the trip distance is less than MinD[k] then the answer set Rs and the distance array MinD are updated.
Since MinD[k] may have been updated, the algorithm checks whether it is possible to prune some sets from
S to reduce the computational overhead using the function PruneSet. The function PruneSet removes a set

https://www.researchgate.net/publication/220310603_Don't_Trust_Anyone_Privacy_Protection_for_Location-Based_Services?el=1_x_8&enrichId=rgreq-ee2c467f814e930efad5adb206c5d181-XXX&enrichSource=Y292ZXJQYWdlOzI5NjYzMjQwNTtBUzo0MTU4NjU2MTE4MDA1NzdAMTQ3NjE2MTQ5Njk0Ng==
https://www.researchgate.net/publication/225115844_Safeguarding_Location_Privacy_in_Wireless_Ad-Hoc_Networks?el=1_x_8&enrichId=rgreq-ee2c467f814e930efad5adb206c5d181-XXX&enrichSource=Y292ZXJQYWdlOzI5NjYzMjQwNTtBUzo0MTU4NjU2MTE4MDA1NzdAMTQ3NjE2MTQ5Njk0Ng==
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Algorithm 3 PkTP cloaked User(input : s,d,k,{1,2, . . . ,m},ol )
1: sr,dr ← GenerateRectangle(s,d,ol)
2: Rs← { /0}
3: MinD[1...k]← {∞}
4: P← PkTP cloaked LSP (k,{1,2, . . . ,m},sr,dr)
5: S← ComputeSet(P,m)
6: for each set S

′ ∈ S do
7: if T dist(s,d,S

′
)< MinD[k] then

8: update(Rs, MinD)
9: PruneSet(S, MinD[k])

10: end if
11: end for
12: Return Rs

{p1
1, p2

2, ..., pi
m} from S if ∑

m−1
i=1 dist(pi, pi+1) is already greater than MinD[k]. Finally Rs contains k sets of

POIs that minimize trip distances from s to d.

Algorithm 4 PkTP cloaked LSP (input : sr,dr,k,{1,2, . . . ,m} )
1: MinD[1...k]← {∞}
2: P

′ ← /0
3: d

′ ← ∞

4: f lag← 0
5: repeat
6: P← INNsc(mp,k,mp, f lag)
7: U pdate(rmp )
8: P← IsInsideSearchRegion(s,d,d

′
,P)

9: S← GenerateSet(P,P
′
,mp,sc,dc,MinD[k], f lag)

10: for each set S
′ ∈ S do

11: if T dist(sc,dc,S
′
)< MinD[k] then

12: U pdate(MinD)
13: end if
14: end for
15: d

′ ← MinD[k]+2× (d1 +d2)

16: P
′ ← IsInsideSearchRegion(sc,dc,d

′
,P
′
)

17: f lag← 1
18: until IsInsideKnownRegion(sc,dc,d

′
,mp,rmp )=0

19: Return P
′

Algorithm 4, PkTP cloaked LSP shows the details steps for LSP side algorithm. A set P
′
, initialized with

/0, stores the POIs that provide k smallest trip distances with respect to all possible source-destination pairs in
sr and dr , respectively. The input to the algorithm are sr,dr,k,{1,2, . . . ,m} and the output is P

′
.

The notations that we have used for this algorithm are summarized below:

– sc(dc): The center of the source (destination) rectangle, sr(dr) and one of the foci of the search region
(ellipse).

– mp: The mid point of sc and dc. It is also the center point of the known region (circle).
– d1(d2): The Euclidean distance from sc to the corner point of the sr
– MinD[1..k]: An array of k entries, where MinD[ j] represents the jth smallest trip distance from sc to dc

via visiting POIs of required types, where 1≤ j ≤ k.
– d

′
: The sum of d1, d2 and MinD[k]. It also represents the length of the major axis of the search region

(ellipse).
– rmp : The radius of the known region centering at mp.
– IsInsideKnownRegion(sc,dc,d

′
,mp,rmp ): A function that checks whether the known region(circle) covers

the search region(ellipse) or not and return yes or no, respectively.
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Similar to Algorithm 1, this algorithm uses a function INN with parameters f , k, mp and f lag to incre-
mentally retrieve nearest POIs with respect to mp. For the first time f lag = 0 and INN returns at least k POIs
of one type and at least one POI of remaining types, which are sufficient to get k initial POI sets. For rest of
the time f lag is 1 and INN returns k POIs, where POIs can be of any of the required types 1,2, . . . ,m. The
retrieved POIs with respect to mp are stored in P. Each time P contains the latest POIs retrieved by INN.
Note that with every call of INN, the length of the radius of the known region rmp increases. Function IsIn-
sideSearchRegion in Line 8 prunes a POI in P if it falls outside the overlapping region of the known region
and the search region. Note that initially MinD[k] is ∞ and thus, no POI from P is pruned in the first iteration.

Algorithm 4 also uses the function GenerateSet (described in Section Appendix A.1) to generate pos-
sible candidate sets and stores them in S. For each set S

′
in S, the algorithm calculates the trip distance

T dist(sc,dc,S
′
) for source destination pair sc and dc. If T dist(sc,dc,S

′
) < MinD[k], the array MinD is up-

dated. In Line 15, the algorithm updates the length of the major axis d
′

of the search region and uses IsIn-
sideSearchRegion function to prune the POIs from P

′
that are not included in the overlapping region of

computed known and search regions.
Finally, the algorithm checks whether the current known region covers the search region using the func-

tion IsInsideKnownRegion. If yes, the algorithm returns P
′

to PkTP cloaked User. Otherwise, the algorithm
repeats the process to identify the candidate answer set that includes POIs for k smallest trip distances with
respect to all possible source-destination pairs in sr and dr , respectively.
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