
Efficient Processing of Proximity
Based Spatial Queries

by

Muhammad Aamir Cheema

A THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
(November 2011)

Supervisor: Prof. Xuemin Lin

Joint-supervisor: Dr. Wei Wang

i

Originality Statement

I hereby declare that this submission is my own work and to the best of my knowledge

it contains no materials previously published or written by another person, or substantial

proportions of material which have been accepted for the award of any other degree or

diploma at UNSW or any other educational institution, except where due acknowledge-

ment is made in the thesis. Any contribution made to the research by others, with whom

I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also

declare that the intellectual content of this thesis is the product of my own work, except

to the extent that assistance from others in the project’s design and conception or in

style, presentation and linguistic expression is acknowledged.

Muhammad Aamir Cheema

Signed

Date

ii

iii

Dedication

I dedicate this thesis to my parents and my wife.

To my parents because they have always been my nearest neighbors and reverse

nearest neighbors1 [KM00]. They have always been so close to me that I found them

standing besides me whenever I needed. It is their unconditional love that motivates me

to set higher targets.

To my wife because after marrying her I realized that the best approach to handle

missing values is love2. With her love, she makes me complete. She is always there to

celebrate with me during the good times and is always a strong support during the tough

times.

1In a not-so-academic wording, your nearest neighbor is an object who is closest to you and your
reverse nearest neighbor is an object for which you are the closest object.

2Handling missing values in a data set is a widely studied research problem. Various techniques have
been proposed to handle the missing values to make the data set as complete as possible. However, each
approach has its weaknesses.

iv

v

Preface

This thesis would not have been possible without the help and support of some very

important people in my life. First, I express my gratitude to these wonderful people.

Then, I provide the details of the publications resulting from this thesis to specifically

acknowledge the help and contributions of the co-authors.

Acknowledgements. Firstly, I would like to thank my parents for their unconditional

love, support and encouragement and for being with me on each and every step of my

life. I am what I am only because of them.

I am deeply indebted to my mentor and supervisor Prof. Xuemin Lin for his visionary

guidance and insightful comments. He always makes sure that he is available to listen to

me whenever I have some ideas. A teacher is called a spiritual father and he has played

this role very successfully by always providing me full support and guidance. He did

not only help me in my research but he also helped me in other dimensions of my life.

He deserves a special “thanks” for allowing me to conduct research from my home in

Pakistan when I needed to be with my parents.

I am also very thankful to my joint-supervisor Dr. Wei Wang especially for teaching

me to always aim for perfection. He has always been very kind, helpful and a great source

of knowledge for me. I am very grateful to Dr. Haixun Wang for giving me an opportunity

to work as an intern at Microsoft Research Asia on a very interesting and impressive

project. I am also thankful to Prof. Jianmin Wang for being a wonderful host when

I was an intern at Tsinghua University China. I also learned several important things

while working with Dr. Ljiljana Brankovic on one of the papers [CBL+10] (especially the

way she theoretically analyzed the problem was quite inspiring).

I should take this opportunity to thank my very helping colleagues. I am especially

thankful to Dr. Ying Zhang for always being very kind and helpful. During past few

years, I knocked his door infinite number of times for help and he always welcomed me

vi

with a warm smile. I am also grateful to other colleagues Wenjie Zhang, Yi Luo, Bin

Jiang, Mahady Hasan, Haichuan Shang, Chuan Xiao, Gaoping Zhu, Ke Zhu, Zhitao Shen,

Xiang Zhao, Weiren Yu, Liming Zhang and Pengjie Ye for always being very friendly and

helping. I feel blessed to be a part of this research group of extremely talented and

friendly people.

I am also thankful to my sisters and brothers for their moral and emotional support.

A special thanks to my brother, Muhammad Umair Cheema, who is also my best friend.

Without his presence, the stay in Australia would not haven been as joyful.

Lastly but the most importantly, I am thankful to my lovely wife, Samar, especially

for always praying for my success in research. It can be imagined that I worked quite

hard to complete my PhD thesis but let me say that I did not work as much as she prayed

for me.

Publications resulting from this thesis. Below is a list of publications resulting from

this thesis. I am very grateful to all of the people who collaborated with me for these

publications. Their comments and suggestions were always very helping and insightful.

1. Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang, Wei Wang, Wenjie Zhang.

“Lazy Updates: An Efficient Technique to Continuously Monitoring Reverse kNN”,

appeared in Proceedings of the VLDB Endowment (PVLDB) 2009.

2. Muhammad Aamir Cheema, Wenjie Zhang, Xuemin Lin, Ying Zhang, Xuefei Li.

“Continuous Reverse k Nearest Neighbors Queries in Euclidean Space and in Spa-

tial Networks”, The International Journal on Very Large Data Bases (VLDBJ)

(accepted in April 2011)

3. Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, Ying Zhang. “Influence

Zone: Efficiently Processing Reverse k Nearest Neighbors Queries”, appeared in

IEEE International Conference on Data Engineering (ICDE) 2011.

4. Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, Ying Zhang. “Efficiently

Processing Snapshot and Continuous Reverse k Nearest Neighbors Queries”, The

vii

International Journal on Very Large Data Bases (VLDBJ) (has been conditionally

accepted and is currently under revision).

5. Muhammad Aamir Cheema, Xuemin Lin, Wei Wang, Wenjie Zhang, Jian Pei.

“Probabilistic Reverse Nearest Neighbor Queries on Uncertain Data”, appeared in

IEEE Transactions on Knowledge and Data Engineering (TKDE) 2010.

6. Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang, Wei

Wang. “Multi-Guarded Safe Zone: An Effective Technique to Monitor Moving

Circular Range Queries”, appeared in IEEE International Conference on Data En-

gineering (ICDE) 2010.

7. Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang, Wei

Wang. “Continuous Monitoring of Distance Based Range Queries”, appeared in

IEEE Transactions on Knowledge and Data Engineering (TKDE) 2011.

8. Muhammad Aamir Cheema, Xuemin Lin, Haixun Wang, Jianmin Wang, Wen-

jie Zhang. “A Unified Approach for Computing Top-k Pairs in Multidimensional

Space”, appeared in IEEE International Conference on Data Engineering (ICDE)

2011.

To specifically acknowledge the contributions of the co-authors towards this thesis,

the table below summarizes the relationship between the publications and the chapters

of this thesis. It also briefly describes each problem studied in the corresponding chapter

and publications. Please see Chapter 1 for a detailed description of the problems studied

in each of the chapters.

Chapters Publications Problems studied

3 1,2 Continuous monitoring of RkNN queries

4 3,4 Influence zone based processing of RkNN queries

5 5 Probabilistic RNN queries on uncertain data

6 6,7 Continuous monitoring of moving range queries

7 8 Top-k pairs queries including k-closest pairs queries

viii

ix

Abstract
Spatial databases play a vital role in many applications such as Geographic Information

Systems (GIS), Computer Aided Design (CAD), Very-Large-Scale Integration (VLSI)

designs, Multimedia Information System (MMIS), and medicine and biological research.

Due to their importance, a large body of work has focused on efficiently computing

various spatial queries. A proximity based spatial query computes the results based on

the proximity (closeness) between the objects. Range queries, reverse k nearest neighbors

(RkNN) queries and k-closest pairs queries are some of the most important and well

studied proximity based spatial queries. In this thesis, we provide efficient solutions for

these queries under various settings. Below is a brief description of our contributions.

We present several algorithms to answer RkNN queries under different settings. More

specifically, we present an approach, called Lazy Updates, to continuously monitor RkNN

queries in Euclidean space as well as in spatial networks. Lazy Updates outperforms all

of the existing techniques in terms of both the computation cost and the communication

cost. We devise another technique, based on a novel concept of influence zone, to effi-

ciently compute both snapshot and continuous RkNN queries. The influence zone based

approach outperforms the existing techniques for both the snapshot and the continuous

RkNN queries. We also provide efficient solution for probabilistic RNN queries for the

case when the underlying data is uncertain.

We are the first to study the efficient monitoring of moving range queries over a set

of static data objects in Euclidean space and in spatial networks. We conduct a rigorous

theoretical analysis to show the effectiveness of our approach. The theoretical results are

verified by an extensive experimental study. The experimental results also demonstrate

that the proposed approach is close to optimal.

We are the first to present a unified framework to answer a broad class of top-k pairs

queries including the k-closest pairs queries, k-furthest pairs queries and their bichromatic

variants. We conduct a rigorous complexity analysis and show that the expected cost of

our proposed algorithms is optimal when the scoring function uses at most two attributes.

x

Contents

1 Introduction 1
1.1 A Major Challenge . 3
1.2 Some Popular Spatial Queries . 4

1.2.1 Basic Spatial Queries . 4
1.2.2 Proximity Based Spatial Queries 5
1.2.3 Various Problem Settings for Spatial Queries 7

1.3 Contributions . 8
1.3.1 Reverse k Nearest Neighbor Queries 8
1.3.2 Continuous Monitoring of Moving Range Queries 10
1.3.3 k-Closest Pairs Queries . 11

1.4 Thesis Organization . 12

2 Related Work 14
2.1 Reverse Nearest Neighbor Queries . 14

2.1.1 RNN Queries in Euclidean Space 14
2.1.2 RNN Queries in Spatial Networks 19

2.2 Continuous Range Queries . 20
2.2.1 Range Queries in Euclidean Space 20
2.2.2 Range Queries in Spatial Networks 22

2.3 Probabilistic Spatial Queries on Uncertain Data 24
2.4 k Closest Pairs Queries . 25

3 Lazy Updates: Continuously Monitoring RkNN Queries 28
3.1 Overview . 28
3.2 Background Information . 32

3.2.1 Problem Definition . 33
3.2.2 Most closely related techniques . 34
3.2.3 Motivation . 36

3.3 Query Processing in Euclidean Space . 37
3.3.1 Framework . 38
3.3.2 Pruning Rules . 40
3.3.3 Continuous RNN Monitoring . 50
3.3.4 Cost Analysis . 57
3.3.5 Extensions . 61

3.4 Query Processing in Spatial Networks . 63
3.4.1 Terminology . 63

xi

CONTENTS xii

3.4.2 Problem Characteristics . 64
3.4.3 Framework . 67
3.4.4 Filtering . 68
3.4.5 Verification . 71
3.4.6 Safe regions consisting of more than one edges 75
3.4.7 Extensions . 76

3.5 Experiment Results . 78
3.5.1 Query Processing in Euclidean Space 78
3.5.2 Query Processing in Spatial Networks 85

3.6 Summary . 89

4 Influence Zone Based Processing of RkNN Queries 91
4.1 Overview . 91
4.2 Problem Definition . 94
4.3 Computing Influence Zone . 96

4.3.1 Problem Characteristics . 96
4.3.2 Algorithm . 102
4.3.3 Checking containment in the influence zone 107
4.3.4 Extension to higher dimensions . 108

4.4 Applications in RkNN Processing . 110
4.4.1 Snapshot Bichromatic RkNN Queries 110
4.4.2 Snapshot Monochromatic RkNN Queries 110
4.4.3 Continuous monitoring of RkNNs 111

4.5 Theoretical Analysis . 111
4.5.1 Area of Influence Zone . 112
4.5.2 Number of RkNNs . 113
4.5.3 IO cost of our algorithms . 113
4.5.4 Complexity Analysis . 116

4.6 Handling data updates . 124
4.6.1 Solution overview . 124
4.6.2 Handling an insertion . 126
4.6.3 Handling a deletion . 131

4.7 Experiments . 133
4.7.1 Snapshot RkNN queries . 133
4.7.2 Continuous Monitoring of RkNN 137
4.7.3 Handling data updates . 140

4.8 Summary . 140

5 Reverse Nearest Neighbors Queries on Uncertain Data 142
5.1 Overview . 142
5.2 Problem Definition and Preliminaries . 146

5.2.1 Problem Definition . 146
5.2.2 Preliminaries . 147

5.3 Pruning Rules . 148
5.3.1 Half Space Pruning . 149
5.3.2 Dominance Pruning . 155
5.3.3 Metric Based Pruning . 156

CONTENTS xiii

5.3.4 Probabilistic Pruning . 156
5.3.5 Integrating the pruning rules . 158

5.4 Proposed Solution . 160
5.4.1 Shortlisting . 161
5.4.2 Refinement . 162
5.4.3 Verification . 164

5.5 Experiment Results . 170
5.5.1 Comparison with other possible solutions 171
5.5.2 Performance on real data set and effect of data distribution 172
5.5.3 Effect of data size . 174
5.5.4 Effect of probability threshold and width of hyper-rectangle 174
5.5.5 Evaluation of different phases . 175
5.5.6 Effectiveness of pruning rules . 176
5.5.7 Effect of hyper-rectangle width on the size of result 177

5.6 Summary . 177

6 Continuous Monitoring of Moving Range Queries 178
6.1 Overview . 178
6.2 Framework . 183

6.2.1 Solution Overview . 183
6.2.2 Pruning Rules . 185

6.3 Technique . 192
6.3.1 Access order . 192
6.3.2 Algorithm . 194
6.3.3 Trimming the safe zone . 196
6.3.4 Updating the safe zone when query leaves it 198

6.4 Theoretical Analysis . 199
6.4.1 Escape Probability (Pesc) . 199
6.4.2 Expected distance (m) . 201
6.4.3 Expected number of guard objects 202

6.5 Range Queries in Road Networks . 204
6.5.1 Solution Overview . 204
6.5.2 Pruning Rules . 206
6.5.3 Algorithm . 209
6.5.4 Updating the safe zone . 211

6.6 Experiments . 213
6.6.1 Cost comparison . 214
6.6.2 Verification of the theoretical analysis 215
6.6.3 Effectiveness of the proposed access order 217
6.6.4 Effectiveness of the pruning rules 218
6.6.5 Effectiveness of Smart-Update . 218
6.6.6 Range queries in road networks . 219

6.7 Summary . 220

CONTENTS xiv

7 A Unified Algorithm to Answer Top-k Pairs Queries 221
7.1 Overview . 221
7.2 Preliminaries . 225

7.2.1 Problem Definition . 225
7.2.2 Top-k Query Processing . 226

7.3 Our Proposed Framework . 229
7.4 Maintaining The Sources . 231

7.4.1 Internal Memory Source . 231
7.4.2 External Memory Source . 237

7.5 Query Processing Algorithm . 242
7.5.1 Technique . 242
7.5.2 Complexity Analysis . 243

7.6 Extensions . 245
7.6.1 Skyline Pairs Query . 245
7.6.2 Rank-based Top-k Pairs Queries 248
7.6.3 Exclusive Top-k Pairs Queries . 250

7.7 Experiments . 257
7.7.1 k-Closest Pairs Queries . 257
7.7.2 Queries Involving Generic Scoring Functions 258

7.8 Summary . 263

8 Final Remarks 264
8.1 Conclusions . 264
8.2 Open Problems . 266
8.3 Directions for Future Work . 267

8.3.1 Influence Zone in Spatial Networks 267
8.3.2 Influence Zone Based Communication Efficient Techniques 267
8.3.3 Continuous Spatial Queries on Uncertain Data 268

A Proofs 283
A.1 Related Glossary . 283
A.2 Proofs . 285

List of Figures

1.1 Google Maps . 2
1.2 Proximity based spatial queries . 6

2.1 Related techniques . 16
2.2 Filtering and verification . 18
2.3 Filtering and verification . 18
2.4 A time-parameterized window query . 21
2.5 TP circular queries cannot be used to construct safe zone 21

3.1 o3 and o4 are RNNs of q in Euclidean space 29
3.2 Pruning based on six-regions . 34
3.3 Filtering and verification . 34
3.4 Pruning based on half spaces . 35
3.5 Filtering and verification . 35
3.6 Exact location of q on line MN is not known 41
3.7 Approximation of parabola by a line . 41
3.8 Defining pruned region by moving half spaces 43
3.9 Antipodal corners and normalized half spaces 43
3.10 Half space pruning and dominance pruning 44
3.11 Any point in shaded area cannot be RNN of q 44
3.12 Shaded areas can be pruned . 46
3.13 Rcnd can be pruned by R1 and R2 . 46
3.14 Half space pruning when exact location of query is known 48
3.15 Conceptual grid-tree of a 4× 4 grid . 51
3.16 Illustration of the filtering phase . 51
3.17 Verification phase . 56
3.18 Continuous monitoring . 56
3.19 Half space pruning vs six-regions based pruning 59
3.20 An object completely lying in the 60∘ region 59
3.21 RkNN Pruning . 61
3.22 RNN query in a spatial network . 65
3.23 Illustration of the filtering phase . 72
3.24 Computing monitored network . 72
3.25 Verifying theoretical upper bound . 80
3.26 Effect of safe region size . 80
3.27 Effect of data size . 81

xv

LIST OF FIGURES xvi

3.28 Effect of Speed . 82
3.29 Effect of data mobility . 82
3.30 Effect of number of queries . 83
3.31 Effect of k . 83
3.32 Effectiveness of pruning rules . 84
3.33 Effectiveness of grid-tree . 84
3.34 Effect of data size . 86
3.35 Effect of data mobility . 87
3.36 Effect of speed . 87
3.37 Effect of number of queries . 88
3.38 Costs of different phases . 89
3.39 Average number of candidates . 89

4.1 Computing influence zone Zk (k = 2) . 97
4.2 Illustration of Lemmas 4.3.2, 4.3.3 and 4.3.4 99
4.3 Proof of Lemma 4.3.4 . 100
4.4 Convex polygon . 104
4.5 Computing counters . 104
4.6 Optimizations . 106
4.7 Lemmas 4.3.11 and 4.3.12 . 109
4.8 Continuous monitoring . 112
4.9 Order 2 Voronoi diagram . 112
4.10 Illustration of theoretical analysis . 115
4.11 Finding convex vertices . 119
4.12 Even-odd test . 123
4.13 Finding the queries affected by an update 125
4.14 Lemmas 4.6.1 and 4.6.2 . 127
4.15 Optimizations . 129
4.16 Handling a deletion . 131
4.17 Effect of k (monochromatic RkNN) . 134
4.18 Effect of k (bichromatic RkNN) . 135
4.19 Effect of number of users . 135
4.20 Effect of data size and distribution . 136
4.21 Buffer size . 137
4.22 Theoretical analysis (IO cost) . 137
4.23 Theoretical analysis . 137
4.24 Effect of k . 138
4.25 Effect of mobility and number of queries 139
4.26 Effect of data size . 139
4.27 Handling data updates . 140

5.1 An example of a probabilistic RNN query 144
5.2 Any point in shaded area cannot be RNN of q 144
5.3 The exact location of the point p on line MN is not known 150
5.4 Any point in shaded area cannot be RNN of q in any possible world . . . 150
5.5 Any point in dotted area can never be RNN of q 152
5.6 Antipodal corners and normalized half spaces 152

LIST OF FIGURES xvii

5.7 Any point in shaded area can never be RNN of any q ∈ Q 153
5.8 Clipping part of the candidate object Rcnd that can not be pruned 153
5.9 Pruning area of half space pruning and dominance pruning 155
5.10 Dominance Pruning: Shaded areas can be pruned 155
5.11 Regions pruned by RQ and its subset R′

Q 158
5.12 Probabilistic pruning . 158
5.13 Rcnd can be pruned by R1 and R2 . 159
5.14 Finding the range of the global query . 164
5.15 lists sorted on distance from a candidate instance ucnd 166
5.16 Bounding lower and upper bound RNN probabilities 167
5.17 Overall cost . 172
5.18 Verification cost . 172
5.19 Comparison on real data set . 173
5.20 Effect of data distribution . 173
5.21 Effect of number of instances in each object 174
5.22 Effect of number of objects in the data set 174
5.23 Effect of probability threshold . 175
5.24 Effect of width of hyper-rectangles . 175
5.25 Number of objects in Scnd after each phase 176
5.26 Computational time taken by each phase 176
5.27 Effectiveness of pruning rules . 176
5.28 Effect of width of hyper-rectangles . 176

6.1 A range query (light shaded area) and its safe zone (dark shaded area) . . 183
6.2 Some objects do not affect the safe zone 183
6.3 Pruning using the approximation of safe zone 186
6.4 Illustration of pruning rule 6.2.3 . 187
6.5 Area pruned by the rule 6.2.3 . 187
6.6 Observation 6.2.4 . 189
6.7 Lemma 6.2.5 . 189
6.8 When � > 180∘ . 190
6.9 Pruning rule 6.2.6 . 190
6.10 Illustration of Lemma 6.2.7 . 191
6.11 Pruning rules 6.2.6 and 6.2.8 . 191
6.12 Importance of access order . 193
6.13 o1 is no more a guard object . 193
6.14 Minimum distance from the boundary . 196
6.15 Illustration of the trimming (Algorithm 13) 196
6.16 q leaves the safe zone . 199
6.17 Smart-update in action . 199
6.18 Sweeping region (x < 2r) . 200
6.19 Sweeping region (x ≥ 2r) . 200
6.20 Proving that E(G∣dmax = x) < 4�rxN . 203
6.21 Range query on a road network (r = 10) 206
6.22 Updating the safe zone (r = 10) . 212
6.23 Efficiency . 214

LIST OF FIGURES xviii

6.24 Efficiency (effect of speed) . 215
6.25 Escape probability vs data cardinality . 215
6.26 Escape probability . 216
6.27 Expected distance . 216
6.28 Number of guard objects . 216
6.29 Effectiveness of access order . 217
6.30 Effectiveness of pruning rules . 217
6.31 Effectiveness of the smart-update . 218
6.32 Range queries in a road network . 219
6.33 Effectiveness of access order . 220

7.1 Our framework . 229
7.2 Illustration of Algorithm 15 . 233
7.3 (a) Non-chromatic (b) Heterochromatic (c) Homochromatic 234
7.4 Illustration of dummy pairs . 240
7.5 (a) Non-chromatic (b) Heterochromatic (c) Homochromatic 254
7.6 Invitation list of o5 . 255
7.7 Effect of overlapping . 257
7.8 Different data distributions . 258
7.9 Real data . 260
7.10 Effect of number of objects . 261
7.11 Effect of number of attributes . 261
7.12 Effect of k . 261
7.13 Effect of number of colors . 262
7.14 Comparison of different top pairs queries 262

A.1 Antipodal corners and half spaces . 284
A.2 Lemma A.2.3 in 2d-space . 287
A.3 Lemma A.2.4 in 2d-space . 287

List of Tables

3.1 Notations . 39
3.2 System parameters for experiments in Euclidean space 79
3.3 System parameters for experiments in road network 85

4.1 Notations . 96
4.2 System parameters . 138

5.1 Notations . 148
5.2 System parameters . 170

7.1 The queries used on real data . 259
7.2 Experiment parameters . 260

xix

Chapter 1

Introduction

A spatial database system can be defined as a database system that offers spatial objects

in its data model and query language, and supports spatial objects in its implementation,

providing at least spatial indexing and spatial join methods [Güt94]. Spatial databases

are also termed as image, pictorial, geometric or geographic databases. The applications

of spatial databases include Geographic Information Systems (GIS), Computer Aided

Design (CAD), Very-Large-Scale Integration (VLSI) designs, Multimedia Information

System (MMIS), and medicine and biological research.

The spatial objects are composed of one or more points, lines and/or polygons.

Fig. 1.1 shows a map from Google Maps (http://maps.google.com) obtained by enter-

ing the query “find computer related businesses near University of New South Wales

Sydney”. It shows different representations of spatial objects such as points, lines and

regions. A point may represent a data object for which only its location is important and

its extent in space is not important. For example, the balloons labelled A to J point to

the locations of computer shops around the university. The lines represent the facilities

of moving through space or connections in space (i.e., roads, rivers). A region represents

the spatial object for which its spatial extent is also important. A region may consist

of disjoint pieces each containing many polygons. In Fig. 1.1, University of New South

Wales and Prince of Wales Hospital are represented by regions.

1

http://maps.google.com

Chapter 1. Introduction 2

Figure 1.1: Google Maps

Additional functionality must be added in a database system to enable it to process

spatial data objects because spatial data objects usually have complex structure and

are multidimensional. Moreover, the spatial data objects are usually dynamic and the

storage structure should allow efficient insertions and deletions of the objects. A spatial

database needs to support different kinds of spatial queries. For example, a query may

be issued to find a specific type of spatial objects close to a given spatial object, e.g.,

find the computer shops near University of New South Wales Sydney. Consider another

example where a person may want to find five restaurants nearest to her current location.

To support the search operations on spatial data objects, special data structures

are needed to be designed. These data structures are usually called spatial indexes or

spatial access methods. In Section 1.1, we briefly describe why traditional one-dimensional

indexes cannot be used. In Section 1.2, we describe few basic spatial queries and some

advanced spatial queries. Section 1.3 summarizes the contributions of this thesis towards

spatial databases. Thesis organization is presented in Section 1.4.

Chapter 1. Introduction 3

1.1 A Major Challenge

One of the main challenges in answering the spatial queries is that there is no total

ordering among the spatial data objects that preserves spatial proximity. For example,

consider that a user wants to find 5 restaurants closest to her location. A straight forward

approach is to compute the distances of all the restaurants from her location and report

5 closest restaurants. However, this approach requires accessing all the objects from the

spatial database. Another possible approach is to create a one-dimensional index that

can be used to answer various queries. For instance, a one-dimensional index can be

constructed that contains the distances of all the restaurants from her location sorted

in ascending order. To answer her query, we can return first 5 entries from the sorted

index. However, this index cannot support a query issued by some other user at a

different location. In order to answer the query of this new user, we will have to sort all

the restaurants in ascending order of their distances from this user. The difficulty lies

in the fact that there is no mapping from multidimensional space into one-dimensional

space so that the objects that are close in multidimensional space are also close in the

one-dimensional sorted index [GG98].

Another way to answer the queries of above type is to use two sorted lists (i.e., two one-

dimensional indexes). First list (Listx) contains the restaurants sorted in ascending order

of their x-coordinates. The second list (Listy) contains them sorted according to their

y-coordinates. In order to find 5 closest restaurants from a point p located at (px, py),

we may first find few candidates from Listx that are closest to px and then we could

calculate their actual distances from p by looking their values in Listy. However, this

approach can be very inefficient because a restaurant that is closest to p in x-dimension

may be the farthest restaurant in y-dimension.

For the reasons mentioned above, traditional one-dimensional indexes such as B-

tree [BM72] and extendible hashing [FNPS79] are not suitable for spatial databases.

Therefore, in the past two decades, many spatial indexes have been proposed to handle

Chapter 1. Introduction 4

multidimensional spatial data such as kd-tree [Ben75], R-tree [Gut84] and its variants

(e.g., R*-tree [BKSS90] and R+-tree [SSH86]). To efficiently answer the spatial queries,

most of the existing techniques need to identify interesting problem specific properties

and to effectively traverse the existing spatial indexes by exploiting these properties.

1.2 Some Popular Spatial Queries

First, we introduce some basic spatial queries in Section 1.2.1. Then, in Section 1.2.2,

we define some popular proximity based spatial queries.

1.2.1 Basic Spatial Queries

Let A and B be two multidimensional spatial data objects (points, lines or regions).

Below, we define some basic spatial queries.

∙ LENGTH(A). Return the length of a spatial object (line) A.

∙ AREA(A). Return the area of any two dimensional region A.

∙ CENTROID(A). Return the centroid of a spatial object A. Centroid of a d-

dimensional object is the intersection of all hyperplanes that divide it into two

parts of equal moment about the hyperplane. Informally, it is the “average” of all

points of A.

∙ DISTANCE(A,B). Find the distance between A and B. If A and/or B are

not points then the distance function must be defined by the user. For example,

a possible definition of the distance between two objects is the minimum distance

between them. Other possible definitions include the maximum distance between

the objects or the distance between their centroids.

∙ EQUALS(A,B). If A and B have same spatial extent, return true.

∙ DISJOINT(A,B). Return true if A and B are disjoint, i.e., they do not have any

point in common.

Chapter 1. Introduction 5

∙ INTERSECTS(A,B). Return true if A and B intersect each other.

∙ CONTAINS(A,B). If the object B is fully contained in A, return true.

Note that, for all of the above queries, the database system does not need to access any

other object from the spatial database. These operations involve geometrical computation

based on the locations and the extents of the two spatial objects A and B. The queries

mentioned above and other similar queries are more related to the field of computational

geometry and are not the focus of this thesis.

1.2.2 Proximity Based Spatial Queries

In this section, we briefly describe the queries that are more advanced and require the

database system to access other objects in the database. The distances between the

objects play a vital role in the results of these queries and, for this reason, we call such

queries proximity based spatial queries. In order to answer these queries, the database

system needs to use some special purpose spatial index and query specific properties

to reduce the system cost. For such queries, the locations of the spatial objects are

important whereas their extents in the space are usually ignored, i.e., the spatial objects

are treated as points in the space. Throughout this thesis, we treat spatial objects as

points unless mentioned otherwise.

Below, we briefly describe some important proximity based spatial queries.

Range Query

Given a positive value r and a query point q, a range query returns all the objects that

are within distance r from q. In other words, the range query returns every object o for

which dist(q, o) ≤ r where dist(q, o) denotes the distance between q and r.

Consider the example of Fig. 1.2 where a query object q and 4 other objects o1 to o4

are shown in a Euclidean space. A range query q with range r returns the objects o1 and

o2 because these two objects have distances from q at most equal to r.

Chapter 1. Introduction 6

Figure 1.2: Proximity based spatial queries

k Nearest Neighbors (kNN) Query

A nearest neighbor query returns the object that is closest to the query q. A k nearest

neighbors (kNN) query returns k objects closest to the query q. Formally, a kNN query

returns a set Nk consisting of k objects such that for any object o ∈ Nk and for any other

object o′ /∈ Nk, dist(q, o) ≤ dist(q, o′).

In the example of Fig. 1.2, the closest object from q is o1. Hence, a kNN (k = 1)

query returns o1 as the answer.

Reverse k Nearest Neighbors (RkNN) Query

A reverse k nearest neighbors (RkNN) query returns every object o such that q is one of

the k nearest neighbors of o. When k = 1, a RkNN query is denoted as RNN query.

Consider the example of Fig. 1.2, the query object q is the closest object of o3. Hence,

o3 is a RNN of q. Similarly, o4 is also a RNN because q is the closest object of o4. Note

that although the object o1 is the nearest neighbor of q, it is not the reverse nearest

neighbor of q because the closest object of o1 is not q but is o2. Also note that a RkNN

query may return zero or more objects whereas a kNN query returns exactly k objects.

k Closest Pairs Query

A k closest pairs query returns k pairs of objects with the smallest distances between

them. Let p be a pair of objects (o, o′) and assume that p.score = dist(o, o′) be the

Chapter 1. Introduction 7

distance between o and o′. A k closest pairs query returns a set S consisting of k pairs

such that for any pair p ∈ S and for any other pair p′ /∈ S, p.score ≤ p′.score. In the

example of Fig. 1.2, the closest pair is (o1, o2).

1.2.3 Various Problem Settings for Spatial Queries

Due to the importance of the spatial queries in a variety of applications, these queries

are studied using various problem settings. Below, we briefly describe some common

problem settings used for the spatial queries.

Snapshot vs Continuous

In a snapshot query, the results of the query are to be computed only once. For example,

a user may want to find restaurants within 5 miles of University of New South Wales.

He may issue a snapshot range query with range set to 5 miles and query location set as

University of New South Wales.

In contrast to the snapshot queries, a continuous query requires the results to be

continuously updated as the underlying data is updated. For instance, a person driving

a car may want to find the restaurants within 5 miles of his current location. Since

the car is continuously moving, the results are required to be updated continuously. He

may issue a continuous range query with range set to 5 miles and the query location set

as the location of car. While in the above example only the query is moving, in many

applications, all of the query objects and data objects may be continuously moving. For

instance, a person driving a taxi might want to continuously monitor other taxis within 5

miles of his location. In this example, the query and the data objects all are continuously

moving.

Euclidean Space vs Spatial Networks

Recall that the definitions of the proximity based spatial queries use a distance function

dist() which returns the distance between the objects. Depending on the applications,

Chapter 1. Introduction 8

different variations of the distance functions are used such as Euclidean distance, Man-

hattan distance and network distance etc. For instance, a person driving a car may be

interested in nearby restaurants according to the road distance (or according to the time

required to reach there). Hence, he may issue a query on the road network such that the

distance function dist(q, o) returns the network distance between q and o. Similarly, a

fighter pilot may want to find the nearby enemy targets. He may issue a spatial query in

Euclidean space where the distance function dist(q, o) returns Euclidean distance between

q and o.

Certain Data vs Uncertain Data

Usually, it is assumed that the exact values of objects (e.g., locations) are known and

the spatial queries use these locations. However, uncertain data is inherent in many im-

portant applications such as sensor databases, moving object databases, market analysis,

and quantitative economic research. In these applications, the exact values of data might

be unknown due to limitation of measuring equipment, delayed data updates, incom-

pleteness, or data anonymization to preserve privacy. In such applications, the spatial

queries are issued on the uncertain data and probabilistic results are returned.

1.3 Contributions

In this section, we summarize our contributions in this thesis. We proposed efficient

techniques for several important spatial queries. For each of these queries, we briefly

describe our contributions.

1.3.1 Reverse k Nearest Neighbor Queries

In this thesis, we study Reverse k Nearest Neighbors (RkNN) queries under different

settings. Below is a summary.

Chapter 1. Introduction 9

Snapshot RkNN Queries

We present an efficient approach to answer snapshot RkNN queries. Our approach is

based on a novel concept of influence zone which is an area such that an object o is one of

the RkNNs of q if and only if o is inside the influence zone. We present efficient techniques

to compute the influence zone. Once the influence zone is computed, the algorithm

retrieves the objects inside it and reports the results. We conduct extensive experiments

to demonstrate that the proposed approach outperforms all existing techniques in terms

of CPU time as well as I/O cost.

This research [CLZZ11] was published in IEEE International Conference on Data

Engineering (ICDE) 2011. In an extended version, we present techniques to efficiently

update the influence zone when the underlying data set may change due to insertions of

new objects or deletions of the existing objects. An extended version [CLZZ] has been

submitted to The International Journal on Very Large Data Bases (VLDBJ) and is

currently under review.

Continuous Monitoring of RkNN Queries

Continuous RkNN Queries in Euclidean Space. We present two techniques namely Lazy

Updates [CLZ+09] and InfZone [CLZZ11] to continuously monitor RkNN in Euclidean

space. Lazy Updates monitors RkNN queries for the case when all the queries and data

objects are continuously moving. The proposed technique assigns each object and query

a rectangular region called safe region. We develop efficient and effective pruning rules

that are used to prune the space based on the safe regions of the objects and the queries.

The expensive pruning phase is not required to be called as long as the query and the

objects remain in their respective safe regions. This saves the overall computation time.

Moreover, the objects are required to report their new locations only when they leave

their respective safe regions. This reduces the communication cost of the system. A

preliminary version of Lazy Updates [CLZ+09] appeared in Proceedings of the VLDB

Endowment (PVLDB) 2009.

Chapter 1. Introduction 10

In contrast to Lazy Updates, InfZone aims to answer RkNN queries when only the

data objects are moving and the queries do not move. In such problem settings, InfZone

performs significantly better than Lazy Updates. InfZone computes the influence zone

which is the area such that an object o is one of the RkNNs of q if and only if o is

inside the influence zone. To continuously update the results, the algorithm only needs

to monitor the objects that leave or enter the influence zone. This research [CLZZ11]

was published in IEEE International Conference on Data Engineering (ICDE) 2011.

Continuous RkNN Queries in Spatial Networks. We extended Lazy Updates to contin-

uously monitor RkNN queries in spatial networks. We present several pruning rules to

efficiently prune the search space and propose techniques to answer RkNN queries and

its variants in spatial networks. Our approach significantly reduces the processing time

as well as the communication cost. This extended version [CZL+11] appeared in The

International Journal on Very Large Data Bases (VLDBJ).

RNN Queries on Uncertain Data

We present efficient techniques to answer probabilistic RNN queries on uncertain data.

A probabilistic RNN query returns every object o such that the probability of o to be

the RNN of q is greater than a given threshold. We propose several novel pruning rules

to quickly shortlist the candidate objects. Then, we use efficient verification techniques

to compute the exact probabilities of these candidate objects to be the RNN of q. Our

approach answers RNN queries in multidimensional Euclidean space. Using real and

synthetic data sets, we illustrate the efficiency of our proposed approach.

This research [CLW+10] was published in IEEE Transactions on Knowledge and Data

Engineering (TKDE).

1.3.2 Continuous Monitoring of Moving Range Queries

We study the problem of continuously monitoring moving range queries on a set of data

objects that do not change their locations. Consider the example of a person driving a

Chapter 1. Introduction 11

car who is interested in fuel stations within 5 miles. In this example, the query (i.e., car)

is continuously moving whereas the objects (i.e., fuel stations) are static. We present

techniques to answer the moving range queries in Euclidean space as well as in spatial

networks. Below are the details.

Moving Range Queries in Euclidean Space

Our proposed technique is based on the concept of safe zone. A safe zone is an area such

that as long as the query remains inside the safe zone the results of the query are not

required to be updated. We propose efficient techniques to compute and update the safe

zone. Our system reduces the overall cost because it does not require to recompute the

results as long as the query remains in its safe zone.

We conduct a rigorous theoretical analysis to study the effectiveness of our safe zone

based approach. The accuracy of the theoretical analysis is verified by an extensive

experimental study. Moreover, the experimental results demonstrate that the proposed

approach is close to optimal.

This research [CBL+10] was published in IEEE International Conference on Data

Engineering (ICDE) 2010.

Moving Range Queries in Spatial Network

We extend our safe zone based approach to answer the moving range queries in the

spatial network. This extended version [CBL+11] appeared in Special Issue of IEEE

Transactions on Knowledge and Data Engineering (TKDE) on Best Papers of ICDE

2010.

1.3.3 k-Closest Pairs Queries

As mentioned earlier, a k-closest pairs query returns k pairs of objects with the smallest

distances. We first generalize this problem to a top-k pairs problem. A top-k pairs query

returns k pairs with the smallest scores where the score of each pair is computed by

Chapter 1. Introduction 12

using a user specified scoring function. In this research, we present a unified approach

to answer a broad class of top-k pairs queries including the k closest pairs queries, the

k furthest pairs queries and their variants. We provide a detailed complexity analysis

and show that the expected performance of the proposed algorithms is optimal when the

scoring functions involve less than three attributes. Extensive experiments demonstrate

the efficiency of our proposed algorithms.

This research [CLW+11] was published in IEEE International Conference on Data

Engineering (ICDE) 2011.

1.4 Thesis Organization

This dissertation is organized as follows.

∙ Chapter 2 provides a survey of the related work.

∙ Chapters 3, 4 and 5 present our research on reverse k nearest neighbors queries.

Below, is a more specific description.

– Chapter 3 presents our technique, named Lazy Updates [CLZ+09, CZL+11],

to continuously monitor RkNN queries in Euclidean space and in spatial net-

works.

– Chapter 4 covers our influence zone based techniques [CLZZ11, CLZZ] to

answer snapshot and continuous RkNN queries.

– Chapter 5 presents our algorithm [CLW+10] to answer probabilistic reverse

nearest neighbors queries on uncertain data.

∙ Chapter 6 describes our techniques [CBL+10, CBL+11] to continuously monitor

moving range queries in Euclidean space and in spatial networks.

∙ Chapter 7 presents our unified framework [CLW+11] to answer a broad class of

top-k pairs queries including k-closest pairs queries, k-furthest pairs queries and

their variants.

Chapter 1. Introduction 13

∙ Chapter 8 concludes our research, describes some of the open problems and provides

several possible directions for future work.

Chapter 2

Related Work

In this chapter, we provide a brief overview of the related work for each type of queries we

studied in this thesis. More specifically, we provide the related work on reverse nearest

neighbor queries in Section 2.1 followed by an overview of the related techniques for

range queries in Section 2.2. In Section 2.3, we provide a brief description of the existing

techniques to answer probabilistic queries on uncertain data. Finally, we present the

related work on k-closest pairs queries in Section 2.4.

2.1 Reverse Nearest Neighbor Queries

First, in Section 2.1.1, we present the algorithms that answer RNN queries in Euclidean

space. Then, in Section 2.1.2, we provide a brief description of the existing techniques to

answer RNN queries in spatial networks

2.1.1 RNN Queries in Euclidean Space

Snapshot RNN Queries: Korn et al. [KM00] are the first to study RNN queries.

They answer the RNN query by pre-computing a circle for each data object p such that

the nearest neighbor of p lies on the perimeter of the circle. RNN of a query q is every

point that contains q in its circle. Techniques to improve their work were proposed

in [YL01, LNY03].

14

Chapter 2. Related Work 15

Now, we briefly describe the existing techniques that do not require precomputation.

These techniques have three phases namely pruning, containment and verification. In the

pruning phase, the space that cannot contain any RkNN is pruned by applying certain

pruning rules. In the containment phase, the objects that lie within the unpruned space

are retrieved. These are the possible RkNNs and are called the candidates. In the

verification phase, a range query is issued for each candidate object to check if q is one

of its k nearest neighbors or not.

First technique that does not need any preprocessing was proposed by Stanoi et

al. [SAA00]. They solve RNN queries by partitioning the whole space centred at the

query q into six equal regions of 60∘ each (S1 to S6 in Fig. 2.1(a)). It can be proved that

the nearest neighbor to q in each region defines the area that can be pruned. In other

words, assume that o is the nearest neighbor of q in a region Si. Then any user that

lies in Si and lies at a distance greater than dist(q, o) from q cannot be the RNN of q.

Fig. 2.1(a) shows nearest neighbors of q in each region and the white area can be pruned.

Only the objects that lie in the shaded area can be the RNNs. The RkNN queries can

be solved in a similar way, i.e., in each region, the k-th nearest neighbor of q defines the

pruned area.

Tao et al. [TPL04] proposed TPL that uses the property of perpendicular bisectors

to prune the search space. Consider the example of Fig. 2.1(b), where a bisector between

q and a is shown as Ba:q which divides the space into two half spaces. The half space

that contains a is denoted as Ha:q and the half space that contains q is denoted as Hq:a.

Any point that lies in the half space Ha:q is always closer to a than to q and cannot be

the RNN for this reason. Similarly, any point p that lies in k such half spaces cannot

be the RkNN. TPL algorithm prunes the space by the bisectors drawn between q and

its neighbors in the unpruned area. Fig. 2.1(b) shows the example where the bisectors

between q and a, b and c are drawn (Ba:q, Bb:q and Bc:q, respectively). If k = 2, the

white area can be pruned because every point in it lies in at least two half spaces.

In the containment phase, TPL retrieves the objects that lie in the unpruned area

Chapter 2. Related Work 16

S
1

c

60o

S
2S

3

S
4 S

5
S
6

d

q 60o

a

b

e

f

g

(a) Six-regions pruning

b

a

B
a:q

B
b:q

B
c:q

qc

M

N

O P

(b) TPL and FINCH

Figure 2.1: Related techniques

by traversing an R-tree that indexes the locations of the objects. Let m be the number

of points for which the bisectors are considered. An area that is the intersection of

any combination of k half spaces can be pruned. The total pruned area corresponds to

the union of pruned regions by all such possible combinations of k bisectors (a total of

m!/k!(m − k)! combinations). Since the number of combinations is too large, TPL uses

an alternative approach which has less pruning power but is cheaper. First, TPL sorts

the m points by their Hilbert values. Then, only the combination of k consecutive points

are considered to prune the space (total m combinations).

Achtert et al. [AKK+09] and Emrich et al. [EKK+10] propose pruning techniques

that can be applied on the rectangles. They use these pruning techniques to prune the

intermediate entries of the R-tree that indexes the objects. It was demonstrated that the

proposed techniques reduce the number of accessed pages. Moreover, pruning techniques

proposed in [EKK+10] are more effective than the pruning techniques of [AKK+09].

Wu et al. [WYCT08b] propose an algorithm called FINCH. Instead of using bisectors

to prune the objects, they use a convex polygon that approximates the unpruned area.

Any object that lies outside the polygon can be pruned. Fig. 2.1(b) shows an example

where the shaded area is the unpruned area. FINCH approximates the unpruned area

Chapter 2. Related Work 17

by a polygon MNOP . Any point that lies outside this polygon can be pruned. Clearly,

the containment checking is easier than TPL because containment can be done in linear

time for convex polygons. On the other hand, the area pruned by FINCH is smaller than

the area that actually can be pruned.

Continuous RNN Queries: Computation-efficient monitoring of continuous range

queries [GL04, LPM02], nearest neighbor queries [MHP05, YPK05, XMA05, ISS03,

TPS02] and reverse nearest neighbor queries [BJKS02, XZ06, KMS+07, WYCT08a] has

received significant attention. Although there exists work on communication-efficient

monitoring of range queries [HXL05] and nearest neighbor queries [HXL05, MPBT05],

there is no prior work that reduces the communication cost for continuous RNN queries.

Hence, our proposed technique, Lazy Updates, is the only approach that continuously

monitors RNN queries and saves the communication cost.

Below, we briefly describe the RNN monitoring algorithms that improve the compu-

tation cost.

Benetis et al. [BJKS02] present the first continuous RNN monitoring algorithm. How-

ever, they assume that velocities of the objects are known. First work that does not

assume any knowledge of objects’ motion patterns was presented by Xia et al. [XZ06].

Their proposed solution is based on the six-regions approach. Consider the examples of

Fig. 2.2, where the six-regions approach is applied and the candidate objects are a, b, c,

e and f . The shaded area is the pruned area. The results of the RNN query may change

in any of the following three scenarios:

1. the query or one of the candidate objects changes its location

2. the nearest neighbor of a candidate object is changed (an object enters or leaves

the circles shown in Fig. 2.2)

3. an object moves into the unpruned region (the areas shown in white in Fig. 2.2)

Xia et al. [XZ06] use this observation and propose a solution for continuous RNN

queries based on the six-regions approach. They answer RNN queries by monitoring six

Chapter 2. Related Work 18

S
1

c

S
2S

3

S
4 S

5
S
6

d

q

a

fg

e
q

b

Figure 2.2: Filtering and verification

c
d a

fg e

q

b

H
a:q

H
f:q

H
c:q

Figure 2.3: Filtering and verification

pie-regions (the white areas in Fig. 2.2) and the circles around the candidate objects that

cover their nearest neighbors.

Kang et al. [KMS+07] use the concept of half space pruning and apply the same

observation that the results may change in any of three scenarios mentioned above (please

see the three scenarios shown above and consider Fig. 2.3 instead of Fig. 2.2). They

continuously monitor the RNN queries by monitoring the unpruned region (white area in

Fig. 2.3) and the circles around the candidate objects that cover their nearest neighbors.

The proposed approach uses a grid structure to store the locations of the objects and

queries. They mark the cells of the grid that lie or overlap with the area to be monitored.

Any object movement in these cells triggers the update of the results.

Wu et al. [WYCT08a] are the first to propose a solution for continuous monitoring

of RkNN which is similar to the six-regions based RNN monitoring presented in [XZ06].

Wu et al. [WYCT08a] issue k nearest neighbor (kNN) queries in each region instead of

single nearest neighbor queries. The kNNs in each region are the candidate objects and

they are verified if q is one of their k closest objects. To monitor the results, for each

candidate object, they continuously monitor the circle around it that contains k nearest

neighbors.

Recall that Lazy Updates which we presented in Chapter 3 uses safe regions to re-

Chapter 2. Related Work 19

duce the costs. The concept of safe regions has been used in many existing techniques

for continuous kNN queries [SR01, PXK+02, ZZP+03, NZTK08, HCLZ09, HXL05] and

continuous range queries [ZZP+03, HXL05]. However, these techniques are not applicable

for RkNN queries.

2.1.2 RNN Queries in Spatial Networks

Safar et al. [SET09] study the snapshot RNN queries in spatial networks. They use

Network Voronoi Diagram (NVD) [OBSC99] to efficiently process the RNN queries in

spatial networks. A Network Voronoi Diagram (NVD) is similar to a Euclidean space

Voronoi Diagram in the sense that every point in each Voronoi cell is closer to the

generator point of the cell than any other point. However, a NVD considers minimum

network distances instead of Euclidean distances between the points. More specifically,

a Voronoi cell in a NVD is the set of nodes and edges that are closer to the generator

point (in terms of minimum network distance) than any other point. Safar et al. [SET09]

use the properties of NVD to efficiently process the RNN queries in network. In a

following work [TTS09], they extend their technique to answer RkNN queries and reverse

k furthest neighbor queries in spatial network. Please note that their technique cannot be

extended to answer continuous RNN queries because the NVD changes as the locations

of underlying points change. It is computationally expensive to update NVD whenever

the underlying data set changes.

Sun et al. [SJLS08] study the continuous monitoring of RNN queries in spatial net-

works. The main idea is that for each query a multi-way tree is created that helps in

defining the monitoring region. Only the updates in the monitoring region affect the

results. Their approach is only applicable for the bichromatic RNN queries. Moreover,

the proposed approach assumes that the query points do not move. The extension to the

case when the query point is also moving is either non-trivial or inefficient because the

multi-way trees may be changed as the query points move.

Guohui et al. [LLL+10] propose an algorithm to continuously monitor RkNN queries

Chapter 2. Related Work 20

based on dual layer multiway tree (DLM tree). They present several lemmas to obtain a

region that is required to be monitored in order to efficiently answer RkNN queries. This

monitoring region is represented by a DLM tree to improve the performance.

2.2 Continuous Range Queries

In Section 2.2.1, we present the existing techniques to answer range queries in Euclidean

space. In Section 2.2.2, we give an overview of the related techniques for spatial networks.

2.2.1 Range Queries in Euclidean Space

Continuous monitoring of spatial queries has been extensively studied in the recent

past [MPBT05, TPS02, HXL05, XMA05, MHP05, ISS03, YPK05, ZZP+03]. Prabhakar

et al. [PXK+02] proposed velocity constrained indexing and query indexing for continu-

ous evaluation of static queries over moving objects. Mokbel et al. [MXA04] introduced

an algorithm (SINA) for evaluating a set of concurrent spatial queries, which reduces the

overall cost by shared execution and incremental evaluation.

Several distributed processing techniques to continuously monitor range queries have

also been proposed [GL04, CHC04, WW06, WZK06]. Gedik et al. [GL04] introduce a

technique called MobiEyes, which reduces the computation load on the server and com-

munication costs between the clients and the server by delegating some computation load

to the client objects (e.g., mobile devices). In [GWYL04], the authors propose a motion

adaptive indexing scheme that uses the concept of motion sensitive bounding boxes to

model moving objects and queries. Hu et al. [HXL05] propose a generic framework to

monitor continuous range queries and kNN queries over moving objects. They define the

safe zones for each object such that the query results remain unchanged if the object does

not leave the region. However, their approach is not designed for moving queries. Wu et

al. [WCY06] use a new query indexing method called CES-based indexing to minimize

the total query evaluation time.

Recall that our algorithm to answer moving range queries uses a safe zone to efficiently

Chapter 2. Related Work 21

process the queries. Several other techniques also propose to construct safe zones for

moving kNN queries [ZL01, SR01, ZZP+03, NZTK08, HCLZ09] and moving window

queries [ZZP+03]. However, to the best of our knowledge, there does not exist any safe

zone based technique to continuously monitor moving circular range queries. We next

show that the existing work cannot be extended to monitor moving circular range queries

continuously.

Tao et al. [TP02] introduce Time-Parameterized queries (TP queries). A TP query

assumes that the motion pattern (e.g., path and speed) of the query is known and retrieves

the current results along with a future time at which the current results will become

invalid. A TP query also reports the object that invalidates the results. In [TP02],

the techniques to answer TP kNN queries, TP window queries and TP join queries are

presented.

q

o
2

o
1 q'

Figure 2.4: A time-parameterized win-
dow query

q

o
2

AB
q'

Figure 2.5: TP circular queries cannot be
used to construct safe zone

Fig. 2.4 shows an example of a window query where the current location of the query

is q and its window is shown with a solid line (the search space is shown in a dark shade).

The current result of the window query q is the object o1. A TP window query is issued

to find the object that invalidates the current result when the query is moving in the

direction shown by the arrow. The query returns the object o2 as it invalidates the

Chapter 2. Related Work 22

current result when the query reaches the location q′. In other words, when the query

reaches q′, it has objects o1 and o2 within its window and not only o1. The minimal area

searched by the TP query is shown shaded in Fig. 2.4.

Based on TP queries, Zhang et al. [ZZP+03] present a solution to continuously monitor

kNN queries and the window queries. They use TP queries to identify the safe zones for

moving queries. The algorithm starts by assuming that the whole space is the safe zone.

TP queries are then issued towards the corners of the current safe zone. If a TP query

retrieves an object that has not already been considered, the safe zone is trimmed using

that object (for details, see [ZZP+03]); otherwise, the corner is marked as confirmed.

The algorithm terminates when all the corners are confirmed.

We note that there does not exist any reported work on TP circular range queries

and the technique presented in [ZZP+03] cannot be applied to such queries. Even if the

technique to answer TP window queries are extended to answer the TP circular range

queries, the TP circular range queries cannot be used to construct the safe zone. The

reason is as follows. The key observation used in the technique presented in [ZZP+03] is

that if none of the TP queries issued towards corners of a region returns a new object,

the region is guaranteed to be the safe zone. This observation does not hold for the

moving circular range queries. Consider the example in Fig. 2.5 where the current region

is shown dark shaded. The TP range queries are issued towards each of the two corners

A and B and they search the space shown shaded in the figure. No object is returned by

either of the TP range queries. However, the region cannot be guaranteed to be the safe

zone. Consider that the query moves to the location q′. Then the object o2 lies within

its range, which invalidates the results.

2.2.2 Range Queries in Spatial Networks

Significant research attention has been given to developing techniques for spatial queries

in road networks. kNN queries [JKPT03, CC05, KS04b, KS04a, PZMT03, MYPM06,

SKS02, SY03] and range queries [SPP+08, PZMT03, LDH06, WZ08] are among the

Chapter 2. Related Work 23

most studied spatial queries in road networks. Chen et al. [CSZY09] study the path k-NN

queries that returns kNNs with respect to the shortest path connecting the destination

and the user’s current location.

Papadias et al. [PZMT03] propose a framework to support nearest neighbor queries,

closest pairs queries, range queries and distance joins on a road network. However,

they assume that the queries and the objects have fixed positions in the spatial network.

Wang et al. [WZ08] propose a solution to answer static range queries over moving objects.

They utilize a disk resident R-tree to store the network and a grid structure to store the

positions of moving objects. The main idea is to first find the edges that may contain

the objects within the range and then the grid cells that overlap with the edges are used

to retrieve the objects. Liu et al. [LDH06] present a distributed processing technique

to solve the moving range queries over moving objects. Their approach relies on the

computation power of the moving objects and each moving object reports to the server

when it affects the results of one or more queries. Stojanovic et al. [SPP+08] propose

technique for continuous monitoring of range queries over moving objects. The range of

the query may be defined by a user selected area, a map window, a polygon, a circle or

a part of the road segment.

Kriegel et al. [KKR08] study the problem of proximity monitoring in road networks.

Given a proximity threshold � and a set of moving objects, a server responsible for

proximity monitoring continuously reports the pairs of objects that are within a distance

� to each other. Küpper et al. [KT06] propose a technique for the same problem in

Euclidean space. Both of the techniques assign each moving object a region such that as

long as the object remains within this region it does not need to report its location to the

server. Note that these techniques can be adopted to answer the distance based range

queries by setting the proximity threshold to r and considering only the pairs of objects

that contain the query object q. However, the focus of these techniques is to reduce the

communication cost between the moving objects and the server. On the other hand, the

focus of our technique is to minimize the computation time. Moreover, our framework is

Chapter 2. Related Work 24

suitable for both the client-server model and the local computation model.

2.3 Probabilistic Spatial Queries on Uncertain Data

Recently, a lot of work has been dedicated to uncertain databases (see The TRIO sys-

tem [Wid05], The ORION project [CPK03] and the references therein). Query process-

ing on uncertain databases has gained significant attention in last few years especially in

spatio-temporal databases.

In [CXP+04], the authors develop index structures to querying uncertain interval

effectively. They are the first to study probabilistic range queries. In [TCX+05], the au-

thors propose access methods designed to optimize both the I/O and CPU cost of range

queries on multi-dimensional data with arbitrary probability density functions. The con-

cept of probabilistic similarity joins on uncertain objects is first introduced in [KKPR06]

which assigns a probability value to each object pair indicating the likelihood that it be-

longs to the result set. Ranking and thresholding probabilistic spatial queries are studied

in [DYM+05]. A thresholding probabilistic query is to retrieve the objects qualifying

the spatial predicates with probability greater than a given threshold. Similarly, a rank-

ing probabilistic query retrieves the objects with the highest probabilities to qualify the

spatial predicates.

Nearest neighbor queries on uncertain objects have also received significant research

attention [BSI08, CCMC08, KKR07]. Beskales et al. [BSI08] propose a technique to

return objects with the highest marginal probability of being the nearest neighbor of

a query. They also propose extensions to handle dependencies among the objects and

to answer threshold queries. Cheng et al. [CCX09] study the probabilistic kNN query

which computes the probabilities of sets of k objects for being the closest to a given

query point. They also propose techniques to answer probabilistic threshold kNN query

that returns the sets of k objects that satisfy the query with probabilities higher than a

given threshold. Potamias et al. [PBGK10] study k nearest neighbor queries on uncertain

graphs.

Chapter 2. Related Work 25

A probabilistic skyline model is proposed in [PJLY07] along with two effective algo-

rithms to answer probabilistic skyline queries. Zhang et al. [ZZL+11] study the prob-

lem of top-k skyline on uncertain data. Atallah et al. [AQ09, AQY11] propose novel

sub-quadratic algorithm to compute the skyline probabilities of all the objects. Lin et

al. [LZZC11] propose to use lower orthant order in modeling stochastic dominance rela-

tionship among the objects. Their proposed model guarantees to provide a minimum set

of candidates for the family of multiplicative decreasing scoring functions.

It is important to mention that two other approaches to answer probabilistic reverse

nearest neighbor queries have been proposed [L09, BEK+11]. Lian et al. [L09] inde-

pendently proposed a technique to answer RNN queries on uncertain data at around

the same time when we proposed our probabilistic RNN queries algorithm [CLW+10]. In

their approach, they approximate the uncertain objects by circular regions whereas we ap-

proximate the uncertain objects by rectangular regions. Based on these circular regions,

they propose some pruning techniques to shortlist a set of candidate objects. Recently,

Bernecker et al. [BEK+11] propose a solution to answer RkNN queries on uncertain data.

Like our technique, they also approximate the uncertain objects by rectangular regions.

They propose new pruning rules and also present the techniques to answer RkNN queries

for k > 1. Their experimental results demonstrate that their proposed approach is the

most efficient approach till date. The experimental study also demonstrates that our

approach performs better than the approach presented in [L09].

2.4 k Closest Pairs Queries

The k closest pairs query is a special case of the score-based top-k pairs queries (see

Chapter 7). The problem of k closest pairs queries has received significant research

attention by the computational geometry community (see [Smi97] for a nice survey).

Below, we give an overview of the previous work in the context of spatial databases.

Hjaltason et al. [HS98] are the first to study the problem of closest pairs in the

context of spatial databases. They propose incremental distance joins where two data

Chapter 2. Related Work 26

sets are joined and the pairs are output incrementally according to the distances between

them. Each data set is indexed by an R-tree and a priority queue is used to store the

intermediate entry pairs. While the proposed solution has a nice feature that it returns

the pairs incrementally, its priority queue size may be prohibitively large. For this reason,

a part of the priority queue is kept in main memory and remaining elements are stored

in secondary memory as a number of linked lists.

Corral et al. [CMTV00] propose several algorithms for k closest pairs queries. Similar

to the previous algorithm [HS98], they also index the data sets by R-trees. They use

distance bounds to prune the intermediate node pairs. They observe that the performance

of their algorithm largely depends on the overlap factor of the two data sets. They also

extend their algorithms to answer non-chromatic k closest pairs queries and k furthest

pairs queries. It is important to note that although the amount of the memory used by

their algorithm is small as compared to the memory usage of the algorithm proposed

in [HS98], there is no guarantee on the amount of the main memory usage (e.g., the size

of the heap can be O(V) where V is the total number of possible pairs).

Yang et al. [YL02] proposed a data structure to further improve the k closest pairs

algorithm. Their algorithm works for the case when all the pairs have unique dis-

tances [SZS03]. Several variants of k closest pairs queries have also been studied in [UMY07,

AP05, SZS03, QTJ+08].

Their proposed data structure is similar to R-tree except that it stores for each object

in one data set the distance to its nearest neighbor dnn from the other data set. The

intermediate nodes store the minimum and maximum dnn of its child entries. Their

algorithm is based on the theorem that k closest pairs can be obtained by joining k

objects from each data set with minimum dnn.

Note that all of the above mentioned algorithms are mainly designed for the bichro-

matic k closest pairs queries. Some variants of k closest pairs queries have also been

studied. More specifically, continuous monitoring of exclusive k closest pairs [UMY07],

approximate k closest pairs in high dimensional data [AP05] and constrained k closest

Chapter 2. Related Work 27

pairs [SZS03, QTJ+08] have been studied.

Chapter 3

Lazy Updates: Continuously

Monitoring RkNN Queries

In this chapter, we present our techniques to continuously monitor reverse k nearest

neighbors queries in Euclidean space and in spatial networks. Our technique is called

Lazy Updates and it significantly reduces CPU cost as well as communication cost of the

system. The research presented in this chapter was published in [CLZ+09, CZL+11].

3.1 Overview

As defined in Chapter 1, a reverse k nearest neighbors (RkNN) query q retrieves all the

data points that have q as one of their k nearest neighbors (k closest points). We use

RNN queries to refer to RkNN queries for which k = 1. Consider the example of Fig. 3.1

where q is a RNN query in Euclidean space. The nearest neighbor (the closest object in

Euclidean space) of q is o1. However, o1 is not the RNN of q because the closest point of

o1 is not q. The RNNs of q are o3 and o4 because q is the nearest neighbor for both of

these points.

RNN has received considerable attention [KM00, SAA00, BJKS02, SFT03, LNY03,

TPL04, TYM06, YPMT05, YM07, WYCT08b] from database research community based

28

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 29

o
1 o

3

o
2

o
4

q

Figure 3.1: o3 and o4 are RNNs of q in Euclidean space

on the applications such as decision support, location based service, resource allocation,

profile-based management, etc.

With the availability of inexpensive mobile devices, position locators and cheap wire-

less networks, location based services are gaining increasing popularity. Consider the

example of a battlefield. A backup army unit may issue a RNN query to monitor other

units for which this is the closest army unit. Such army units may seek help from the

backup army unit in the case of an emergency event. Therefore the backup army unit

may issue a RNN query to retrieve such army units and may observe their status from

time to time (e.g., current location, ammunition etc.).

Note that in the above example, the query objects and the data objects both belong to

the same type of objects (i.e., army units). Such queries are called monochromatic queries.

The queries where the query objects and the data objects belong to two different types

of objects are called bichromatic queries (formally defined in Section 3.2.1). Consider

the example of a user that needs a taxi and sends her location to a taxi company’s

dispatch center. The company owns several taxis and wants to send this job to a taxi for

which she is the closest passenger. Hence, the company notifies the taxis that are among

the bichromatic RNNs of the user. Cabspotting1 and Zhiing2 are two examples of such

location based services.

Other examples of location based services include location based games, traffic mon-

itoring, location based SMS advertising, enhanced 911 services and army strategic plan-

1http://cabspotting.org/faq.html
2http://www.zhiing.com/how.php

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 30

ning etc. These applications may require continuous monitoring of reverse nearest moving

objects. For instance, in reality games (e.g., BotFighters, Swordfish), players with mo-

bile devices search for other mobile devices in neighborhood. For example, in the award

winning game BotFighters, a player gets points by shooting other nearby players via mo-

biles. In such an application, some players may want to continuously monitor her reverse

nearest neighbors in order to avoid being shot by other players.

Driven by such applications, the continuous monitoring of reverse nearest neighbors

has been investigated and several techniques have been proposed recently [BJKS02,

KMS+07, WYCT08a, XZ06, SJLS08] in the light of location-based services. The exist-

ing continuous monitoring techniques [BJKS02, KMS+07, WYCT08a, XZ06] adopt two

frameworks based on different applications. In [BJKS02], the velocity of each object is

assumed to be explicitly expressed while [KMS+07, WYCT08a, XZ06] deal with a gen-

eral situation where the object velocities may be impossible to be explicitly expressed.

Our research is based on the general situation; that is, object velocities are not explicitly

expressible.

The techniques in [KMS+07, WYCT08a, XZ06] adopt a two-phase computation.

In the filtering phase, objects are pruned by using the existing pruning paradigms

from [SAA00, TPL04] and the remaining objects are considered as the candidate ob-

jects. In the verification phase, every candidate object for which the query is its closest

point is reported as the RNN. To update the results, at each time-stamp, if the set of

candidate objects is detected to be unchanged then only the verification phase is called to

verify the results. Nevertheless, both the filtering and verification phases are required if

one of the candidate objects changes its location or other objects move into the candidate

region. Similarly, a set of candidate objects is needed to be re-computed (recall filtering)

if the query changes its location.

As mentioned earlier, previous techniques [KMS+07, XZ06, WYCT08a] require ex-

pensive filtering if the query or any of the candidate objects changes its location. Our

initial experiment results show that the cost of verification phase is much lower than the

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 31

cost of filtering phase. In our technique, we assign each query and object a safe region.

The safe region is a rectangular area for the queries in Euclidean space and is a subset

of spatial network for the queries in spatial networks. The filtering phase for a query is

not required as long as the query and its candidate objects remain in their corresponding

safe regions. This significantly reduces the computation time of continuously monitoring

RkNN queries.

As a by-product, our proposed framework also significantly reduces the communica-

tion cost in a client-server architecture. In the existing techniques, every object reports its

location to the server at every time-stamp regardless whether query results will be affected

or not. Consequently, such a computation model requires transmission of a large number

of location updates; doing this has a direct impact on the wireless communication cost

and power consumption - the most precious resources in mobile environment [HXL05].

In our framework, each moving object reports its location update only when it leaves the

region. This significantly saves the communication costs.

Depending on the users’ needs, applications may require RNN queries to be monitored

in Euclidean space or in spatial networks (e.g., a road network). While several algorithms

have been proposed to monitor RNN queries in Euclidean space there does not exist any

algorithm that efficiently updates RNNs in spatial networks after the objects and queries

change their locations. In this chapter, we present efficient algorithms to monitor RNN

queries in Euclidean space as well as in spatial networks.

Below, we summarize our contributions:

Query processing in Euclidean space

1. We present a framework for continuously monitoring RNN together with a novel set

of effective pruning and efficient increment computation techniques. It not only re-

duces the total computation cost of the system but also reduces the communication

cost.

2. We extend our algorithm for the continuous monitoring of RkNN. Our algorithm

can be used to monitor both mono-chromatic and bichromatic RkNN (to be for-

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 32

mally defined in Section 3.2.1).

3. We provide a rigid analysis on the computation and communication costs of our

algorithm that helps us to understand the effect of the size of the safe region on

the costs of our algorithm.

4. Our extensive experiments demonstrate that the developed techniques outperform

the previous algorithms by an order of magnitude in terms of computation cost and

communication cost.

Query processing in spatial networks

5. We are first to present a continuous RNN monitoring algorithm for moving objects

and queries in spatial networks. The proposed algorithm is computationally efficient

and has low communication cost.

6. We show that our technique can be easily extended to monitor mono-chromatic

and bichromatic RNN queries. The algorithm can also be extended to continuously

monitor RkNN queries.

7. We conduct extensive experiments on a real road network and demonstrate that

our algorithm gives an order of magnitude improvement over an algorithm that

does not use the safe regions.

The rest of this chapter is organized as follows. In Section 3.2, we give the problem

statement and describe the motivation. Section 3.3 presents RNN monitoring techniques

for Euclidean space including a detailed theoretical analysis. Section 3.4 presents our

technique for continuously monitoring RNN queries and its variants in spatial networks.

The experiment results are reported in Section 3.5. Section 3.6 summarizes the chapter.

3.2 Background Information

In this section, we first formally define the problem in Section 3.2.1. Then, we give a

brief description of related work in Section 3.2.2 to better explain the motivation of our

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 33

work. The motivation of our approach is presented in Section 3.2.3.

3.2.1 Problem Definition

There are two types of RkNN queries [KM00] namely, mono-chromatic and bichromatic

RkNN queries. Below we define both.

Monochromatic RkNN query: Given a set of points P and a point q ∈ P , a

monochromatic RkNN query retrieves every point p ∈ P s.t. dist(p, q) ≤ dist(p, pk)

where dist() is a distance function, and pk is the kth nearest point to p according to the

distance function dist(). In Euclidean space, dist(x, y) returns the Euclidean distance

between any two points x and y. In spatial networks, dist(x, y) returns the minimum

network distance between any two points lying on the spatial network.

Note that, in such queries, both the data objects and the query objects belong to

the same class of objects. Consider an example of the reality game BotFighters, where a

player issues a query to find other players for whom she is the closest person.

Bichromatic RkNN query:

Given two sets O and P each containing different types of objects, a bichromatic

RkNN query for a point q ∈ O is to retrieve every object p ∈ P such that dist(p, q) ≤

dist(p, ok) where ok is the kth nearest point of p in O according to the distance function

dist().

In contrast to monochromatic queries, the query and data objects belong to two

different classes. Consider the example of a battlefield where a medical unit might issue

a bichromatic RNN query to find the wounded soldiers for whom it is the closest medical

unit.

Our main focus in this chapter is to present the techniques to continuously monitor

monochromatic queries. However, we show that the proposed techniques can be easily

extended to answer bichromatic queries. In rest of this chapter, we use RNN query to

refer to a monochromatic RNN query unless mentioned otherwise.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 34

3.2.2 Most closely related techniques

To better illustrate the motivation of our work, we briefly describe most relevant tech-

niques to monitor RNN queries in Euclidean space. First, we present pruning techniques

for snapshot RNN queries.

Snapshot RNN Queries

Stanoi et al. [SAA00] solve RNN queries by partitioning the whole space centred at the

query q into six equal regions of 60∘ each (S1 to S6 in Fig. 3.2). It can be proved that

only the nearest point to q in each partition can possibly be the RNN. This also means

that, in two-dimensional space, there are at most six possible RNNs of a query. Consider

the region S3 where c is the nearest object to q and d cannot be the RNN because its

distance to c is smaller than its distance to q. This can be proved by the triangle Δqcd

where ∠dqc ≤ 60∘ and ∠dcq ≥ 60∘, hence dist(d, c) ≤ dist(d, q). Fig. 3.3 shows the area

(shown shaded) that cannot contain RNN of q.

S
1

c

60o

S
2S

3

S
4 S

5
S
6

d

q 60o

a

b

e

f

g

Figure 3.2: Pruning based on six-regions

S
1

c

S
2S

3

S
4 S

5
S
6

d

q

a

fg

e
q

b

Figure 3.3: Filtering and verification

In filtering phase, the candidate RNN objects (a, b, c, e and f in our example) are

selected by issuing nearest neighbor queries in each region. In verification phase, any

candidate object for which q is its nearest neighbor is reported as RNN (a and f). We

call this approach six-regions pruning approach.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 35

Tao et al. [TPL04] use the property of perpendicular bisectors to answer RkNN

queries. Consider the example of Fig. 3.4, where a bisector between q and c is shown that

divides the space into two half spaces (the shaded half space and the white half space).

Any point that lies in the shaded half space Hc:q is always closer to c than to q and

cannot be the RNN for this reason. Their algorithm prunes the space by the half spaces

drawn between q and its neighbors in the unpruned region. Fig. 3.5 shows the example

where half spaces between q and a, c and f (Ha:q, Hc:q and Hf :q, respectively) are shown

and the shaded area is pruned. Then, the candidate objects (a, c and f) are verified as

RNNs if q is their closest object. We call this approach half space pruning approach. It

is shown in [TPL04] that the half space pruning is more powerful than the six-regions

pruning and it prunes larger area (compare the shaded areas of Fig. 3.3 and Fig. 3.5).

c
d a

fg e

q

b

H
c:q

Figure 3.4: Pruning based on half spaces

c
d a

fg e

q

b

H
a:q

H
f:q

H
c:q

Figure 3.5: Filtering and verification

Continuous RNN Queries

Xia et al. [XZ06] propose a solution based on the six-regions approach. Consider the

examples of Fig. 3.3, the results of the RNN query may change in any of the following

three scenarios:

1. the query or one of the candidate objects changes its location

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 36

2. the nearest neighbor of a candidate object is changed (an object enters or leaves

the circles shown in Fig. 3.3)

3. an object moves into the unpruned region (the areas shown in white in Fig. 3.3)

Xia et al. [XZ06] use this observation and propose a solution for continuous RNN

queries based on the six-regions approach. They answer RNN queries by monitoring six

pie-regions (the white areas in Fig. 3.3) and the circles around the candidate objects that

cover their nearest neighbors.

Kang et al. [KMS+07] use the concept of half space pruning and apply the same

observation that the results may change in any of three scenarios mentioned above (please

see the three scenarios shown above and consider Fig. 3.5 instead of Fig. 3.3). They

continuously monitor the RNN queries by monitoring the unpruned region (white area in

Fig. 3.5) and the circles around the candidate objects that cover their nearest neighbors.

The proposed approach uses a grid structure to store the locations of the objects and

queries. They mark the cells of the grid that lie or overlap with the area to be monitored.

Any object movement in these cells triggers the update of the results.

Wu et al. [WYCT08a] are the first to propose a solution for continuous monitoring

of RkNN which is similar to the six-regions based RNN monitoring presented in [XZ06].

Wu et al. [WYCT08a] issue k nearest neighbor (kNN) queries in each region instead of

single nearest neighbor queries. The kNNs in each region are the candidate objects and

they are verified if q is one of their k closest objects. To monitor the results, for each

candidate object, they continuously monitor the circle around it that contains k nearest

neighbors.

3.2.3 Motivation

First, we briefly describe limitations of existing techniques that monitor RNNs in Eu-

clidean space. Both the six-regions [XZ06] and the half space [KMS+07] based solutions

have two major limitations.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 37

1. As illustrated in the three scenarios presented in Section 3.2.2, the existing techniques

are sensitive to object movement. If a query or any of its candidate objects changes its

location, filtering phase is called again which is computationally expensive. For example,

if a query is continuously moving, at each timestamp both of the approaches will have

to compute the results from scratch. For example, in the half space based approach, the

half spaces between q and its previous candidates are redrawn and the pruning area is

adjusted. In our initial experiments, we find that the cost of redrawing the half spaces

(and marking and unmarking the relevant cells) is computationally almost as expensive

as the initial computation of the results.

2. The previous techniques require every object to report its exact location to the

server at every timestamp regardless of whether it affects the query result or not. This

has a direct impact on the two most precious resources in mobile environment, wireless

communication cost and power consumption. Ideally, only the objects that affect the

query results should report their locations. For example, in Fig. 3.5, as long as objects

d, e and g do not enter into the white region or the three circles, they do not affect the

results of the query.

Motivated by these, we present a framework that provides a computation and com-

munication efficient solution. Note that, in some applications, the clients may have to

periodically report their locations to the server for other types of queries. In this case,

saving the communication cost is not possible. Nevertheless, our framework significantly

reduces the computation costs for such applications3.

3.3 Query Processing in Euclidean Space

In this section, we present our technique to continuously monitor RNN queries in Eu-

clidean space. In Section 3.3.1, we present the framework of our proposed technique. A

3In this chapter, we present our technique assuming that the clients send their locations only for the
RkNN query. For the case when the clients periodically send their locations for other types of queries,
our techniques can be easily applied. The only change is that the safe regions are stored on the server
which ignores the location updates from the objects that are still in their safe regions. Experiment results
shown in Section 3.5 show the superiority of our approach for both of the cases.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 38

set of novel pruning techniques is presented in Section 3.3.2. Our continuous RNN mon-

itoring algorithm is presented in Section 3.3.3. In Section 3.3.4, we present a detailed

theoretical analysis to analyse the computation and communication cost of our proposed

algorithms. We present the extensions of our approach to monitor other variants of RNN

queries in Section 3.3.5.

3.3.1 Framework

Each moving object and query is assigned a safe region of a rectangular shape. Although

other simple shapes (e.g., circles) could be used as safe regions, we choose the safe region

of a rectangular shape mainly because defining effective pruning rules is easier for the

rectangular safe regions. The clients may use their motion patterns to assign themselves

better safe regions. However, we assume that such information is not utilized by the

clients or the server because we do not assume any knowledge about the motion pattern

of the objects.

In our framework, the server recommends the side lengths of the safe regions (a system

parameter) to the clients. When a client leaves its safe region, the client assigns itself

a new safe region such that it lies at the center of the safe region and reports this safe

region to the server.

An object reports its location to the server only when it moves out of its safe region.

Such updates issued by the clients (objects) are called source-initiated updates [HXL05].

In order to update the results, the server might need to know the exact location of an

object that is still in its safe region. The server sends a request to such object and

updates the results after receiving its exact location. Such updates are called server-

initiated updates [HXL05].

If an object stops moving (e.g., a car is parked), it notifies the server and the server

reduces its safe region to a point until it starts moving again. Client devices such as GPS

can be programmed to notify the server when the device stops moving (e.g., the GPS

notifies the server if the car engine is turned off or if the car did not move in last T time

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 39

units).

In the previous approaches [XZ06, KMS+07], the pruned area becomes invalid if the

query point changes its location. On the other hand, in our framework, the query is also

assigned with a safe region and the pruned area remains valid as long as the query and

its candidate objects remain in their respective safe regions and no other object enters in

the unpruned region. Although the query is also assigned with a safe region, it reports

its location at every timestamp. This is because its location is important to compute

the exact results and a server-initiated update would be required (in most of the cases)

if it does not report its location itself. Moreover, the number of queries in the system

is usually much smaller than the number of objects. Hence, the location updates by the

queries do not have significant effect on the total communication cost.

Table 3.1 defines the notations used throughout this section.

Notation Definition

Bx:q a perpendicular bisector between point x and q
Hx:q a half space defined by Bx:q containing point x
Hq:x a half space defined by Bx:q containing point q
Ha:b ∩Hc:d intersection of the two half spaces

A[i] value of a point A in the itℎ dimension
maxdist(x, y) maximum distance between x and y (each of x and y is either a point

or a rectangle)
mindist(x, y) minimum distance between x and y (each of x and y is either a point

or a rectangle)
Rfil, Rcnd, Rq rectangular region of the filtering object, candidate object and query,

respectively

RH [i] highest coordinate value of a rectangle R in itℎ dimension

RL[i] lowest coordinate value of a rectangle R in itℎ dimension

Table 3.1: Notations

Like existing work on continuous spatial queries [MHP05, KMS+07, XZ06], we assume

that the errors due to the measuring equipments are insignificant and can be ignored.

Our continuous monitoring algorithm consists of the following two phases.

Initial computation: When a new query is issued, the server first computes the set

of candidate objects by applying pruning rules presented in Section 3.3.2. This phase is

called filtering phase. Then, for each candidate object, the server verifies it as RkNN if

the query is one of its k closest points. This phase is called verification phase.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 40

Continuous monitoring: The server maintains the set of candidate objects through-

out the life of a query. Upon receiving location updates, the server updates the candidate

set if it is affected by some location updates. Otherwise, the server calls verification mod-

ule to verify the candidate objects and reports the results.

3.3.2 Pruning Rules

In this section, we present novel pruning rules for RNN queries that can be applied

when locations of the objects are unknown within their rectangular regions. Although

the proposed pruning rules work in any multidimensional space, to keep the discussion

simple, we focus on two dimensional space in this section. The pruning rules for higher

dimensionality are similar and are presented in Chapter 5.

We also remark that the proposed pruning rules can be applied on the minimum

bounding rectangles of the spatial objects that have irregular shapes (in contrast to the

assumption that the spatial objects are points). In Section 3.3.5, we extend the pruning

rules for RkNN queries.

Throughout this section, an object that is used for pruning other objects is called a

filtering object and the object that is being considered for pruning is called a candidate

object.

Half space Pruning

First, we present the challenges in defining this pruning rule by giving an example of

a simpler case where the exact location of a filtering object p is known but the exact

location of q is not known on a line MN (shown in Fig. 3.6). Any object x cannot be

the RNN of q if mindist(x,MN) ≥ dist(x, p) where mindist(x,MN) is the minimum

distance of x from the line MN . Hence, the boundary that defines the pruned area

consists of every point x that satisfies mindist(x,MN) = dist(x, p). Note that for any

point x in the space on the right side of the line LN , mindist(x,MN) = dist(x,N).

Hence, in the space on the right side of the line LN , the bisector between p and the

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 41

point N satisfies the equation of the boundary (because for any point x on this bisector

dist(x,N) = dist(x, p)).

Similarly, on the left side of LM , the bisector between p and M satisfies the condition.

In the area between LM and LN , a parabola (shown in Fig. 3.6) satisfies the equation of

the boundary. Hence the shaded area defined by the two half spaces and the parabola

can be pruned. Note that the intersection of half spaces Hp:N and Hp:M does not define

the area correctly. As shown in Fig. 3.6 , a point p′ lying in this area may be closer to q

than to the point p.

p

M N
q

H
p:M

H
p:N

parabola

L
N

L
M

p'

Figure 3.6: Exact location of q on line
MN is not known

p

M N
q

H
p:M

H
p:N

L
N

L
M

A

B

Figure 3.7: Approximation of parabola
by a line

Unfortunately, the pruning of the shaded area may be expensive due to presence of

the parabola. One solution is to approximate the parabola by a line AB where A is the

intersection of Hp:N and LN and B is the intersection of Hp:M and LM . Fig. 3.7 shows

the line AB and the pruned area (the shaded area).

Another solution is to move the half spaces Hp:M and Hp:N such that both pass

through a point c that satisfies mindist(c,MN) ≥ dist(c, p) (e.g., any point lying in the

shaded area of Fig. 3.6). This approximation of the pruning area is tighter if the point c

lies on the boundary. Fig. 3.8 shows the half spaces Hp:M and Hp:N moved to such point

c. A half space that is moved is called normalized half space and a half space Hp:M that

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 42

is moved is denoted as H ′
p:M . Fig. 3.8 shows the normalized half spaces H ′

p:M and H ′
p:N

and their intersection can be pruned (the shaded area).

Among the two possible solutions discussed above, we choose normalized half spaces

in developing our pruning rules for the following reason. In our relatively simple example,

the number of half spaces required to prune the area by using the normalized half spaces

is two (in contrast to three lines for the other solution). The difference between this

number becomes significant when both the query and the filtering object are represented

by rectangles especially in multidimensional space. This makes the pruning by normalized

half spaces a less expensive choice.

Now, we present our pruning rule that defines the pruned area by using at most four

half spaces in two dimensional space. This pruning rule uses the normalized half spaces

between 4 selected pairs of corners of the two rectangles to prune the space. We first

give a formal description of our pruning rule and then we briefly describe the reason of

its correctness. First, we define the following concepts:

Antipodal Corners. Let C be a corner of rectangle R1 and C ′ be a corner in R2. The

two corners are called antipodal corners if both of the followings hold: i) if C is a corner

on the lower side of R1 then C ′ is a corner on the upper side of R2 and vice versa; ii) if

C is a corner on the right side of R1 then C ′ is a corner on the left side of R2 and vice

versa.

For example, a lower-left corner of R1 is the antipodal corner of the upper-right corner

of R2. Similarly, an upper-left corner of R1 is the antipodal corner of the lower-right

corner of R2. Fig. 3.9 shows two rectangles R1 and R2. The corners B and M are

two antipodal corners. Similarly, other pairs of antipodal corners are (D,O), (C,N) and

(A,P).

Antipodal half space. A half space that is defined by the bisector between two

antipodal corners is called antipodal half space. Fig. 3.9 shows two antipodal half spaces

HM :B and HO:D.

Higher and lower midpoints. Let R1 and R2 be two rectangles. Let R1L[i] denote

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 43

p

M N
q

H’
p:M

H
p:N

H’
p:N

H
p:M

c

Figure 3.8: Defining pruned region by
moving half spaces

O

AB

C D

M

N

P

H
M:B

H’
M:B

H
O:D

R
1

R
2

c
H’
O:D

Figure 3.9: Antipodal corners and nor-
malized half spaces

the lowest coordinate value and R1H [i] denote the highest coordinate value of R1 in itℎ

dimension. The higher midpoint MH [i] of two rectangles R1 and R2 in itℎ dimension is

(R1H [i] + R2H [i])/2. Similarly, the lower midpoint ML[i] of two rectangles R1 and R2

in itℎ dimension is (R1L[i] +R2L[i])/2.

Assume that for a point P , we denote its x and y coordinate values as P.x and P.y,

respectively. In the example of Fig. 3.9, the higher midpoint of R1 and R2 along x-axis

is (N.x + A.x)/2 (see c.x). Similarly, the lower midpoint along y-axis is (O.y + A.y)/2

(see c.y).

Normalized half space. Let B and M be two points in the rectangles R1 and R2,

respectively. The normalized half space H ′
M :B is a half space defined by the bisector

between M and B that passes through a point c such that c[i] = ML[i] (lower midpoint)

for every dimension i for which B[i] > M [i] and c[j] = MH [j] (higher midpoint) for every

dimension j for which B[j] ≤M [j]. A normalized antipodal half space can be represented

by a mathematical inequality. The interested readers are referred to Chapter 5.

Fig. 3.9 shows the normalized (antipodal) half spaces H ′
M :B which is obtained by

moving the half space HM :B to the point c where c.x is the higher midpoint of the two

rectangles along x-axis (because B.x < M.x) and c.y is the lower midpoint along y-axis

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 44

because B.y > M.y. Fig. 3.9 also shows another normalized half space H ′
O:D that also

passes through the same point c.

Pruning Rule 3.3.1 Let Rq and Rfil be the rectangular regions of the query q and a

filtering object p, respectively. For any point p′ that lies in
∩4

i=1H
′
Ci:C′

i
, mindist(p′, Rq) >

maxdist(p′, Rfil) where H ′
Ci:C′

i
is normalized half space between Ci (the itℎ corner of the

rectangle Rfil) and its antipodal corner C ′
i in Rq. Hence p′ can be pruned.

O

AB

C D

M

N

P

H’
M:B

R
q

R
fil

c
H’
O:D

H’
N:C

H’
P:A

Figure 3.10: Half space pruning and
dominance pruning

O

A B

CD

M

N

P

H’
N:C

H’
M:BH’

P:A

H’
O:DR

q

R
fil

c
1c

2

c

Figure 3.11: Any point in shaded area
cannot be RNN of q

Fig. 3.10 shows an example of the half space pruning where the four normalized

antipodal half spaces define the pruned region (the area shown shaded). The proof of

correctness is non-trivial and is given in Appendix A (see Lemma A.2.5). Below, we

present the intuitive justification of the proof.

Intuitively (as in the example of Fig. 3.8), if we draw all possible half spaces be-

tween all points of Rq and Rfil and move them to a point c for which mindist(c,Rq) ≥

maxdist(c,Rfil), then the intersection of these half spaces correctly approximates the

pruned region. Also note that in two dimensional space, at most two normalized spaces

define such area. Consider the example of Fig. 3.10, where only H ′
O:D and H ′

M :B define

the pruned region (the reason is that these two have largest and smallest slopes among

all other possible half spaces). In fact, the antipodal corners are defined such that the

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 45

half spaces having largest and smallest slopes are among the four antipodal half spaces.

Moreover, the point c shown in Fig. 3.10 satisfies mindist(c,Rq) = max dist(c,Rfil)

because normalized half spaces are defined such that c lies at the middle of the line that

joins the corners A and N . Hence the four normalized antipodal half spaces correctly

approximate the pruned region.

For ease of explanation, in Fig. 3.10, we have shown an example where the two

rectangles Rq and Rfil do not overlap each other in any dimension. If the two rectangles

overlap each other in any dimension (as in Fig. 3.11), the four half spaces do not meet

at the same point. In Fig. 3.11, H ′
O:D and H ′

P :A are moved to c1 and H ′
N :C and H ′

M :B

are moved to point c2. However, it can be verified by calculating the intersection that

the half spaces that define the pruned region (H ′
M :B and H ′

P :A) meet at a point c that

satisfies mindist(c,Rq) ≥ maxdist(c,Rfil).

Dominance Pruning

We first give the intuition behind this pruning rule. Consider the example of Fig. 3.10

again. The normalized half spaces are defined such that if Rfil and Rq do not overlap

each other in any dimension then all the normalized antipodal half spaces meet at the

same point c. This is because the point c is constructed using either the upper or the

lower midpoint in each dimension depending on the x and y coordinate values of the two

corners (see the definition of normalized half spaces and the four normalized half spaces

in Fig. 3.10).

We also observe that the angle between the half spaces that define the pruned area

(shown in grey) is always greater than 90∘. Based on these observations, it can be verified

that the space dominated by c (the dotted-shaded area) can be pruned. Formal proof is

given in Appendix A (see Lemma A.2.6).

Let Rq be the rectangular region of q. We can obtain four regions as shown in

Fig. 3.12. Let Rfil be the rectangular region of a filtering object that lies completely in

one of the 4 regions. Let f be the furthest corner of Rfil from Rq and n be the nearest

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 46

R
fil

12

3 4

f

F
p

R
q

n

Figure 3.12: Shaded areas can be pruned

R
q

R
1

R
2

R
cnd

R’
cnd

Figure 3.13: Rcnd can be pruned by R1

and R2

corner of Rq from f (as shown in region 1 of Fig. 3.12). A point Fp that lies at the centre

of the line joining f and n is called a frontier point.

Pruning Rule 3.3.2 Any candidate object p′ that is dominated by the frontier point Fp

of a filtering object cannot be RNN of q.

Fig. 3.12 shows four examples of dominance pruning (one in each region). In each

partition, the shaded area is dominated by the frontier point of that partition and can

be pruned. Note that if Rfil overlaps Rq in any dimension, we cannot use this pruning

rule because the normalized antipodal half spaces in this case do not meet at the same

point. For example, the four normalized antipodal half spaces intersect at two points in

Fig. 3.11. In general, the pruning power of this rule is less than that of the half space

pruning. Fig. 3.10 shows the area pruned by the half space pruning (the shaded area)

and dominance pruning (the dotted area). The main advantage of this pruning rule is

that the pruning procedure is computationally more efficient than the half space pruning,

as checking the dominance relationship is easier.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 47

Metric Based Pruning

Pruning Rule 3.3.3 A candidate object can be pruned if maxdist(Rcnd, Rfil) < mindist

(Rcnd, Rq) where Rcnd is the rectangular region of the candidate object.

This pruning approach is the least expensive because it requires a simple distance

comparison. Recall that the half space (or the dominance) pruning defines a region such

that any point p′ that lies in it is always closer to the filtering object than to q. Metric

based pruning checks this by a simple distance comparison. However, this does not

mean that the metric based pruning has at least as much pruning power as half space or

dominance pruning. This is because the half space and dominance pruning can trim the

rectangular region of a candidate object that lies in the pruned region. It may lead to

pruning of a candidate object when more than one filtering objects are considered.

Consider the example of Fig. 3.13, where two rectangles R1 and R2 of two filtering

objects are shown. The rectangle Rcnd cannot be pruned when half space pruning is

applied on R1 or R2 alone. However, the rectangle Rcnd can be pruned when both R1

and R2 are considered. As in [TPL04], we use loose trimming of the rectangle by using

trimming algorithm [GRSY97]. The trimming algorithm trims a part of the rectangle

that cannot be pruned. First, Rcnd is pruned by the half spaces of R1 and the trimming

algorithm trims the rectangle that lies in the pruned region. The unpruned rectangle

R′
cnd (shown with dotted shaded area) is returned. This remaining rectangle completely

lies in the area pruned by R2 so the candidate object is pruned. Note that metric based

pruning cannot prune Rcnd.

Also note that if the exact location of a candidate object is known (Rcnd is a point)

and metric based pruning fails to prune the object then half space pruning and dominance

pruning also fail to prune the object. Hence, half space pruning and dominance pruning

are applied only when the exact location of a candidate object is not known.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 48

Pruning if exact location of query is known

If the exact location of the query or a filtering object is known, previous pruning rules can

be applied by reducing the rectangles to points. However, a tighter pruning is possible

if the exact location of the query is known. Below, we present a tighter pruning rule for

such case.

Pruning Rule 3.3.4 Let Rfil be a rectangle and q be a query point. For any point p

that lies in
∩4

i=1 HCi:q (Ci is the itℎ corner of Rfil), dist(p, q) > maxdist(p,Rfil) and

thus p cannot be the RNN of q.

Proof Maximum distance between a rectangle Rfil and any point p is the maximum

of distances between p and the four corners, i.e., maxdist(p,Rfil) = max(dist(p,Ci))

where Ci is the itℎ corner of Rfil. Any point p that lies in a half space HCi:q satisfies

dist(p, q) > dist(p,Ci) for the corner Ci of Rfil. Hence a point p lying in
∩2d

i=1HCi:q,

satisfies dist(p, q) > maxdist(p,Rfil).

q

H
M:q

M

N

H
P:q

H
O:q

O

P
H
N:q

R
filp'

Figure 3.14: Half space pruning when exact location of query is known

Consider the example of Fig. 3.14 that shows the half spaces between q and the corners

of Rfil. Any point that lies in the shaded area is closer to every point in rectangle Rfil

than to q.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 49

It is easy to prove that the pruned area is tight. In other words, any point p′ that

lies outside the shaded area may possibly be the RNN of q. Fig. 3.14 shows such point

p′. Since it does not lie in HP :q it is closer to q than to the corner P . Hence it may be

the RNN of q if the exact location of the filtering object is at corner P .

Algorithm 1 : Prune(Rq, Sfil, Rcnd)

Input: Rq: rectangular region of q ; Sfil: a set of filtering objects ; Rcnd: the rectan-

gular region of candidate object

Output: returns true if Rcnd is pruned; otherwise, returns false

Description:

1: for each Rfil in Sfil do

2: if maxdist(Rcnd, Rfil) < mindist(Rq, Rcnd) then /* Pruning rule 3.3.3 */

3: return true

4: if mindist(Rcnd, Rfil) > maxdist(Rq, Rcnd) then

5: Sfil = Sfil −Rfil/* Rfil cannot prune Rcnd */

6: if exact location of cnd is known then

7: return false/* the object cannot be pruned */

8: for each Rfil in Sfil do

9: if Rfil is fully dominated by Rq in a partition P then /* Pruning rule 3.3.2

*/

10: trim the part of Rcnd that is dominated by Fp

11: return true if Rcnd is pruned

12: return

13: for each Rfil in Sfil do

14: Trim using half space pruning/* Pruning rule 3.3.1 */

15: return true if Rcnd is pruned

16: return false

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 50

Integrating the pruning rules

Algorithm 1 is the implementation of all the pruning rules. Specifically, we apply prun-

ing rules in increasing order of their computational costs (i.e., metric based pruning,

dominance pruning and then half space pruning). While simple pruning rules are not as

restricting as more expensive ones, they can quickly discard many non-promising candi-

date objects and save the overall computational time.

Three subtle optimizations in the algorithm are:

1. As stated in Section 3.3.2, if the exact location of the candidate object is known then

only metric based pruning is required. So, we do not consider dominance and half space

pruning for such candidates (line 7).

2. If mindist(Rcnd, Rfil) > maxdist(Rq, Rcnd) for a given MBR Rfil, then Rfil cannot

prune any part of Rcnd. Hence such Rfil is not considered for dominance and half space

pruning (lines 4-5).

3. If the frontier point Fp1 of a filtering object Rfil1 is dominated by the frontier point

Fp2 of another filtering object Rfil2 , then Fp1 can be removed from Sfil because the area

pruned by Fp1 can also be pruned by Fp2 . However, note that a frontier point cannot be

used to prune its own rectangle. Therefore, before deleting Fp1 , we use it to prune the

rectangle belonging to Fp2 . This optimization reduces the cost of dominance pruning.

To maintain the simplicity, we do not show this optimization in Algorithm 1.

3.3.3 Continuous RNN Monitoring

Data Structure

Our system has an object table and a query table. Object table (query table) stores the

id and the rectangular region for each object (query). In addition, the query table stores

a set of candidate objects Scnd for each query.

Main-memory computation is the main paradigm in on-line/real-time query process-

ing [MHP05, KMS+07, XZ06]. Grid structure is preferred when updates are inten-

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 51

sive [MHP05] because complex data structures (e.g., R-tree, Quad-tree) are expensive

to update. For this reason, we choose grid-based data structure to store the locations

and rectangular regions of moving objects and queries. Each cell contains two lists: 1)

object list ; 2) influence list. Object list of a cell c contains object id of every object whose

rectangular region overlaps the cell c. This list is used to identify the objects that may

be located in this cell. Influence list of a cell c contains query ids of all queries for which

this cell lies in (or overlaps with) the unpruned region. The intuition is that if an object

moves into this cell, we know that the queries in the influence list of this cell are affected.

Range queries and constrained NN queries (nearest neighbors in constrained region)

are issued to compute RNNs of a query (e.g., six constrained nearest neighbor queries are

issued in the six-regions based approach). In our algorithm, we also need an algorithm

to search the nearby objects in a constrained area (the unpruned region). Several contin-

uous nearest neighbors algorithms [YPK05, MHP05, XMA05] based on grid-based index

have been proposed. However, the extension of these grid-access methods for queries on

constrained area becomes inefficient. i.e., the cells around queries are retrieved even if

they lie in the pruned region. To efficiently search nearest neighbors in a constrained

area, we introduce conceptual grid tree.

root

Grid cells

Intermediate entries

Figure 3.15: Conceptual grid-tree of a 4×
4 grid

R
q

o
1

o
3

o
4

o
5

o
6

o
2

Figure 3.16: Illustration of the filtering
phase

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 52

Fig. 3.15 shows an example of the conceptual grid-tree of a 4×4 grid. For a grid-based

structure containing 2n × 2n cells where n ≥ 0, the root of our conceptual grid-tree is a

rectangle that contains all 2n×2n cells. Each entry at l-th level of this grid-tree contains

2(n−l)×2(n−l) cells (root being at level 0). An entry at l-th level is divided into four equal

non-overlapping rectangles such that each such rectangle contains 2(n−l−1)×2(n−l−1) cells.

Any n-th level entry of the tree corresponds to one cell of the grid structure. Fig. 3.15

shows root entry, intermediate entries and the cells of grid. Note that the grid-tree does

not exist physically, it is just a conceptual visualisation of the grid.

The spatial queries algorithms that can be applied on R-tree can easily be applied

on the conceptual grid tree. The advantage of using this grid-tree over previously used

grid-based access methods is that if an intermediate entry of the tree lies in the pruned

region, none of the cells inside it are accessed.

Initial Computation

The initial computation consists of two phases namely filtering and verification. Below

we discuss them in detail.

Filtering

In this phase (Algorithm 2), the grid-tree is traversed to select the candidate objects

and these objects are stored in Scnd. These candidate objects are also used to prune

other objects. Initially, root entry of the grid-tree is inserted in a min-heap H. We try

to prune every de-heaped entry e (line 6) by using the pruning rules presented in the

previous section. If e is a cell and cannot be pruned, we insert the objects into heap that

are in its object list. Otherwise, if e is an intermediate entry of the grid-tree, we insert

its four children into the heap H with key mindist(c,Rq). If e is an object and is not

pruned, we insert it into Scnd. The algorithm stops when the heap becomes empty.

Fig. 3.16 shows an example of the filtering phase. For better illustration, the grid is

not shown. Objects are numbered in order of their proximity to q. Algorithm iteratively

finds the nearest objects and prunes the space accordingly. In the example of Fig. 3.16,

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 53

Algorithm 2 : Filtering

1: for each query q do

2: Scnd = �

3: Initialize a min-heap H with root entry of Grid-Tree

4: while H is not empty do

5: de-heap an entry e

6: if (not Pruned(Rq, Scnd, e)) then /* Algorithm 1 */

7: if e is a cell in Grid then

8: for each object o in object list of e do

9: insert o into H if not already inserted

10: else if e is an intermediate entry of grid-tree then

11: for each of its four children c do

12: insert c into H with key mindist(c,Rq)

13: else if e is an object then

14: Scnd = Scnd ∪ {e}

the algorithm first finds o1 and prunes the space. Since the next closest object o2 lies in

the pruned space, it is not considered and o3 is selected instead. The algorithm continues

and retrieves o4 and o5 and the shaded area is pruned. The algorithm stops because there

is no other object in the unpruned area (the white area). The rectangles of the pruned

objects are shown in broken lines.

One important note is that in this phase, the call to pruning algorithm at line 6 does

not consider the exact locations of any object or query for pruning even if the exact

location is known. This is because we want to find a set of candidate objects Scnd such

that as long as all of them remain in their rectangular regions and no other object enters

in the unpruned area, the set of candidate objects is not affected. For example, the set of

candidate objects {o1, o3, o4, o5} will not change unless q or any candidate object moves

out of its rectangular region or any of the remaining objects (o2 and o6) moves in the

unpruned area (the white area).

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 54

Marking the cells in unpruned area: To quickly identify that an object has moved into

the unpruned area of a query q, each cell that lies in the unpruned area is marked.

More specifically, q is added in the influence list of such cell. We mark these cells in

a hierarchical way by using the grid-tree. For example, if an entry completely lies in

the unpruned region, all the cells contained by it are marked. The cells are unmarked

similarly.

Verification

At this stage, we have a set of candidate objects Scnd for each query. Now, we

proceed to verify the objects. Since every query q reports its location to the server at

every timestamp, we can use its location to further refine its Scnd. More specifically, any

object o ∈ Scnd cannot be the RNN of q for which mindist(o, q) ≥ maxdist(o, o′) for any

other o′ ∈ Scnd. If the object cannot be pruned by this distance based pruning, we try to

prune it by using pruning rule 3.3.4. For every query q, its candidate objects that cannot

be pruned are stored in a list Sglobal.

The server sends messages to every object in Sglobal for which the exact location is not

known. The objects send their exact locations in response. For each query q, the list of

candidate objects is further refined by using these exact locations. As noted in [SAA00],

at this stage, the number of candidate objects for a query cannot be greater than six in

two dimensional space. We verify these candidate objects as follows.

Algorithm 3 : Verification

1: Refine Scnd using the exact location of q

2: Request objects in Scnd to send their exact locations

3: Select candidate objects based on exact location of the objects

4: Verify candidate objects (at most six) by issuing boolean range queries

For a candidate object o, we issue a boolean range query [SFT03] centered at o with

range dist(o, q). In contrast to the conventional range queries, a boolean range query

does not return all the objects in the range. It returns true if an object is found within

the range, otherwise it returns false. Fig. 3.17 shows an example, where candidate objects

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 55

are o1 to o4. Any object for which its exact location in its rectangular region is not known

is shown as a shaded rectangle (see objects o6, o7 and o8). The rectangular regions of

the objects for which we know the exact locations are shown in dotted rectangles (see

objects o1 to o5 and the query q).

The object o3 cannot be the RNN because o5 (for which we know the exact location)

is found within the range. Similarly, o4 cannot be the RNN because the rectangular

region of o6 completely lies within the range. The object o2 is confirmed as RNN because

no object is found within the range. The only candidate object for which the result is

undecided is o1 because we do not know the exact location of object o8 which may or

may not lie within the range. The server needs its exact location in order to verify o1.

For each query q, the server collects all such objects. Then, it sends messages to all these

objects and verifies all undecided candidate objects upon receiving the exact locations.

Continuous Monitoring

The set of candidate objects Scnd of a query changes only when the query or one of the

candidate objects leaves its rectangular region or when any other object enters into the

unpruned region. If Scnd is not affected, we simply call the verification phase to update

the results. Otherwise, we have to update Scnd.

Consider the running example of Fig. 3.17 that shows a query q and its four candidates

(o1 to o4). Assume that after several timestamps, one of the candidate objects (see o1 in

Fig. 3.18) moves out of its rectangular region. We need to call the filtering phase again

because the pruned region is not valid anymore and Scnd may have changed.

One possible approach to update Scnd is to call the filtering phase (Algorithm 2) from

scratch. Second possible approach to update Scnd is to call Algorithm 2 with Scnd set

to {o2, o3, o4} instead of initializing an empty Scnd. Note that the object that moves

out of its rectangular region (e.g., o1) has not been considered in Scnd. If it is still the

candidate object it will be retrieved during the execution of Algorithm 2. In our initial

experiments, we found that the second approach to update Scnd is almost as expensive

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 56

Figure 3.17: Verification phase Figure 3.18: Continuous monitoring

as the first approach. Below, we show that if we choose to compute Scnd from scratch,

we may save computation cost in upcoming timestamps.

Consider the example of Fig. 3.18 where the candidate object o1 leaves its rectangular

region. Since the query and other candidate objects are also moving, they are likely to

leave their regions in next few timestamps which will trigger the expensive filtering phase

again. For example, it is possible that the object o4 leaves its rectangular region in the

next timestamp and we have to call the expensive filtering phase again. To overcome

this problem, we request all the candidate objects to send their exact locations as well as

their new rectangular regions (note that this does not increase the communication cost

because in any case we need to contact these candidate objects in the verification phase at

line 2 of Algorithm 3). After receiving these new rectangular regions, we update Scnd by

calling the filtering phase from scratch. Now the candidate objects have new rectangular

regions and they are expected to remain in their respective rectangular regions for longer.

Suppose that an object o is a candidate for two queries q1 and q2 and Scnd of q1

is affected by a location update of any other object o′. We cannot ask o to update its

rectangular region because it will affect Scnd of query q2 as well. Hence, the server only

asks an object to update its rectangular region if it does not affect other queries.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 57

3.3.4 Cost Analysis

In this section, we analyse the computation and communication cost for our proposed

solution. First, we present a pruning rule based on six-regions approach and compute

the communication cost. Then, we show that the pruning rules used in our technique are

superior. Hence the communication cost gives an upper bound. Then, we analyse the

computation cost.

Assumptions: We assume that the system contains N objects in a unit space (extent of

the space on both dimensions is from 0 to 1). Each rectangular region is a square and

width of each side is w. The centers of all rectangular regions are uniformly distributed.

Communication cost: Consider the example of Fig. 3.19 where a 60∘ region bounded

by the angle ∠EqC is shown in thick lines. Suppose that we find a filtering object whose

rectangular region Rfil is fully contained in the region. Any object o′ can be pruned if

dist(o′, q) ≥ maxdist(Rfil, q). In other words, the possible candidates may lie only in

the space defined by qEC where EC is an arc and qC = qE = maxdist(Rfil, q).

Let r be the distance between q and the center of Rfil. Then, maxdist(Rfil, q) ≤

r + w/
√
2 where w/

√
2 is the half of the diagonal length of Rfil. Since, all objects are

represented by rectangular regions, any object is possible RNN candidate that has its

centre at a distance not greater than w/
√
2 from the region qEC. So, the range becomes

(r +
√
2w). Total number of candidates that overlap or lie within the region qEC is

�(r +
√
2w)2N

6

Let R be the maximum of r of all six regions, the total number of candidate objects

is bounded by

∣ Scnd ∣= �(R+
√
2w)2N (3.1)

The server sends request to all these candidate objects and receives their exact loca-

tions. So the total number of messages M1 at this stage is bounded by

M1 = 2�(R +
√
2w)2N (3.2)

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 58

After receiving the updates, the server eliminates the candidate objects that cannot

be the RNN (based on their exact locations). As proved in [SAA00], the number of

candidate objects cannot be greater than six. Hence, the server needs to verify those

six candidate objects. In order to verify a candidate object o, the server issues a range

query of distance dist(o, q) centered at o. In worst case, all the objects that lie within

this range must report their exact locations. Total number of objects that overlap or lie

within the range is

�(dist(o, q) + w/
√
2)2N

Since these candidate objects belong to the nearest neighbors in each region, dist(o, q)

corresponds to the distance of closest object in the region. For all six regions, the max-

imum of dist(o, q) is the distance of sixth nearest neighbor from q (assuming uniform

distribution). So the maximum range is the radius of a circle around q that contains six

objects. As we assume a unit space, the radius of such circle that contains six objects

is
√

6
N� . So the maximum number of messages M2 required to verify all six candidate

objects is

M2 = 6× 2�(

√

6

N�
+ w/

√
2)2N

M1+M2 are the messages required to retrieve the server-initiated updates. LetM3 be

the number of source-initiated updates (the objects that leave their rectangular regions).

Let v be the average speed of objects. An object starting at center of the square of width

w and moving with speed v will take at least w/2v time to leave the region. So, total

number of updates M3 at each timestamp is

M3 = N ×min(
2v

w
, 1)

Note that the equation bounds the number of source-initiated updates by N . The

total communication cost per timestamp is (M1 + M2 + M3 + 1) where 1 denotes the

location update of the query. Note that if w is small, the number of source-initiated

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 59

updates M3 increases and if w is large, the number of server-initiated updates (M1+M2)

increases.

Now, we find R. Note that to use the pruning of Fig. 3.19, we had assumed that Rfil

completely lies in the 60 degree region EqC. Hence r in Equation (3.1) corresponds to

the distance of the closest object in each region that completely lies in it. Similarly, R is

the maximum of r of each region.

Figure 3.19: Half space pruning vs six-
regions based pruning

q

C B

Aw
R
fil

r' J

D E

F
G

H

LK

MN

r

Figure 3.20: An object completely lying
in the 60∘ region

Fig. 3.20 shows a region DqE and a rectangular region Rfil of a filtering object

(shown in broken line). Note that any rectangular region of side length w with center

lying in ABC (the shaded area) will completely lie in the region DqE. In other words, r

corresponds to the closest object of q in the region that has center lying in ABC.

Let r = qH = qJ as shown in Fig. 3.20. Let the radius belonging to area AMN be

r′. The radius r′ can be computed as r′ = r − qA where qA = qG + GA = qG + w/2.

The length of qG = 0.866w which can be found by the triangle FGq where FG = w/2

and ∠GFq = 60∘. Hence r′ = r − 1.366w.

It can be verified that when r =
√

6
N� + 1.366w, then �(r′)2N = 6. In other words

when radius is r, one object in each region will be found such that it completely lies in

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 60

the region. So M1 can be rewritten as

M1 = 2�(

√

6

N�
+ 2.78w)2N

The cost (M1 +M2 +M3 + 1) is the cost for one RNN query. The cost of multiple

RNN queries is ∣ Q ∣ ⋅(M1 +M2 + 1) +M3 where ∣ Q ∣ is the number of queries.

Now, we show that the area pruned by our proposed approach (pruning rule 3.3.4)

contains the area pruned by previously described six regions based approach. Consider

the example of Fig. 3.19 where Rfil completely lies in the region. The area pruned

by six-regions approach is the area of region outside qCE where CE is an arc and

qC = maxdist(Rfil, q). Our pruning approach prunes the area defined by the intersection

of the four half spaces between q and the corners of Rfil. Fig. 3.19 shows a half space H

(shown in broken line) that crosses the region at a point G such that qG > qC. This half

space fails to prune some area pruned by the six region based approach (the six region

based approach prunes the shaded area which this half space H fails to prune).

In order to prove that our pruning approach always contains the area pruned by the

six-region based approach, we need to show that all four half spaces between q and the

corners of Rfil cross the region at a point B such that qB ≤ qC. Fig. 3.19 shows a half

space HD:q between corner D and q. Consider the right triangle qAB where ∠BqA ≤ 60∘.

The length of qB is qA
cos(∠BqA) . The maximum possible value of qB is 2× qA when ∠BqA

is 60∘. Since 2 × qA = qD and qD ≤ qC = maxdist(Rfil, q), so qB ≤ qC. Similarly, it

can be proved that qF ≤ qE. Hence all the four half spaces contain the area pruned by

the region based approach.

Computation cost: Let Cfil and Cver be the costs of the filtering phase and the

verification phase, respectively. The computation cost at each timestamp is �×Cfil+Cver

where � is the probability that at a given timestamp at least one of the following two

events happens: i) the query or any of the candidate objects leaves its safe region; ii) any

other object enters in the unpruned region of the query.

The verification cost includes using the exact locations of M1 objects to further refine

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 61

the set of candidate objects and using boolean range queries to verify the remaining

candidate objects (at most six). Let the cost of refining an object be Cref and the cost

of a boolean range query be Cbr, the verification cost is Cver = M1×Cref+ ∣ Scnd ∣ ×Cbr

where ∣ Scnd ∣≤ 6.

3.3.5 Extensions

Since our proposed pruning rules can be applied in multidimensional space, the exten-

sion of our algorithm to arbitrary dimensionality is straightforward. Below, we present

extension of our algorithm to RkNN monitoring.

RkNN Pruning: An object cannot be RkNN of a query if it is pruned by at least k

filtering objects. We initialize a counter to zero and trim Rcnd by each filtering object.

When the whole rectangle is trimmed, the counter is incremented and the original rect-

angle is restored. We continue this process by trimming with remaining filtering objects.

If the counter becomes equal to k, the object is pruned.

R
q

R
1

R
2

R
cnd

R’
cnd

R
3

Figure 3.21: RkNN Pruning

Suppose k is 2 and consider the example of Fig. 3.21 where Rcnd and three filtering

objects R1, R2 and R3 are shown. Filtering objects are considered in order R1, R2 and

R3. Rcnd is trimmed to R′
cnd when R1 is used for pruning. R′

cnd is completely pruned by

R2. The counter is incremented to one and the original rectangle Rcnd is restored. Now,

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 62

Rcnd is trimmed by R3 and the counter is incremented to two because whole rectangle is

trimmed. The algorithm prunes Rcnd because it has been pruned two times.

Note that if the filtering objects are processed in order R1, R3 and R2, the candidate

object cannot be pruned. Finding the optimal order is difficult and trying all possible

orders is computationally expensive. This will make filtering of this candidate object

more expensive than its verification. Hence, if a candidate object is not pruned by the

above mentioned pruning, we consider it for verification.

RkNN Verification: An object o cannot be RkNN if the range query centered at o

with range dist(o, q) contains greater than or equal to k objects. Otherwise, the object

is reported as RkNN. Suppose k is 2 and consider the example of Fig. 3.17 again. The

candidate objects o2 and o3 are confirmed as R2NNs because there are less than 2 objects

within their ranges. The object o1 is also confirmed because at most one object (o5) lies

within the range. The result for o4 is undecided, so the location of o7 is requested. Note

that we do not need to request the exact location of o6.

Bichromatic Queries: Now, we briefly present the extension of our proposed solution

to bichromatic queries. Let there be two sets of objects O and P and query q belongs

to O. The area is pruned by iteratively finding nearby filtering objects that belong to O

and lie in the unpruned region. The pruning of area is stopped when there is no filtering

object in the unpruned region. The objects of type P that lie in the unpruned region

are the candidate objects. The server asks these candidate objects to report their exact

locations. Upon receiving the exact locations, any candidate object p is reported as RNN

if there does not lie an object of type O within a circle with radius dist(p, q) centered at

p. If the result is undecided, type O objects that have rectangles overlapping with the

circles are requested to send their locations. Based on these received locations, the result

is computed and reported to the client.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 63

3.4 Query Processing in Spatial Networks

In this section, we present our technique to continuously monitor RNN queries in spatial

networks. First, we introduce the basic concepts and notations in Section 3.4.1. In

Section 3.4.2, we study the problem characteristics. Section 3.4.3 presents the framework

of our technique. Filtering and verification techniques are presented in Section 3.4.4 and

Section 3.4.5, respectively. We present the extensions of our RNN monitoring algorithm

to other variants of RNN queries in Section 3.4.7.

3.4.1 Terminology

First we define few terms and notations.

Spatial network G is a weighted graph consisting of vertices and edges. An edge

between two vertices v1 and v2 is denoted as e(v1, v2). Each edge has a positive weight

that denotes the cost of travelling on that edge (e.g., length of the edge, time taken to

travel along the edge etc.). The weight of an edge e(v1, v2) is denoted as ∣e(v1, v2)∣.

Segment s[x,y] is the part of an edge between x and y where both x and y are points on

the edge. By definition, an edge is also a segment defined by the end points (vertices) of

the edge. The weight of a segment s[x,y] is denoted as ∣s[x,y]∣.

Fig. 3.22 shows an example of a road network with eight vertices (a to ℎ). Six objects

(o1 to o5 and q) are also shown. The query object q is shown as a black star. Several

segments are also shown. For instance, the edge e(b, g) consists of segments s[b,o5], s[o5,o4],

s[o4,m], s[m,o3] and s[o3,g]. The weights of edges and segments are also shown. For example,

the weight of the edge e(c, g) is 5 and the weight of the edge e(b, g) is 2+4+2+2+2 = 12.

Shortest network distance SNDist(x, y) between any two points x and y is the

minimum network distance between x and y (i.e., total weight of the edges on the shortest

path from x to y). In Fig. 3.22, the shortest path from q to o4 is q → c → g → o4 and

SNDist(q, o4) is 14.

In Section 3.2.1, we had formally defined the RNN queries based on the distance

function dist(). In spatial networks, the RNN query uses the distance function such that it

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 64

returns the shortest network distance between the points (i.e, dist(x, y) = SNDist(x, y)).

3.4.2 Problem Characteristics

In this section, we study the problem characteristics. The lemma below identifies the

objects that cannot be the RNN of a query q.

Lemma 3.4.1 An object o cannot be the RNN of q if the shortest path between q and o

contains any other object o′.

Proof If an object o′ lies on the shortest path between q and o, this implies that

SNDist(o, o′) < SNDist(o, q). Hence o is not the RNN of q.

In Fig. 3.22, the object o4 is not the RNN of q because the shortest path from q to

o4 is q → c→ g → o4 which contains another object o3.

Before we present next lemma, we define dead vertices. A vertex v is called a dead

vertex if there exists an object o such that SNDist(v, o) < SNDist(v, q). The object o

is called the killer object of v because this is the object that makes the vertex v a dead

vertex. In Fig. 3.22, the vertex g is a dead vertex and o3 is its killer object. The vertex

a is not a dead vertex. Note that a dead vertex may have more than one killer objects.

For example, o3, o4 and o1 are the killer objects of the vertex g.

Lemma 3.4.2 An object o cannot be the RNN of q if the shortest path between q and o

contains a dead vertex v with a killer object o′ where o′ ∕= o.

Proof Assume that a dead vertex v exists on the shortest path between q and o. The

shortest network distance between o and q is SNDist(o, q) = SNDist(o, v) +SNDist(v, q).

Let o′ be the killer object of vertex v. The shortest network distance between o and o′

is SNDist(o, o′) ≤ SNDist(o, v) + SNDist(v, o′). By definition of a dead vertex v,

SNDist(v, o′) < SNDist(v, q). Hence, SNDist(o, o′) < (SNDist(o, v) +SNDist(v, q)

= SNDist(o, q)). Hence, o cannot be the RNN of q.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 65

Figure 3.22: RNN query in a spatial network

In Fig. 3.22, the shortest path from q to o3 contains a dead vertex g with a killer object

o1. The object o3 is not the RNN of the query q because SNDist(o1, o3) < SNDist(q, o3).

Similarly, the object o1 is also not the RNN because the shortest path between q and o1

contains the dead vertex g with a killer object o3.

Lemma 3.4.3 A vertex v′ is a dead vertex if the shortest path between q and v′ contains

a dead vertex v.

Proof Let o be the killer object of the vertex v. Then, SNDist(v′, o) ≤ SNDist(v′, v)+

SNDist(v, o). By definition of a dead vertex v, SNDist(v, o) < SNDist(v, q). Hence,

SNDist(v′, o) ≤ (SNDist(v′, v) + SNDist(v, q) = SNDist(v′, q)). Hence v′ is a dead

vertex.

In Fig. 3.22, the shortest path from q to e is q → c → g → e which contains a dead

vertex g. Hence, e is also a dead vertex.

Lemma 3.4.4 Consider an edge e(v1, v2) that contains at least two objects on it and

assume that the query q does not lie on it. The edge cannot contain any RNN if

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 66

SNDist(v1, q) ≥ ∣e(v1, v2)∣ and SNDist(v2, q) ≥ ∣e(v1, v2)∣ where ∣e(v1, v2)∣ is the weight

of the edge.

Proof ∣e(v1, v2)∣ ≥ SNDist(o, o′) for any two objects o and o′ that lie on the edge

e(v1, v2). For any object o on the edge e(v1, v2), the shortest path between o and q either

passes through v1 or v2. Hence, SNDist(o, q) ≥ min(SNDist(v1, q), SNDist(v2, q)) ≥

∣e(v1, v2)∣ ≥ SNDist(o, o′). Hence, o cannot be the RNN of q.

Before we present next lemma, we define extreme objects of an edge. An object o is

called an extreme object of an edge e(v1, v2) if either the segment s[o,v1] or the segment

s[o,v2] does not contain any other object o′. In Fig. 3.22, the objects o3 is an extreme

object of the edge e(b, g) because the segment s[o3,g] does not contain any other object.

Similarly, the object o5 is also an extreme object because the segment s[o5,b] does not

contain any other object. However, the object o4 is not an extreme object because both

the segments s[o4,b] and s[o4,g] contain an object other than o4. By definition of extreme

objects, each edge contains at most two extreme objects. This holds true even if more

than one objects lie at the same location. For instance, in Fig. 3.22, if there was an object

o′ at the same location as of o3 then both o3 and o′ would not be the extreme objects.

Lemma 3.4.5 Only the extreme objects of an edge can be the RNN of a query q given

that q does not lie on the edge.

Proof Let o be an object on the edge e(v1, v2) and o be not an extreme object. Since q

does not lie on the edge e(v1, v2), the shortest path between o and q either passes through

v1 or v2. Since o is not an extreme object, each of the segment s[o,v1] and s[o,v2] contains

at least one object other than o. Hence, the shortest path from o to q contains at least

one other object and o cannot be the RNN of q as implied by Lemma 3.4.1.

In Fig. 3.22, the object o4 cannot be the RNN of q because it is not an extreme object.

Lemma 3.4.6 Regardless of the number of queries in the system, an edge that does not

contain any query has at most two objects that can be the RNNs of any of the queries.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 67

Proof From Lemma 3.4.5, only the extreme objects can be the RNN of a query q. Since

each edge contains at most two extreme objects, only at most two objects can be the

RNNs of any of the queries.

In Fig. 3.22, assume that the object o2 is also a query point. Only the extreme objects (o3

and o5) of the edge e(b, g) can be the RNNs of the query points q and o2. Lemma 3.4.5 and

Lemma 3.4.6 imply that the extreme objects of an edge are the only possible candidate

objects for the queries that do not lie on the edge. Moreover, several queries may share

same candidate objects.

Based on the problem characteristics we studied in this section, we develop an algo-

rithm to continuously monitor RNN queries. The next section presents the framework of

our proposed technique.

3.4.3 Framework

To simplify the presentation, we assume that the safe regions of the objects and queries

are segments. Later in Section 3.4.6, we show that our technique can support the safe

regions that consist of more than one edges and segments.

Each object and query is assigned a segment that is its safe region. The safe region

of an object o is denoted as o.s[x,y]. Since the safe region of an object is a segment,

we use o.x and o.y to denote the end points of this segment. Each object and query

reports its location to the server whenever it leaves its safe region. Such updates are

called source-initiated updates. In order to update the results, the server might need to

know the exact locations of some objects. The server receives the exact location of each

such object by requesting its current location. Such updates are called server-initiated

updates.

The safe region of a query q is chosen such that q.s[x,y] does not overlap with the safe

region of any other object. The segment q.s[x,y] is considered as an edge and the end

points q.x and q.y are considered as vertices. This is to simplify the presentation because

Lemma 3.4.5 and Lemma 3.4.6 are applicable to every edge if the segment that contains

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 68

the query is considered as a different edge.

The continuous monitoring algorithm consists of two phases.

1. Filtering. In filtering phase, the set of candidate objects are retrieved by pruning

the objects that cannot be the RNN of a query q. The edges and segments of the network

that cannot contain any RNN are also pruned. The part of the network that is not pruned

is called unpruned network. The set of candidate objects remain valid unless at least one

of the following happens: i) the query or a candidate object leaves its safe region; ii) an

object enters in the unpruned network. Hence, the filtering phase is called only when at

least one of the above two happens.

2. Verification. In verification phase, for each candidate object, the server checks if

the candidate object is the RNN of q or not. More specifically, if q is the closest object

of o (in terms of SNDist), the object o is reported as the RNN. The verification phase

is called at each timestamp.

In the following, we present the details of both the filtering and verification phases.

3.4.4 Filtering

The main idea is to incrementally expand the network around the query in a way similar

to Dijkstra’s algorithm. More specifically, the vertices are accessed in increasing order

of their SNDist from q (a min-heap is used). Whenever a vertex v is de-heaped, its

adjacent vertices are inserted in the heap if v is not a dead vertex. Lemma 3.4.1 and

Lemma 3.4.2 are used to identify the candidate objects lying on the adjacent edges of v.

The algorithm stops when the heap becomes empty.

Algorithm 4 presents the details. The set of candidate objects is Scnd and is initialized

to an empty set. Let q.s[x,y] be the safe region of the query. As mentioned earlier, the

end points of the safe regions of the queries are treated as the vertices. A min-heap is

initialized and q.x and q.y are inserted with keys set to zero. The entries from the heap

are retrieved iteratively (line 5). When a vertex v is de-heaped, we consider its adjacent

vertices iteratively (line 6). Let v′ be an adjacent vertex of v. We obtain an object o

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 69

Algorithm 4 : Filtering

1: Scnd = �

2: initialize a min-heap H

3: insert q.x and q.y with keys set to zero

4: while H is not empty do

5: deheap a vertex v from H and mark it as visited

6: for each unvisited adjacent vertex v′ of v do

7: if there exists at least one object on e(v, v′) then

8: get the object o closest to v

9: Assign o a safe region o.s[x,y] and insert o in Scnd

10: d = max(∣s[v,o.x]∣, ∣s[v,o.y]∣)

11: if d < v.key then

12: mark v as dead; break;

13: if v is not marked dead then

14: for each unvisited adjacent vertex v′ of v do

15: if e(v, v′) does not contain any object then

16: if v′ is not present in the heap H then

17: insert v′ in H with key v′.key = v.key + ∣e(v, v′)∣

18: else

19: v′.key = min(v′.key, v.key + ∣e(v, v′)∣)

that lies on the edge e(v, v′) and is closest to v and assign it a safe region o.s[x,y] (lines 7

to 9).

Based on the safe region of the object o, we determine if the vertex v is a dead vertex

or not (lines 10 to 12). Recall that a vertex v is a dead vertex if its SNDist from an

object o is smaller than its SNDist from the query q. Since, we have assigned safe regions

to both the query object q and the data object o, we need to make sure that a vertex v

is marked dead only if it satisfies the condition regardless of the location of q and o in

their respective safe regions. In other words, a vertex v is marked dead if its maximum

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 70

SNDist from the safe region of o is less than its minimum SNDist from the safe region

of q. The maximum SNDist of the safe region of o from v is the maximum of the weights

of the segments s[v,o.x] and s[v,o.y] where o.x and o.y are the end points of the safe region

of o (line 10). To be more precise, this gives an upper bound on the maximum SNDist

between v and the safe region of o. The upper bound on the minimum distance of v from

the safe region of q is the key value v.key of v (the value with which it was inserted in

heap).

We use d to denote the maximum SNDist between v and the safe region of o (line 10).

The value of d is compared with the key v.key of the vertex v. If v.key is greater than d,

the vertex is marked as dead (lines 11 and 12). Please note that the vertex v will remain

dead as long as both the query object and the object o remain in their respective safe

regions.

If the vertex v is marked dead, we do not need to consider other adjacent vertices

and the objects on the adjacent edges (Lemmas 3.4.1, 3.4.2 and 3.4.3). If the vertex v

is not a dead vertex, then each of its adjacent vertex v′ that has not been visited earlier

is considered (line 14). If the edge e(v, v′) contains at least one object, the vertex v′ is

ignored (line 15). This is because if the shortest path of v′ from q passes through v, the

vertex v′ is a dead vertex because an object o exists on the shortest path. If the edge

e(v, v′) does not contain any object and v′ is not present in the heap then v′ is inserted

in the heap with key set to v.key + ∣e(v, v′)∣ (line 17). On the other hand, if v′ is already

present in the heap then its key is updated to v.key + ∣e(v, v′)∣ if v.key + ∣e(v, v′)∣ is less

than its existing key (line 19). The algorithm stops when the heap becomes empty.

The edges and segments that are explored during the execution of the algorithm form

the unpruned network. Fig. 3.23 shows an example of filtering phase called for the query

q. The unpruned network is shown in thick lines. The objects o1, o2 and o3 are the

candidate objects.

Proof of correctness can be obtained by proving that the algorithm shortlists every

object that may possibly be the RNN of q (by applying Lemma 3.4.1 and Lemma 3.4.2).

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 71

We omit the details of the proof. However, it is important to mention that the key v.key

of a vertex v may not necessarily be the shortest network distance of v from the safe

region of q because the dead vertices are not inserted in the heap. However, this does

not affect the correctness of the algorithm because if the shortest path between an object

and the query passes through a dead vertex, the object cannot be the RNN. Hence, if

v.key is not the shortest network distance between v and the safe region of q then this

implies that v is a dead vertex (Lemma 3.4.3) and we do not miss any possible RNN of

q.

3.4.5 Verification

An object o is the RNN of q if and only if there does not exist any other object o′ such

that SNDist(o, o′) < SNDist(o, q). If there exists such an object o′, the object o is not

the RNN and we say that the object o′ invalidates the candidate object o.

A straight forward approach to check if a candidate object o is the RNN is to issue a

boolean range query on the spatial network with range set to SNDist(o, q). A conven-

tional range query returns every object o′ for which SNDist(o, o′) is less than a given

range r. In contrast to conventional range queries, a boolean range query returns true

if there exists at least one object o′ for which SNDist(o, o′) is less than r otherwise it

returns false. To check if an object o is the RNN of q, a boolean range query can be issued

with range set to SNDist(o, q). If the boolean range query returns true, the object is

not the RNN. Otherwise o is reported as the RNN.

Next, we show that some candidate objects may be verified without issuing a boolean

range query.

As implied by Lemma 3.4.4, a candidate object o that lies on an edge e(v1, v2) that

contains at least one other object o′ and does not contain q cannot be the RNN of q if

∣e(v1, v2)∣ ≤ SNdist(v1, q) and ∣e(v1, v2)∣ ≤ SNDist (v2, q). Hence, we compare ∣e(v1, v2)∣

with the shortest network distances of v1 and v2 from the safe region of q and if the edge

satisfies the above conditions then the object o does not require verification. For each

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 72

Figure 3.23: Illustration of the filtering
phase

Figure 3.24: Computing monitored net-
work

such candidate object o, we keep a counter that records the number of objects on the

edge e(v1, v2) and we verify the object o only if the counter is equal to one (i.e., o is the

only object on this edge).

There may be several candidates that cannot be verified by using the strategy pre-

sented above. One possible way to verify such a candidate object is to issue a boolean

range query. Note that the cost of the verification phase may dominate the cost of the

filtering phase if a boolean range query is issued for each candidate object. Since veri-

fication is to be called at each timestamp regardless of the underlying data movement,

the safe region based approach may not improve the performance significantly if the

verification phase is expensive.

Next, we present a technique based on the concept of monitored network. Once the

monitored network for an object o is computed, the verification becomes computationally

cheap. We show that the monitored network of a candidate object does not require to be

recomputed at every timestamp. In fact, the monitored network of a candidate object

remains valid as long as the unpruned network (obtained during the filtering phase)

remains valid. In other words, the monitored network is required to be computed only

when the filtering phase is called.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 73

Let o be an unverified candidate object. Let o.s[x,y] and q.s[x,y] denote the safe regions

of the object o and the query q, respectively. We use MaxSNDist(o, q) to denote the

maximum SNDist between the safe regions of o and q (i.e., maximum SNDist between

any two points a and b where a is a point in o.s[x,y] and b is a point in q.s[x,y]). In the

example of Fig. 3.24, the safe regions of o3 and q are s[m,g] and s[n,c], respectively. The

MaxSNDist(o3, q) is 14 (i.e., the shortest network distance between m and n).

Monitored network of an object o is the part of the network such that for every point

p that does not lie on it, minimum SNDist between p and the safe region of o is greater

than MaxSNDist(o, q).

Fig. 3.24 shows the monitored network of object o3 (shown in thick lines) and it

consists of every point of the network that has minimum SNDist from the safe region

of o3 at most 14. Intuitively, the monitored network is defined as the network such that,

for any object o′ that does not lie on it, SNDist(o, o′) > SNDist(o, q) regardless of the

locations of o and q in their respective safe regions. Hence, only the objects that lie on

the monitored network are required to be considered in order to verify the candidate

object o.

Note that once the monitored network is computed it remains valid as long as q and

o remain in their respective safe regions. Hence, the recomputation of the monitored

network is not required unless at least one of q and o does not leave its safe region.

Recall that if q or o leaves its safe region, the filtering phase is required to be called

again. Hence, the monitored network remains valid as long as the filtering phase is not

required to be called again.

To compute the monitored network, we use an algorithm similar to Dijkstra’s algo-

rithm and Algorithm 4 and expand the network starting from the safe region of o until

we visit every vertex v such that minimum SNDist of v from the safe region of o is at

most equal to MaxSNDist(o, q).

To enable efficient computations of SNDist between o and other objects in the mon-

itored network, we maintain the minimum SNDist of each explored vertex from the safe

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 74

region of o. In addition, we also maintain the list of objects that lie on the monitored

network of o. An object o′ notifies the server when it enters or leaves the monitored

network of the object o and the list of the objects that lie on the monitored network of

o is updated accordingly.

Optimizations. We present two optimizations that can help in terminating the compu-

tation of the monitored network earlier.

1. During the computation of the monitored network, we do not need to expand

the network beyond a vertex v if the shortest path between v and the safe region of o

contains the query q. This is because any object o′ that lies beyond the vertex v satisfies

SNDist(o, o′) > SNDist(o, q). For example, in Fig. 3.24, an object that lies on segment

s[q,a] (e.g., o2) cannot help in verifying the object o3 because the shortest path from the

safe region of o3 to the segment s[q,a] contains the query q. Hence, we do not need to

include this segment in the monitored network.

2. Similar to the definition of MaxSNDist(o, q), we define MinSNDist(o, q) as the

minimum SNDist(o, q) between the safe regions of o and q. In the example of Fig. 3.24,

MinSNDist(o3, q) is 5 and MaxSNDist(o, q) is 14 where the safe regions of o3 and q

are s[m,g] and s[n,c], respectively.

Note that if there exists an object o′ such that it satisfies MaxSNDist(o, o′) <

MinSNDist(o, q) then the object o cannot be the RNN of q as long as the objects o

and o′ and the query q remain in their respective safe regions. We utilize this obser-

vation and expand the monitored network such that it covers every point p such that

SNDist(o, p) < MaxSNDist(o, o′). Here o′ corresponds to the object that has smallest

MaxSNDist(o, o′) among all the objects discovered so far. For instance, in Fig. 3.24,

MaxSNDist(o3, o4) is 12 (the safe region of o4 is s[b,m]) and MaxSNDist(o3, o1) is 9.

Hence, during the computation of the monitored network, we may stop expanding the

network when the expanded network contains every point p that has minimum SNDist

from the safe region of o3 at most 9. To verify the object o, we compute SNDist between

o and every other object (including the query) that lies on the expanded network.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 75

Note that if we use the optimization presented above, the computed monitored net-

work does not need to be updated as long as o, o′ and q remain in their respective safe

regions. If o′ is also a candidate object (e.g., o′ = o3 in Fig. 3.24), the monitored network

remains valid as long as the filtering phase is not called again. Otherwise, when the

object o′ moves out of its safe region the monitored network is recomputed to guarantee

the correctness.

3.4.6 Safe regions consisting of more than one edges

In this section, we show that our proposed algorithm can support the safe regions con-

sisting of more than one edges and segments. Assume that the safe region of an object o

consists of more than one edges and segments. We denote its safe region o.s by its end

points (i.e., boundary points). Consider the example of Fig. 3.23 and assume that the

safe region of the object o3 is shown in thick lines. The end points of the safe region of

o3 are m, g, d, f and a.

The safe region of a query q is always chosen such that it does not overlap with the

safe region of any other object. The algorithm 4 is modified as follows. At line 3, all the

end points of the safe region of q are inserted in the heap with keys set to zero. Moreover,

the vertices that lie inside the safe region of q are marked as visited so that they are not

considered during the network expansion. Note that as the key of every end point of q.s

is set to zero, the key of a de-heaped vertex v denotes minimum SNDist from the safe

region of q to the vertex v. At line 10, d is set as the maximum distance between v and

the safe region of o. Note that these changes guarantee that a vertex v remains dead as

long as q and o remain inside their respective safe regions.

The rest of the filtering algorithm does not require any changes. The techniques and

optimizations we presented in the verification phase can be immediately applied and do

not require any change.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 76

3.4.7 Extensions

Queries on directed graphs

In the previous section, our main focus was on the RNN queries in the spatial networks

that are represented by undirected graphs. Our proposed techniques can be easily ex-

tended for the directed graphs. Below, we highlight the changes we need to make to

extend our techniques for the RNN queries on directed graphs.

1. SNDist(x, y) is defined as the total weights of the edges and the segments on the

shortest path from the point x to the point y.

2. Lemma 3.4.1 and Lemma 3.4.2 are the same except that we use the shortest path

from o to q instead of the shortest path between q and o. The definition of the dead

vertex remains unchanged.

3. Lemma 3.4.3 is the same except that we use shortest path from v′ to q instead of

shortest path between q and v′.

4. Lemma 3.4.4 is not applicable whereas Lemma 3.4.5 and Lemma 3.4.6 remain un-

changed.

5. Filtering phase (Algorithm 4) is similar except that we expand the network from any

vertex v to v′ (see line 6) only if there is a directed edge from the vertex v′ to v. Please

note that we expand the network in the direction opposite to the direction of edges. This

is because the lemmas are applicable on the path from an object o to q and not on the

path from q to o.

6. The verification phase remains same and we compute the monitored network by

expanding the network in the direction of the edges.

RkNN queries

We briefly discuss the necessary changes that are required to extend our proposed tech-

niques for RkNN queries.

1. Lemma 3.4.1 is restated as follows. An object o cannot be the RkNN of q if the

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 77

shortest path from o to q contains at least k other objects.

2. A dead vertex v is redefined as a vertex v for which there exist at least k objects such

that for every such object o, SNDist(v, o) < SNDist(v, q). After redefining the dead

vertices, Lemma 3.4.2 and Lemma 3.4.3 do not require any modification.

3. Lemma 3.4.4 is the same except that it is applicable only on the edges that contain at

least (k + 1) objects on it. Recall that Lemma 3.4.4 is only applicable for RkNN queries

on undirected graphs. For the RkNN queries on the directed graphs, we do not consider

Lemma 3.4.4.

4. Extreme objects are redefined. An object o is called an extreme object of an edge

e(v1, v2) if either the segment s[o,v1] or the segment s[o,v2] contains at most k − 1 other

objects. Lemma 3.4.5 holds after the extreme objects are redefined as above.

5. Lemma 3.4.6 is restated as follows. Regardless of the number of queries in the system.

An edge that does not contain any query has at most 2k objects that can be the RkNNs

of any of the queries.

6. Filtering phase is similar except that we mark the vertices as dead according to the

redefined definition of the dead vertices.

7. Verification phase is similar except that an object o is reported as RkNN iff there are

at most k − 1 other objects closer to o than q. Computation of the monitored network

remains unchanged.

Bichromatic queries

Let P and O be the two sets of objects and assume that the query q belongs to O.

In the filtering phase, only the objects of type O are considered to prune the network.

The objects of type O that are discovered during the filtering phase are called filtering

objects. The objects of type P that lie on the unpruned network are called the candidate

objects. The set of candidate objects remain valid unless at least one of the following

three happens: i) the query leaves its safe region; ii) one of the filtering objects leaves

its safe region; iii) one of type P objects enters or leaves the unpruned network. In

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 78

the case when one of the first two events happens, the filtering and verification phases

are called. If only the third event happens, we do not need to call the filtering phase

again because the unpruned network is not affected by the movement of type P objects.

Instead, we update the set of candidate objects by adding the objects of type P that

enter the unpruned network and removing the type P objects that leave the unpruned

network.

3.5 Experiment Results

All the experiments were conducted on Intel Xeon 2.4 GHz dual CPU with 4 GBytes

memory. All the algorithms (including the competitors) were implemented in C++.

Our algorithm is called SAC (Swift And Cheap) due to its computational efficiency and

communication cost saving.

As discussed in Section 3.2.3, there may be some applications where the objects have

to report their locations to the server for other types of queries like range queries, nearest

neighbor queries etc. In such case, the server is responsible for checking whether an object

lies in the safe region or not. In order to show the superiority of our technique in all

kinds of applications, the computation costs shown in the experiments include the cost

of checking whether each object lies in its safe region or not. Obviously, the computation

cost would be less for the case when the clients report their locations only when they

leave their safe regions.

In Section 3.5.1, we evaluate the performance of our Euclidean space algorithm. The

performance of our spatial network algorithm is evaluated in Section 3.5.2.

3.5.1 Query Processing in Euclidean Space

For RNN queries (k = 1), we compare our algorithm with state-of-the-art algorithm

(IGERN) [KMS+07] which has been shown superior in [KMS+07] to other RNN mon-

itoring algorithms [XZ06, WYCT08a]. For RkNN queries (k > 1), we compare our

algorithm with CRkNN [WYCT08a] which is the only available RkNN monitoring algo-

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 79

rithm. In accordance with work in [KMS+07] and [WYCT08a], we choose 64 × 64 grid

structure for IGERN and 100 × 100 grid structure for CRkNN. For our algorithm, the

grid cardinality is 64× 64.

Similar to previous work, we simulated moving cars by using the spatio-temporal data

generator [Bri02]. Input to the generator is road map of Texas4 and output is a set of cars

(objects and queries) moving on the roads. The size of data universe is 1000 Km× 1000

Km. The parameters of data sets are shown in Table 3.2 and default values are shown

in bold.

Parameter Range

Number of objects (×1000) 40, 60, 80, 100, 120
Number of queries 100, 300, 500, 700, 1000
Average speed (in Km/hr) 40, 60, 80, 100, 120
Side length of safe region (in Km) 0.2, 0.5, 1, 2, 3, 4
Mobility (%) 5, 20, 40, 60, 80, 100

Table 3.2: System parameters for experiments in Euclidean space

The server reports the results continuously after every one second (i.e., the timestamp

length is 1 sec). Both the objects and queries are cars moving on roads and they have

similar properties (e.g., average speed, mobility). Mobility refers to the percentage of

objects and queries that are moving at any timestamp (percentage of objects and queries

that change their locations between two consecutive timestamps). All queries are con-

tinuously monitored for five minutes (300 timestamps) and the results shown correspond

to total CPU time and communication cost. Communication cost is the total number of

messages sent between clients and server.

In Fig. 3.25, we conduct experiments to verify the cost analysis presented in Sec-

tion 3.3.4. The experiments show that the actual cost is around 12% to 25% of the

upper bound. We also observe that the actual results follow a trend similar to the trend

anticipated by our theoretical analysis (e.g., the cost increases if the safe region is too

small or too large).

Fig. 3.26(a) shows the effect of the safe region size on computation time our algorithm

4http://www.census.gov/geo/www/tiger/

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 80

 2

 4

 8

 16

 32

0.2 0.5 1 2 3 4

of

 m
es

sa
ge

s
(in

 M
ill

io
ns

)

Side length of safe region (in Km)

Upper bound
Experimental

(a) Varying safe region

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

40 60 80 100 120

of

 m
es

sa
ge

s
(in

 M
ill

io
ns

)

Number of Objects (in thousands)

Upper bound
Experimental

(b) Varying data size

Figure 3.25: Verifying theoretical upper bound

and IGERN [KMS+07]. The computation cost consists of update handling cost, filtering

cost and verification cost. The update handling cost includes the cost of checking whether

an object/query is in its safe region or not and updating the underlying grid structure if

the object/query leaves the safe region. If the safe region is too small, the set of candidate

objects is affected frequently and the filtering is required more often. Hence, the cost

of the filtering phase increases. On the other hand, if the safe region is too large, the

number of candidate objects increases and the verification of these candidates consumes

more computation time. Also, the cost of filtering phase increases because less space can

be pruned if the safe region is large. The update handling cost is larger for smaller safe

regions because the objects and queries leave the safe regions more frequently.

 0

 20

 40

 60

 80

 100

 120

 140

0.2 0.5 1 2 3 4

T
im

e
(s

ec
on

ds
)

Side length of safe region (in Km)

Update handling time
Filtering time

Verification time

(a) Computation time

 1

 2

 3

 4

 5

0.2 0.5 1 2 3 4

of

 m
es

sa
ge

s
(in

 M
ill

io
ns

)

Side length of safe region (in Km)

Total
Source-initiated
Server-initiated

(b) Communication cost

Figure 3.26: Effect of safe region size

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 81

Fig. 3.26(b) studies the effect of safe region size on communication cost. As studied

in Section 3.3.4, the number of source-initiated updates increases if the side length of the

safe region is small. On the other hand, if the safe region is large, the number of server-

initiated updates increases. Fig. 3.26(b) verifies this. In current experiment settings, our

algorithm performs best when the side length of the safe region is 1Km so we choose this

value for the remaining experiments.

 0

 200

 400

 600

 800

 1000

 1200

40 60 80 100 120

T
im

e
(s

ec
on

ds
)

Number of Objects (in thousands)

IGERN
SAC

(a) Computation time

 0

 5

 10

 15

 20

 25

 30

40 60 80 100 120

of

 m
es

sa
ge

s
(in

 M
ill

io
ns

)

Number of Objects (in thousands)

IGERN
SAC

(b) Communication cost

Figure 3.27: Effect of data size

Fig. 3.27 shows the effect of the number of objects. Our algorithm not only outper-

forms IGERN but also scales better. The composition of CPU time is not shown due to

the huge difference in the performance of both algorithms. However, the composition of

CPU time is similar to Fig. 3.26(a) for our algorithm. For IGERN, the filtering phase

takes 95% to 99% of the total cost in all experiments. This is because the expensive

filtering phase is called frequently.

Fig. 3.28 studies the effect of the average speed of queries and objects. Fig. 3.28(a)

shows that the computation time increases for both of the approaches as the speed

increases. For our approach, the time increases because the objects and queries leave

their respective safe regions more frequently and the filtering phase is called more often.

Fig. 3.28(b) shows that IGERN requires an order of magnitude more messages than our

approach. The communication cost for our approach increases due to the larger number

of source-initiated updates as the speed increases.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 82

 0

 200

 400

 600

 800

 1000

 1200

 40 60 80 100 120

T
im

e
(s

ec
on

ds
)

Average speed (in Km/hr)

IGERN
SAC

(a) Computation time

 0

 5

 10

 15

 20

 25

 40 60 80 100 120

of

 m
es

sa
ge

s
(in

 M
ill

io
ns

)

Average speed (in Km/hr)

IGERN
SAC

(b) Communication cost

Figure 3.28: Effect of Speed

 0

 200

 400

 600

 800

 1000

 1200

5 20 40 60 80 100

T
im

e
(s

ec
on

ds
)

Mobility (in %)

IGERN
SAC

(a) Computation time

 5

 10

 15

 20

 25

 30

 35

5 20 40 60 80 100

of

 m
es

sa
ge

s
(in

 M
ill

io
ns

)

Mobility (in %)

IGERN
SAC

(b) Communication cost

Figure 3.29: Effect of data mobility

Fig. 3.29(a) compares the computation time for increasing data mobility. As ex-

pected, IGERN performs good when the object mobility is low (e.g., 5%). However, its

computation cost increases significantly as the object mobility increases. Our algorithm

performs better for all cases and scales decently. Fig. 3.29(b) studies the effect of objects

and queries mobility on the communication cost. Since only the moving objects report

their locations, the number of messages increase with the increase in mobility. How-

ever, our algorithm consistently gives improvement of more than an order of magnitude

compared to IGERN.

Fig. 3.30 studies the effect of number of queries. In Fig. 3.30(a), we note that our

algorithm gives more than an order of magnitude improvement over IGERN in terms of

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 83

 0

 500

 1000

 1500

 2000

 2500

 100 300 500 700 1000

T
im

e
(s

ec
on

ds
)

Number of queries

IGERN
SAC

(a) Computation time

 0

 5

 10

 15

 20

 25

 100 300 500 700 1000

of

 m
es

sa
ge

s
(in

 M
ill

io
ns

)

Number of queries

IGERN
SAC

(b) Communication cost

Figure 3.30: Effect of number of queries

CPU time and scales better. In accordance with the analysis in Section 3.3.4, Fig. 3.30(b)

show that the communication cost of our approach increases with the number of queries.

 173

 2814

 53962

 2 4 8 16

T
im

e
(s

ec
on

ds
)

k

CRkNN
SAC

(a) Computation time

 0

 5

 10

 15

 20

 25

 2 4 8 16

of

 m
es

sa
ge

s
(in

 M
ill

io
ns

)

k

CRkNN
SAC

(b) Communication cost

Figure 3.31: Effect of k

Fig. 3.31 studies the effect of k on communication and computation time. Fig. 3.31(a)

compares our approach with [WYCT08a] referred as CRkNN. Computation cost of both

approaches increases with increase in k. However, our algorithm scales better (note

the log scale). CRkNN continuously monitors 6k range queries to verify the candidate

objects. To monitor these queries, it keeps a counter for the number of objects leaving

and entering within the range. However, this information becomes useless when the

candidate object or query changes its location. As shown in Fig. 3.31(b), communication

cost for our approach increases for larger values of k. This is mainly because the number

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 84

of candidate objects that require verification increases with k. Communication cost of

our algorithm reaches to 24 million when k = 64 (CPU time 23, 000 sec). We were unable

to run CRkNN for k > 16 due to its large main-memory requirement.

2

4

6

8

0.2 0.5 1 2 3 4

pr
un

ed
 e

nt
rie

s
(in

 M
ill

io
n)

Side length of safe region (in Km)

Pruning Rule3
Pruning Rule2
Pruning Rule1

Figure 3.32: Effectiveness of pruning
rules

 0

 200

 400

 600

 800

 1000

 1200

82 162 322 642 1282 2562
T

im
e

(s
ec

on
ds

)
Grid Size

CPM
YPK

Grid-Tree

Figure 3.33: Effectiveness of grid-tree

Fig. 3.32 shows the effectiveness of pruning rules for different safe region sizes. Pruning

rules are applied in the same order as in Algorithm 1. If a pruning rule fails to prune

an entry (an object or a node of the grid-tree), the next pruning rule is used to prune

it. Fig. 3.32 shows that a greater number of entries are pruned if the safe region size is

small. Majority of the entries are pruned by the metric based pruning (pruning rule 3)

when the safe regions are small. The average time to prune an entry by metric based

pruning, dominance pruning and half space pruning is 1.1, 2.3 and 10.5 micro seconds,

respectively.

Now, we show the effectiveness of grid-tree over previous proposed grid access methods

CPM [MHP05] and YPK [YPK05]. Fig. 3.33 shows the total CPU time for our RNN

monitoring algorithm when the underlying constrained nearest neighbor algorithm (and

marking and unmarking of cells) use CPM, YPK and grid-tree. We change the grid size

from 8× 8 to 256× 256. Grid-tree based RNN monitoring algorithm scales much better

with increase in number of cells.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 85

3.5.2 Query Processing in Spatial Networks

To the best of our knowledge, we are the first to propose an algorithm to continuously

monitor RNN queries in spatial networks for the case where both the queries and data

objects continuously change their locations. We compare our algorithm (SAC) with a

näıve algorithm. The safe regions used by SAC consist of at most one edge. Näıve

algorithm recomputes the results at every timestamp by applying our algorithm and

setting the safe region size to zero (i.e., safe region is not used). We choose a better

competitor of our algorithm and call it NSR (No Safe Region). NSR is the same as näıve

algorithm except that it calls the filtering phase only when the query object or one of the

candidate objects changes its location. As obvious, the näıve algorithm performs worse

than NSR. Hence, we compare our algorithm with NSR.

We use the road network of California5 that consists of around 22, 380 road segments

(edges). Each object in the data set randomly picks a vertex and starts moving towards

it with a certain speed (a system parameter). When the object reaches at its destination

vertex, it randomly chooses one of its adjacent vertices and continues travelling towards

it. The queries are generated similarly. Table 3.3 shows the default parameters used in

our experiments.

Parameter Range

Number of objects (×1000) 1, 2.5, 5, 10, 15, 30, 50, 70, 150, 300
Number of queries 25, 100, 150, 250, 500, 700, 1000
Average speed (in Km/hr) 40, 60, 80, 100, 120
Mobility (%) 5, 20, 40, 60, 80, 100

Table 3.3: System parameters for experiments in road network

Each query is continuously monitored for 300 timestamps (five minutes) and the

results shown correspond to the total CPU time and total communication cost. The

communication cost corresponds to the number of messages sent between the server and

clients.

In Fig. 3.34, we study the effect of number of objects on the road network. Fig. 3.34(a)

5http://www.cs.fsu.edu/ lifeifei/Spatialdataset.htm

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 86

 1

 3

 7

 21

 67

0.1 0.25 0.5 1 1.5 3 5 7 15 30

T
im

e
(s

ec
on

ds
)

Number of Objects (X 10,000)

NSR
SAC

(a) Computation time

10

20

30

40

50

60

70

80

0.1 0.25 0.5 1 1.5 3 5 7 15 30

of

 m
es

sa
ge

s
(in

 m
ill

io
ns

)

Number of Objects (X 10,000)

NSR
SAC

(b) Communication cost

Figure 3.34: Effect of data size

shows the effect on the computation time of both the algorithms (note that log-scale is

used). Interestingly, the performance of both the algorithms is poor when the number of

objects is too small or too large. When the number of objects is large, the performance

becomes poor mainly because updates of more objects are needed to be handled. Since

the dominant cost is handling these location updates, both of the algorithms perform

similar when the number of objects is large.

When the number of objects is small, greater number of edges are to be explored for

filtering and verification phases which results in greater computation time. Note that if

each edge contains several objects, the RNN queries can be answered by visiting at most

one or two edges. Hence, it would be more interesting to compare the performance of

the algorithms where the density of objects (number of objects per edge) is low. For this

reason, we choose 5000 objects for the rest of the experiments.

Fig. 3.34(b) shows the trend that the communication costs of both algorithms increase

with the increase in number of objects (log scale is used for x-axis). However, the safe

region based algorithm SAC scales much better than NSR.

Fig. 3.35 studies the effect of data mobility on both of the algorithms. As expected,

both algorithms perform worse as the data mobility increases. However, SAC scales much

better than NSR both in terms of computation time and communication cost.

Fig. 3.36 studies the effect of speed of the objects and queries on the algorithms.

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 87

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 5 20 40 60 80 100

T
im

e
(s

ec
on

ds
)

Mobility (in %)

NSR
SAC

(a) Computation time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

of

 m
es

sa
ge

s
(X

 1
00

0)

Mobility (in %)

NSR
SAC

(b) Communication cost

Figure 3.35: Effect of data mobility

 0

 1

 2

 3

 4

 5

 6

 7

 8

 40 60 80 100 120

T
im

e
(s

ec
on

ds
)

Average Speed (in Km/hr)

NSR
SAC

(a) Computation time

 0

 200

 400

 600

 800

 1000

 1200

 40 60 80 100 120

of

 m
es

sa
ge

s
(X

 1
00

0)

Average Speed (in Km/hr)

NSR
SAC

(b) Communication cost

Figure 3.36: Effect of speed

The experiments demonstrate that the performance of the proposed technique is not

significantly affected by the speed. Although the objects and queries leave their safe

regions more frequently as the speed increases, the communication cost is not significantly

affected. This is because the total communication cost is dominated by the server initiated

updates (e.g., when the server requests the objects to send their exact locations in order

to verify if a candidate is the RNN or not). The number of server initiated updates does

not depend on the speed hence the total communication cost is not significantly affected

by the speed.

In Fig. 3.37, we change the number of queries and show the effect on the performances

of both the algorithms. The computation times for both of the algorithms increase

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 88

 0

 10

 20

 30

 40

 50

 60

25 100 250 500 700 1000

T
im

e
(s

ec
on

ds
)

Number of queries

NSR
SAC

(a) Computation time

 0

 200

 400

 600

 800

 1000

 1200

 1400

25 100 250 500 700 1000

of

 m
es

sa
ge

s
(X

 1
00

0)

Number of queries

NSR
SAC

(b) Communication cost

Figure 3.37: Effect of number of queries

as the number of queries increases but SAC scales much better. The communication

cost of NSR does not depend on the number of queries because each object reports its

location whenever it changes its location. On the other hand, the communication cost of

SAC increases mainly because more objects are required to be verified if the number of

queries is large. To verify more objects, greater number of server initiated updates are

required and this results in increased communication cost. Fig. 3.37(b) shows that the

communication cost of SAC is more than the cost of NSR when a large proportion of the

data objects are also the query objects (e.g., 1000 queries among 5000 objects).

We remark that in the worst case the communication cost of SAC can be at most

two times the cost of NSR. This is because, for each object, at most two messages are to

be sent (one to request the location and one to receive the server). Nevertheless, in the

applications where the proportion of queries is large, the clients (data objects) may be

configured to send their locations at every timestamp. The communication cost in this

case would be the same as the cost of NSR.

Fig. 3.38 shows the average time taken by a call to filtering phase, a call to compute

the monitored network (shown as MN computation) and a call to verify the objects

(after the monitored network has been computed). As expected, the cost of filtering and

computing the monitored network is high if the number of objects is too large or too

small. The cost of verification increases when the data size is too small. This is mainly

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 89

 0.003

 0.007

 0.035

 0.1

 0.23

 0.9

0.1 0.25 0.5 1 1.5 3 5 7 15 30

T
im

e
(in

 m
ill

i s
ec

)

Number of Objects (X 10,000)

Filtering
MN computation

Verification

Figure 3.38: Costs of different phases

 0

 1

 2

 3

 4

 5

 6

 7

0.1 0.25 0.5 1 1.5 3 5 7 15 30

N
um

be
r

of
 o

bj
ec

ts

Number of Objects (X 10,000)

Candidates
RNNs

Figure 3.39: Average number of candi-
dates

because the number of candidate objects increases when the data size is small. The next

experiment confirms this trend.

In Fig. 3.39, we study the effect of data size on the number of candidate objects and

the number of RNNs. We observe that the number of candidate objects is large when

the data size is small. This is because the algorithm needs to explore more edges during

the filtering phase and the pruning power decreases.

3.6 Summary

In this chapter, we studied the problem of continuous monitoring of reverse k nearest

neighbors queries in Euclidean space as well as in spatial networks. Existing techniques

are sensitive towards objects and queries movement. For example, the results of a query

are to be re-computed whenever the query changes its location. We present a framework

for continuous reverse k nearest neighbor (RkNN) queries by assigning each object and

query with a safe region such that the expensive recomputation is not required as long as

the query and objects remain in their respective safe regions. This significantly improves

the computation cost. As a by-product, our framework also reduces the communication

cost in client-server architectures because an object does not report its location to the

server unless it leaves its safe region or the server sends a location update request. We

also conduct a rigid cost analysis for our Euclidean space RkNN algorithm. We show

Chapter 3. Lazy Updates: Continuously Monitoring RkNN Queries 90

that our techniques can also be applied to answer bichromatic RkNN queries in Euclidean

space as well as in spatial networks. Furthermore, we show that our techniques can be

extended for the spatial networks that are represented by directed graphs. The extensive

experiments demonstrate that our techniques outperform the existing techniques by an

order of magnitude in terms of computation cost and communication cost.

Chapter 4

Influence Zone Based Processing

of RkNN Queries

Chapter 3 presented our technique (Lazy Updates) to answer continuous RkNN queries

in Euclidean space and in spatial networks. Lazy Updates can be used to answer RkNN

queries for the case when all the queries and the data objects are moving. In many

applications, the queries do not change their locations. In this chapter, based on a novel

concept of influence zone, we present a more efficient technique for the case when only the

data objects move whereas the queries do not change their locations. Our influence zone

based approach can also be used to efficiently answer snapshot RkNN queries and perform

all existing techniques. This chapter is based on our research reported in [CLZZ11, CLZZ].

4.1 Overview

As stated earlier, a RkNN query finds every data point for which the query point q is

one of its k nearest neighbors. Since q is close to such data points, q is said to have

high influence on these points. Hence, the set of points that are the RkNNs of a query

is called its influence set [KM00]. Consider the example of a gas station. The drivers

for which this gas station is one of the k nearest gas stations are its potential customers.

91

Chapter 4. Influence Zone Based Processing of RkNN Queries 92

Throughout this chapter, the objects that provide a facility or service (e.g., gas stations)

are called facilities and the objects (e.g., the drivers) that use the facility are called users.

The influence set of a given facility q is then the set consisting of every user for which q

is one of its k closest facilities.

In this chapter, we first introduce a more generic concept called influence zone and

then we show that the influence zone can be used to efficiently compute the influence set

(i.e., RkNNs). Consider a set of facilities F = {f1, f2, ⋅ ⋅ ⋅ , fn} where fi represents a point

in Euclidean space and denotes the location of the itℎ facility. Given a query q ∈ F , the

influence zone Zk is the area such that for every point p ∈ Zk, q is one of its k closest

facilities and for every point p′ /∈ Zk, q is not one of its k closest facilities.

The influence zone has various applications in location based services, marketing and

decision support systems. Consider the example of a coffee shop. Its influence zone may

be used for market analysis as well as targeted marketing. For instance, the demographics

of its influence zone may be used by the market researchers to analyse its business. The

influence zone can also be used for marketing, e.g., advertising bill boards or posters

may be placed in its influence zone because the people in this area are more likely to be

influenced by the marketing. Similarly, the people in its influence zone may be sent SMS

advertisements.

Note that the concept of the influence zone is more generic than the influence set,

i.e., the RkNNs of q can be computed by finding the set of users that are located in its

influence zone. We show that our influence zone based RkNN algorithms significantly

outperform existing best known algorithms for both the snapshot and continuous RkNN

queries.

Existing RkNN processing techniques [SAA00, TPL04, WYCT08b, KMS+07] (in-

cluding Lazy Updates presented in Chapter 3) require a verification phase to answer

the queries. Initially, the space is pruned by using the locations of the facility points.

Then, the users that are located in the unpruned space are retrieved. These users are

the possible RkNNs and are called candidates. Finally, in the verification phase, a range

Chapter 4. Influence Zone Based Processing of RkNN Queries 93

query is issued for every candidate to check if it is a RkNN or not.

In contrast to the existing approaches, our influence zone based algorithm does not

require the verification phase. Initially, we use our algorithm to efficiently compute the

influence zone. Then, every user that is located in the influence zone is reported as

RkNN. This is because a user can be the RkNN if and only if it is located in the influence

zone. Similarly, to continuously monitor RkNNs, initially the influence zone is computed.

Then, to update the results, we only need to monitor the users that enter or leave the

influence zone (i.e., the users that enter in the influence zone become the RkNNs and

the users that leave the influence zone are no more the RkNNs). To further improve the

performance, we present efficient methods to check whether a point lies in the influence

zone or not.

It is important to note that the influence zone of a query is the same as the Voronoi

cell of the query when k = 1 [SRAA01]. For arbitrary value of k, there does not exist

an equivalent representation in literature (i.e., order k Voronoi cell is different from the

influence zone). Nevertheless, we show that a precomputed order k Voronoi diagram can

be used to compute the influence zone (see Section 4.5.1). However, using the precom-

puted Voronoi diagrams is not a good approach to process spatial queries as mentioned

in [ZZP+03]. For instance, the value of k is not known in advance and precomputing

several Voronoi diagrams for different values of k is expensive and incurs high space

requirement. In Section 4.5.1, we state several other limitations of this approach.

Below, we summarize our contributions.

∙ We present an efficient algorithm to compute the influence zone. Based on the influ-

ence zone computation algorithm, we present efficient algorithms that outperform

best known techniques for both snapshot and continuous RkNN queries.

∙ We provide a detailed theoretical analysis to analyse the IO costs of our influence

zone and RkNN computation algorithms, the area of the influence zone and the

number of RkNNs. Our experiment results show the accuracy of our theoretical

Chapter 4. Influence Zone Based Processing of RkNN Queries 94

analysis.

∙ Our main algorithm uses an algorithm similar to the one proposed in [WYCT08b].

It was shown that the complexity of that algorithm is O(m2) [WYCT08b] where m

is the number of facilities used to prune the search space. We conduct a rigorous

complexity analysis and show that the complexity of the algorithm can be reduced

to O(km) when k is smaller than m.

∙ We demonstrate that the influence zone computation technique can be extended for

dimensionality higher than two. We also present techniques to efficiently update the

influence zone when the underlying data set is updated by insertions or deletions.

∙ Our extensive experiments on real and synthetic data demonstrate that our pro-

posed algorithms are several times faster than the existing best known algorithms

for both the snapshot and continuous RkNN queries.

This chapter is organized as follows. In Section 4.2, we formally define the problem

using specific terms and notations that ease the presentation of our techniques. Sec-

tion 4.3 presents our technique to efficiently compute the influence zone. In Section 4.4,

we present efficient techniques to answer RkNN queries by using the influence zone. A

detailed theoretical analysis is presented in Section 4.5. The techniques to handle data

updates are presented in Section 4.6 followed by the experiment results in Section 4.7.

Section 4.8 summarizes this chapter.

4.2 Problem Definition

For the ease of presenting the techniques in this chapter, we redefine the problem of RkNN

queries by using different terms and notations. We remark that the problem remains the

same as was defined in previous chapters and only the terms and notations used to define

it are changed.

Consider a set of facilities F = {f1, f2, ⋅ ⋅ ⋅ fn} and a query q ∈ F in a Euclidean

Chapter 4. Influence Zone Based Processing of RkNN Queries 95

space1. Given a point p, Cp denotes a circle centered at p with radius equal to dist(p, q)

where dist(p, q) is the distance between p and q. ∣Cp∣ denotes the number of facilities

that lie within the circle Cp (i.e., the count of facilities such that for each facility f ,

dist(p, f) < dist(p, q)). Please note that the query q can be one of the k closest facilities

of a point p iff ∣Cp∣ < k. Now, we define influence zone and RkNN queries.

Influence zone Zk. Given a set of facilities F and a query q ∈ F , the influence zone

Zk is the area such that for every point p ∈ Zk, ∣Cp∣ < k and for every point p′ /∈ Zk,

∣Cp′ ∣ ≥ k.

Now, we define the reverse k nearest neighbor (RkNN) queries. RkNN queries are

classified [KM00] into bichromatic and monochromatic RkNN queries. Below, we define

both.

Bichromatic RkNN queries. Given a set of facilities F , a set of users U and a query

q ∈ F , a bichromatic RkNN query is to retrieve every user u ∈ U for which ∣Cu∣ < k.

Consider that the supermarkets and the houses in a city correspond to the set of

facilities and users, respectively. A bichromatic RkNN query may be used to find every

house for which a given supermarket is one of the k closest supermarkets.

Monochromatic RkNN queries. Given a set of facilities F and a query q ∈ F , a

monochromatic RkNN query is to retrieve every facility f ∈ F for which ∣Cf ∣ < k + 1.

Please note that for every f , Cf contains the facility f . Hence we have condition

∣Cf ∣ < k + 1 instead of ∣Cf ∣ < k. Consider a set of police stations. For a given police

station q, its monochromatic RkNNs are the police stations for which q is one of the k

nearest police stations. Such police stations may seek assistance (e.g., extra policemen)

from q in case of an emergency event.

Bichromatic continuous RkNN queries. As mentioned in Chapter 1, in a continuous

query, the results are to be continuously updated as the objects in the underlying data

sets change their locations. In this chapter, we focus on a special case of continuous

RkNN queries where only the users change their locations.

1Although, like existing techniques [WYCT08b, CLZ+09], our focus in this chapter is two dimensional
location data, in Section 4.3.4, we show that the techniques can be extended to higher dimensionality.

Chapter 4. Influence Zone Based Processing of RkNN Queries 96

Given a set of facilities F , a query q ∈ F and a set of users U , a continuous RkNN

query is to continuously update the bichromatic RkNNs of q when one or more users

change their locations.

A gas station may want to continuously monitor the vehicles for which it is one of

the k closest gas stations. It may issue a continuous RkNN query to do so.

Table 4.1 defines other notations used throughout this chapter.

Table 4.1: Notations
Notation Definition

q the query point
Cp a circle centered at p with radius dist(p, q)
∣Cp∣ the number of facilities located inside Cp

Bx:q a perpendicular bisector between point x and q
Hx:q a half-plane defined by Bx:q containing point x
Hq:x a half-plane defined by Bx:q containing point q

4.3 Computing Influence Zone

4.3.1 Problem Characteristics

Given two facility points a and q, a perpendicular bisector Ba:q between these two points

divides the space into two halves as shown in Fig 4.1(a). The half plane that contains a is

denoted as Ha:q and the half plane that contains q is denoted as Hq:a. The perpendicular

bisector has the property that any point p (depicted by a star in Fig. 4.1(a)) that lies in

Ha:q is closer to a than q (i.e., dist(p, a) ≤ dist(p, q)) and any point y that lies in Hq:a

is closer to q than a (i.e., dist(y, q) ≤ dist(y, a)). Hence, q cannot be the closest facility

of any point p that lies in Ha:q, i.e., Cp contains at least one facility a. We say that the

point p is pruned by the bisector Ba:q if p lies in Ha:q. Alternatively, we say that the

point a prunes the point p. In general, if a point p is pruned by at least k bisectors then

Cp contains at least k facilities (i.e., ∣Cp∣ ≥ k).

Existing work [TPL04, WYCT08b, CLZ+09] use this observation to prune the space

that cannot contain any RkNN of q. More specifically, an area can be pruned if at least

k bisectors prune it. In Fig. 4.1, five facility points (q, a, b, c and d) are shown. In

Chapter 4. Influence Zone Based Processing of RkNN Queries 97

Fig. 4.1(a) the bisectors between q and two facility points a and b are drawn (see Ba:q

and Bb:q). If k is 2, then the white area can be pruned because it lies in two half-planes

(Ha:q and Hb:q) and ∣Cp′ ∣ ≥ 2 for any point p′ in it. The area that is not pruned is called

unpruned area and is shown shaded.

q

a

b

c
p

B
a:q

B
b:q

d

(a) Unpruned area is not influence zone

q

a

b

c

B
a:q

B
b:q

B
c:q

d

B
d:q

(b) Unpruned area is influence zone

Figure 4.1: Computing influence zone Zk (k = 2)

Although it can be guaranteed that for every point p′ in the pruned area ∣Cp′ ∣ ≥ k,

it cannot be guaranteed that for every point p in the unpruned area ∣Cp∣ < k if we only

consider a subset of the bisectors instead of all bisectors. In other words, the unpruned

area is not the influence zone. For example, in Fig. 4.1(a), the point p lies in the unpruned

area but ∣Cp∣ = 2 (i.e., Cp contains a and c). Hence, the shaded area of Fig. 4.1(a) is not

the influence zone.

One straight forward approach to compute the influence zone is to consider the bisec-

tors of q with every facility point f . If the bisectors of q and all facilities are considered,

then the unpruned area is the area that is pruned by less than k bisectors. Fig. 4.1(b)

shows the unpruned area (the shaded polygon) after the bisectors Bc:q and Bd:q are also

considered. It can be verified that the shaded area is the influence zone (i.e., for every p

in the shaded area ∣Cp∣ < 2 and for every p′ outside it ∣Cp′ ∣ ≥ 2).

However, this straight forward approach is too expensive because it requires comput-

Chapter 4. Influence Zone Based Processing of RkNN Queries 98

ing the bisectors between q and all facility points. We note that for some facilities, we

do not need to consider their bisectors. In Fig. 4.1(b), it can be seen that the bisector

Bd:q (shown in broken line) does not affect the unpruned area (shown shaded). In other

words, if the bisectors of a, b and c are considered then the bisector Bd:q does not prune

more area. Hence, even if Bd:q is ignored, the influence zone can be computed.

Next, we present some lemmas that help us in identifying the facilities that can be

ignored. Without loss of generality, we assume that the data universe is bounded by

a square. Since we use bisectors to prune the space, the unpruned area is always a

polygon and is interchangeably called unpruned polygon hereafter. Below we present

several lemmas that not only guide us to the final lemma but also help us in few other

proofs in the chapter.

Lemma 4.3.1 A facility f can be ignored if, for every point p of the unpruned polygon,

the facility f lies outside Cp.

Proof As described earlier, a point p can be pruned by the bisector Bf :q iff dist(p, f) <

dist(p, q). In other words, the point p can be pruned iff Cp contains f . Hence, if f lies

outside Cp, it cannot prune p. If f lies outside Cp for every point p, it cannot prune any

point of the unpruned polygon and can be ignored for this reason.

Checking containment of f in Cp for every point p is not feasible. In next few lemmas,

we simplify the procedure to check if a facility point can be ignored.

Lemma 4.3.2 Let pq be a line segment between two points q and p. Let p′ be a point on

pq. The circle Cp′ is contained by the circle Cp.

Fig. 4.2(a) shows an example where the circle Cp′ (the shaded circle) is contained by

Cp (the large circle). The proof is straight forward and is omitted. Based on this lemma,

we present our next lemma.

Lemma 4.3.3 A facility f can be ignored if, for every point p on the boundary of the

unpruned polygon, f lies outside Cp.

Chapter 4. Influence Zone Based Processing of RkNN Queries 99

p

p'

q

(a) Lemma 4.3.2 and 4.3.3

qA

B

p

(b) Lemma 4.3.4

Figure 4.2: Illustration of Lemmas 4.3.2, 4.3.3 and 4.3.4

Proof We prove the lemma by showing that we do not need to check containment of f

in Cp′ for any point p′ that lies within the polygon. Let p′ be a point that lies within the

polygon. We draw a line that passes through q and p′ and cuts the polygon at a point

p (see Fig. 4.2(a)). From Lemma 4.3.2, we know that Cp contains Cp′ . Hence, if f lies

outside Cp, then it also lies outside Cp′ . Hence, it suffices to check the containment of f

in Cp for every point p on the boundary of the polygon.

The next two lemmas show that we can check if a facility f can be ignored or not by

only checking the containment of f in Cv for every vertex v of the unpruned polygon.

Lemma 4.3.4 Given a line segment AB and a point p on AB. The circle Cp is contained

by CA ∪ CB, i.e., every point in the circle Cp is either contained by CA or by CB (see

Fig. 4.2(b)).

Proof Fig. 4.3 shows the line segment AB and the point p. It suffices to show that the

boundary of Cp is contained by CA ∪ CB. If q lies on AB, the lemma can be proved

by Lemma 4.3.2. Otherwise, we identify a point D such that AB is a segment of the

perpendicular bisector between D and q. Then, we draw a line L that passes through

points D and q. First, we show that the part of the circle Cp that lies on the right side

Chapter 4. Influence Zone Based Processing of RkNN Queries 100

of L (i.e., the shaded part in Fig. 4.3(a)) is contained by CB. Then, we show that the

part of the circle Cp that lies on the left side of L (i.e., the shaded part in Fig. 4.3(b)) is

contained by CA.

q

X

A

B

Ep
D

L

(a) For right side of L

q

X

A

B

p
D

L

(b) For left side of L

Figure 4.3: Proof of Lemma 4.3.4

We can find the length of qB (denoted as qB) by using the triangle△qpB and applying

the law of cosines (see Fig. 4.3(a)).

qB =

√

(pB)2 + (pq)2 − 2 ⋅ pB ⋅ pq(Cos∡Bpq) (4.1)

For any point X that lies on the boundary of Cp and is on the right side of L (i.e., the

boundary of the shaded circle in Fig. 4.3(a)), consider the triangle △ pXB. The length

of BX can be computed using the law of cosines.

BX =

√

(pB)2 + (pX)2 − 2 ⋅ pB ⋅ pX(Cos∡BpX) (4.2)

Please note that the triangles △qpB and △DpB are similar because Dp = qp and

DB = qB (any point on a perpendicular bisector Bu:v is equi-distant from u and v). Due

to similarity of triangles △qpB and △DpB, ∡Bpq = ∡BpD.

It can be shown that BX ≤ qB by comparing Eq. (4.1) and Eq. (4.2). This is because

pX = pq and ∡BpX ≤ (∡Bpq = ∡BpD). Since cosine monotonically decreases as the

Chapter 4. Influence Zone Based Processing of RkNN Queries 101

angle increases from 0∘ to 180∘, BX ≤ qB. This means the point X lies within the circle

CB.

Similarly, for any X that lies on the part of circle Cp that is on left side of the line

L (see Fig. 4.3(b)) it can be shown that AX ≤ (AD = Aq). This can be achieved by

considering the triangles △pXA and △pDA and using law of cosines to obtain AX and

AD (the key observation is that ∡XpA ≤ ∡DpA).

Lemma 4.3.5 A facility f can be ignored if, for every vertex v of the unpruned polygon,

the facility f lies outside Cv.

Proof Let AB be an edge of the polygon. From Lemma 4.3.4, we know that if a facility

f lies outside CA and CB, then it lies outside Cp for every point p on the edge AB. This

implies that if f lies outside Cv for every vertex v of the polygon then it lies outside Cp

for every point p that lies on the boundary of the polygon. Such facility f can be ignored

as stated in Lemma 4.3.3.

Next lemma shows that we only need to check this condition for convex vertices.

First, we define the convex vertices.

Definition 4.3.6 Consider a polygon P where V is the set of its vertices. Let Hcon be

the convex hull of V . The vertices of Hcon are called convex vertices of the polygon P

and the set of the convex vertices is denoted as Vcon.

Fig. 4.4 shows an example where a polygon with vertices A to J is shown in broken

lines. Its convex hull is shown in solid lines which contains the vertices A, C, E, G and

I and these vertices are the convex vertices. Note that Vcon ⊆ V .

Lemma 4.3.7 A facility f can be ignored if it lies outside Cv for every convex vertex v

of the unpruned polygon P .

Proof By definition of a convex hull, the convex hull Hcon contains the polygon P . If

a facility point f does not prune any point of the convex polygon Hcon, it cannot prune

Chapter 4. Influence Zone Based Processing of RkNN Queries 102

any point of the polygon P because P ⊆ Hcon. Hence, it suffices to check if f prunes

any point of Hcon or not. From Lemma 4.3.5, we know that f does not prune any point

of Hcon if it lies outside Cv for every vertex v of Hcon. Hence, f can be ignored if it lies

outside every Cv where v is a vertex of the convex polygon (i.e., v is a convex vertex).

The above lemma identifies a condition for a facility f to be ignored. Next lemma

shows that any facility that does not satisfy this condition prunes at least one point of

the unpruned area. In other words, next lemma shows that the above condition is tight.

Lemma 4.3.8 If a facility f lies in any Cv for any convex vertex v of the unpruned

polygon P then there exists at least one point p in the polygon P that is pruned by f .

Proof If f lies in Cv for any v ∈ Vcon, it means that dist(f, v) < dist(f, q). Hence, f

prunes the vertex v. Since Vcon ⊆ V , the vertex v is a point in the polygon P .

4.3.2 Algorithm

Based on the problem characteristics we described earlier in this section, we propose

an algorithm to efficiently compute the influence zone. We assume that the facilities are

indexed by an R-tree [Gut84]. The main idea is that the facilities are iteratively retrieved

and the space is iteratively pruned by considering their bisectors with q. The facilities

that are close to the query q are expected to prune larger area and are given priority.

Algorithm 5 presents the details. Initially, the whole data space is considered as the

influence zone and the root of the R-tree is inserted in a min-heap ℎ. The entries are

iteratively de-heaped from the heap. The entries in the heap may be rectangles (e.g.,

intermediate nodes) or points. If a de-heaped entry e completely lies outside Cv of all

convex vertices of the current influence zone (e.g., the current unpruned area), it can be

ignored. Otherwise, it is considered valid (lines 5 to 7). If the entry is valid and is an

intermediate node or a leaf node, its children are inserted in the heap (lines 8 to 10).

Otherwise, if the entry e is valid and is a data object (e.g., a facility point), it is used to

Chapter 4. Influence Zone Based Processing of RkNN Queries 103

prune the space. The current influence zone is also updated accordingly (line 12). The

algorithm stops when the heap becomes empty.

Algorithm 5 Compute Influence Zone

Input: a set of objects O, a query q ∈ O, k

Output: Influence Zone Zk

1: initialize Zk to the boundary of data universe

2: insert root of R-tree in a min-heap ℎ

3: while ℎ is not empty do

4: deheap an entry e

5: for each convex vertex v of Zk do

6: if mindist(v, e) < dist(v, q) then

7: mark e as valid; break

8: if e is valid then

9: if e is an intermediate node or leaf then

10: insert every child c in ℎ with key mindist(q, c)

11: else if e is an object then

12: update the influence zone Zk using e

The proof of correctness follows from the lemmas presented in the previous section

because only the objects that do not affect the unpruned area are ignored. It is also

important to note that the entries of R-tree are accessed in ascending order of their min-

imum distances to the query. The nearby facility points are accessed and the unpruned

area keeps shrinking which results in a greater number of upcoming entries being pruned.

Hence, the entries that are far from the query are never accessed.

Updating unpruned polygon

Now, we briefly describe how to update the unpruned polygon (or current influence zone)

when a new facility point f is considered (line 12 of Algorithm 5). The main idea is similar

to [WYCT08b]. The intersection points between all the bisectors are maintained. Each

Chapter 4. Influence Zone Based Processing of RkNN Queries 104

intersection point is assigned a counter that denotes the number of bisectors that prune

it. Fig. 4.5 shows an example (k = 2) where three bisectors Ba:q, Bb:q and Bc:q have been

considered. The counter of intersection point v11 is 2 because it is pruned by Bb:q and Bc:q.

The counter of v8 is 1 because it is pruned only by Bc:q. It can be immediately verified

that the unpruned area can be defined by only the intersection points with counters

less than k [WYCT08b] (see the shaded area of Fig. 4.5). Hence, we can discard the

intersection points with counters at least equal to k.

q
A

B

C

D

E

F

G

H

I

J

Figure 4.4: Convex polygon

q

v
1
 = 3

B
a:q

B
b:q

B
c:q

v
2
 = 1

v
3
 = 0v

6
 = 2 v

5
 = 1 v

4
 = 0

v
7
 = 0

v
8
 = 1

v
9
 = 0

v
10
 = 0

v
11
 = 2

v
12
 = 2

Figure 4.5: Computing counters

Algorithm 6 shows the details of updating the influence zone when a new facility f is

considered. Firstly, the algorithm computes the new intersection points between Bf :q and

the existing bisectors. The counters of these new intersection points are also computed

(line 1). Then, the algorithm updates the counters of all existing intersection points

(line 2). More specifically, the counter of an existing intersection point p is incremented

by one if Bf :q prunes p. Otherwise, the counter remains unchanged. The algorithm

discards the intersection points with counters at least equal to k (line 3). Then, the

algorithm computes the current unpruned polygon and determines the convex vertices

(lines 4 and 5). Recall that determining the convex vertices is important in order to

apply Lemma 4.3.7.

We remark that the first three lines of Algorithm 6 are the same as used in the

Chapter 4. Influence Zone Based Processing of RkNN Queries 105

Algorithm 6 update influence zone

Input: current influence zone Zk, a new facility f

Output: updated influence zone Zk

1: compute new intersection points and their counters

2: update the counters of existing intersection points

3: discard intersection points with counters at least equal to k

4: compute the unpruned polygon

5: find the convex vertices

technique proposed by Wu et. al [WYCT08b]. They showed by a simple analysis that

the complexity of these lines is O(m2) where m is the number of existing bisectors con-

tributing to the unpruned polygon. Later in Section 4.5.4, we conduct a more rigorous

complexity analysis and show that the overall complexity of Algorithm 6 can be reduced

to O(km) when k is smaller than m.

Optimizations

In this section, we present few optimizations to improve the efficiency of Algorithm 5.

It can be shown that the number of convex vertices is O(m) where m is the number

of bisectors considered so far [WYCT08b] (i.e., m is the number of facilities used to

update the current influence zone at line 12 of Algorithm 5). Hence, checking whether

an entry of the R-tree is valid or not requires O(m) distance computations (see lines 5- 7

of Algorithm 5). Next, we present few observations and show that we can determine the

validity of some entries by a single distance computation.

Lemma 4.3.9 Let rmin be the minimum distance of q to the boundary of the unpruned

polygon. Then, an entry e is a valid entry if mindist(q, e) < 2rmin (Fig. 4.6(a) shows

rmin).

Proof To prove that e is a valid entry, we show that there exists at least one point p in

the unpruned polygon such that Cp contains e. If e lies inside the unpruned polygon then

Chapter 4. Influence Zone Based Processing of RkNN Queries 106

q
A

B

C
D

E

F

G
H

I

r
min

r
max

p

e

(a) Lemma 4.3.9

q

r
max

p

e

(b) Lemma 4.3.10

Figure 4.6: Optimizations

e is a valid entry because Ce contains e and e is a point in the unpruned polygon. Now,

we prove the lemma for the case when e lies outside the unpruned polygon. Fig. 4.6(a)

shows an entry e for which dist(q, e) < 2rmin. We draw a line that passes through

e and q and intersects the boundary of the unpruned polygon at a point p. Clearly,

dist(p, e) = dist(q, e)− dist(p, q). We know that dist(q, e) < 2rmin and dist(p, q) ≥ rmin.

Hence, dist(p, e) ≤ rmin which implies that dist(p, e) ≤ dist(p, q). Hence, e lies in Cp.

Lemma 4.3.10 Let rmax be the distance of q to the furthest vertex of the unpruned

polygon. Then, an entry e of the R-tree is an invalid entry if mindist(e, q) > 2rmax.

Proof Fig. 4.6(b) shows rmax and a point e such that dist(e, q) > 2rmax. Consider a

point p on the boundary of the unpruned polygon. By the definition of rmax, dist(p, q) ≤

rmax. Clearly, dist(p, q)+dist(p, e) ≥ dist(q, e) (this covers both the cases when p lies on

the line qe and when △qpe is a triangle). Since, dist(p, q) ≤ rmax and dist(e, q) > 2rmax,

dist(p, e) must be greater than rmax. Hence, dist(p, e) > dist(p, q) which means e lies

outside Cp. This holds true for every point p on the boundary of the unpruned polygon.

Hence, e can be ignored (i.e., e is invalid).

Chapter 4. Influence Zone Based Processing of RkNN Queries 107

If an entry of the R-tree satisfies one of the above two lemmas, we can determine its

validity without computing its distances from the convex vertices. Note that rmax and

rmin can be computed in linear time to the number of edges of the unpruned polygon

and are only computed when the influence zone is updated at line 12 of Algorithm 5.

4.3.3 Checking containment in the influence zone

The applications that use influence zone may require to frequently check if a point or

a shape lies within the influence zone or not. Although the suitability of a method to

check the containment depends on the nature of the application, we briefly describe few

approaches.

One simple approach is to record all the objects that were accessed during the con-

struction of the influence zone (the objects for which the bisectors were considered). If

a shape is pruned by less than k of these bisectors then the shape lies inside the influ-

ence zone otherwise it lies outside the influence zone. This approach takes linear time

in number of the accessed objects. Moreover, checking whether a point is pruned by a

bisector Bf :q is easy (e.g., if dist(p, f) < dist(p, q) then the point p is pruned otherwise

not). Hence, a point containment check requires O(m) distance computations where m

is the number of the accessed objects.

Before we show that the point containment can be done in logarithmic time, we define

a star-shaped polygon [PS85]. A polygon is a star-shaped polygon if there exists a point z

in it such that for each point p in the polygon the segment zp lies entirely in the polygon.

The point z is called a kernel point. The polygon shown in Fig. 4.6(a) is a star-shaped

polygon and q is its kernel point. Fig. 4.7(a) shows a polygon that is not star-shaped

(the segment qp does not lie entirely in the polygon). Let n be the number of vertices

of a star-shaped polygon. After a linear time pre-processing, every point containment

check can be done in O(log n) if a kernel point of the polygon is known [PS85]. Please

see [PS85] for more details.

Chapter 4. Influence Zone Based Processing of RkNN Queries 108

Lemma 4.3.11 The influence zone is always a star-shaped polygon and q is its kernel

point.

Proof We prove this by contradiction. Assume that there is a point p in the influ-

ence zone such that the segment pq does not lie completely within the influence zone.

Fig. 4.7(a) shows an example, where a point p′ lies on the segment pq but does not lie

within the influence zone. From Lemma 4.3.2, we know that Cp contains Cp′ . Since p′ is

a point outside the influence zone, ∣Cp′ ∣ ≥ k. As Cp′ is contained by Cp, ∣Cp∣ ≥ k. Hence,

p cannot be a point inside the influence zone which contradicts the assumption.

Since the maximum number of vertices of the influence zone is O(m2), the point

containment check can be done in O(log m). Next, we present two simple checks to reduce

the cost of containment check in certain cases by using rmax and rmin we introduced

earlier.

Let rmin and rmax be as defined in Lemma 4.3.9 and 4.3.10, respectively. Then, the

circle centered at q with radius rmax (the big circle in Fig. 4.6(a)) completely contains

the influence zone. Similarly, the circle centered at q with radius rmin (the shaded circle

in Fig. 4.6(a)) is completely contained by the influence zone. Hence, any point p that

has a distance greater than rmax from q is not contained by the influence zone and any

point p′ that lies within distance rmin of q is contained by the influence zone.

For the applications that allow relatively expensive pre-processing, the influence zone

can be indexed (e.g., by a grid or a quad-tree) to efficiently check the containment. For

example, for the continuous monitoring of RkNN queries, we use a grid to index the

influence zone. The details are presented in next section.

4.3.4 Extension to higher dimensions

In dimensions higher than two, the bisectors are called half spaces and the unpruned

region is a polyhedron instead of a polygon [OBSC99]. The circle Cp centered at p with

radius dist(p, q) is called a hypersphere. It can be shown that Lemma 4.3.4 holds for

Chapter 4. Influence Zone Based Processing of RkNN Queries 109

higher dimensions. This can be proved by a projection on a two dimensional space for

each point of the hypersphere.

The space is pruned in a similar way as in two dimensional space, i.e., the space that

is pruned by at least k half spaces is pruned. The following lemma holds for the unpruned

area which is a polyhedron.

p

p'

q

(a) Lemma 4.3.11

q

A

B

C

D

p
M

N

L

(b) Lemma 4.3.12

Figure 4.7: Lemmas 4.3.11 and 4.3.12

Lemma 4.3.12 A facility point f can be ignored if, for every vertex v of the unpruned

polyhedron, f lies outside Cv.

Proof We prove the lemma for a 3-dimensional polyhedron and the proof for the arbi-

trary dimensionality is similar. Let p be any point inside the polyhedron as shown in

Fig. 4.7(b). We draw a line that passes through p and q and crosses a face (the shaded

face ABCD) of the polyhedron at a point M . For such point M , we can always draw

a line on this face of the polyhedron such that it passes through M and intersects the

edges of the face at points L and N as shown in Fig 4.7(b). From Lemma 4.3.4, CA and

CB contain CN . Similarly, CC and CD contain CL. Again, from Lemma 4.3.4, CN and

CL contain CM . Lastly, CM contains Cp (Lemma 4.3.2). Hence, Cp is contained by the

hyperspheres of the vertices of the face ABCD (CA, CB , CC and CD). This holds for any

Chapter 4. Influence Zone Based Processing of RkNN Queries 110

arbitrary point p inside the polyhedron. Hence, we only need to check the containment

in Cv for every vertex v of the polyhedron.

Given Lemma 4.3.12, it can be immediately verified that Lemmas 4.3.7 and 4.3.8 also

hold in dimensions higher than two.

4.4 Applications in RkNN Processing

4.4.1 Snapshot Bichromatic RkNN Queries

Our algorithm consists of two phases namely pruning phase and containment phase.

Pruning Phase. In this phase, the influence zone Zk is computed using the given set

of facilities.

Containment Phase. By the definition of influence zone Zk, a user u can be the

bichromatic RkNN if and only if it lies within the influence zone Zk. We assume that

the set of users are indexed by an R-tree. The R-tree is traversed and the entries that

lie outside the influence zone are pruned. The objects that lie in the influence zone are

RkNNs.

4.4.2 Snapshot Monochromatic RkNN Queries

By definition of a monochromatic RkNN query (see Section 4.2), a facility f is the RkNN

iff ∣Cf ∣ < k + 1. Hence, a facility that lies in Zk+1 is the monochromatic RkNN of q

where Zk+1 is the influence zone computed by setting k to k + 1. Below, we highlight

our technique.

Pruning Phase. In this phase, we compute the influence zone Zk+1 using the given set

of facilities F . We also record the facility points that are accessed during the construction

of the influence zone and call them the candidate objects.

Containment Phase. Please note that every facility point that is contained in the

influence zone Zk+1 will be accessed during the pruning phase. This is because every

facility that lies in the influence zone cannot be ignored during the construction of the

Chapter 4. Influence Zone Based Processing of RkNN Queries 111

influence zone (inferred from Lemma 4.3.1). Hence, the set of candidate object contains

all possible RkNNs. For each of the candidate object, we report it as RkNN if it lies

within the influence zone Zk+1.

4.4.3 Continuous monitoring of RkNNs

In this section, we present our technique to continuously monitor bichromatic RkNN

queries (see the problem definition in Section 4.2). The basic idea is to index the influence

zone by a grid. Then, the RkNNs can be monitored by tracking the users that enter or

leave the influence zone.

Initially, the influence zone Zk of a query q is computed by using the set of facility

points. We use a grid based data structure to index the influence zone. More specifically,

a cell c of the grid is marked as an interior cell if it is completely contained by the

influence zone. A cell c′ is marked as a border cell if it overlaps with the boundary of

the influence zone. Fig. 4.8 shows an example where the influence zone is the polygon

ABCDFEGHI, interior cells are shown in dark shade and the border cells are the light

shaded cells.

For each border cell, we record the edges of the polygon that intersect it. For example,

in c1, we record the edge AI and in c2 we record the edges AI and HI. If a user u ∈ U

is in an interior cell, we report it as RkNN of the query. If a user lies in a border cell, we

check if it lies outside the polygon by checking the edges stored in this cell. For example,

if a user lies in c1 and it lies inside AI, we report it as RkNN.

4.5 Theoretical Analysis

We assume that the facilities and the users are uniformly distributed in a unit space.

The number of facilities is ∣F ∣. For bichromatic queries, the number of users is ∣U ∣.

Chapter 4. Influence Zone Based Processing of RkNN Queries 112

4.5.1 Area of Influence Zone

Before we analyse the area of the influence zone, we show the relationship between an

order k Voronoi cell and the influence zone. We utilize this relationship to analyse the

area of the influence zone.

Relationship with order k Voronoi cell: An order k Voronoi diagram divides the space

into cells and we refer to each cell as a k-Voronoi cell. Each k-Voronoi cell is related to a

set of k facility points (denoted as Fk) such that for any point p in this cell the k closest

facilities are Fk. Fig. 4.9 shows an order 2 Voronoi diagram computed on the facility

points a to i. Each cell c is related to two facility points (shown as {fi, fj} in Fig. 4.9)

and these are the two closest facilities for any point p in c. For example, for any point p

in the cell marked as {a, e} the two closest facilities are a and e.

q A

B

C
DE

F

G

H

I

c
1

c
2

Figure 4.8: Continuous monitoring

a

c
b

d

e
f

i

g

h{a,b}

{a,h}

{a,g}

{a,f}

{a,e}

{a,d}

{a,c}
{b,h}

{h,i}

{g,h}

{g,f}
{e,f}

{d,e}

{c,d}

{b,i}
{b,c}

Figure 4.9: Order 2 Voronoi diagram

Clearly, when k = 1 the k-Voronoi cell related to q is exactly the same as the influence

zone. For k > 1, the influence zone corresponds to the union of all k-Voronoi cells that

are related to q (i.e., have q in their Fk). For example, in Fig. 4.9, the influence zone

of the facility a is shown in bold boundary and it corresponds to the union of the cells

related to a.

Chapter 4. Influence Zone Based Processing of RkNN Queries 113

Now, we analyse the area of the influence zone.

Consider the influence zones of all the facilities in the data set. Every point in the

unit space lies in a cell that is related to k facilities. This implies that every point lies in

exactly k influence zones (e.g., in Fig. 4.9, every point in the cell marked as {a, f} lies in

the influence zone of a as well as the influence zone of f). Hence, the sum of the areas of

all the influence zones is k. Since the total number of facility points is ∣F ∣, the expected

area of a randomly chosen facility point is k/∣F ∣.

Remark: The above discussion shows that the influence zone can be computed by

using a pre-computed order k Voronoi diagram. However, as mentioned in [ZZP+03], a

technique that uses a pre-computed order k Voronoi diagram may not be practical for the

following reasons : i) the value of k may not be known in advance; ii) even if k is known

in advance, order k Voronoi diagrams are very expensive to compute and incur high space

requirement; iii) spatial indexes are useful for all query types and pre-computed Voronoi

diagrams may not be used for all queries. In contrast, R-tree based indexes used by our

algorithm are used for many important queries.

4.5.2 Number of RkNNs

First, we evaluate the number of bichromatic RkNNs. We assume that the users are

uniformly distributed in the space. The number of users that lie in the influence zone

is the number of bichromatic RkNNs. Hence, the number of bichromatic RkNNs is

∣U ∣.k/∣F ∣.

The area of the influence zone Zk+1 for a monochromatic RkNN query is (k+1)/∣F ∣.

The number of facilities in this area is (k + 1) which includes the query. Hence the

expected number of monochromatic RkNNs is k.

4.5.3 IO cost of our algorithms

Before we analyse the IO costs of our proposed algorithms, we analyse the cost of a

circular range query. Then, we analyse the costs of our algorithms by using the IO cost

Chapter 4. Influence Zone Based Processing of RkNN Queries 114

of the circular range queries.

IO cost of a circular range query: A circular range query [CBL+10] finds the objects

that lie within distance r of the query location. We assume that the objects are indexed

by an R-tree and analyse the number of nodes that lie within the range of the query.

Fig. 4.10(a) shows a circular range query where the search area is the circle centered at

q with radius r (the shaded circle). The approach to analyse the IO cost of the circular

range query is similar to the IO cost analysis of window queries presented in [TSS00].

Let Rl be the number of rectangles at level l of the R-tree. Let sl be the side length of

each rectangle at level l (the rectangles of a good R-tree have similar sizes [KF93]). We

assume that the centers of rectangles at each level follow a uniform distribution. Let dl

be the diagonal length of each rectangle at level l. As shown in Fig. 4.10(a), any rectangle

that has its center c at a distance greater than r+ dl/2 cannot intersect the range query

and should not be accessed. Hence, the number of rectangles (nodes) accessed at level l

is �(r + dl/2)
2Rl which is the number of center points c that lie in the circle of radius

r + dl/2 (the large circle in Fig. 4.10(a)).

Now, we need to compute dl and Rl for each level l. Let S be the number of objects

indexed by the R-tree. Let f be the fanout of the tree. The number of rectangles Rl at

level l of the R-tree is S/f l (e.g., leaf nodes are at level 1 and the number of leaf level

rectangles is S/f). Since we assume uniform distribution of points, each rectangle at

level l contains f l points. In other words, the area of each rectangle is f l/S. Assuming

that the both sides of a rectangle are of same size, the side length sl is
√

f l/S. Given sl,

half of the diagonal length dl/2 can be computed easily which is
√

f l/2S.

The total IO cost (the total number of nodes accessed) is obtained by applying the

formula for each level l. The total number of levels excluding the root is ⌊log
f
S⌋. The

root is accessed anyway, so one is added to this cost. Hence, the total IO cost is obtained

by the following equation.

Range query cost = 1 +

⌊logfS⌋
∑

l=1

�(r +
√

f l/2S)2S/f l (4.3)

Chapter 4. Influence Zone Based Processing of RkNN Queries 115

Based on this, first we analyse the cost of computing the influence zone and then we

analyse the costs of our RkNN algorithms.

IO cost of computing the influence zone: We approximate the influence zone to a

circular shape having the same area (we noted that as k gets larger the shape of influence

zone has more resemblance with a circle). Since the area of the influence zone Zk is

k/∣F ∣, the radius of the circle can be computed as rk =
√

k
�∣F ∣ . From Lemma 4.3.5, an

object can be ignored if it lies at a distance greater than dist(q, v) from every vertex v

of the unpruned area. Since we assume that each vertex is at same distance rk from the

query (i.e., influence zone is a circle), an object can be ignored if it lies at a distance

greater than 2rk from q. Hence, the objects within the range 2rk of the query are accessed

during the computation of the influence zone. The IO cost can be found by replacing r

in Eq. (4.3) with 2rk = 2
√

k
�∣F ∣ and S with ∣F ∣ (the number of the facility points).

IO cost of a monochromatic RkNN query: The IO cost for monochromatic RkNN

query is the same as the IO cost of computing the influence zone Zk+1. This is because the

R-tree is traversed only during the construction of the influence zone (i.e., the containment

phase does not access R-tree). Hence, IO cost can be found by replacing r in Eq. (4.3)

with 2rk+1 = 2
√

k+1
�∣F ∣ and S with ∣F ∣.

(a) Range query (b) Lemma 4.5.1

Figure 4.10: Illustration of theoretical analysis

Chapter 4. Influence Zone Based Processing of RkNN Queries 116

IO cost of a bichromatic RkNN query: The cost of the pruning phase is the same as

the cost of computing the influence zone Zk which we have computed earlier. The cost

of the containment phase is the cost of accessing the users that lie within the influence

zone which can be computed in a similar way. More specifically, only the users that lie

within distance rk (the radius of the influence zone) of q are accessed. Hence, the cost

of the containment phase can be computed by replacing r in Eq. (4.3) with rk =
√

k
�∣F ∣

and S with ∣U ∣ where ∣U ∣ is the number of users indexed by the R-tree.

4.5.4 Complexity Analysis

In this section, we show that the complexity of Algorithm 6 (if implemented properly)

is O(km) where m is the number of facilities (or bisectors) considered so far. Recall

that Algorithm 6 discards every intersection point having counter at least equal to k (see

line 3). Throughout this section, any intersection point that has a counter less than k is

called a valid intersection point.

For each line of Algorithm 6, we show that its complexity is at most O(km). For the

ease of the presentation, we analyse the complexity of these lines in an order different

from the order in which they appear in the algorithm.

Complexity of line 2: update the counters of existing intersection points

A simple analysis shows that the total number of intersection points is at most O(m2). As

we only keep the intersection points that are valid, we only need to update the counters

of the valid intersection points. Before we show that the number of valid intersection

points is O(km), we define few terms and notations.

Consider the example of Fig. 4.10(b) where two bisectors B2 and B3 intersect a

bisector B1 at points l1 and r2, respectively. The bisector B2 prunes every point on

B1 that lies on the left side of l1 (as shown with an arrow). For example, B2 prunes

the points l2, r2 and r1. The intersection point l1 is called a left pruning intersection

of B1 because it prunes every point on B1 that lies on its left side. The bisector B3

Chapter 4. Influence Zone Based Processing of RkNN Queries 117

prunes every point on B1 that lies on the right side of r2 (e.g., the points l2, l1 and r3).

The intersection point r2 is called a right pruning intersection of B1. In Fig. 4.10(b),

the right pruning intersection points are shown as ri (black circles) and the left pruning

intersection points are shown as li (the hollow circles). To keep Fig. 4.10(b) simple, we

do not show the bisectors related to r1, r3 and l2.

Note that the counter of any point p on B1 is at least equal to the number of left

pruning intersections on its right side plus the number of right pruning intersections on

its left side. For example, the counter of point l2 is 1 + 2 = 3 because it is pruned by l1,

r1 and r2.

Lemma 4.5.1 shows that each existing bisector can have at most 2k valid intersection

points.

Lemma 4.5.1 For any bisector B1, the number of valid intersection points2 on it is at

most 2k.

Proof Let the number of right pruning intersection points of B1 be u. We denote the

right pruning intersections of B1 by r1, ..., ru such that for any intersection ri there are

i − 1 right pruning intersections on its left. For example, in Fig. 4.10(b), there are two

right pruning intersections (r1 and r2) on the left side of r3. For any right pruning

intersection point ri, its counter is at least equal to i− 1 because ri is pruned by at least

i− 1 right pruning intersections. Hence, only the intersections ri for 0 < i ≤ k can have

counters less than k. This implies that the number of right pruning intersection points

that are valid is at most k. Following similar arguments, it can be shown that at most k

left pruning intersection points are valid intersections. Hence, the total number of valid

intersection points on B1 is at most 2k.

Lemma 4.5.1 shows that each existing bisector can have at most O(k) valid inter-

section points. Since m is the number of existing bisectors, the total number of valid

2The proof of this lemma assumes that each intersection point is unique, i.e., two bisectors do not
intersect B1 at the same point. However, the complexity analysis remains the same even in the absence of
this assumption. This is because such intersection points can be merged and treated as one intersection
point because their counters would be exactly the same.

Chapter 4. Influence Zone Based Processing of RkNN Queries 118

intersection points is O(km). Recall that, to update the counter of an intersection point

p, we only need to check whether it is pruned by Bf :q or not where f is the new facility

being considered. This can be done in constant time. Hence, the complexity of line 2 of

Algorithm 6 is O(km).

Complexity of line 5: find the convex vertices

We show that we only need to scan the list of the intersection points once to determine the

convex vertices. Since the total number of intersection points is O(km), the complexity

of this step is O(km). Lemma 4.3.7 is the key to obtain the required complexity.

Lemma 4.5.2 Among the intersection points that do not lie on the boundary of the data

universe, only the intersection points with counters equal to k − 1 can be the convex

vertices.

Proof Any intersection that has a counter greater than k − 1 is pruned by at least k

objects hence cannot be on the boundary of the influence zone (hence, cannot be a convex

vertex). Now, we show that the intersections that have counters less than k − 1 cannot

be the convex vertices.

Consider the example of Fig. 4.11(a) where a vertex V has been shown which is the

intersection point of two bisectors Ba:q and Bc:q. Suppose that the counter of the vertex

V is n. Now, imagine a point p that lies on the line V N and is infinitely close to the

vertex V . Clearly, the point p is pruned by at most n + 1 bisectors3. This is because

it is pruned by n bisectors that prune V and the bisector Bc:q. Following the similar

argument, we can say that any point e that lies on the line V Z and is infinitely close

to V has a counter at most n + 1. The counter of any point u that lies in the polygon

V NY Z (white area) and is infinitely close to V is at least n+2 (it is pruned by Bc:q and

Ba:q in addition to all the bisectors that prune V).

3In this proof, we assume that only two bisectors pass through the intersection point V . For the special
case, when more than two bisectors pass through a vertex V , we may choose to treat V as a convex vertex.
Note that this does not affect the correctness of the algorithm because checking containment in a vertex
that is not a convex vertex does not affect the correctness.

Chapter 4. Influence Zone Based Processing of RkNN Queries 119

If the counter n of the vertex V is less than or equal to k−2, then the line V N has at

least one point p that has counter at most k− 1 (i.e., n+1 as shown above). Hence, the

line V N has at least one point p that lies in the influence zone. Similarly, the line V Z

has at least one point e that lies in the influence zone. Clearly, the angle eV p is at least

180∘. By definition of a convex hull, no internal angle of a convex hull can be greater

than 1800. Hence, the vertex V is not a convex vertex if its counter is less than or equal

to k − 2.

(a) Lemma 4.5.2 (b) Counters

Figure 4.11: Finding convex vertices

In Fig. 4.11(b), we revisit the example of Fig. 4.5. The vertices v7 and v9 do not lie

on the boundary of the data universe and have counters less than k − 1 (where k = 2).

Hence, they are not the convex vertices. Among the points that lie on the boundary of

the data universe and have counters less than k, only the two extreme points for each

boundary line can be the convex vertices. For example, in Fig. 4.5, the lower horizontal

boundary line contains 4 vertices (v3, v4, v5 and v6). The vertex v6 has counter not

less than k and can be ignored. Among the remaining vertices, we consider the extreme

vertices (v3 and v5) as the convex vertices. Following the above strategy, the convex

vertices in Fig. 4.5 are v3, v2, v8 and v5.

Chapter 4. Influence Zone Based Processing of RkNN Queries 120

The above discussion shows that the convex vertices can be found by scanning the

list of intersection points once. Hence, the cost of finding the convex vertices is O(km).

Complexity of line 4: compute the unpruned polygon

For any point p, we use �p to denote the angle formed by the horizontal line passing

through q and the line segment pq (see Fig. 4.11(b)). We show that the unpruned

polygon can be computed in O(km) if all the intersection points are sorted according to

�p. Later in Section 4.5.4, we show that we can keep the intersection points sorted in

O(k ⋅ log m) after each call of Algorithm 6. In this section, we assume that the list of

intersection points is already sorted according to �p.

Lemma 4.5.3 The unpruned polygon is always a star-shaped polygon and q is its kernel

point.

Proof Consider that F ′ ⊂ F is a set of facilities that consist of only the facilities that

have been considered so far. Clearly, the current unpruned polygon is the influence zone

of q for the data set F ′. Hence, Lemma 4.3.7 can be immediately applied to prove that

the unpruned polygon is always a star-shaped polygon.

Since the unpruned polygon P is a star-shaped polygon and q is its kernel point,

every point on its boundary is visible from q [IK95]. This implies that �p is unique for

every point p on the boundary of P , i.e., �p ∕= �p′ for any two points p and p′ that lie on

the boundary of P . Hence, given a list of points that lie on the boundary of P , we can

construct the polygon P by connecting the points in sorted order of the angles they make

with q. Finally, we need to determine the intersection points that lie on the boundary of

the unpruned polygon.

Lemma 4.5.4 Among the intersection points that do not lie on the boundary of the data

universe, any intersection point V that has a counter less than k − 2 does not lie on the

boundary of the unpruned polygon. Secondly, any intersection point V that has a counter

equal to k − 2 lies on the boundary of the unpruned polygon.

Chapter 4. Influence Zone Based Processing of RkNN Queries 121

Proof Consider the vertex V as shown in Fig. 4.11(a) and assume that it has a counter

equal to n. The counter of any point u that lies infinitely close to V and lies in the

white area is n+2. This is because it is pruned by the n bisectors that prune V and the

bisectors Ba:q and Bc:q. Note that any point u that is infinitely close to V can be pruned

by at most n+2 bisectors (n bisectors that prune V and Ba:q and Bc:q). If the counter of

V is less than k−2 then the counter of any such point u is always smaller than k. Hence,

u is a point inside the unpruned polygon. Since every u that lies infinitely close to V (in

any direction) is a point of the unpruned polygon, V does not lie on the boundary of the

unpruned polygon.

Now, we prove the second part of the lemma. Assume that the counter of V is equal

to k − 2. Clearly, the counter of u is k. Hence, u lies outside the unpruned polygon.

Since u is infinitely close to V , V is a point on the boundary of the unpruned polygon.

Lemma 4.5.4 along with Lemma 4.5.2 show that the boundary of the unpruned poly-

gon consists of only the valid intersection points that either lie on the boundary of the

data universe or have counters equal to k − 1 or k − 2. Hence, the list containing all

intersection points sorted according to �p is scanned and the points that do not lie on the

boundary of the polygon are ignored. Remaining points are connected in sorted order of

�p to obtain the unpruned polygon. For example, in Fig. 4.11(b), the unpruned polygon

is obtained by connecting the vertices in counter clock wise order, i.e., v10, v2, v9, v8, v7,

v5, v4 and v3 in this order.

Complexity of line 1: compute new intersection points and their counters

The number of new intersection points is O(m) because each existing bisector intersects

the new bisector Bf :q at most once. To compute the counter of a new intersection point

p, we count the number of existing bisectors that prune p. Hence, computing the counter

of a new intersection point takes O(m). Since there are O(m) new intersection points,

the complexity of computing the counters of these points is O(m2). Next, we show that

Chapter 4. Influence Zone Based Processing of RkNN Queries 122

the complexity can be reduced to O(km).

Let p be an intersection point between Bf :q and an existing bisector. If p lies outside

the current influence zone (the unpruned polygon) then its counter is at least equal to

k and p can be discarded for this reason. Hence, the counters of only the intersection

points that lie inside the unpruned polygon are to be computed. We implement the whole

procedure in two steps: 1) for each intersection point p, check whether p lies inside the

unpruned polygon or not; 2) for each intersection point p that lies inside the unpruned

polygon, compute its counter.

First we show that the step 1 can be implemented in O(km) by using even-odd

test [Hai94] to determine if p lies inside the unpruned polygon or not. According to an

even-odd test, a point p lies inside a polygon if and only if, for any ray starting from the

point p, there is an odd number of crossings of this ray with the edges of the polygon.

For example, in Fig. 4.12, point p lies outside the polygon ABCDEFG and any ray

starting from p intersects the edges of the polygon even number of times. For instance,

the ray starting from p in the direction of x intersects the polygon at two points (w and

x). Hence, p lies outside the polygon. Now, we show that for any intersection point p, we

can conduct even-odd test in O(k). Since we have at most O(m) new intersection points,

this ensures the overall complexity of O(km).

Assume that p is an intersection point of Bf :q and an existing bisector B1 as shown in

Fig. 4.12. Note that B1 is an existing bisector and the algorithm maintains the existing

valid intersection points of B1. For example, the system maintains the intersection points

u, v, w and x. To determine the number of intersections of the ray starting from p with

the boundary of the unpruned polygon, we simply count the number of valid intersection

points of B1 that lie on the right side of p and lie on the boundary of the unpruned

polygon. In Fig. 4.12, such intersection points are w and x. Since B1 has at most 2k

intersection points (Lemma 4.5.1), determining the intersection points that lie on the

right side of p and lie on the boundary of the unpruned polygon (by using Lemma 4.5.4)

takes O(k) if we use a linear scan on all the intersection points related to B1.

Chapter 4. Influence Zone Based Processing of RkNN Queries 123

Figure 4.12: Even-odd test

As a special case, if the intersection point lies on the boundary of the unpruned

polygon we assume as if it lies inside the unpruned polygon. In Fig. 4.12, the intersection

point p′ between Bf :q and B2 lies on the boundary of the unpruned polygon. Note that

any bisector B2 can contribute at most O(k) edges to the unpruned polygon (a direct

implication of Lemma 4.5.1). Hence, to check whether p′ lies on an edge of the polygon,

we check if it intersects with any edge of the polygon contributed by B2. It takes O(k).

Now, we show that step 2 can be done in O(km). As inferred from Lemma 4.5.1,

the number of intersection points that lie in the unpruned polygon is at most O(k).

Computing the counter of one intersection point takes O(m). Hence, the total complexity

of step 2 is O(km).

Recall that line 4 of Algorithm 6 requires the list of intersection points to be sorted in

order of �p. Hence, we insert each new intersection point in the list of existing intersection

points in sorted order. Since the number of existing intersection points is bounded by

m2, each insertion takes O(log m). As we insert at most O(k) new intersections, the

complexity of keeping the list sorted is O(k ⋅ log m).

Chapter 4. Influence Zone Based Processing of RkNN Queries 124

Complexity of line 3: discard intersection points with counters at least equal

to k

We scan the list of intersection points and remove any intersection point that has a

counter at least equal to k. Clearly, the complexity is O(km).

4.6 Handling data updates

In this section, we present techniques to efficiently update the influence zone when the

set of facilities changes, i.e., new facilities are added and/or old facilities are deleted. The

data updates may be common in many real world applications. For example, consider

the example of a restaurant that sends promotional SMS to the people in its influence

zone. Note that its influence zone may change when one or more restaurants close or

open due to different business timings. Below, we present techniques to efficiently update

the influence zone with the change in the set of facilities.

4.6.1 Solution overview

Assume a set of facilities and a set of queries where each query may have a different

value of k. Note that a single update (insertion or deletion) may or may not affect the

influence zone of a particular query q. Hence, it is important to identify the queries that

are affected by an update. To enable us to quickly identify the affected queries, we define

impact region of a query. The impact region of a query q is the area covered by Cv for

every convex vertex v of the influence zone of q. Fig. 4.13(a) shows an example where the

influence zone of q is the polygon ABCDEFG and the impact region is shown shaded.

As inferred from Lemmas 4.3.7 and 4.3.8, a facility f affects the influence zone of

a query q if and only if f lies in Cv for at least one convex vertex v of the influence

zone. Hence, a query is affected by a facility if and only if f lies in the impact region of

the query. To quickly identify the queries that are affected by an update, we index the

impact regions of all the queries by a grid data structure. Each cell c of the grid has a list

Chapter 4. Influence Zone Based Processing of RkNN Queries 125

(a) Impact region

root

Grid cells

Intermediate entries

(b) Conceptual grid tree

Figure 4.13: Finding the queries affected by an update

called qList. The qList of a cell c contains every query q such that the impact region of q

overlaps or contains the cell c. This list helps in identifying the queries that are affected

by an update of a facility in cell c. Along with each query q stored in the qList of cell c,

we associate a vertex list called q.vList which consists of every vertex v of the influence

zone of q such that Cv overlaps or contains the cell c. This list is to quickly identify the

vertices of the influence zone that may contain a given facility in its circle.

When the influence zone of a query q is computed, we add q in every cell c of the

grid that overlaps or is contained by the impact region of q. To efficiently do this, we use

conceptual grid tree which we introduced in Chapter 3.

Fig. 4.13(b) shows an example of the conceptual grid-tree of a 4 × 4 grid. For a

grid-based structure containing 2n × 2n cells where n ≥ 0, the root of our conceptual

grid-tree is a rectangle that contains all 2n × 2n cells. Each entry at l-th level of this

grid-tree contains 2(n−l) × 2(n−l) cells (root being at level 0). An entry at l-th level is

divided into four equal non-overlapping rectangles such that each such rectangle contains

2(n−l−1) × 2(n−l−1) cells. Any n-th level entry of the tree corresponds to one cell of the

grid structure. Fig. 4.13(b) shows root entry, intermediate entries and the cells of grid.

Note that the grid-tree does not exist physically, it is just a conceptual visualisation of

Chapter 4. Influence Zone Based Processing of RkNN Queries 126

the grid.

We identify the cells that overlap with or are contained by the impact region in a

hierarchical way by using the grid-tree. For example, if an entry completely lies in the

impact region, q is added in the qList of all the cells contained in this entry. For more

details, please see [HCQL10] or [HCLZ11].

Assume that a facility f is inserted or deleted. We use the location of f to find the

cell c of grid relevant to its location. Then, we mark each query q in the qList of c as

affected if f is contained by the impact region of q. For each of the affected queries,

we update the influence zone accordingly. First, we show how to update the influence

zone of a query q if the affecting facility f is a newly added facility. Then, we show the

procedure to update the influence zone of q when a facility f is deleted.

4.6.2 Handling an insertion

As stated earlier, we use qList to identify every query that contains f in its impact

region. We update the influence zone of each of such query by calling Algorithm 6. As

shown earlier, the complexity of Algorithm 6 is O(km). Next, we present few geometric

observations that although do not reduce the complexity but help to give more insight

into the properties of the problem.

Recall that, at line 1 of Algorithm 6, we compute new intersection points between

Bf :q and all existing bisectors and then compute their counters. Next, we present few

geometric observations that show that we do not need to consider the intersection points

of the new bisector Bf :q with all of the existing bisectors.

Lemma 4.6.1 Given a line segment AB and a facility f , the bisector Bf :q intersects the

line segment AB if and only if exactly one of CA or CB contains f , i.e., if both of CA

and CB contain f or none of CA and CB contain f then Bf :q does not intersect AB.

Proof First, we show that Bf :q intersects AB only if exactly one of CA or CB contains

f . We prove this by showing that Bf :q does not intersect AB if either both of CA and

CB contain f or none of CA or CB contains f .

Chapter 4. Influence Zone Based Processing of RkNN Queries 127

Consider the example of Fig. 4.14(a) where the line segment AB and the circles CA

and CB are shown. Recall that the bisector Bf :q divides the space in two half planes.

Hf :q denotes the plane that contains f (the white area) and Hq:f denotes the plane that

contains q (the shaded area). If both CA and CB contain f then it means that the bisector

Bf :q prunes both A and B, i.e., both A and B lie in Hf :q (as shown in Fig. 4.14(a)).

Since Bf :q is a line, the whole line segment AB lies in the plane Hf :q which implies that

Bf :q does not intersect AB.

If none of CA or CB contains f then the bisector Bf :q does not prune any of A or B.

In other words, both A and B lie in Hq:f . Since Bf :q is a line, the whole line segment

AB lies in the plane Hq:f . This implies that Bf :q does not intersect AB.

Now, we show that Bf :q intersects AB if exactly one of CA or CB contains f . Without

loss of generality, assume that CA contains f and CB does not contain f . This means

that the bisector Bf :q prunes A and does not prune B. In other words, A lies in Hf :q

and B lies in Hq:f . Since Bf :q is a line, the line segment AB intersects Bf :q.

(a) Lemma 4.6.1 (b) Lemma 4.6.2

Figure 4.14: Lemmas 4.6.1 and 4.6.2

The above lemma shows that we may not need to compute the intersection of Bf :q

with all of the existing bisectors. Let A and B be two end points of a bisector within

the influence zone. We only need to compute the intersection of Bf :q with the bisector

Chapter 4. Influence Zone Based Processing of RkNN Queries 128

if exactly one of CA or CB contains f . However, we first need to efficiently identify

such bisectors. Before we show how to identify such bisectors, we define few terms and

notations.

Let v be a vertex such that Cv contains f . We call such a vertex v a container vertex.

In Fig. 4.14(b), A is a container vertex because CA contains f . Any edge XY of the

influence zone is called a container edge if at least one of CX or CY contains f . Any edge

that is not a container edge is called a non-container edge. In Fig. 4.14(b), AB and AG

are the only container edges. The next lemma shows that we only need to consider the

intersection of Bf :q with the existing bisectors that intersect with a container edge.

Lemma 4.6.2 Let Bf ′:q be a bisector that does not intersect with any of the container

edges of the influence zone. The intersection point of Bf ′:q and Bf :q lies outside the

influence zone, i.e., the intersection has a counter at least equal to k and can be ignored

for this reason.

Proof Consider the example of Fig. 4.14(b) where a polygon ABCDEFG is shown. A is

the only container vertex of the polygon. The bisector Bf ′:q does not intersect any of the

container edges AB or AG. Without loss of generality, assume that the two end points

of the bisector Bf ′:q that lie within the influence zone are x and y (see Fig. 4.14(b)). We

prove the lemma by showing that the bisector Bf :q does not intersect the line segment

xy. We show that both Cx and Cy do not contain f which implies (see Lemma 4.6.1)

that Bf :q does not intersect xy.

We prove that Cx does not contain f and the proof for Cy is similar. As inferred by

Lemma 4.3.4, Cx is contained by CB ∪ CC . Since BC is a non-container edge, both CB

and CC do not contain f . This implies that Cx does not contain f because Cx ⊆ CB∪CC

.

As inferred from Lemma 4.6.2, we only need to check the intersection of Bf :q with the

bisectors that intersect with any of the container edges. Next issue is to determine the

container edges efficiently. Recall that, in our grid structure, we maintain q.vList for each

Chapter 4. Influence Zone Based Processing of RkNN Queries 129

cell c that contains the list of the vertices that overlap or contain the cell c. If a facility

f lies in the cell c, we use q.vList and can identify the vertices of the influence zone of q

that contain f . These vertices are the container vertices and the related container edges

can be easily determined.

Recall that line 2 of Algorithm 6 requires updating the counters of all existing inter-

section points. As stated earlier, we increment the counter of an intersection point p if

and only if Bf :q prunes p. The number of existing intersection points is O(km). Next,

we show that we may not need to check whether Bf :q prunes p for all of the intersection

points.

(a) Lemma 4.6.3 (b) Optimization

Figure 4.15: Optimizations

First, we define few terms and notations. Let x be a point inside the influence zone.

Beam of x is a line starting from q that passes through the point x. Fig. 4.15(a) shows

the beam of a point x in broken line.

Lemma 4.6.3 An intersection point x is not pruned by a bisector Bf :q if the beam of x

does not intersect with any container edge of the influence zone.

Proof Consider the example of Fig. 4.15(a) where A is the only container vertex. Recall

that a point x is pruned by a bisector Bf :q if and only if Cx contains f . Without loss

Chapter 4. Influence Zone Based Processing of RkNN Queries 130

of generality, assume that the beam of x intersects the influence zone at a non-container

edge CD at a point w (see Fig. 4.15(a)). From Lemma 4.3.2, Cx is contained by Cw.

From Lemma 4.3.4, Cw is contained by CC ∪ CD. The object f is not contained in

CC ∪ CD because CD is a non-container edge. Hence, f is not contained by Cx which

implies that Bf :q does not prune x.

From above lemma, we know that we only need to update the counters of an intersec-

tion point if its beam intersects a container edge. Next issue is to efficiently determine

the intersection points for which their beams intersect with a container edge. Recall that,

for any point x, �x is the angle between line qx and the horizontal line passing through

q (see Fig. 4.15(a)). For the edge CD in the Fig. 4.15(a), note that the beam of any

intersection point x intersects CD if and only if �x lies between the angle range �D and

�C (i.e., x lies in the shaded area). Hence, we can use the �p of an intersection point p

to test if its beam intersects an edge or not.

We further improve the above observation. Consider the example of Fig. 4.15(b),

where the intersection point x is shown and its beam intersects a container edge AB.

Although the beam of x intersects a container edge, x is not pruned by Bf :q as shown in

Fig. 4.15(b). Assume that the bisector Bf :q intersects the influence zone at two points u

and v as shown in Fig. 4.15(b). An intersection point x can be pruned by Bf :q only if �x

is greater than �u and is smaller than �v (i.e., x lies in the shaded area of Fig. 4.15(b)).

The proof is straight forward and is omitted.

We can quickly identify the intersection points that lie within the shaded area as

follows. Recall that we keep the list of intersection points sorted in order of their �p.

We do a binary search on this list and obtain the first intersection point p that has �p

just greater than �u. Then, the list is scanned in sorted order until the next intersection

point p′ has �p′ greater than �v. Let n be the number of intersection points that lie in

the shaded area of Fig. 4.15(b), the above procedure can find all such intersection points

in O(n+ log m). Hence, the complexity of updating the counters of existing intersection

points is O(n + log m) where n is at most equal to O(km) (the number of all existing

Chapter 4. Influence Zone Based Processing of RkNN Queries 131

intersection points).

4.6.3 Handling a deletion

If the deleted facility f lies inside the impact region of q then it means that the facility

f contributes a bisector to the influence zone. Assume that the influence zone was

determined by considering m facilities. When f is deleted, we create the new unpruned

polygon P by considering the bisectors of remaining m− 1 facilities. During the creation

of the new unpruned polygon P , we use the following optimizations to improve the

efficiency.

(a) Before deleting Bf :q (b) After deleting Bf :q

Figure 4.16: Handling a deletion

1. The counter of any intersection point p that is not pruned by Bf :q remains unaffected.

Hence, the counters of all such intersection points are not required to be recomputed.

This also implies that the part of the influence zone that lies in Hq:f remains unaffected.

Consider the example of Fig. 4.16(a) that shows the influence zone (k = 2), intersec-

tion points and their counters before a facility f and its corresponding bisector Bf :q is

deleted. The influence zone is shown shaded and it contains the intersection points that

have counters less than k. Fig. 4.16(b) shows the new unpruned polygon P , intersection

points and their counters after f is deleted. Note that the counters of all the intersection

Chapter 4. Influence Zone Based Processing of RkNN Queries 132

points that are not pruned by Bf :q (i.e., the intersection points on the left side of Bf :q)

remain unchanged. Also, the part of the influence zone that lies on the left side of Bf :q

remains unaffected.

2. The counter of any existing intersection point that is pruned by Bf :q is decremented

by 1. Hence, the counter of such intersection point is not needed to be computed from

scratch. The counter of any new intersection point that is pruned by Bf :q is recomputed.

In the example of Fig. 4.16(a), there is only one valid intersection point v10 that is

pruned by Bf :q. Its counter is decremented by one after the deletion. Note that the

intersection point v2 had a counter equal to k = 2 before f was deleted. Hence, v2 was

not maintained before the deletion of f . The counter of such intersection point is needed

to be recomputed.

Note that the new unpruned polygon P is always larger than the previous influence

zone. Hence, there may be a facility f ′ that affects the new unpruned polygon P but was

not considered before. To identify all such facilities, we check if there exists a new facility

f ′ that lies in any Cv for any convex vertex of the new unpruned polygon. We can do this

by calling Algorithm 5 with two small changes. Firstly, at line 1, the influence zone Zk

is initialized to the new unpruned polygon P instead of initializing it to the whole data

universe. Secondly, the algorithm ignores any facility f that had already been considered

to construct the influence zone.

Finally, we present another minor optimization. Note that at line 5 of Algorithm 5,

we check if an entry e of R-tree is contained by Cv for every convex vertex of the influence

zone. However, note that there are some convex vertices of the unpruned polygon P (see

Fig. 4.16(b)) that existed in previous influence zone (see Fig. 4.16(a)). For example, the

convex vertex v8 is a convex vertex of the previous influence zone as well as the new

unpruned polygon. Hence, we do not need to consider v8 at line 5 of Algorithm 5. This

is because if there was a facility in the circle of such convex vertex, that would have been

considered before. Hence, the convex vertices that existed in the influence zone before

the deletion can be ignored at line 5 of Algorithm 5.

Chapter 4. Influence Zone Based Processing of RkNN Queries 133

4.7 Experiments

In Section 4.7.1, we evaluate the performance of our algorithms for snapshot RkNN

queries. Since computation of the influence zone is a sub-task of the snapshot RkNN

queries, we evaluate the cost of computing influence zone while evaluating the perfor-

mance of RkNN algorithms. In Section 4.7.2, we evaluate the performance of our algo-

rithm for continuous monitoring of RkNN queries. Finally, in Section 4.7.3, we evaluate

our techniques for updating the influence zone when the underlying data set is changed

due to insertions and deletions.

4.7.1 Snapshot RkNN queries

For monochromatic and bichromatic RkNN queries, we compare our algorithm with the

best known existing algorithm called FINCH [WYCT08b]. We use both synthetic and

real data sets. Each synthetic data set consists of 50000, 100000, 150000 or 200000 points

following either Uniform or Normal distribution. The real data set consists of 175, 812

extracted locations in North America4 and we randomly divide these points into two sets

of almost equal sizes. One of the sets corresponds to the set of facilities and the other to

the set of users. Following the experiment settings used in [WYCT08b] for FINCH, the

page size is set to 4096 bytes and the buffer size is set to 10 pages which uses random

eviction strategy. We use the two real data sets to evaluate the performance unless

mentioned otherwise. We vary k from 1 to 16 and the default value is 8. From the set

of facilities, we randomly choose 500 points as the query points. The experiment results

correspond to the total cost of processing these 500 queries.

As stated in Chapter 2, FINCH has three phases namely pruning, containment and

verification. Our algorithm has only pruning and containment phases. We show the CPU

and IO cost of each phase for both of the algorithms. Experiment results demonstrate

that our algorithm outperforms FINCH in terms of both CPU time and the number of

nodes accessed. FINCH is denoted as FN in the experiment figures.

4http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm

Chapter 4. Influence Zone Based Processing of RkNN Queries 134

Monochromatic RkNN queries

In Fig. 4.17, we vary the value of k and study the effect on both of the algorithms. The

cost of containment phase is negligible for both of the algorithms. Note that the pruning

phase corresponds to the cost of computing the influence zone for our algorithm. The

cost of computing the influence zone is even smaller than the pruning cost of FINCH

which prunes less area than our algorithm. CPU cost of our algorithm is lower mainly

because we use efficient checks to prune the entries of the R-tree and because we do not

need to compute the convex hull (in contrast to FINCH that computes a convex polygon

to approximate the unpruned area).

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16

T
im

e
(in

 s
ec

)

k

Our Our Our Our OurFN FN FN FN FN

Verification
Containment

Pruning

(a) CPU time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 4 8 16

no

de
s

ac
ce

ss
ed

k

Our Our Our Our OurFN FN FN FN FN

Verification
Containment

Pruning

(b) Nodes accesses

Figure 4.17: Effect of k (monochromatic RkNN)

Although we access more facility points to prune the space, the IO cost of computing

the influence zone is slightly lower than the pruning cost of FINCH. This is mainly

because these facility points are usually found in 1 or 2 leaf nodes which are accessed

by FINCH anyway because they are too close to the query. The unpruned area of our

algorithm is smaller as compared to FINCH which results in pruning more nodes of the

R-tree.

Bichromatic RkNN queries

Fig. 4.18 studies the effect of k on the cost of bichromatic RkNN queries. The CPU time

taken by containment phase of our algorithm is much smaller as compared to FINCH. This

is mainly because i) the unpruned area of our algorithm is smaller and ii) we use efficient

Chapter 4. Influence Zone Based Processing of RkNN Queries 135

 0

 5

 10

 15

 20

 25

 1 2 4 8 16

T
im

e
(in

 s
ec

)

k

Our Our Our Our OurFN FN FN FN FN

Verification
Containment

Pruning

(a) CPU time

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 2 4 8 16

no

de
s

ac
ce

ss
ed

k

Our Our Our Our OurFN FN FN FN FN

Verification
Containment

Pruning

(b) Nodes accesses

Figure 4.18: Effect of k (bichromatic RkNN)

containment checking to prune the entries and the objects. IO cost of the containment

phase is also smaller for our algorithm because the unpruned area of our algorithm is

smaller. Our algorithm does not require the verification. On the other hand, FINCH

consumes significant amount of CPU time and IOs in the verification phase.

 0

 5

 10

 15

 20

 25

 50000 100000 150000 200000

T
im

e
(in

 s
ec

)

Number of users

Our Our Our OurFN FN FN FN

Verification
Containment

Pruning

(a) CPU time

 0

 10000

 20000

 30000

 40000

 50000

 50000 100000 150000 200000

no

de
s

ac
ce

ss
ed

Number of users

Our Our Our OurFN FN FN FN

Verification
Containment

Pruning

(b) Nodes accesses

Figure 4.19: Effect of number of users

Fig. 4.19 studies the effect of the number of the users on both of algorithms. The set

of facilities corresponds to the real data set and the locations of the users follow normal

distribution. Our algorithm scales much better. On the other hand, the cost of FINCH

degrades with the increase in the number of users because a larger number of users are

within the unpruned area and require verification.

In Fig. 4.20(a), we study the effect of the number of the facilities. The set of the

users correspond to the real data set and the locations of the facilities follow normal

distribution. Both of the algorithms are not significantly affected by the increase in the

number of the facilities and our algorithm performs significantly better than FINCH.

Chapter 4. Influence Zone Based Processing of RkNN Queries 136

 0

 2

 4

 6

 8

 10

 12

 14

 50000 100000 150000 200000

T
im

e
(in

 s
ec

)

Number of facilities

Our Our Our OurFN FN FN FN

5608 5562 5308 5324

7619 9668
6785 7600

of nodes accessedVerification
Containment

Pruning

(a) number of facilities

 0

 5

 10

 15

 20

 25

 30

(U,R) (R,R) (N,R) (U,N) (R,N) (N,N)

T
im

e
(in

 s
ec

)

Data distribution

Our Our Our Our Our OurFN FN FN FN FN FN

5867 5524 5943 5288 5989 5711

23419

9292
21251

7522

30495

9418

of nodes accessed Verification
Containment

Pruning

(b) Data distribution

Figure 4.20: Effect of data size and distribution

Fig. 4.20(b) studies the effect of the data distribution on both of the algorithms. The

data distributions of the facilities and the users are shown in the form (Dist1,Dist2)

where Dist1 and Dist2 correspond to the data distribution of the facilities and the users,

respectively. U, R and N correspond to Uniform, Real and Normal distributions, respec-

tively. For example, (U,R) corresponds to the case where the facilities follow uniform

distribution and the users correspond to the real data set. Each data set contains around

88, 000 objects. Our algorithm outperforms FINCH both in terms of CPU time and the

number of nodes accessed for all of the data distributions.

Fig. 4.21 studies the effect of the buffer size on both of the algorithms. As the pruning

and the containment phases do not visit a node twice, our algorithm is not affected by

the buffer size. FINCH issues multiple range queries to verify the candidate objects.

For this reason, the cost of its verification phase depends on the buffer size. Note that

FINCH performs worse than our algorithm even when it uses large buffer size. Number

of nodes accessed by FINCH is around 194, 000 and 61, 000 when the buffer size is 2 and

5, respectively.

Verification of theoretical analysis

In Fig. 4.22 and Fig. 4.23, we vary k and verify the theoretical analysis presented in

Section 4.5. In all three experiments, we run bichromatic RkNN queries on uniform data

sets consisting of 100, 000 facilities and the same number of users.

Chapter 4. Influence Zone Based Processing of RkNN Queries 137

 0

 5000

 10000

 15000

 20000

 25000

 2 5 10 20 40 100

no

de
s

ac
ce

ss
ed

Number of buffers

Our Our Our Our Our OurFN FN FN FN FN FN

19
4,

69
8

61
,6

34

Verification
Containment

Pruning

Figure 4.21: Buffer size

 0

 2000

 4000

 6000

 8000

 10000

 1 2 4 8 16

no

de
s

ac
ce

ss
ed

k

Experimental Theoretical
Containment

Pruning
Total

Pruning

Figure 4.22: Theoretical analysis (IO cost)

In Fig. 4.22, we compare the experimental value of total number of nodes accessed

with the theoretical value. Recall that the pruning phase of our algorithm corresponds

to the computation of the influence zone. Fig. 4.22 shows the accuracy of our theoretical

analysis of the IO cost of computing the influence zone and the total cost of our RkNN

algorithm.

 0

5

10

15

20

 1 2 4 8 16

A
re

a
(in

 1
0-5

 s
q.

 u
ni

ts
)

k

Experimental
Theoretical

(a) Area of influence zone

 0

 5

 10

 15

 20

 1 2 4 8 16

N
um

be
r

of
 R

kN
N

s

k

Experimental
Theoretical

(b) Number of RkNNs

Figure 4.23: Theoretical analysis

In Fig. 4.23(a) and Fig. 4.23(b), we vary k and verify our theoretical analysis of the

area of the influence zone and the number of RkNNs, respectively. It can be seen that

the theoretical results are close to the experimental results and follow the trend.

4.7.2 Continuous Monitoring of RkNN

As mentioned earlier, the problem addressed by the influence zone based algorithm is a

special case of the continuous RkNN queries. Hence, it is not fair to use the existing best

known algorithms without making any obvious changes that improve the performance.

Lazy Updates [CLZ+09] is the best known algorithm for continuous monitoring of RkNN

Chapter 4. Influence Zone Based Processing of RkNN Queries 138

queries (even for this special case, we observe that it outperforms other algorithms after

necessary changes are made to all the existing algorithms). Hence, we compare our

algorithm with Lazy Updates.

To conduct a fair evaluation, we set the size of the safe region for the Lazy Updates

algorithm to zero. This is because the facilities do not move and the safe regions will

not be useful in this case. We tested different possible sizes of the safe region and

confirmed that this is the best possible setting for Lazy Updates for this special case of

the continuous RkNN query.

Table 4.2: System parameters
Parameter Range

Number of users (×1000) 40, 60, 80, 100, 120
Number of facilities (×1000) 40, 60, 80, 100, 120
Number of queries 100, 300, 500, 700, 1000
k 1, 2, 4, 8, 16
Speed of objects (users) in km/ℎr 40, 60, 80, 100, 120
Mobility of objects (users) in % 5, 20, 40, 60, 80, 100

Our experiment settings are similar to the settings used in [CLZ+09] by Lazy Updates.

More specifically, we use Brinkhoff generator [Bri02] to generate the users moving on the

road map of Texas (data universe is approximately 1000Km×1000Km). The facilities are

randomly generated points in the same data universe. Table 4.2 shows the parameters

used in our experiments and the default values are shown in bold.

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16

T
im

e
(s

ec
on

ds
)

k

LazyUpdates
InfZone

Figure 4.24: Effect of k

The locations of the users are reported to the server after every one second (i.e., times-

tamp length is one second). The mobility of the objects refers to the percentage of the

Chapter 4. Influence Zone Based Processing of RkNN Queries 139

objects that report location updates at a given timestamp. In accordance with [CLZ+09],

the grid cardinality of both of the algorithms is set to 64× 64. Each query is monitored

for 5 minutes (300 timestamps) and the total time taken by all the queries is reported.

 0

 20

 40

 60

 80

 100

 120

 140

5 20 40 60 80 100

T
im

e
(in

 s
ec

)

Mobility (in %)

LazyUpdates
InfZone

(a) Mobility

 0

 50

 100

 150

 200

 250

 100 300 500 700 1000

T
im

e
(s

ec
on

ds
)

Number of queries

LazyUpdates
InfZone

(b) # of queries

Figure 4.25: Effect of mobility and number of queries

 0

 20

 40

 60

 80

 100

 120

 140

40 60 80 100 120

T
im

e
(s

ec
on

ds
)

Number of users (in thousands)

LazyUpdates
InfZone

(a) # of users

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

40 60 80 100 120

T
im

e
(in

 s
ec

)

Number of Facilities (in thousands)

LazyUpdates
InfZone

(b) # of facilities

Figure 4.26: Effect of data size

In Fig. 4.24, 4.25(a), 4.25(b), 4.26(a) and 4.26(b), we study the effect of k, the data

mobility, the number of the queries, the number of the users and the number of the

facilities, respectively. Influence zone based algorithm is shown as InfZone. Clearly,

the influence zone based algorithm outperforms Lazy Updates for all the settings and

scales better. In Fig. 4.26(b), both of the algorithms perform better as the number of

facilities increases. This is because the unpruned area becomes smaller when the number

of facilities is large. Hence, a smaller area is to be monitored by both the algorithms and

it results in lower cost.

Chapter 4. Influence Zone Based Processing of RkNN Queries 140

4.7.3 Handling data updates

We compare our proposed technique with BASIC algorithm. BASIC calls Algorithm 6

whenever a new facility is added and recomputes the influence zone from scratch whenever

a facility that contributes to the existing influence zone is deleted. We randomly generate

1000 updates such that half of the updates are insertions and the other half consists of

deletions. The default value of k is 8, number of facilities in the default data set is

100, 000 and the number of queries is 500. The influence zone of each of the query is

updated after every data update and the results show the total cost of handling all data

updates.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16

T
im

e
(s

ec
on

ds
)

k

Basic
OUR

(a) effect of k

 0

 5

 10

 15

 20

 25

 50000 100000 150000 200000

T
im

e
(s

ec
on

ds
)

number of facilities

Basic
OUR

(b) # of facilities

Figure 4.27: Handling data updates

Fig. 4.27 compares our approach with BASIC approach for increasing k and increasing

number of facilities. Fig. 4.27(a) shows that our proposed technique not only performs

significantly better than BASIC approach but also scales better as the value of k increases.

Fig. 4.27(b) shows that both of the algorithms are not significantly affected as the number

of facilities increases.

4.8 Summary

In this chapter, we introduced the concept of influence zone which is the area such that

every point inside this area is the RkNN of q and every point outside this area is not the

RkNN. The influence zone has several applications in location based services, marketing

and decision support systems. We show that it can also be used to efficiently process

Chapter 4. Influence Zone Based Processing of RkNN Queries 141

RkNN queries. First, we present efficient algorithm to compute the influence zone. Then,

based on the influence zone, we present efficient algorithms to process RkNN queries that

significantly outperform existing best known techniques for both the snapshot and con-

tinuous RkNN queries. We also present a detailed theoretical analysis to analyse the area

of the influence zone and IO costs of our RkNN processing algorithms. Our experiments

demonstrate the accuracy of our theoretical analysis. We also conduct a rigorous com-

plexity analysis and show that the complexity of one of our proposed algorithms can be

reduced from O(m2) to O(km) where m > k is the number of objects used to compute

the influence zone. We show that our techniques can be applied to dimensionality higher

than two and we present efficient techniques to handle data updates.

Chapter 5

Reverse Nearest Neighbors

Queries on Uncertain Data

In this chapter, we formalize and study probabilistic RNN query that is to find the

probable reverse nearest neighbors on uncertain data with probability higher than a

given threshold. This research was published in [CLW+10].

5.1 Overview

Uncertain data is inherent in many important applications such as sensor databases,

moving object databases, market analysis, and quantitative economic research. In these

applications, the exact values of data might be unknown due to limitation of measuring

equipment, delayed data updates, incompleteness, or data anonymization to preserve

privacy.

Usually an uncertain object is represented in two ways: 1) using a probability density

function [BSI08, CCMC08] (continuous case) and 2) using all possible instances [Wid05,

PJLY07] each with an assigned probability (discrete case). Our focus in this chapter is

to investigate the discrete cases.

Probabilistic RNN queries have many applications. Consider the example in Fig. 5.1,

142

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 143

where three residential blocks A, B and Q are shown. The houses within each block

are shown as small circles. The centroid of each residential block is shown as a hollow

triangle. For privacy reasons, we may only know the residential blocks in which the

people live (or zip code) but we do not have any information about the exact addresses

of their houses. We can assign some probability to each possible location of a person

in his residential block. e.g; the exact location of a person living in A is a1 with 0.5

probability.

Conventional queries on these residential blocks may use distance functions like the

distance between the centroids of two blocks. However, the results provided by the

conventional queries may not be meaningful. There are two major limitations for con-

ventional queries on such data1.

1) The conventional queries do not consider the locations of houses within each res-

idential block. This affects quality of the reported results. For instance, if the distance

between centroids of two residential blocks is used as distance function, the closest block

of A is B (in other words the person living in A is not the RNN of someone living in Q).

However, if the locations of houses within each block are considered, we find that for most

of the houses in A, the houses in Q are closer than the houses in B. For example, the

distance of a1 to every house in Q is less that its distance to any house in B. Similarly,

the distance of a2 to every house in Q is less than its distance to b1. Which means, a

person living in A has high chances to be the RNN of some person living in Q.

2) Conventional queries do not report the probability of objects to be the answer (an

object is either a RNN or not a RNN). On the other hand, probabilistic reverse nearest

neighbor queries provide more information by including the probability of an object to

be the answer. For example, a probabilistic reverse nearest neighbor query reports that

the probability of a person living in block A to become the RNN of a person living in Q

is 0.75 according to the possible world semantics (see example 5.2.1). This type of results

are more meaningful and interesting.

1Other distance functions like maximum distance, minimum distance and aggregated distance also
have these limitations.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 144

Probabilistic RNN queries have applications in privacy preserving location-based ser-

vices where the exact location of every user is obfuscated into a cloaked spatial re-

gion [MCA06]. However, the users might still be interested in finding their reverse nearest

neighbors. We can model this problem to finding probabilistic reverse nearest neighbor

by assigning confidence level to some possible locations of every user within his/her re-

spective cloaked spatial region. Probabilistic RNN queries may also be useful to identify

similar trading trends in stock markets. Each stock has many deals. A deal (transaction)

is recorded by the price (per share) and the volume (number of shares). For a given stock

s, clients may be interested in finding all other stocks that have trading trends more sim-

ilar to s than others. In such application, we can treat each stock as an uncertain object

and its deals as its uncertain instances. There are a number of other applications for the

queries that consider the proximity of uncertain objects [BSI08, CCMC08, KKR07] and

the applications of RNNs on uncertain objects are very similar.

Q

A

a
1

a
2

q
1

q
2

B

Dist(Q,A)
Dist(A,B)

b
2

b
1

Figure 5.1: An example of a probabilistic
RNN query

H
a2:q1

a
1

a
2

q
1

q
2

b
2

b
1

H
a1:q1

Figure 5.2: Any point in shaded area can-
not be RNN of q

Probabilistic RNN query processing poses new challenges in designing new efficient

algorithms. Although RNN query processing has been extensively studied based on var-

ious pruning methods, these pruning techniques either cannot be directly applied to

probabilistic RNN queries or become inefficient. For example, the perpendicular bisec-

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 145

tors adopted in the state-of-the-art RNN query processing algorithm [TPL04] assume

that objects are spatial points. In contrast, uncertain objects have arbitrary shapes of

their uncertain regions. In addition, applying the pruning rules on the instance level

of uncertain objects is extremely expensive as each uncertain object usually has a large

number of instances.

Another unique challenge in probabilistic RNN queries is that the verification of

candidate objects usually incurs substantial cost due to large number of instances in

each uncertain object. By verification, we mean computing the exact probability of

an object being the RNN of the query and testing whether it qualifies the probabilistic

threshold or not. Note that instances from objects that are close to the candidate objects

also need to be considered in the verification phase.

We formalize the problem of probabilistic RNN queries on uncertain data using the

semantics of possible worlds. We present a new probabilistic RNN query processing

framework that employs i) several novel pruning approaches exploiting the probability

threshold and geometric, topological and metric properties. ii) a highly optimized verifi-

cation method that is based on careful upper and lower bounding of the RNN probability

of candidate objects.

Our contributions are as follows:

∙ To the best of our knowledge, we are the first to formalize the problem of proba-

bilistic reverse nearest neighbors based on the possible worlds semantics.

∙ We develop efficient query processing algorithm of probabilistic RNN queries. The

new method is based on non-trivial pruning rules especially designed for uncertain

data and the probability threshold. Although we focus on discrete case where each

object is represented by some possible probable instances, our pruning rules can

be applied to the continuous case where each uncertain object is represented by a

probability density function.

∙ To better understand performance of our proposed approach, we devise a baseline

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 146

exact algorithm and a sampling-based approximate algorithm. Experiment results

on synthetic and real data sets show that our algorithm is much more efficient than

the baseline algorithm and performs better than the approximate algorithm for

most of the cases and is scalable.

This chapter is organized as follows. In Section 5.2, we formalize the problem and

present the preliminaries and notations used in this chapter. Our proposed pruning rules

are presented in Section 5.3. Section 5.4 presents our proposed algorithm for answering

probabilistic reverse nearest neighbor queries. Section 5.5 evaluates the proposed methods

with extensive experiments and Section 5.6 summarizes this chapter.

5.2 Problem Definition and Preliminaries

5.2.1 Problem Definition

Given a set of data points P and a query point q, a conventional reverse nearest neighbor

query is to find every point p ∈ P such that dist(p, q) ≤ dist(p, p′) for every p′ ∈ (P − p).

Now we define probabilistic reverse nearest neighbor queries. Consider a set of un-

certain objects U = {U1, ..., Un}. Each uncertain object Ui consists of a set of instances

{u1, ..., um}. Each instance uj is associated with a probability puj
called appearance prob-

ability with the constraint that
∑m

j=1 puj
= 1. We assume that the probability of each

instance is independent of other instances. A possible world W = {u1, ..., un} is a set of

instances with one instance from each uncertain object. The probability of W to appear

is P (W) =
∏n

i=1 pui
. Let Ω be the set of all possible worlds, then

∑

W∈Ω P (W) = 1.

The probability RNNQ(Ui) of any uncertain object Ui to be the RNN of an uncertain

object Q in all possible worlds can be computed as;

RNNQ(Ui) =
∑

(u,q),u∈Ui,q∈Q

pq ⋅ pu ⋅ RNNq(u) (5.1)

RNNq(u) is the probability that an instance u ∈ Ui is the RNN of an instance q ∈ Q in

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 147

any possible world W given that both u and q appear in W .

RNNq(u) =
∏

V ∈(U−Ui−Q)

(1−
∑

v∈V,dist(u,v)<dist(u,q)

pv) (5.2)

Given a set of uncertain objects U and a probability threshold �, problem of finding

probabilistic reverse nearest neighbors of any uncertain object Q is to find every uncertain

object Ui ∈ U such that RNNQ(Ui) ≥ �.

Example 5.2.1 Consider the example of Fig. 5.1 where the uncertain objects A, B and

Q are shown. Assume that the appearance probability of each instance is 0.5. According

to Equation (5.2), RNNq1(a1) = 1 because a1 is closer to q1 than it is to b1 or b2. Also

RNNq1(a2) = 1 − 0.5 because dist(a2, b2) < dist(a2, q1). Note that b1 does not affect

the probability of a2 to be the RNN of q1 because dist(a2, b1) > dist(a2, q1). Similarly,

RNNq2(a1) = 1 and RNNq2(a2) = 0.5. According to Equation (5.1), RNNQ(A) =

(0.5 × 0.5 × 1) + (0.5 × 0.5 × 1) + (0.5 × 0.5 × 0.5) + (0.5 × 0.5 × 0.5) = 0.75. RNN

probability of B can be computed similarly and RNNQ(B) = 0.25. If the probability

threshold � is 0.7, then the object A is reported as result.

5.2.2 Preliminaries

The filter-and-refine paradigm is widely adopted in processing RNN queries in spatial

databases. The idea is to quickly prune away points which are closer to another point

(usually called filtering point) than to the query point. The state-of-the-art pruning rule

is based on perpendicular bisector [TPL04]. It consists of two phases: the pruning phase

and the verification phase.

Hence, some objects are used to filter other objects and are called filtering objects.

Objects that cannot be filtered are called candidate objects. The pruning in RNN query

processing involves three objects, the query, the filtering object and a candidate object.

We use RQ, Rfil and Rcnd to denote the smallest hyper-rectangles enclosing uncertain

query object, filtering object and candidate object, respectively.

Table 5.1 defines the symbols and notations used throughout this chapter.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 148

Table 5.1: Notations
Notation Definition

U an uncertain object

ui itℎ instance of uncertain object U

Bx:q a perpendicular bisector between point x and q

Hx:q a half space defined by Bx:q containing point x

Hq:x a half space defined by Bx:q containing point q

Ha:b ∩Hc:d intersection of the two half spaces

P [i] value of point P in the itℎ dimension

RU minimum bounding rectangle (MBR) enclosing all instances of
an uncertain object U

5.3 Pruning Rules

Although the pruning for RNN query processing in spatial databases has been well stud-

ied, it is non-trivial to devise pruning strategies for RNN query processing on uncertain

data. For example, if we näıvely use every instance of a filtering object to perform bi-

sector pruning [TPL04], it will incur a huge computation cost due to large number of

instances in each uncertain object. Instead, we devise non-trivial generalization of bisec-

tor pruning for minimum bounding rectangles (MBRs) of uncertain objects based on a

novel notion of normalized half space.

Verification is extremely expensive in probabilistic RNN query processing because, in

order to verify an object as probabilistic RNN, we need to take into consideration not

only the instances of this object but also the instances of query object and other nearby

objects. Hence it is important to devise efficient pruning rules to reduce the number of

objects that need verification. In this section, we present several pruning rules from the

following orthogonal perspectives:

∙ Half space based pruning that exploits geometrical properties (Section 5.3.1)

∙ Dominance based pruning that exploits topological properties (Section 5.3.2)

∙ Metric based pruning (Section 5.3.3)

∙ Probabilistic pruning that exploits the probability threshold (Section 5.3.4)

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 149

We remark that the first three of the above pruning techniques are the same as those

presented in Chapter 3. The only difference is that, in this chapter, we present generalized

versions of these pruning rules that can be applied on multidimensional space (and not

only on 2d space).

5.3.1 Half Space Pruning

Consider a query point q and a filtering object U that has n instances {u1, u2, . . . , un}.

Let Hui:q be the half space between q and ui. Any instance u /∈ U that lies in ∩ni=1Hui:q

has zero probability to be the RNN of q because by the property of Hui:q, u is closer to

every ui than to q.

Example 5.3.1 Consider the example of Fig. 5.2 where the bisectors between q1 and the

instances of A are drawn and the half spaces Ha1:q1 and Ha2:q1 are shown. Intersection

of the two half spaces is shown shaded and any point that lies in the shaded area is closer

to both a1 and a2 than q1. For this reason, b2 cannot be the RNN of q1 in any possible

world.

This pruning is very expensive because we need to compute intersection of all half

spaces Hui:q for every ui ∈ U . Below we present our pruning rules that utilize the MBR

of the entire filtering object, Rfil, to prune the candidate object with respect to a query

instance q or the MBR of uncertain query object Q.

Pruning using Rfil and an instance q

First we present the intuition. Consider the example of Fig. 5.3 where we know that the

point p lies on a line MN but we do not know the exact location of p on this line. The

bisectors between q and the end points of the line (M and N) can be used to prune the

area safely. In other words, any point that lies in the intersection of half spaces HM :q

and HN :q (grey area) can never be the RNN of q. It can be proved that whatever be the

location of point p on the line MN , the half space Hp:q always contains HM :q ∩ HN :q.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 150

Hence any point p′ that lies in HM :q ∩HN :q would always be closer to p than to q and

for this reason cannot be the RNN of q.

q

H
M:q

M N

H
N:q

H
p:q

p

Figure 5.3: The exact location of the
point p on line MN is not known

q

H
M:q

M

N

H
P:q

H
O:q

O

P
H
N:q

R
fil

Figure 5.4: Any point in shaded area can-
not be RNN of q in any possible world

Based on the above observation, below we present a pruning rule for the case when

the exact location of a point p is unknown within some hyper-rectangle Rfil.

Pruning Rule 5.3.2 Let Rfil be a hyper-rectangle and q be a query point. For any point

p that lies in
∩2d

i=1 HCi:q (Ci is the itℎ corner of Rfil), dist(p, q) > maxdist(p,Rfil) and

thus p cannot be the RNN of q.

Note that this pruning rule is a generalized version of the pruning rule 3.3.4 presented

in Chapter 3. The proof is similar to the proof of pruning rule 3.3.4 and is omitted.

Consider the example of Fig. 5.4. Any point that lies in shaded area is closer to every

point in rectangle Rfil than to q. Note that if Rfil is a hyper rectangle that encloses all

instances of the filtering object Ui then any instance u ∈ Uj,j ∕=i that lies in
∩2d

i=1HCi:q

can never be the RNN of q in any possible world.

Pruning using Rfil and RQ

Pruning rule 5.3.2 prunes the area such that any point lying in it can never be the RNN

of some instance q. However, the points in the pruned area may still be the RNNs of

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 151

other instances of the query. Now, we present a pruning rule that prunes the area using

Rfil and RQ such that any point that lies in the pruned area cannot be the RNN of any

instance of Q.

Consider the example of Fig. 5.5 where the exact location of the query point q on

line MN is not known. Unfortunately, in contrast to the previous case of Fig. 5.3, the

bisectors between p and the end points of the line MN do not define the area that can

be pruned. If we prune the area Hp:M ∩Hp:N (the grey area), we may miss some point

p′ that is the RNN of q. Fig. 5.5 shows a point p′ that is the RNN of q but lies in the

shaded area. This is because the half space Hp:q does not contain Hp:M ∩ Hp:N . This

makes the pruning using Rfil and RQ challenging.

Note that if Hp:N is moved such that it passes through the point where Hp:q intersects

Hp:M then Hp:M ∩ Hp:N would be contained by Hp:q. We note that in the worst case

when p lies infinitesimally close to point M , Hp:q and Hp:M intersect each other at point

c which is the centre of line joining p and M . Hence, in order to safely prune the area,

the half space Hp:N should be moved such that it passes through the point c. The point

c is shown in Fig. 5.5. A half space that is moved to the point c is called a normalized

half space and a half space Hp:N that is normalized is denoted as H ′
p:N . Fig. 5.5 shows

H ′
p:N in broken line and H ′

p:N ∩Hp:M (the dotted shaded area) can be safely pruned.

Before we present our pruning rule for the general case that uses 2d half spaces to

prune the area using hyper-rectangles RQ and Rfil, we define the following concepts:

Antipodal Corners: Let C be a corner of rectangle R1 and C ′ be a corner in R2,

the two corners are called antipodal corners2 if for every dimension i where C[i] = R1L[i]

then C ′[i] = R2H [i] and for every dimension j where C[j] = R1H [j] then C ′[j] = R2L[j].

Fig. 5.6 shows two rectangles R1 and R2. The corners D and O are antipodal corners.

Similarly, other pairs of antipodal corners are (B,M), (C,N) and (A,P).

Antipodal half space: A half space that is defined by the bisector between two

antipodal corners is called antipodal half space. Fig. 5.6 shows two antipodal half spaces

2RL[i] (resp. RH [i]) is the lowest (resp. highest) coordinate of a hyper-rectangle R in itℎ dimension

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 152

p H
p:M

M Nq

H
p:N

H
p:q

H'
p:N

p'
c

Figure 5.5: Any point in dotted area can
never be RNN of q

O

A B

CD

M

N

P

H
M:B

H’
M:B

H’
P:A

H
P:A

R
1

R
2

c
c

Figure 5.6: Antipodal corners and nor-
malized half spaces

HM :B and HP :A.

Normalized half space: Let B and M be two points in hyper-rectangles R1 and

R2, respectively. The normalized half space H ′
M :B is a space defined by the bisector

between M and B that passes through a point c such that c[i] = (R1L[i] +R2L[i])/2 for

all dimensions i for which B[i] > M [i] and c[j] = (R1H [i] +R2H [j])/2 for all dimensions

j for which B[j] ≤ M [j]. Fig. 5.6 shows two normalized (antipodal) half spaces H ′
M :B

and H ′
P :A. The point c for each half space is also shown. The inequalities (5.3) and (5.4)

define the half space HM :B and its normalized half space H ′
M :B, respectively.

d
∑

i=1

(B[i]−M [i]) ⋅ x[i] <
d

∑

i=1

(B[i]−M [i])(B[i] +M [i])

2
(5.3)

d
∑

i=1

(B[i]−M [i]) ⋅ x[i] <

d
∑

i=1

(B[i]−M [i])×

⎧



⎨



⎩

(R1L[i] +R2L[i])

2
, if B[i] > M [i]

(R1H [i] +R2H [i])

2
, otherwise

(5.4)

Note that the right hand side of the Equation (5.3) cannot be smaller than the right hand

side of Equation (5.4). For this reason H ′
MB ⊆ HMB.

Now, we present our pruning rule.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 153

Pruning Rule 5.3.3 Let RQ and Rfil be two hyper-rectangles. For any point p that lies

in
∩2d

i=1 H
′
Ci:C′

i
, mindist(p,RQ) > maxdist(p,Rfil) where H ′

Ci:C′
i
is normalized half space

between Ci (the itℎ corner of the rectangle Rfil) and its antipodal corner C ′
i in RQ.

The proof of correctness is non-trivial and is given in Appendix A (see Lemma A.2.5).

O

A B

CD

M

N

P

H’
N:C

H’
M:BH’

P:A

H’
O:DR

Q

R
fil

Figure 5.7: Any point in shaded area can
never be RNN of any q ∈ Q

H’
N:C

H’
M:B

H’
P:A

H’
O:D

Rem
1

Rem
2

R
cnd

Rem

Figure 5.8: Clipping part of the candi-
date object Rcnd that can not be pruned

Consider the example of Fig. 5.7 where the normalized antipodal half spaces are

drawn and their intersection is shown shaded. Any point that lies in the shaded area is

closer to every point in rectangle Rfil than every point in rectangle RQ.

Note that if Rfil and RQ are the MBRs enclosing all instances of an uncertain object

Ui and query object Q, respectively, any instance u ∈ Uj,j ∕=i that lies in the pruned

region,
∩2d

i=1H
′
Ci:C′

i
, cannot be RNN of any instance of q ∈ Q in any possible world.

Even if the pruning region partially overlaps with Rfil, we can still trim the part of any

other hyper-rectangle RUj,j ∕=i
that falls in the pruned region. It is known that exact

trimming becomes inefficient in high dimensional space, therefore, we adopt the loose

trimming of Rcnd proposed in [TPL04].

The overall half space pruning algorithm that integrates pruning rules 5.3.2 and

5.3.3 is illustrated in Algorithm 7. For each half space, we use the clipping algorithm

in [GRSY97] to find a remnant rectangle Remi ⊆ Rcnd that cannot be pruned (lines 4

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 154

Algorithm 7 : hspace pruning (Q,Rfil, Rcnd)

Input: Q: an MBR containing instances of Q ; Rfil: the MBR to be used for trimming

Rcnd: the candidate MBR to be trimmed

Description:

1: Rem = ∅ /* Remnant rectangle */

2: for each corner Ci of Rfil do

3: if Q is a point then

4: Remi = clip(Rcnd,HCi:Q)/* clipping algorithm [GRSY97] */

5: else if Q is a hyper-rectangle then

6: C ′
i = antipodal corner of Ci in Q

7: Remi = clip(Rcnd,H
′
Ci:C′

i
)/* clipping algorithm [GRSY97] */

8: enlarge Rem to enclose Remi

9: if Rem = Rcnd then

10: return Rcnd

11: return Rem

and 7). After all the half spaces have been used for pruning, we calculate the MBR

Rem ⊆ Rcnd as the minimum bounding hyper rectangle covering every Remi. As such,

we trim the original Rcnd to Rem.

For better illustration we zoom Fig. 5.7 and show the clipping of a hyper-rectangle

Rcnd in Fig. 5.8. The algorithm returns Rem1, Rem2 (rectangles shown with broken

lines) when H ′
M :B and H ′

P :A are parameters to the clipping algorithm, respectively. For

the half spaces H ′
N :C and H ′

O:D the whole hyper-rectangle Rcnd can be pruned so the

algorithm returns �. The remnant hyper-rectangle Rem is an MBR that encloses Rem1

and Rem2. Note that at any stage if the remnant rectangle Rem becomes equal to Rcnd,

the clipping by other bisectors is not needed so Rcnd is returned without further clipping

(line 10).

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 155

5.3.2 Dominance Pruning

We first give the intuition behind this pruning rule. Fig. 5.9 shows another example

of pruning by using pruning rule 5.3.3 in two dimensional space. The normalized half

spaces are defined such that if Rfil is fully dominated3 by RQ in all dimensions then all

the normalized antipodal half spaces meet at point Fp as shown in Fig. 5.9. We also

observe that for the case when Rfil is fully dominated by RQ, the angle between the half

spaces that define the pruned area (shown in grey) is always greater than 90∘. Based on

these observations, it can be verified that the space dominated by Fp (the dotted-shaded

area) can be pruned.

O

A B

CD

M

N

P

H’
N:C

H’
M:B

H’
P:A

H’
O:D

R
Q

F
p

R
Fil

Figure 5.9: Pruning area of half space
pruning and dominance pruning

R
Q

12

3 4

f

f f

f

F
p

F
p F

p

F
p

Figure 5.10: Dominance Pruning:
Shaded areas can be pruned

Let RQ be the MBR containing instances of Q. We can obtain the 2d regions as

shown in Fig. 5.10. Let RUi
be an MBR of a filtering object Rfil that lies completely in

one of the 2d regions. Let f be the furthest corner of RUi
from RQ and n be the nearest

corner of RQ from f . The frontier point Fp lies at the centre of line joining f and n.

Pruning Rule 5.3.4 Any instance u ∈ Uj that is dominated by the frontier point Fp of

a filtering object cannot be RNN of any q ∈ Q in any possible world.

3If every point in R1 is dominated (dominance relationship as defined in skylines) by every point in
R2 we say that R1 is fully dominated by R2.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 156

Formal proof is given in Appendix A (see Lemma A.2.6).

Fig. 5.10 shows four examples of dominance pruning (one in each region). In each

partition the shaded area is dominated by Fp and can be pruned. Note that if Rfil is not

fully dominated by RQ, we cannot use this pruning rule because the normalized antipodal

half spaces in this case do not meet at the same point. For example, the four normalized

antipodal half spaces intersect at two points in Fig. 5.7. In general, the pruning power

of this rule is less than that of the half space pruning. Fig. 5.9 shows the area pruned by

the half space pruning (shaded area) and dominance pruning (dotted area).

The main advantage of this pruning rule is that the pruning procedure is computa-

tionally more efficient than the half space pruning, as checking the dominance relationship

and trimming the hyper-rectangles is easier.

5.3.3 Metric Based Pruning

Pruning Rule 5.3.5 An uncertain object Rcnd can be pruned if maxdist(Rcnd, Rfil) <

mindist(Rcnd, RQ).

This pruning approach is the least expensive. Note that it cannot prune part of Rcnd,

i.e., it either invalidates all the instances of Rcnd or does nothing.

5.3.4 Probabilistic Pruning

Note that we did not discuss probability threshold while presenting previous pruning

rules. In this section, we present a pruning rule that exploits the probability threshold

and embeds it in all previous pruning rules to increase their pruning powers.

A simple exploitation of the probability threshold is to trim the candidate object

using previous pruning rules and then prune the object if the accumulative appearance

probability of instances within its remnant rectangle is less than the threshold. Next, we

present a more powerful pruning rule that is based on estimating an upper bound of the

RNN probability of candidate objects.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 157

In previous pruning rules, we prune some area using MBR of a query object RQ and

a filtering object Rfil. We observe that the area pruned by using R′
Q and R′

fil always

contains the area pruned by RQ and Rfil where R′
Q ⊆ RQ and R′

fil ⊆ Rfil. Fig. 5.11

shows an example. The shaded area is pruned when R′
Q and Rfil are used for pruning and

the dotted shaded area is pruned when RQ and Rfil are used. Note that this observation

also holds for the dominance pruning.

We can use the observation presented above to prune the objects that cannot have

RNN probability greater than the threshold. First, we give a formal description of this

pruning rule and then we give an example.

Pruning Rule 5.3.6 Let the instances of Q be divided into n disjoint4 sets {Q1, Q2, ..., Qn}

and RQi
be the minimum bounding rectangle enclosing all instances in Qi. Let {Rcnd1 , Rcnd2

, ..., Rcndn} be the set of bounding rectangles such that each Rcndi contains the instances

of the candidate object that cannot be pruned for Qi using any of the pruning rules.

Let PRQi and PRcndi be the total appearance probabilities of instances in Qi and Rcndi,

respectively. If
∑n

i=1(P
Rcndi ⋅ PRQi) < �, the candidate object can be pruned.

Pruning rule 5.3.6 computes an upper bound of the RNN probability of the candidate

object by assuming that all instances in Rcndi are RNNs of all instances in Qi. The

candidate object can be safely pruned if this upper bound is still less than the threshold.

Example 5.3.7 Fig. 5.12 shows MBRs of the query object RQ and a candidate object

Rcnd along with their instances (q1 to q5 and u1 to u4). Assume that all instances within

an object have equal appearance probabilities (e.g; pqi = 0.2 for every qi and pui
= 0.25

for every ui). Suppose that no part of Rcnd can be pruned using RQ and any filtering

object Rfil (for better illustration, filtering object is not shown). We prune Rcnd using

the rectangle RQ1
that is contained by RQ. This trims Rcnd and the remnant rectangle

R1 is obtained. Similarly, R2 is the remnant rectangle when pruning rules are applied for

4We only require instances of Q to be disjoint. The pruning rule can be applied even when the
minimum bounding rectangles RQi

overlap each other as shown in Fig. 5.12.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 158

R’
Q

R
Fil

R
Q

Figure 5.11: Regions pruned by RQ and
its subset R′

Q

R
cnd

R
2

R
1

q
1

q
3

q
2

q
4

q
5 u

1

u
3

u
2

u
4

R
Q1

R
Q2 R

Q

Figure 5.12: Probabilistic pruning

RQ2
. Note that only the instances in R1 (u1 and u2) can be the RNN of instances in RQ1

(q3, q4 and q5). Similarly, no instance can be the RNNs of any instance in RQ2
because

R2 is empty. So the maximum RNN probability of Rcnd is (0.6 × 0.5) + (0.4 × 0) = 0.3.

If the probability threshold � is greater than 0.3, we can prune Rcnd. Otherwise, we can

continue to trim Rcnd by using the smaller rectangles contained in RQ1
.

In our implementation, we build an R-tree on query object and the pruning rule is

applied iteratively using MBRs of children. For more details, please see Algorithm 11.

Although the smaller rectangles R′
fil contained in Rfil can also be used, we do not

use them because unlike query object there may be many filtering objects. Hence, using

the smaller rectangles for each of the filtering objects would make this pruning rule

very expensive in practice (more expensive than the efficient verification presented in

Section 5.4.3).

5.3.5 Integrating the pruning rules

Algorithm 8 is the implementation of pruning rules 5.3.2 to 5.3.5. Specifically, we apply

pruning rules in increasing order of their computational costs (i.e., from pruning rule 5.3.5

to 5.3.2). While simple pruning rules are not as restricting as more expensive ones,

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 159

they can quickly discard many non-promising candidate objects and save the overall

computational time.

R
Q

R
1

R
2

R
cnd

Figure 5.13: Rcnd can be pruned by R1 and R2

It is important to use all the filtering objects to filter a candidate objects. Consider

the example in Fig. 5.13. Rcnd cannot be pruned by either R1 or R2, but will be pruned

by considering both of them.

Two subtle optimizations in the algorithm are:

∙ If mindist(Rcnd, Rfil) > maxdist(RQ, Rcnd) for a given MBR Rfil, then Rfil cannot

prune any part of Rcnd. Hence such Rfil is not considered for dominance and half

space pruning (lines 4-5). However, Rfil may still prune some other candidate

objects, so we remove such Rfil only from a local set of filtering object, Sfil. This

optimization reduces the cost of dominance and half space pruning.

∙ If the frontier point Fp1 of a filtering object Rfil1 is dominated by the frontier point

Fp2 of another filtering object Rfil2 , then Fp1 can be removed from Sfil because

the area pruned by Fp1 can also be pruned by Fp2 . However, note that a frontier

point cannot be used to prune its own rectangle. Therefore, before deleting Fp1 ,

we use it to prune rectangle belonging to Fp2 . This optimization reduces the cost

of dominance pruning.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 160

Algorithm 8 : Prune(Q,Sfil, Rcnd)

Input: RQ: an MBR containing instances of Q ; Sfil: a set of MBRs to be used for

trimming Rcnd: the candidate MBR to be trimmed

Description:

1: for each Rfil in Sfil do

2: if maxdist(Rcnd, Rfil) < mindist(RQ, Rcnd) then /* Pruning rule 5.3.5 */

3: return �

4: if mindist(Rcnd, Rfil) > maxdist(RQ, Rcnd) then

5: Sfil = Sfil −Rfil/* Rfil cannot prune Rcnd */

Rem = Rcnd

6: for each Rfil in Sfil do

7: if Rfil is fully dominated by RQ in a partition p then /* Pruning rule 5.3.4

*/

8: if some part of Rem lies in the partition p then

9: Rem = the part of Rem not dominated by Fp

10: if (Rem = �) then return �

11: for each Rfil in Sfil do

12: Rem = hspace pruning(RQ, Rfil, Rem) /* Pruning Rules 5.3.2 and 5.3.3 */

13: if (Rem = �) then return �

14: return Rem

5.4 Proposed Solution

In this section, we present our algorithm to find the probabilistic RNNs of an uncertain

query object Q. The data is stored in system as follows: for each uncertain object, an

R-tree is created and stored on disk that contains the instances of the uncertain object.

Each node of the R-tree contains the aggregate appearance probability of the instances

in its subtree. We refer these R-trees as local R-trees of the objects. Another R-tree is

created that stores the MBRs of all uncertain objects. This R-tree is called global R-tree.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 161

Algorithm 9 : Answering Probabilistic RNN

Input: Q: uncertain query object; �: probability threshold;

Output: all objects that have higher than � probability to be RNN of Q

Description:

1: Shortlisting: Shortlist candidate and filtering objects (Algorithm 10)

2: Refinement: Trim candidate objects using disjoint subsets of Q and apply pruning

rule 5.3.6 (Algorithm 11)

3: Verification: Compute the exact probabilities of each candidate and report results

Algorithm 9 outlines our approach. Our algorithm consists of three phases namely

Shortlisting, Refinement and Verification. In the following sub-sections, we present the

details of each of these three phases.

5.4.1 Shortlisting

In this phase (Algorithm 10), the global R-tree is traversed to shortlist the objects that

may possibly be the RNN of Q. The MBR Rcnd of each shortlisted candidate object

is stored in a set of candidate objects called Scnd. Initially, root entry of the R-tree is

inserted in a min-heap H. Each entry e is inserted in the heap with key maxdist(e,RQ)

because a hyper-rectangle that has smaller maximum distance to RQ is likely to prune a

larger area and has higher chances to become the result.

We try to prune every de-heaped entry e (line 5) by using the pruning rules presented

in the previous section. If e is a data object and cannot be pruned, we insert it into

Scnd. Otherwise, if e is an intermediate or leaf node, we insert its children c into heap

H with key maxdist(c,RQ). Note that an entry e can be removed from Sfil (line 9) if

at least one of its children is inserted in Sfil because the area pruned by an entry e is

always contained by the area pruned by its child (a direct implication of Lemma A.2.5

in Appendix A).

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 162

Algorithm 10 : Shortlisting

1: Sfil = ∅, Scnd = ∅

2: Initialize a min-heap H with root entry of Global R-Tree

3: while H is not empty do

4: de-heap an entry e

5: if (Rem = prune(RQ, Sfil, e)) ∕= � then

6: if e is a data object then

7: Scnd = Scnd ∪ {e}

8: else if e is a leaf or intermediate node then

9: Sfil = Sfil − {e}

10: for each data entry or child c in e do

11: insert c into H with key maxdist(c,RQ)

12: Sfil = Sfil ∪ {c}

5.4.2 Refinement

In this phase (Algorithm 11), we refine the set of candidate objects by using pruning

rule 5.3.6. More specifically, we descend into the R-tree of Q and trim each candidate

object Rcnd against the children of Q and apply pruning rule 5.3.6.

Let PR be the aggregate probability of instances in any hyper-rectangle R. At this

stage PRcnd of a candidate object may be less than one because Rcnd might have been

trimmed during shortlisting phase. We can prune Rcnd if upper bound RNN probability

of a candidate object MaxProb = PRcnd is less than � (line 3).

We use a max-heap that stores entries in form (e,R, key) where e and R are hyper-

rectangles containing instances of Q and Rcnd, respectively. key is the maximum prob-

ability of instances in R to be the RNNs of instances in e (i.e; key = P e ⋅ PRcnd). We

initialize the heap by inserting (Q, Rcnd, MaxProb) (line 5). For each de-heaped en-

try (e,R, p), we trim the hyper-rectangle R against e by Sfil and store the trimmed

rectangle in Rem (line 8). The upper bound RNN probability MaxProb is updated to

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 163

Algorithm 11 : Refinement

Description:

1: for each Rcnd in Scnd do

2: if (MaxProb = PRcnd) < � then

3: Scnd = Scnd −Rcnd; continue;

4: Initialize a max-heap H containing entries in form (e,R, key)

5: insert (Q,Rcnd,MaxProb) into H

6: while H is not empty do

7: de-heap an entry (e,R, p)

8: Rem = Prune (e, Sfil, R)

9: MaxProb = MaxProb− p+ (P e ⋅ PRem)

10: if MaxProb < � then

11: Scnd = Scnd −Rcnd; break;

12: if (PRem > 0) AND (e is an intermediate node or leaf) then

13: for each child c of e do

14: insert (c,Rem, (P c ⋅ PRem)) into H

MaxProb−p+(P e ⋅PRem). Recall that p = P e ⋅PR was inserted with this entry assuming

that all instances in R are RNNs of all instances in e. After we trim R using e (line 8), we

know that only the instances in Rem can be RNNs of e. That is the reason we subtract

p from MaxProb and add (P e ⋅ PRem).

At any stage, if the MaxProb < � the candidate object can be pruned. Otherwise,

an entry (c,Rem, (P c.PRem)) is inserted into the heap, for each child c of e. Note that

if the trimmed hyper-rectangle does not contain any instance then PRem is zero and we

do not need to insert children of e in the heap for such Rem.

Recall that every node in local R-tree stores the aggregate appearance probability of

all instances in its sub-tree which makes computation of aggregate probability cheaper.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 164

5.4.3 Verification

The actual probability of a candidate object Rcnd to be the RNN of Q is the sum of

probabilities of every instance ui ∈ Rcnd to be the RNN of every instance q of Q . To

compute the probability of an instance ui to be RNN of q, we have to find, for each

uncertain object U , the accumulative appearance probability of its instances that have

smaller distance to ui than dist(q, ui) (Equation (5.2)). A straight forward approach is

to issue a range query for every ui ∈ Rcnd centred at ui with range set as dist(q, ui) and

then compute the accumulative appearance probability of instances of each object that

are returned. However, this approach requires ∣ Q ∣ × ∣ Rcnd ∣ number of range queries

where ∣ Q ∣ and ∣ Rcnd ∣ are number of instances in Q and Rcnd, respectively. Below,

we present an efficient approach that issues only one global range query to compute the

exact RNN probability of a candidate object.

Finding range of the global range query

Let Rfil be an MBR containing instances of a filtering object. An instance ui has zero

probability to be RNN of an instance q if dist(ui, q) > maxdist(ui, Rfil). So the range of

a range query for ui centred at ui is minimum of maxdist(ui, RQ) and maxdist(ui, Rfil)

for every Rfil in Sfil.

R
cnd

R
1

R
2

R
3

R
4

u
1

Maxdist(u
1
,R

1
)

Maxdist(u
2
,R

Q
)+dist(u

2
,c)

u
2

R
Q

Figure 5.14: Finding the range of the global query

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 165

Consider the example of Fig. 5.14 where the range of queries centred at u1 and u2

are maxdist(u1, R1) and maxdist(u2, RQ), respectively (circles with broken lines).

We want to reduce multiple range queries to a single range query centred at the centre

of Rcnd with a global range r such that all instances required to compute RNN probability

of every candidate instance ui ∈ Rcnd are returned. Let ri be the range of the range query

of ui computed as described above. The global range r is max(ri + dist(ui, c)) for every

ui ∈ Rcnd where c is the centre of Rcnd. In the example of Fig. 5.14, the global range

is r = maxdist(u2, RQ) + dist(u2, c) as shown in the figure (solid circle). Note that this

range ensures that all the instances required to compute RNN probability of both u1 and

u2 lie within this range.

Computing the exact RNN probability of Rcnd

We issue a range query on global R-tree with range r as computed above. For each

returned object Ui, we issue a range query on the local R-tree of Ui to get the instances

that lie within the range and then create a list Li containing all these instances. We sort

the entries in each list Li in ascending order of their distances from ucnd.

The list LQ for the instances of query object Q is shown in Fig. 5.15. Each entry e

contains two values (d, p) such that d is distance of e from ucnd and p is the appearance

probability of the instance e. The lists for other objects are slightly different in that each

entry e contains two values (d, P) where P is the accumulative appearance probability of

all the instances that appear in the list before e. In other words, given an entry (d, P),

the total appearance probability of all instances (in this list) that have smaller distance

than d is P .

Given these lists, we can quickly find the accumulative appearance probability of all

instances of any uncertain object that lie closer to ucnd than a query instance qi. The

example below illustrates the computation of exact probability of a candidate instance

ucnd.

Example 5.4.1 Fig. 5.15 shows the lists of query object Q and three uncertain objects

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 166

q
1
(0.3,0.3)

q
2
(0.3,0.2)

q
3
(0.5,0.3)

q
4
(0.6,0.1)

a
3
(0.1,0.3)

a
2
(0.4,0.5)

a
6
(0.6,0.7)

b
1
(0.1,0.2)

b
4
(0.2,0.4)

b
2
(0.4,0.7)

b
3
(0.6,0.9)

b
5
(0.6,1.0)

c
1
(0.4,0.5)

c
2
(0.4,1.0)

Q A B C

q
5
(0.7,0.1)

Figure 5.15: lists sorted on distance from a candidate instance ucnd

A, B and C. The lists are sorted on their distances from the candidate instance ucnd.

We start the computation from the first entry q2 in Q and compute RNNq2(ucnd). The

distance dq2 is 0.3. We do a binary search on A, B and C to find an entry in each list

with largest d smaller than dq2 . Such entries are a3(0.1, 0.3) and b4(0.2, 0.4) in lists A and

B, respectively. No instance is found in C. Hence, the sum of appearance probabilities

of instances of B that have distance from ucnd smaller than dq2 is 0.4, similarly for A it

is 0.3. Given both q2 and ucnd appear in a world, the probability of ucnd to be RNN of q2

is obtained from Equation (5.2) as (1 − 0.4)(1 − 0.3) = 0.42. The probability of ucnd to

be RNN of q2 in any possible world is 0.42(pq2 × pucnd
).

Similarly the next entry in Q is processed and RNNq1(ucnd) is computed which is

again 0.42 because its distance from ucnd is the same. RNNq3(ucnd) is zero because the

binary search on C gives an entry (d, P) where P = 1 (all instances of C have smaller

distance to ucnd then dq3). Note that, we do not need to compute the RNN probabilities

of ucnd against remaining instances q4 and q5 because their distances from ucnd are larger

than dq3 and RNNq3(ucnd) = 0. Also note that the area to be searched in any list Li by

binary search becomes smaller for the processing of next query instance.

The above example illustrates the probability computation of an instance ucnd to be

the RNN of all instances in Q. We repeat this for every instance ucnd ∈ Rcnd to compute

the RNN probability of the candidate object. Next, we present some optimizations that

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 167

improve the efficiency of verification phase.

Optimizations

Our proposed optimizations bound the minimum and maximum RNN probabilities

and verify the objects that have the minimum probability greater than or equal to the

threshold. Similarly, the objects that have the maximum probability less than the thresh-

old are deleted. Below, we present the details of the proposed optimizations.

a) Bounding RNN probabilities using RQ:

Recall that, for each candidate object Rcnd, a global range query is issued and for

each object Ui within the range a list Li is created containing the instances of Ui lying

within the range. Just before we sort these lists, we can approximate the maximum and

minimum RNN probability of the candidate object based on the following observations.

Let c be the centre and d be the diagonal length of Rcnd and ai be some instance in

list A. Every ucnd ∈ Rcnd is always closer to ai than every qi ∈ Q if mindist(Rcnd, RQ) >

dist(ai, c)+ d/2. Similarly, every ucnd would always be further from ai than every qi ∈ Q

if maxdist(Rcnd, RQ) < dist(ai, c)− d/2. Consider the example of Fig. 5.16, every point

in Rcnd is always closer to a1 than any point in RQ. Similarly, every point in Rcnd is

always further from a2 than it is from any point in RQ.

R
Q

R
cnd

mindist(R
cnd
,R
Q
)

maxdist(R
cnd
,R
Q
)

a
1

a
2

c

a
3

a
4

R
cnd

maxdist(R
cnd
,q
1
)

mindist(R
cnd
,q
1
)

a
1

a
2

c

q
1

a
3

a
4

Figure 5.16: Bounding lower and upper bound RNN probabilities

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 168

Based on the above observations, for every object, we can accumulate the appearance

probabilities of all the instances u such that every ucnd is always closer to (or further from)

u than every qi. More specifically, we traverse each list Li and accumulate the appearance

probabilities of every instance ui for which mindist(Rcnd, RQ) > dist(ui, c) + d/2 and

store the accumulated probabilities in Pnear
i . Similarly, the accumulated appearance

probabilities of every instance uj for which maxdist(Rcnd, RQ) < dist(uj , c) − d/2 is

stored in P far
i . Then the maximum RNN probability of any instance ucnd is pmax

cnd =

∏

∀Li
(1 − Pnear

i). The minimum probability of any instance ucnd to be RNN of Q is

pmin
cnd =

∏

∀Li
(P far

i) because P far
i is the total probability of instances that are definitely

farther. So we assume that all other instances are closer to ucnd than qi and this gives

us the minimum RNN probability.

Let PRcnd be the aggregate appearance probability of all the instances in Rcnd then

Rcnd can be pruned if PRcnd ⋅ pmax
cnd < �. Similarly, the object can be reported as answer

if PRcnd ⋅ pmin
cnd ≥ �.

b) Bounding RNN probabilities using instances of Q:

If an object Rcnd cannot be pruned or verified as result at this stage, we try to make

a better estimate of pmin
cnd and pmax

cnd by using instances within Q. Note that every ucnd ∈

Rcnd is always closer to ai than a query instance qi if mindist(Rcnd, qi) > dist(ai, c)+d/2.

Similarly, every ucnd would always be further from ai than qi if maxdist(Rcnd, qi) <

dist(ai, c) − d/2. Consider the example of Fig. 5.16 where every point in Rcnd is closer

to both a1 and a4 than q1. Similarly, every point in Rcnd is further from both a2 and a3

than it is from q1.

To update pmax
cnd , we first sort every list in ascending order of dist(c, u) where dist(c, u)

is already known (returned by global range query). Then, the list LQ is sorted in as-

cending order of the mindist(Rcnd, qi). Then for each qi in ascending order, we conduct

a binary search on every list Li and find the entry e(d, P) with greatest d in the list

that is less than mindist(Rcnd, qi)− d/2. The probability P of this entry is accumulated

appearance probability Pnear
i of all the instances ai such that every ucnd is always closer

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 169

to ai than qi. Then the maximum probability of any instance ucnd ∈ Rcnd to be the RNN

of qi is p
max
icnd

=
∏

∀Li
(1 − Pnear

i). We do such binary searches for every qi in the list and

pmax
cnd =

∑

∀qi∈Q
pmax
icnd

.

The update of pmin
cnd is similar except that the list LQ is sorted in ascending order of

maxdist(Rcnd, qi) and the binary search is conducted to find the entry e(d, P) with the

greatest d that is smaller thanmaxdist(Rcnd, qi)+d/2. The total appearance probabilities

of all instances in Li that are always farther from every ucnd than qi is P
far
i = (1 − P).

Finally, pmin
icnd

=
∏

∀Li
(P far

i) and pmin
cnd =

∑

∀qi∈Q
pmin
icnd

.

After updating pmax
cnd and pmin

cnd , we delete the candidate objects for which PRcnd ⋅pmax
cnd <

�. Similarly, a candidate object is reported as answer if PRcnd ⋅ pmin
cnd ≥ �.

c) Early stopping:

If an object Rcnd is not pruned by the above mentioned estimation of maximum

and minimum RNN probabilities then we have to compute exact RNN probabilities (as

described in Section 5.4.3) of the instances in it. By using the maximum and minimum

RNN probabilities, it is possible to verify or invalidate an object without computing the

exact RNN probabilities of all the instances. We achieve this as follows; We sort all the

instances in Rcnd in descending order of their appearance probabilities. Assume that we

have computed the exact RNN probability RNNQ(u) of first i instances. Let P be the

aggregate appearance probabilities of these first i instances and PRNN be the sum of their

RNNQ(u). At any stage, an object can be verified as answer if PRNN +(1−P).pmin
cnd ≥ �.

Similarly, an object can be pruned if PRNN + (1− P).pmax
cnd < �.

Note that (1−P).pmin
cnd is the minimum probability for the rest of the instances to be

the RNN of Q. Similarly, (1 − P).pmax
cnd is the maximum probability for the remaining

instances to be the RNN.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 170

5.5 Experiment Results

In this section we evaluate the performance of our proposed approach. All the experi-

ments were conducted on Intel Xeon 2.4 GHz dual CPU with 4 GBytes memory. The

node size of each local R-tree is 1K and that of global R-tree is 2K. We measured both

the I/O and CPU time and I/O cost is around 1-5% of the total cost for all experiments.

Hence, for clarity of experiment figures, we display the average total cost per query. We

used both synthetic and real data sets.

Table 5.2: System parameters
Parameter Range

Probability threshold (�) 0.1, 0.3, 0.5, 0.7, 0.9

Number of objects (×1000) 2, 4, 6, 8, 10

Maximum number of instances in an object 200, 400, 600, 800, 1000

Maximum width of hyper-rectangle 1%, 2%, 3%, 4%

Distribution of object centres Uniform, Normal

Distribution of instances Uniform, Normal

Appearance probability of instances Uniform, Normal

Table 5.2 shows the specifications of the synthetic data sets we used in our experiments

and the defaults values are shown in bold. First the centres of the uncertain objects

were created (uniform or normal distribution) and then the instances for each object

(uniform or normal distribution) were created within their respective hyper-rectangles.

The width of the hyper-rectangle in each dimension was set from 0 to w% (following

uniform distribution) of the whole space and we conducted experiments for w changed

from 1 to 4. The appearance probabilities of instances were generated following either

uniform or normal distribution. Our default synthetic data set contains approximately

1.8 Million instances (6000×600
2). Similar to [TCX+05], the query object follows same

distribution as the underlying data set.

The real data set5 consists of 28483 zip codes obtained from 40 states of United States.

Each zip code represents an object and the address blocks within each zip code are the

instances. The data source provides address ranges instead of individual addresses and

5http://www.census.gov/geo/www/tiger/

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 171

we use the term address block for a range of addresses along a road segment. The address

block is an instance in our data set that lies at the middle of the road segment with

the appearance probability calculated as follows; Let n be the number of total addresses

in a zip code and m be the number of addresses in the current address block then the

appearance probability of the current address block is m/n. The real data set consists

of 11.24 Million instances and the maximum number of instances (address blocks) in an

object (Sanford, North Carolina) were 5918.

5.5.1 Comparison with other possible solutions

We devise a näıve algorithm and a sampling based approximate algorithm to better

understand the performance of our algorithm. More specifically, in the näıve algorithm,

we first shortlist the objects using our pruning rule 5.3.5 (e.g; any object Rcnd can be

pruned if mindist(Rcnd, RQ) > maxdist(Rcnd, Rfil)). Then, we verify the remaining

objects as follows. For each pair (ui, qi), we issue a range query centred at ui with

range dist(ui, qi) and compute the RNN probability of the instance ui against the query

instance qi using the Equation (5.2). Finally, the Equation (5.1) is used to compute the

RNN probability of the object.

In sampling based approach, we create a few sample possible worlds before starting

the computation. More specifically, a possible world is created by randomly selecting one

instance from each uncertain object. For each possible world, we create an R-tree (node

size 2K) that stores the instances of the possible worlds. This reduces the problem of

finding probabilistic RNNs to conventional RNNs. For each possible world, we compute

the RNNs using TPL [TPL04] that is the best-known RNN algorithm for multidimen-

sional data. Let n be the number of possible worlds evaluated and m be the number

of possible worlds in which an object Rcnd is returned as RNN, then Rcnd is reported

as answer if m/n ≥ �. The costs shown do not consider the time taken in creating the

possible worlds. Note that this algorithm provides only approximate results. For real

data set, the accuracy varies from 60% to 75%.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 172

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 6 5 4 3 2

T
im

e
(s

ec
on

ds
)

Number of Dimensions

Our Alogrithm
Sampling (#PW=100)
Sampling (#PW=200)

Figure 5.17: Overall cost

 500

 50

 5

 0.5

 0.05
 6 5 4 3 2

T
im

e
(s

ec
on

ds
)

Number of Dimensions

Our Verification
Naive Verification

Figure 5.18: Verification cost

Näıve algorithm appeared to be too slow (average query time from 7 minutes to 2

hours) so we show its computation time only when comparing our verification phase in

Fig. 5.18.

Fig. 5.17 compares our approach with the sampling based approximate approach

(for 100 and 200 possible worlds) on synthetic data set. In two dimensional space, our

algorithm is comparable with the sampling algorithm that returns approximate answer.

On the other hand, the Fig. 5.17 shows that our algorithm is more efficient for higher

dimensions and scales better. The cost for our algorithm first decreases as the number of

dimensions increase and then it starts increasing. The reason is that for low dimensional

space, the data is more dense and the verification phase cost dominates the pruning phase

cost. On the other hand, for high-dimensional space, the data is sparse and while the

verification is cheaper the pruning phase is expensive (e.g; greater number of bisectors

required to prune the space).

In Fig. 5.18, we compare the verification cost of our algorithm with the verification

cost of näıve algorithm. The costs shown are verification costs per candidate object. Our

proposed verification is three orders of magnitude faster than the näıve verification.

5.5.2 Performance on real data set and effect of data distribution

Fig. 5.19 compares the performance of our algorithm against the sampling based approx-

imate algorithm on real data set for probability threshold changed from 0.1 to 0.9. For

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 173

sampling based algorithm, the costs are shown for the evaluation of 100 and 200 possible

worlds. Our algorithm performs better than the approximate sampling based algorithm

for larger threshold.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.9 0.7 0.5 0.3 0.1

T
im

e
(s

ec
on

ds
)

Probability Threshold

Our Algorithm
Sampling (#PW=100)
Sampling (#PW=200)

Figure 5.19: Comparison on real data set

 0

 0.5

 1

 1.5

 2

 2.5

 3

 6 5 4 3 2
T

im
e

(s
ec

on
ds

)
Number of Dimensions

unif-unif-unif
unif-unif-norm
norm-unif-unif

norm-norm-unif
norm-norm-norm

Figure 5.20: Effect of data distribution

Note that although the accuracy may vary, the cost of sampling algorithm does not

change with the change in threshold, underlying data distribution (as noted in [TPL04]),

width of hyper-rectangle or number of instances in each object. Moreover, the cost of

sampling algorithm increases linearly with the number of possible worlds evaluated. For

this reason, now we focus on the performance evaluation of only our proposed algorithm.

Fig. 5.20 shows the performance of our algorithm for different data distributions. The

legend shows data distributions in form dist1 dist2 dist3 where dist1 is the distribution of

the object centres, dist2 is the distribution of instances within the objects and dist3 is the

distribution of appearance probability. For example, norm norm unif shows the result

for the data such that the centres of objects and instances are normally distributed with

appearance probability following uniform distribution. The performance of our algorithm

on non-uniform data is better than the uniform data as can be observed from Fig. 5.20.

This is mainly due to two reasons. Firstly, we observe that the number of candidates

in Scnd is smaller after the pruning phase if the data is non-uniform. Secondly, if the

probability distribution is not uniform the verification phase is faster because we sort the

instances in descending order of their appearance probabilities and this lets us validate

or invalidate an object earlier.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 174

5.5.3 Effect of data size

In Fig. 5.21, we increase the maximum number of instances in each object from 200

to 1000. The performance degrades as the number of instances increase. Although

the increase in number of instances does not have significant effect on pruning phase, the

verification phase becomes more expensive if each object has greater number of instances.

Also observe that the cost does not change significantly for higher dimensions because

in high dimensional space, the pruning phase cost is dominant which is not affected

significantly by the number of instances

 0

 1

 2

 3

 4

 5

 1000 800 600 400 200

T
im

e
(s

ec
on

ds
)

Number of Instances

2d
3d
4d
5d
6d

Figure 5.21: Effect of number of in-
stances in each object

 0

 1

 2

 3

 4

 5

 10000 8000 6000 4000 2000

T
im

e
(s

ec
on

ds
)

Number of Objects

2d
3d
4d
5d
6d

Figure 5.22: Effect of number of objects
in the data set

Fig. 5.22 evaluates the performance of our algorithm with increasing number of objects

in the data set. The computation cost increases with increase in number of objects mainly

due to the increased verification cost because larger number of objects (and in effect

instances) are returned by the global range query.

5.5.4 Effect of probability threshold and width of hyper-rectangle

Fig. 5.23 shows the effect of probability threshold. The algorithm performs better as

the probability threshold � increases because fewer number of candidate objects pass

the pruning phase and require the verification. The effect is more significant in lower

dimensions because for low dimensions the verification cost dominates the overall cost.

In Fig. 5.24, we change width of each hyper-rectangle and study the performance of

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 175

 0

 1

 2

 3

 4

 5

 6

 0.9 0.7 0.5 0.3 0.1

T
im

e
(s

ec
on

ds
)

Probability Threshold

2d
3d
4d
5d
6d

Figure 5.23: Effect of probability thresh-
old

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 4 3 2 1

T
im

e
(s

ec
on

ds
)

Width of Rectangle in each dimension (in %)

2d
3d
4d
5d
6d

Figure 5.24: Effect of width of hyper-
rectangles

our algorithm. The performance degrades in low-dimensional space due to larger overlap

of objects with each other and the query object. The effect in higher dimensions is not

as significant as in low-dimensional space.

5.5.5 Evaluation of different phases

In this section, we study the effect of our pruning phases. More specifically, we compare

the number of candidates after first phase (shortlisting), second phase (refinement), op-

timization (of the verification phase) and the number of objects in final result. Fig. 5.25

shows the number of candidates after each phase. The number of candidates after

shortlisting is from 10-20 and the refinement phase reduces the number to less than

its half. The optimization presented in the verification phase prunes more objects in

high-dimensional space because in low-dimensional space due to larger volume of MBRs,

most of the MBRs of remaining candidates overlap with the query object. Hence the

optimizations are more useful for higher dimensions.

Fig. 5.26 shows the time taken by each of the pruning phase. Our proposed optimiza-

tion takes very small amount of time and is quite useful especially for high-dimensional

data. Verification phase is the dominant cost for low-dimensional queries and the prun-

ing phases (shortlisting and refinement) dominate the overall cost for high-dimensional

queries. Note that log scale is used for y-axis.

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 176

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 6 5 4 3 2

N
um

be
r

of
 c

an
di

da
te

s

Number of Dimensions

Shortlisting
Refinement

Optimization
Result

Figure 5.25: Number of objects in Scnd

after each phase

 0.01

 0.1

 1

 10

 6 5 4 3 2

T
im

e
(s

ec
on

ds
)

Number of Dimensions

Shortlisting
Refinement

Optimization
Verification

Figure 5.26: Computational time taken
by each phase

5.5.6 Effectiveness of pruning rules

Pruning rule 5.3.6 is used in phase 2 (refinement) of our algorithm and uses the other

pruning rules to estimate the maximum probability. Its effectiveness can be observed in

Fig. 5.25 by comparing the number of objects after shortlisting and refinement phases.

Fig. 5.27 shows the effectiveness of other pruning rules. We observed that the domi-

nance pruning rule prunes fewer objects than the simple distance based pruning rule 5.3.5.

However, the dominance pruning can prune some objects that cannot be pruned by the

simple pruning rule because the dominance pruning rule can trim part of the candidate

objects.

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 6 5 4 3 2

N
um

be
r

of
 c

an
di

da
te

 o
bj

ec
ts

Number of Dimensions

Pruning Rule 4
Pruning Rules 3&4
Pruning Rules 1-4

Figure 5.27: Effectiveness of pruning
rules

 0

 10

 20

 30

 40

 50

 60

 70

 7 6 5 4 3 2 1

N
um

be
r

of
 O

bj
ec

ts

Width of rectangle in each dimension (in %)

0 < ρ ≤ 0.001
0.001 < ρ ≤ 0.1

0.1 < ρ ≤ 1

Figure 5.28: Effect of width of hyper-
rectangles

Fig. 5.27 shows the number of candidates after refinement phase of our algorithm

when a combination of pruning rules is used. More specifically, we compare the number

of objects in Scnd when only the pruning rule 5.3.5 is used, the dominance pruning is

Chapter 5. Reverse Nearest Neighbors Queries on Uncertain Data 177

used along with pruning rule 5.3.5, and when all pruning rules from 1 to 4 are used.

Since pruning rule 5.3.6 uses the other underlying pruning rules, it is enabled for all

above mentioned settings. The half space pruning significantly reduces the number of

candidate objects and the effectiveness of dominance pruning is more significant for the

low-dimensional data.

5.5.7 Effect of hyper-rectangle width on the size of result

We note that if the hyper-rectangles of objects largely overlap each other, the proba-

bilistic reverse nearest neighbor queries are not very meaningful. In other words, there

would be no objects satisfying some reasonable probability threshold (a value that can

be considered significant). Fig. 5.28 shows the number of objects that satisfy different

probability thresholds. The width of hyper-rectangle in each dimension is changed from

1% to 7% and the results are shown for two dimensional space. It can be observed that

with large overlap in rectangles, more and more objects satisfy very small probability

threshold constraint. On the other hand, there are very few or no object at all that have

greater than 0.1 probability to be the RNN.

5.6 Summary

In this chapter, we formalize probabilistic reverse nearest neighbor query that is to re-

trieve the objects from the uncertain data that have higher probability than a given

threshold to be the RNN of an uncertain query object. We develop an efficient algorithm

based on various novel pruning approaches that solves the probabilistic RNN queries on

multidimensional uncertain data. The experimental results demonstrate that our algo-

rithm is even more efficient than a sampling-based approximate algorithm for most of

the cases and is highly scalable.

Chapter 6

Continuous Monitoring of Moving

Range Queries

In this chapter, we present algorithms to continuously monitor moving range queries in

Euclidean space as well as in spatial networks. Our research reported in this chapter also

appeared in [CBL+10, CBL+11].

6.1 Overview

We consider a set O of objects, a query point q and a positive value r. We use dist(o, q)

to denote the distance between an object o ∈ O and the query q. A distance based range

query returns every object o ∈ O that lies within distance r of the query location q, i.e.,

every object such that dist(o, q) ≤ r. Our main focus in this chapter is on Euclidean

distance based range queries. Since the search space around the query is a circle in

this case, such queries are also called circular range queries. We also consider the case

when dist(o, q) is the network distance between o and q (e.g., queries moving in a road

network).

Another variation of the range query, which we term “rectangular range query” (also

called window query), returns the objects that lie within a rectangle around the query

178

Chapter 6. Continuous Monitoring of Moving Range Queries 179

location. Distance based range queries and rectangular range queries are inherently

different and have different applications. When clear by context, we use the term range

query to refer to the distance based range queries.

Due to availability of inexpensive position locators, cheap network bandwidth and

mobile devices with computation and storage capabilities, location based services are

gaining increasing popularity. Consequently, continuous monitoring of spatial queries has

received significant research attention in the past few years [CHC04, HXL05, MHP05,

BJKS02, CLZ+09, ZZP+03, GL04, TP02].

We study the continuous monitoring of moving range queries over static data objects,

i.e., a scenario where the queries are constantly moving whereas the data objects do not

change their locations. Such scenario has many interesting applications. Consider the

example of a family travelling by car. Suppose they need to reach their final destination

by a certain time and only have up to 90min available for lunch. They may want to

continuously monitor restaurants within 10km of their current location so that they can

choose a restaurant that serves their favorite meals, and will not take more than 15 min

to reach. As another example, a bomber plane might want to continuously monitor the

enemy targets (e.g., airport, arms depot) that are within its attack range.

We next discuss two models to monitor spatial queries.

Client-server model. In this model, the clients issue queries and the central server is

responsible for the computation of these queries. For example, a person walking down

the street may issue a query to his mobile service provider to continuously report the

coffee shops within 1km of the issuer’s location. It may be assumed that the server

processes the query in the main-memory, i.e., the data objects are stored in the main-

memory along with other relevant information needed to efficiently update the results.

However, such systems require that the server continuously maintains this information

in the main-memory in order to provide the service.

We neither require that the data objects are stored in the main-memory nor do we

maintain any query information in the main-memory. One advantage of this is that the

Chapter 6. Continuous Monitoring of Moving Range Queries 180

service can be run on-demand. Since the objects are stored in the secondary memory

and no main-memory information is maintained, the server can go to sleep mode if there

is no query. When a query arrives, the server computes the results and the safe zone,

which are then sent to the client. The safe zone is an area such that the reported results

are valid as long as the client (i.e., query) remains within the safe zone. A query that

leaves its safe zone sends an update request. The server updates the safe zone and the

results, and sends them back to the client.

Local computation model. In the first application mentioned above, the car may

have a GPS navigation system with points of interest (e.g., restaurants) stored in its

memory card. Since the navigation systems have limited main-memory and computa-

tional capacity, it may be challenging to compute the results of the range query whenever

the query changes its location (the car is continuously moving). Our proposed approach

returns a safe zone which guarantees that the results of the query do not change as long

as the query remains within the safe zone. The safe zone is updated efficiently when the

query leaves the safe zone. Our experimental results demonstrate that the overhead to

compute the safe zone is small compared to the cost of the range query. This enables our

framework to work effectively on the devices with limited main-memory and computation

power. We next highlight some advantages of our proposed approach.

a. The computation of the safe zone reduces the overall computation time because the

query needs to be re-evaluated only when it leaves the safe zone. Our experiments indicate

that the cost of computing the safe zone is small compared to the cost of the range query.

b. Although the shape of the safe zone may be arbitrarily complex, we can still efficiently

check whether the query lies within it. If the query is based on network distance, the

safe zone itself is a small network that is a subset of the original network and it has to

be determined whether the query lies within the safe zone or not. For the circular range

queries, we utilize the fact that the safe zone only depends on the so-called guard objects.

Checking whether the query lies within the safe zone takes k distance computations, where

k is the number of guard objects. Our experimental results demonstrate that the average

Chapter 6. Continuous Monitoring of Moving Range Queries 181

number of guard objects is around 5. This makes our proposed approach applicable for

the clients that have limited computational power. We also present a theoretical analysis

and give an upper bound on the expected number of guard objects for the queries with

the diameter of the safe zone no more than a constant times its expected value.

c. We do not require the data objects to be stored in the main-memory, which allows our

approach to work on systems with limited main-memory (e.g., GPS navigation systems).

d. When an update request is received, the server computes the new safe zone and the

results for the circular range queries. After updating the results, the server only sends

new information to the clients. For example, if the client was informed that an object

oi is within its range, the object oi is not sent again in updated results if it still lies

within the range. If in the future such object oi ceases to be within the range, the client

is informed that oi is out of the range. Our experimental results demonstrate that this

significantly reduces the amount of data transmitted from the server to the clients.

e. In the client-server paradigm, our proposed approach does not require the server to

maintain or record any information related to the queries, yet it efficiently updates the

safe zones. This enables the server to run this service on-demand.

Note that some computation models require queries to get registered at the server

and report their locations after every t time units. Our approach can be readily applied

to such systems. In the rest of the chapter, we assume a model where a query contacts

the server only if it leaves the safe zone.

Although there exists a safe zone based solution for moving window queries [ZZP+03],

this technique is not applicable to the moving circular range queries. In Chapter 2, we

showed that it is not possible to extend this technique to the case of the distance based

range queries as the problems of monitoring moving window queries and the distance

based range queries are inherently different. We apply an aggressive approach to prune

the objects/entries that cannot affect the results and/or the safe zone. Our pruning rules

are tight and the performance of our solution is close to optimal.

We next summarize our contributions.

Chapter 6. Continuous Monitoring of Moving Range Queries 182

∙ We present an efficient and effective technique to monitor the moving circular range

queries by adopting the concept of safe zones.

∙ We present a rigorous theoretical analysis to verify the effectiveness of our safe zone

based approach for the moving circular range queries. More specifically, we evaluate

the probability that a query moves out of the safe zone within one time unit, the

expected distance it travels before it leaves the safe zone, and an upper bound

(which is a constant) on the expected number of guard objects for the queries with

the diameter of the safe zone no more than a constant times its expected value. Our

experimental results confirm the accuracy of the presented theoretical analysis.

∙ We conduct extensive experiments to show the effectiveness of our approach. We

compare our algorithm with an optimal solution and a näıve solution. The experi-

mental results indicate that our proposed approach is close to the optimal solution

and an order of magnitude faster than the näıve algorithm.

∙ Based on non-trivial access order and pruning rules, we present a complete frame-

work for answering the distance based range queries in a road network. Experiments

demonstrate that our algorithm is up to two orders of magnitude faster than a näıve

algorithm.

The remainder of this chapter is organized as follows. We introduce our framework

and pruning rules for processing the moving circular queries in Section 6.2. In Section 6.3,

we present our safe zone based solution to the moving circular range queries. Theoretical

analysis is presented in Section 6.4. In Section 6.5, we present our techniques to answer

moving range queries in a road network. The experimental results are reported in Section

6.6. Section 6.7 summarizes this chapter.

Chapter 6. Continuous Monitoring of Moving Range Queries 183

6.2 Framework

6.2.1 Solution Overview

Consider the example in Fig. 6.1 where a range query q is shown. Its range is r and

the area within its range is shown shaded. Some objects around it are also shown. The

objects that lie within the range form the result set and are called internal objects (e.g.,

the objects o1 and o2). The objects that do not lie within the range are called external

objects (e.g., the object o3). Let Ci be a circle of radius r with centre at the location of

the object oi. Fig. 6.1 shows the circles for the objects o1, o2 and o3.

o
1

o
2

o
3 q

r

v
1

v
2

v
3

Figure 6.1: A range query (light shaded
area) and its safe zone (dark shaded area)

q

o
1

o
2

o
3

o
4

o
5

Figure 6.2: Some objects do not affect the
safe zone

Note that all the internal objects contain q in their circles whereas the external objects

do not. An internal object oi ceases to be within the range only when the query q leaves

its circle Ci. Similarly, an external object becomes included in the result only if the query

enters its circle. In other words, the result of the query q does not change as long as q

does not leave or enter any circle. Hence, the safe zone of a query q is defined by the

boundaries of the circles around it. In the example in Fig. 6.1, the dark shaded area is

the safe zone because q does not enter or leave any circle as long as it remains in this

area. Formally, safe zone S can be defined as the intersection of the circles of internal

Chapter 6. Continuous Monitoring of Moving Range Queries 184

objects minus the circles of external objects. That is, S = ∩iCi−∪jCj for every internal

object oi and every external object oj .

Please note that as we consider new objects in order to calculate the safe zone, we

may find that some objects may not affect the shape of the safe zone. Consider the

example in Fig. 6.2 where the objects o4 and o5 are shown. The circle of the internal

object o4 completely contains the current safe zone1 of q. Hence, it does not change the

shape of the current safe zone and will not define the final safe zone. Similarly, the circle

of the external object o5 does not intersect the current safe zone and consequently does

not affect its shape. For this reason, the final safe zone can be defined without using the

circles of o4 and o5. In this chapter, the objects that contribute to the shape of the final

safe zone are called guard objects (e.g., o1, o2 and o3). An internal (external) object that

contributes to the final safe zone is called an internal (external) guard. Internal guards

in this example are o1 and o2 whereas o3 is an external guard. For the sake of simplicity,

in what follows we refer to both “current safe zone” and “final safe zone” simple as “safe

zone”.

Data structure at a glance

All objects are indexed by a disk-resident R-Tree [Gut84]. For each query, the server

keeps the following information in its memory during the computation of the safe zone:

1) its location; 2) the list of internal objects called answer list ; 3) the list of guard objects.

For each guard object, the server stores its arcs that contribute to the safe zone. In the

example in Fig. 6.1, the object o1 has an arc with two end vertices v1 and v3. We use

this arc (or vertices) for effective pruning. Note that the server stores this information in

its memory only during the construction of the safe zone, and discards this information

after the safe zone has been computed and sent to the client.

1We use the term current safe zone because the safe zone is being constructed and is not the final safe
zone. From now on, the current safe zone is called safe zone and the current guard objects are called
guard objects when there is no ambiguity.

Chapter 6. Continuous Monitoring of Moving Range Queries 185

Checking whether q lies in the safe zone

Since the clients that issue queries (e.g., mobile devices) have limited computational

power, it is desirable that checking whether the client is inside the safe zone is not

computationally expensive. Although the shape of a safe zone may be complex, the cost

of checking whether q lies in the safe zone takes only k distance computations where

k is the number of guard objects. More specifically, the query q computes its distance

from each of the guard object. If it lies within the circle of every internal guard and

lies outside the circle of every external guard then it lies within the safe zone. Our

experimental results show that the average number of guard objects is around 5. We also

present a theoretical analysis to give an upper bound on the expected number of guard

objects for the queries that satisfy certain constraints.

A simple approach to compute the safe zone is to consider all objects and find the

objects that actually contribute to the safe zone. However, the number of objects that

are considered must be reduced in order to reduce the I/O cost and to improve the CPU

time. We next present five effective pruning rules that significantly reduce the number

of considered objects.

6.2.2 Pruning Rules

As shown in the example in Fig. 6.2, some objects do not affect the safe zone. More

specifically, if the circle of an object contains the safe zone (such as o4 in Fig. 6.2) or lies

completely outside the safe zone (such as (o5 in Fig. 6.2), that object does not affect the

shape of the safe zone. In this section, we present some effective pruning rules to prune

such objects. Note that only the circles of internal objects may contain the safe zone

and only the circles of external objects may completely lie outside the safe zone. Hence,

some pruning rules are specific to the internal objects and some are to be applied only

on external objects.

First, we present pruning rules based on the approximation of the safe zone by a

rectangle. Let a and b be two rectangles or points; we usemindist(a, b) and maxdist(a, b)

Chapter 6. Continuous Monitoring of Moving Range Queries 186

to denote the minimum and maximum distances between them, respectively.

Using approximation of the safe zone

Let RS be the minimum bounding rectangle of the current safe zone as shown in Fig 6.3.

Let Rcnd be a rectangle that contains some candidate objects.

Pruning Rule 6.2.1 If maxdist(Rcnd, RS) < r then no object in Rcnd can affect the

safe zone.

Proof Let o be an object in Rcnd. For every point p ∈ RS , dist(o, p) < r because

maxdist(Rcnd, RS) < r. Hence, the circle of o contains every point p of the safe zone,

i.e., o does not affect the safe zone.

Pruning Rule 6.2.2 If mindist(Rcnd, RS) > r then no object in Rcnd can affect the

safe zone.

Proof Let o be an object in Rcnd. For every point p ∈ RS , dist(o, p) > r because

mindist(Rcnd, RS) > r. Hence, the circle of o does not contain any point p of the safe

zone, i.e., o does not affect the safe zone.

q

mindist(R
1
,R

S
)

maxdist(R
2
,R
S
)

R
2

R
S

R
1

Figure 6.3: Pruning using the approximation of safe zone

In the example of Fig. 6.3, wheremaxdist(R2, RS) < r, it can be immediately verified

that any object in R2 contains the safe zone in its circle. Similarly, mindist(R1, RS) > r

and every object in R1 can also be pruned.

Chapter 6. Continuous Monitoring of Moving Range Queries 187

Using the guard objects

Although the rectangle based pruning is inexpensive, it is unfortunately not very tight.

We present tighter pruning rules below, based on the positions of the guard objects.

o
1

o
2

o
3 q

r

o
4

Figure 6.4: Illustration of pruning
rule 6.2.3

o
1

o
2

o
3 q

r

2r

2r

Figure 6.5: Area pruned by the rule 6.2.3

Pruning Rule 6.2.3 If mindist(Rcnd, oi) > 2r for any internal guard object oi then no

object in Rcnd can affect the safe zone.

Proof An object can only affect the safe zone if its circle intersects the safe zone. Safe

zone is the area defined by the intersection of the circles of the internal guard objects

minus the circles of the external guard objects. Hence, the circle of any internal guard

object contains the whole safe zone, Thus a circle can only intersect the safe zone if it

intersects the circles of all internal guard objects. Consequently, if an object oj lies at

a distance greater than 2r from any internal guard oi, it cannot intersect the safe zone.

In Fig. 6.4, the object o4 cannot affect the safe zone because it lies at a distance

greater than 2r from o2. To show the area that is pruned by this pruning rule, we zoom

out Fig. 6.4 and show the pruned area in Fig. 6.5. The shaded area can be pruned because

Chapter 6. Continuous Monitoring of Moving Range Queries 188

every point in it lies at a distance greater than 2r from at least one of o1 and o2. This

pruning rule prunes the rectangles that contain external objects.

Before we present tighter pruning rules, we provide few auxiliary observations and

lemmas.

Consider a circle C with centre at M and radius r, and any point E in the plane

(inside or outside the circle) (see Fig. 6.6). The line that passes through E and M

intersects the circle at two points, A and B. Without loss of generality, we assume that

dist(A,E) < dist(B,E), as shown in Fig. 6.6. We make the following observation.

Observation 6.2.4 Let C be a circle of radius r, and M , E, A and B be the points as

described above. The distance between E and any point D on the circle monotonically

increases as D moves along the circle from point A to B, either clockwise or counter-

clockwise. In other words, any point D′ that lies before D while travelling on the circle

from A to B satisfies dist(E,D′) < dist(E,D).

The above observation can be easily verified from the triangle △EMD. If we denote

MD by r and the length of EM by x, then the length of DE is given by the law of cosine

as dist(D,E) =
√

r2 + x2 − 2rx ⋅ cos(∠EMD). Note that as D travels along the circle

from A to B, the angle ∠EMD increases from 0∘ to 180∘ and its cosine monotonically

decreases from 1 to -1. As both r and x remain unchanged, the distance dist(D,E)

monotonically increases. Note that we do not require x to be smaller than r, so the

observation also holds for the case when E lies outside the circle.

Based on Observation 6.2.4, we present the following lemma that is used in our next

pruning rule.

Lemma 6.2.5 Let
⌢
AB be an arc of radius r with subtending angle � < 180∘ where A

and B are the end points of the arc and M is the centre (as shown in Fig. 6.7). Let CA

and CB be two circles of radius r centred at A and B, respectively. Every point E that

lies inside both the circle CA and circle CB satisfies the following: The circle of radius r

with centre at E (the dotted circle in Fig. 6.7) contains every point of the arc
⌢
AB.

Chapter 6. Continuous Monitoring of Moving Range Queries 189

E

M

r

B

A

D

D’

Figure 6.6: Observation 6.2.4

E
D

A

M

rr
Bθ

F

Figure 6.7: Lemma 6.2.5

Proof In order to prove the lemma, we need to show that the distance of E from any

point D that lies on the arc
⌢
AB is smaller than r. If we extend the line joining M and E,

it cuts the arc at point F which is the minimum distance from E to the circle. We prove

the lemma for the arc
⌢
AF and the proof for the arc

⌢
FB is similar. By Observation 6.2.4,

we know that any point D that lies on the arc
⌢
AF satisfies dist(E,D) ≤ dist(E,A). As

the point E lies inside the circle CA, dist(E,A) < r. Hence, dist(E,D) < r for any point

D.

Please note that the lemma does not hold if the subtending angle � ≥ 180∘ as the line

joining M and E intersects the arc
⌢
AB at point F which is the maximum distance from

E to the circle and is greater than r (Fig. 6.8).

Based on Lemma 6.2.5, we present a pruning rule to prune the rectangles that contain

internal objects.

Pruning Rule 6.2.6 Let S be a safe zone such that every arc that defines it has sub-

tending angle smaller than 180∘. If maxdist(Rcnd, vi) ≤ r for every vertex vi of the safe

zone S, then no object in Rcnd can affect the shape of the safe zone.

Proof Let E be a point that lies within all the circles of radius r centred at vertices of

the safe zone. From Lemma 6.2.5, we know that the circle centred at E contains every

Chapter 6. Continuous Monitoring of Moving Range Queries 190

E
A

M rr

B

θ

F

Figure 6.8: When � > 180∘

o
1

o
2

o
3 q

v
2

v
3

v
1

Figure 6.9: Pruning rule 6.2.6

arc of the safe zone. Hence, it contains the whole safe zone and cannot affect its shape.

Fig. 6.9 shows three circles of radius r with centres at the vertices v1, v2 and v3. Any

object or rectangle that lies in the shaded area can be pruned because its distance to any

vertex cannot be greater than r.

For our final pruning rule, we need the following lemma.

Lemma 6.2.7 Let
⌢
AB be an arc with centre at M , radius r and subtending angle 0 <

� < 360∘ as shown in Fig. 6.10. The distance of E from every point of the arc
⌢
AB is

greater than r, if E satisfies either of the following conditions:

1) E lies within the angle range � and dist(E,M) > 2r;

2) E lies outside the angle range �, dist(E,A) > r and dist(E,B) > r.

Less formally, if E lies within the shaded area in Fig. 6.10, its distance to any point

on the arc
⌢
AB is greater than r.

Proof We first consider a point E1 that lies within the angle range � (see Fig. 6.10).

We draw a line through points E1 and M and we denote the intersection of the line

and the arc by G. By Observation 6.2.4 dist(E1, G) is the minimum distance from the

Chapter 6. Continuous Monitoring of Moving Range Queries 191

point E to the arc
⌢
AB. Since dist(E1,M) > 2r, it follows that dist(E1, G) > r and thus

dist(E1,D) > r for any point D on the arc
⌢
AB.

We now consider a point E2 that lies outside the angle range � (see Fig. 6.10). Again,

by Observation 6.2.4, the minimum distance from E2 to the circle is dist(E2, F) (see

Fig. 6.10), and the distance between E2 and the points on the circle increases monotoni-

cally as we move along the circle away from the point F . Thus for every point D on the

arc
⌢
AB we have either dist(E2,D) ≥ dist(E2, A) > r or dist(E2,D) ≥ dist(E2, B) > r

A

M

rr
Bθ

E
1

E
2

F

D

Figure 6.10: Illustration of Lemma 6.2.7

q

o
1

o
2

o
3

Arc of o
2
with radius 2r

Arc of o
1
with radius 2r

Figure 6.11: Pruning rules 6.2.6 and 6.2.8

Based on Lemma 6.2.7, we present our final pruning rule that prunes external objects.

Pruning Rule 6.2.8 No object in a rectangle Rcnd can affect the safe zone if Rcnd

satisfies Lemma 6.2.7 (i.e., Rcnd lies completely in the shaded area of Fig. 6.10) for

every arc of the safe zone.

Proof The proof immediately follows from Lemma 6.2.7 as any point in Rcnd has mini-

mum distance to the boundary of the safe zone greater than r. Hence, its circle cannot

intersect the safe zone.

Chapter 6. Continuous Monitoring of Moving Range Queries 192

In order to apply this pruning rule, we check the minimum distance of the rectangle Rcnd

from M , A and B. If the rectangle completely lies outside the angle range �, it can be

pruned if its minimum distance from both A and B is greater than r. Otherwise, it can

be pruned if its minimum distance from M is greater than 2r.

Fig. 6.11 shows the area pruned by the rules 6.2.6 and 6.2.8, where the outer shaded

area is pruned by the pruning rule 6.2.8 and we call it external pruned area. The inner

shaded area is pruned by the rule 6.2.6 and we call it internal pruned area.

The arguments similar to those used in proofs of Lemma 6.2.5 and 6.2.7 can be used

to show that the pruning rules are tight. In other words, any object that lies in the

unpruned area (the white area in Fig. 6.11) affects the shape of the current safe zone.

Note that although the rectangle based pruning rules have less pruning power, they are

important because they are computationally less expensive. We first apply the rectangle

based pruning rules and if an object is not pruned, we apply the guard objects based

pruning rules.

6.3 Technique

Initially, the whole space is assumed to be the safe zone. We then access each object

that cannot be pruned, and use its circle to trim the safe zone. The algorithm stops

when all the objects that cannot be pruned are accessed. The order in which the objects

are accessed is important as better access order retrieves fewer objects that affect the

safe zone. We first present our proposed access order. Secondly, we present our query

processing algorithm followed by the algorithm to trim the safe zone. Finally, we present

an efficient technique to update the safe zone when the query leaves it.

6.3.1 Access order

After applying the pruning rules presented above, there may be several objects left in the

unpruned area. The order in which these objects are accessed is important. Intuitively,

the objects that lie closer to the boundary of the range query have a more significant

Chapter 6. Continuous Monitoring of Moving Range Queries 193

effect on the shape of the safe zone and should be accessed first.

Consider the example in Fig. 6.12, where the boundary of q is shown in thick broken

line. The objects o1, o2 and o3 are accessed first and are the current guard objects.

The object o4 that lies closer to the boundary than all of the existing guard objects is

guaranteed to affect the shape of the safe zone. In Fig. 6.13, the object o4 is accessed

and the safe zone is shown after trimming with respect to its circle. We present a lemma

that shows the importance of the objects located near the boundary for constructing the

safe zone.

q
o
1

o
2

o
3

o
4

F

Figure 6.12: Importance of access order

q
o
1

o
2

o
3

o
4

F G

Figure 6.13: o1 is no more a guard object

Lemma 6.3.1 Let oi be an object that is closer to the boundary of the range query than

all current guard objects. The object oi is guaranteed to affect the shape of the current

safe zone.

Proof Without loss of generality, consider the example in Fig. 6.12 where the current safe

zone is shown shaded. The closest guard object to the boundary of the range query is o3.

Thus the minimum distance from the query to the current safe zone is ∣ dist(o3, q)− r ∣.

Any object o4 that lies closer to the boundary than o3 has a point G on its circle with

distance ∣ dist(o4, q)−r ∣ from the query, which is less than ∣ dist(o3, q)−r ∣ (see Fig. 6.13).

Chapter 6. Continuous Monitoring of Moving Range Queries 194

Hence, the circle of o4 has at least one point inside the current safe zone so it affects the

safe zone.

In fact, in this particular example, the object o4 is not only a guard object but it also

removes the object o1 from the list of the guard objects. Consider Fig. 6.13, where the

object o4 has been considered for trimming and the new safe zone is shown shaded after.

Clearly, the circle of the object o1 does not contribute to the safe zone anymore, and

consequently o1 is removed from the list of the guard objects. This example supports the

intuition that the objects that lie closer to the boundary of the query should be accessed

first. Our experimental results demonstrate the effectiveness of this proposed access

order (Fig. 6.29 in Section 6.6). Next, we present an efficient algorithm that accesses the

objects in the proposed order.

6.3.2 Algorithm

We use an R-Tree [Gut84] to index the objects. Each leaf and index node of an R-tree

contains pointers to its entries and a minimum bounding rectangle that contains all its

objects. For details, please see [Gut84].

Algorithm 12 outlines the solution. A min-heap is initialized with the root entry of

the R-tree. The entries are de-heaped iteratively until the heap becomes empty. If a

de-heaped entry e has maxdist(e, q) < r, then all the objects in it are internal and we

apply pruning rules 6.2.1 and 6.2.6. If the entry is pruned, we do not need to check any

objects within it for the construction of the safe zone. However, as these objects are

internal, they contribute to the answer to be sent to the query. Therefore, we insert all

the objects that are within this entry to the answer list (lines 4 - 7).

If the de-heaped entry e has mindist(e, q) > r, then all the objects in it are external

objects and we apply pruning rules 6.2.2, 6.2.3 and 6.2.8 (lines 8 and 9). If the entry is

pruned, we continue the algorithm by de-heaping the next entry. Note that an entry e for

which mindist(e, q) ≤ r ≤ maxdist(e, q) cannot be pruned by any of the pruning rules.

This is because such entries may contain both internal and external objects, while all the

Chapter 6. Continuous Monitoring of Moving Range Queries 195

Algorithm 12 Range Query (q, r)

Input: q: the query point; r: range of the query;

Description:

1: initialize a min-heap H with root of the R-Tree

2: while H is not empty do

3: deheap an entry e

4: if maxdist(e, q) < r then

5: if pruned using rules 6.2.1 and 6.2.6 then

6: insert all objects of e in the answer list

7: continue

8: else if mindist(e, q) > r) then

9: If pruned using rules 6.2.2, 6.2.3 and 6.2.8, continue;

10: if e is an object then

11: TrimSafeZone(e,q,S) /* Algorithm 13 */

12: if e is an internal object, insert in the answer list

13: if e is a leaf or index node then

14: for each entry c in e do

15: insert c into H with key set to its minimum distance from boundary

16: send guard objects and answer list to the query q

proposed pruning rules are applicable either to internal objects or to external objects.

For this reason, we do not consider such entries for pruning.

If e is an object and cannot be pruned, we use it to trim the safe zone; if it is an

internal object, we also insert it into the answer list (lines 10 - 12). Otherwise, if e is

a leaf or index node, we insert its entries into the heap with key of each entry set to

minimum distance of the entry from the boundary of the range query (lines 13 - 15). The

algorithm stops when the heap becomes empty.

The minimum distance of an entry e from the boundary of the range query is computed

as follows: If mindist(e, q) ≤ r and maxdist(e, q) ≥ r, then the minimum distance of

Chapter 6. Continuous Monitoring of Moving Range Queries 196

this entry from the boundary is zero because the entry e overlaps the boundary (see

R1 in Fig. 6.14). If mindist(e, q) > r, then the minimum distance of this entry is

mindist(e, q)−r (see R2 in Fig. 6.14). Finally, if themaxdist(e, q) < r then the minimum

distance is r −maxdist(e, q) (see R3 in Fig. 6.14).

q

R
1

r

R
2

R
3

Mindist(R
2
,q)

Maxdist(R
3
,q)

Figure 6.14: Minimum distance from the
boundary

o
1

o
2

o
3

o
4

v
1

v
2

v
3

v
5

v
4

v
6

q

Figure 6.15: Illustration of the trimming
(Algorithm 13)

In a special case when there is no object within the range, the whole space minus the

circles of all the external objects will be the safe zone. However, the number of guard

objects may be arbitrarily large. For such cases, in order to restrict the space, we treat

query location as a virtual internal object. Then only the objects within distance 2r of

the query may be the guard objects.

6.3.3 Trimming the safe zone

Algorithm 13 shows the procedure to trim the safe zone with respect to an object o. Note

that to trim the safe zone, we only need to update the guard objects and the vertices of

the safe zone and we do it as follows. For each guard object oi, the intersection points

of the circles of o and oi are computed. If the intersection point lies on the boundary of

the safe zone, the point is added as the vertex of the safe zone (lines 1 to 3). Then, the

Chapter 6. Continuous Monitoring of Moving Range Queries 197

object o is added as the guard object.

Algorithm 13 TrimSafeZone (o, q, S)

Input: o: an object o to be used for updating the safe zone; q: the query point; S:

the list of current guard objects;

Description:

1: for each guard object oi in S do

2: for each intersection point vi of circles of o and oi do

3: add vi to vertices list if vi lies on the boundary of the safe zone

4: add o to the list of guard objects S

5: if o is an internal object then

6: remove every vertex v if dist(o, v) > r

7: else if o is an external object then

8: remove every vertex v if dist(o, v) < r

9: remove every guard object o from S if all its related vertices have been removed

Finally, the existing vertices that are no longer in the safe zone are removed and the

objects that no longer have any associated vertices are removed from the list of guard

objects (lines 5 to 9).

Fig. 6.15 illustrates the Algorithm 13 and shows the safe zone (shaded), together with

its current guard objects o1, o2 and o3. The safe zone is to be trimmed by a new object o4.

For the sake of clarity, the circles of o1 and o3 are not shown. The circle C4 of the object

o4 intersects the circle C2 of the object o2 at two points, v4 and v5. The intersection point

v4 lies on the boundary of safe zone, so it is added to the list of vertices of the current

safe zone. The intersection point v5 lies outside the safe zone so it is deleted. Similarly,

the intersection points of the circle C4 with the circles of o1 and o3 are considered and

v6 is added to the list of vertices. All other intersection points lie outside the safe zone

and are deleted.

Now the vertices of the safe zone that are not valid anymore are to be deleted. Since

o4 is an internal object (it contains q in its circle), all vertices that lie outside its circle

Chapter 6. Continuous Monitoring of Moving Range Queries 198

are deleted. For this reason, the vertices v1 and v2 are deleted. The related object o1 is

also deleted as it no longer has any associated vertex. After trimming of the safe zone,

its vertices are v3, v4 and v6 and the guard objects are o2, o3 and o4.

6.3.4 Updating the safe zone when query leaves it

When the query leaves its safe zone, it sends its current location and current guard

objects to the server. The server updates the answer list (the list of internal objects),

computes the new safe zone and sends it to the query. A straightforward approach is to

compute the safe zone and answer list from scratch. However, this is not only expensive

but can also cause a large amount of data to be transmitted from the server to the query

if the answer list contains a large number of objects.

In this section, we propose an effective approach to update the safe zone and the

answer list, called smart-update. The smart-update utilizes the previous safe zone of the

query and avoids searching the area that was visited before. Furthermore, instead of

computing and sending all the objects lying within the range, the smart-update sends a

list of objects called delta list that contains two types of objects. An object o+i indicates

that the object oi that was previously external is now internal. So, the client must add it

in its answer list. An object o−i indicates that the object oi that was previously internal

is now external. Hence, the client must remove it from its answer list.

Fig. 6.16 shows that a query q leaves the safe zone and moves to q′. The shaded

area corresponds to the area that was pruned with respect to its previous safe zone. The

smart-updates first considers the existing guard objects and constructs an initial safe

zone (as shown in Fig. 6.17). Then, the smart-update uses two observations to reduce

the search area. 1) The white area of the Fig. 6.16 cannot contain any object. The

proof is straightforward because if there were any object in the white area, it would have

affected the previous safe zone. Hence, the smart-update does not search this area. 2)

The query q contains in its answer list all the objects that are in the internal pruned area

(the internal shaded area of Fig. 6.16). Hence, the objects that lie within distance r from

Chapter 6. Continuous Monitoring of Moving Range Queries 199

q'

o
1

o
2

o
3

q

Figure 6.16: q leaves the safe zone

q

o
1

o
2

o
3

o
4 o

5

Figure 6.17: Smart-update in action

q′ and lie in the internal pruned area are not required to be sent to the client.

In the example in Fig. 6.17, the object o4 is not sent to the query because it lies in

the previous internal pruned area and the query already contains it. However, the object

o5 must be sent so that the query removes it from its answer list.

6.4 Theoretical Analysis

In this section we present a theoretical analysis to evaluate the effectiveness of the safe

zone. In what follows we assume that there are N objects in total and that they are

uniformly distributed in a square unit universe.

6.4.1 Escape Probability (Pesc)

We first analyse the escape probability Pesc, which we define as the probability that

a query q leaves its safe zone within one time unit. Escape probability is important

because a smaller escape probability indicates that on average the results of the query

will remain unchanged for longer.

Consider the example in Fig. 6.18 with a range query q and the guard objects o1, o2

and o3. The safe zone is shown with bold boundary. Suppose that the query q travels

some distance x along a straight line in an arbitrary direction and that it crosses the

Chapter 6. Continuous Monitoring of Moving Range Queries 200

q

o
1

q'o
2

o
3

x

Figure 6.18: Sweeping region (x < 2r)

q

q'

x

Figure 6.19: Sweeping region (x ≥ 2r)

boundary of the safe zone at point q′. Zhang et al. [ZZP+03] presented an interesting

observation for window queries which we here apply to the circular range queries. When

a query q moves, its circle sweeps some area, which is called sweeping region. In Fig. 6.18,

the shaded area corresponds to the sweeping region of the query which moved from q to

q′. It is important to note that as long as the query remains in the safe zone, that is,

while x ≤ dist(q, q′), the corresponding sweeping region contains no objects.

The area A of the sweeping region when the query moves a distance x < 2r (as shown

in Fig. 6.18) and a distance x ≥ 2r (as shown in Fig. 6.19) is

A(x) =�r2+2rx−

⎧





⎨





⎩

2r2arccos(
x

2r
)− x

√

r2 − x2

4
, if x < 2r

0 , otherwise

(6.1)

Since we assume uniform distribution of the objects in a unit universe, the probability

pi that an object oi lies within the sweeping region is A(x). The probability p′i that the

object oi does not lie within the sweeping region is (1−A(x)). The probability that none

of the N objects lies within the sweeping region is (1 − A(x))N . Hence, the probability

that the query does not leave its safe zone when traveling a distance x, i.e., the probability

that x < dist(q, q′) is (1 − A(x))N . Finally, the probability that at least one of the N

Chapter 6. Continuous Monitoring of Moving Range Queries 201

objects lies within the sweeping region, that is, the probability that x ≥ dist(q, q′) is:

P{x ≥ dist(q, q′)} = 1− (1−A(x))N (6.2)

Let the query speed v be such that the query travels distance d in one time unit. The

probability of escape Pesc can be computed as P{d ≥ dist(q, q′)} = 1− (1−A(d))N .

6.4.2 Expected distance (m)

In this section, we analyse the expected distance m that a query travels before it leaves

its safe zone. The probability density function pdf(x) is given by the derivative of P (x)

presented in Equation (6.2) as follows:

pdf(x) = 2rN(1−A(x))N−1

⎧





⎨





⎩

(1 +

√

1− (
x

2r
)2) , if x < 2r

1 , otherwise

(6.3)

Integrating x ⋅ pdf(x)dx for x from 0 to 1 gives us the expected distance.

Unfortunately, it is difficult to integrate x ⋅pdf(x)dx because the area A is represented

by trigonometric functions and it makes the expression difficult to solve when x < 2r.

We address this problem by approximating the area A(x) when x < 2r. By plotting the

equations on a graph, it can be shown that when 0 ≤ x ≤ 2r, then 1.1�rx ≤ A(x) ≤

1.3�rx. We thus define the lower bound on the area as Alow = 1.1�rx and the upper

bound as Aup = 1.3�rx. We can then show that for x < 2r, 2rNx(1 − Aup)
N−1 ≤

x ⋅ pdf(x)dx ≤ 4RNx(1 − Alow)
N−1. Thus we define the lower and upper bound on the

expected distance as follows:

mup =

∫ 2r

0
4rNx(1−Alow)

N−1dx+

∫ 1

2r
2rNx(1−A(x))N−1dx (6.4)

mlow =

∫ 2r

0
2rNx(1−Aup)

N−1dx+

∫ 1

2r
2rNx(1−A(x))N−1dx (6.5)

Chapter 6. Continuous Monitoring of Moving Range Queries 202

Exact values of mlow and mup can be found by solving the integrals. For large values

of N we have

mup ≈
0.33

rN
and mlow ≈

0.12

rN
(6.6)

The equations for the expected distance bounds describe the relation between the ex-

pected distances, radius and the total number of objects. More specifically, the expected

distance is inversely proportional to the radius r and the number of objects N .

6.4.3 Expected number of guard objects

We now evaluate the expected number G of guard objects. Let d(�) be the distance a

query moves in direction � before it leaves the safe zone. Let dmax be the maximum

of d(�) over all � such that 0 ≤ � ≤ 2�. Let P (x) be the probability that a query has

dmax ≤ x. We know from the theory of conditional expectation that the expected number

of guard objects is given by

E(G) =

∫ 1

o
E(G∣dmax = x)P ′(x)dx (6.7)

where E(G∣dmax = x) is the expected number of guard objects for a query that has

dmax = x and P ′(x) is the derivative of P (x) with respect to x. First, we show that

E(G∣dmax = x) ≤ 4�rxN .

Consider the example of Fig. 6.20 where the maximum distance from q to the bound-

ary of the safe zone is x (x corresponds to the circle shown in thick line). The circles

of radii r, r + x and r − x are also shown. Any object oi that lies in the circle of ra-

dius r − x cannot be a guard object because the circle Ci of the object oi fully contains

the safe zone. This is the case because the maximum distance of oi to the safe zone

maxdist(oi, S) ≤ dist(q, oi) + x ≤ r. Hence, the object oi cannot affect the shape of the

safe zone.

Similarly, any object oj that lies outside the circle of radius r + x cannot affect the

shape of the safe zone as the minimum distance of oj to the safe zone mindist(oj, S) ≥

Chapter 6. Continuous Monitoring of Moving Range Queries 203

o
1 q

o
2

r

x

x

r+x

r-x

Figure 6.20: Proving that E(G∣dmax = x) < 4�rxN

dist(q, oj)− x ≥ r. Fig. 6.20 shows two objects o1 and o2 and both cannot be the guard

objects.

As discussed above, only those objects that have a distance from the query no less

than r−x and no greater than r+x can be the guard objects (i.e., only the objects in the

area shown shaded in Fig. 6.20 can be the guard objects). Thus the number G of guard

objects of any query with dmax ≤ x is less than or equal to the total number of objects in

the shaded area and consequently the expected number of G is less than or equal to the

expected number of objects in the shaded area which is (�(r+x)2−�(r−x)2)N = 4�rxN .

Hence E(G∣dmax = x) ≤ 4�rxN .

For queries q for which dmax ≤ C ⋅m, where C is a constant and m is the expected

distance, Equation (6.8) shows the upper bound of the expected number of guard objects.

In other words, if we consider only the queries for which the maximum distance to the

boundary of the safe zone dmax is not greater than C ⋅m, the upper bound on the expected

Chapter 6. Continuous Monitoring of Moving Range Queries 204

number of guard objects is given by

∫ C⋅m

0
E(G∣dmax = x)P ′(x)dx ≤ 4�rNCm

∫ C⋅m

o
P ′(x)dx

= C ⋅ 4�rmN

(6.8)

Hence, the queries that have dmax ≤ C ⋅ mup have the expected number of guard

objects at most:

4�rNC × 0.33

rN
= 4.14C (6.9)

If we know C, we can obtain the upper bound on the expected number of guard

objects. For instance, in our experiments, we found that 30% to 50% of the queries have

dmax less than 2mup (i.e., C is at most 2). Hence, the upper bound for such queries is

8.28.

6.5 Range Queries in Road Networks

6.5.1 Solution Overview

Before we outline our approach, we define a few terms.

A road network G is a weighted graph consisting of vertices and edges. An edge

between two vertices v1 and v2 is denoted as e(v1, v2). Each edge has a positive weight

that denotes the cost of travelling on that edge (e.g., length of the edge, time taken to

travel along the edge etc.).

Fig. 6.21 shows an example of a road network, together with three objects (o1, o2

and o3) and a query q. For simplicity, the objects o1, o2 and the query q are chosen to

coincide with vertices of the graph.

Segment seg(x, y) is the part of an edge between x and y where both x and y are points

on the edge. By definition, an edge is also a segment defined by the end points (vertices)

of the edge. Fig. 6.21 shows several segments including segment seg(b, ℎ) of weight 7.

Chapter 6. Continuous Monitoring of Moving Range Queries 205

Minimum network distance MinNetDist(a, b) between any two points a and b is the

minimum distance from a to b (i.e., total weight of the edges and segments on the shortest

path from a to b). For example, the shortest path between o3 and v is o3 → b→ a → v

and the MinNetDist(o3, v) is 14.

Range network of a point p (denoted as RNp) for a given range r consists of every point

of the road network G that is within the network distance r from the point p. Fig. 6.21

shows the range network (r = 10) of o3 in thick lines.

Internal/external objects and vertices. All objects (vertices) that lie on the range

network of the query q are called internal objects (vertices) and all other objects (vertices)

are called external objects (vertices). Although the range network of q is not highlighted

in Fig. 6.21, it is easy to see that the objects o1 and o2 are internal objects and o3 is an

external object. The vertices q, t, s, w, a are internal vertices and all other vertices are

external vertices.

Safe zone is a connected network consisting of edges and segments such that as long

as the query remains in the safe zone, its result does not change. In the example of

Fig. 6.21, the safe zone is shown with broken lines. More specifically, the safe zone

consists of e(q, w), e(q, t), e(q, s), e(s, t) and seg(s, v). Please note that as long as the

query remains on these edges and segments the results remain the same.

The main idea of our solution is similar to our safe zone based approach for Euclidean

space. More specifically, the safe zone in a road network consists of the segments of the

network that are within distance r from each internal object and have distance greater

than r from each external object. In other words, the safe zone is the intersection of range

networks of all internal objects minus range networks of all external objects. Formally,

the safe zone S is given by the expression S = ∩iRNi − ∪xRNx, where the intersection

is taken over the range networks of all internal objects and the union is taken over the

range networks of all external object.

Chapter 6. Continuous Monitoring of Moving Range Queries 206

Checking whether q lies in the safe zone

In contrast to the safe zone of circular range queries, the safe zone in a road network

consists of edges and segments. The safe zone (e.g., the edges and segments) is sent to

the query and it can easily check whether it lies in the safe zone or not.

6.5.2 Pruning Rules

Pruning internal objects

Pruning Rule 6.5.1 An internal object i cannot affect the safe zone if its range network

RNi contains the whole safe zone.

Proof Recall that the safe zone is given by S = ∩iRNi − ∪xRNx. If the range network

of an internal object i contains the whole safe zone, it implies that the intersection of the

current safe zone and the range network of i is the same as the current safe zone. Hence,

the safe zone is not affected.

2

3

1

7

 2

2

5

3

1
0

b

d

c
f

e

o
3

g

h
j

k

m

n

q

7

5

6

2

4

12

12

4

4

2

a

o
1

o
2

s

t

w

v

2 6z

1

Figure 6.21: Range query on a road network (r = 10)

Consider the example of Fig. 6.21 and assume that there is an object o4 (not shown

in the figure) that lies anywhere on the edge e(q, t). Such an object would not affect the

safe zone because its range network would cover the whole safe zone.

The above pruning rule requires computing the range networks of the internal objects

in order to prune them. Next, we present a pruning rule that is less expensive.

Chapter 6. Continuous Monitoring of Moving Range Queries 207

Pruning Rule 6.5.2 Let dmax be the maximum MinNetDist(q, x) over every point x in

the safe zone (i.e., dmax = maxx∈S(MinNetDist(q, x)) where S denotes the safe zone).

An object o such that MinNetDist(o, q) ≤ (r − dmax) cannot affect the safe zone.

Proof We prove this by showing that the range network of any such object o contains the

whole safe zone. Let x be any point in the safe zone S. The network distance between

x and o satisfies MinNetDist(o, x) ≤ MinNetDist(o, q) + MinNetDist(q, x). Since

MinNetDist(o, q) ≤ (r − dmax) and MinNetDist(q, x) ≤ dmax, MinNetDist(o, x) ≤

(r − dmax) + dmax ≤ r. Hence, the range network of the object o contains every point x

of the safe zone.

In the example of Fig. 6.21, dmax is 6. Hence, any object that lies within distance

10−dmax = 4 of q cannot affect the safe zone. To prune an internal object, we first apply

the pruning rule 6.5.2 (due to its low cost) and then apply pruning rule 6.5.1.

Pruning external objects

We next present the pruning rules for external objects.

Pruning Rule 6.5.3 An object o cannot affect the safe zone if its range network RNo

does not intersect the safe zone.

Proof Recall that the safe zone is given by S = ∩iRNi − ∪xRNx. If the range network

of an external object x does not intersect the safe zone, it implies that the set difference

of the current safe zone and the range network of x is the same as the current safe zone.

Hence, the safe zone is not affected.

In Fig. 6.21, the object o3 does not affect the safe zone because its range network

does not intersect the safe zone. The next pruning rule is applicable to only the road

networks where the weight of each edge corresponds to the length of the edge. For such

networks, Euclidean distance between any two points is always smaller than or equal to

the minimum road network distance between them.

Chapter 6. Continuous Monitoring of Moving Range Queries 208

Pruning Rule 6.5.4 An object o cannot affect the safe zone S if mindist(o, S) ≥ r

where mindist(o, S) is minimum Euclidean distance of o from the safe zone S.

Proof For any two points x and y, the Euclidean distance between them is always

smaller than or equal to the minimum road network distance between them. Hence, if

the minimum Euclidean distance between o and any point x of the safe zone is greater

than r, it implies that its minimum road network distance from x is greater than r. In

other words, the range network of o does not intersect the safe zone.

Pruning Rule 6.5.5 An external object oj cannot affect the safe zone if MinNetDist(oi, oj) ≥

2r where oi is any internal object.

This pruning rule is similar to the pruning rule 6.2.3. The proof of correctness is basically

the same except that the term range network is to be used whenever the term circle

appears in the proof of the pruning rule 6.2.3.

Pruning Rule 6.5.6 Let dmax be the distance as defined in the description of pruning

rule 6.5.2. An object o cannot affect the safe zone if MinNetDist(q, o) ≥ r + dmax.

Proof We prove this by showing that the range network of such an object o does not in-

tersect the safe zone. Let x be a point in the safe zone. The minimum network distance be-

tween o and x satisfies MinNetDist(o, x) ≥MinNetDist(q, o)−MinNetDist(q, x). We

know that MinNetDist(q, x) ≤ dmax (by definition of dmax) and MinNetDist(q, o) ≥

r + dmax. Hence, MinNetDist(o, x) ≥ (r + dmax) − dmax ≥ r. This implies that the

range network of o does not contain any point x of the safe zone (i.e., its range network

does not intersect the safe zone).

In the example of Fig. 6.21, dmax is 6 and an object o cannot affect the safe zone if

its minimum network distance from q is at least 16.

Before we present our final pruning rule, we define a few additional terms. We say

that a vertex v is a dead vertex if its range network RNv does not intersect the safe zone.

Chapter 6. Continuous Monitoring of Moving Range Queries 209

A path between two points a and b is called a valid path if the path does not contain

any dead vertex. For example, the vertices b, c, e and f are dead vertices because, for

each of these vertices, its minimum distance to the safe zone is larger than 10. The path

d→ z → t is a valid path whereas the path d→ b→ t is not a valid path.

Pruning Rule 6.5.7 An object o cannot affect safe zone if there does not exist a valid

path between o and q.

Proof By definition, the safe zone is a connected network and the query q lies on it.

Moreover, it follows from the definition of dead vertex that the safe zone cannot contain

any dead vertex v. This implies that if there exists a valid path between o and any point

of the safe zone x then there exists a valid path between o and q. Since we know that

there does not exist any valid path between o and q, this means there does not exist any

valid path between o and any point x of the safe zone. This implies that there always

exists a dead vertex v on every path connecting o and x. Hence, MinNetDist(o, x) > r

because MinNetDist(v, x) > r and the path from o to x passes through v. So o cannot

affect the safe zone.

For example, in Fig. 6.21, any object o that lies on the edge e(b, c) cannot affect the

safe zone because both the vertices b and c are dead and there does not exist a valid path

between o and q.

We use this pruning rule in our algorithm while exploring the road network. A vertex

that is marked dead is not further explored and hence the pruning rule limits the number

of explored vertices.

6.5.3 Algorithm

Similar to Lemma 6.3.1, it can be shown that the order in which the objects are accessed

is important. More specifically, an object oi should be accessed before an object oj if

∣r −MinNetDist(q, oi)∣ < ∣r −MinNetDist(q, oj)∣ (the proof is similar to the proof of

Lemma 6.3.1). For this reason, we use a min-heap H that gives priority to the objects

Chapter 6. Continuous Monitoring of Moving Range Queries 210

with smaller ∣r −MinNetDist(q, oi)∣ (i.e., the key of each entry e of the heap is ∣r −

MinNetDist(q, e)∣.

Algorithm 14 Network Range Query (q, r)

Input: q: the query point; r: the range

Description:

1: initialize a min-heap H /* key of each entry n is to bet set to ∣r −

MinNetDist(q, n)∣ */

2: insert in H vertices and objects lying on every edge that overlaps with RNq

3: insert the objects lying on RNq in answer list

4: while H is not empty do

5: de-heap an entry n

6: if n is a vertex then

7: if RNn does not intersect the safe zone then

8: mark n as dead;

9: else

10: for each adjacent vertex v of n do

11: update/insert objects lying on edge e(n, v) in H

12: if v is not marked dead then

13: update/insert v in H

14: else if n is an object and cannot be pruned then

15: update the safe zone

16: return answer list and safe zone

Algorithm 14 presents the details of our technique. Initially, the objects and vertices

that lie in the range network of q are inserted in the min-heap H. Then, the algorithm

iteratively de-heaps the entries from the heap.

If the de-heaped entry n is a vertex and RNn does not intersect the safe zone, we mark

the vertex as dead. Otherwise, we process it as follows. For each of its adjacent vertices

v, we insert in the heap the objects that are located on edge e(n, v). It is possible that

Chapter 6. Continuous Monitoring of Moving Range Queries 211

the objects on the edge e(n, v) had already been inserted. In this case, for each object o

lying on the edge e(n, v) we updateMinNetDist(q, o) if its network distance from q via n

is smaller than the previously stored MinNetDist(q, o). Its key ∣r −MinNetDist(q, o)∣

is also updated accordingly. Moreover, if the vertex v is not marked dead we insert

v in the min-heap. If the vertex v already exists in the heap (e.g., it was inserted

when another of its neighbors was considered), we update MinNetDist(q, v) and its key

∣r −MinNetDist(q, v)∣ accordingly.

Finally, if the de-heaped entry n is an object and it cannot be pruned by any of the

pruning rules presented in the previous section, we update the safe zone using n and

update dmax. The algorithm stops when the heap becomes empty.

6.5.4 Updating the safe zone

In this section, we present our technique for updating the safe zone (line 15 of Algo-

rithm 14). We explain the main idea to update the safe zone for external objects. The

technique for the internal objects is similar.

Recall that the safe zone is S = ∩iRNi − ∪xRNx where the range network of every

internal object i contributes to the intersection and the range network of every external

object x contributes to the union. Hence, to update the safe zone for an external object,

we need to delete the segments of the safe zone that lie within its range network.

Consider the example of Fig. 6.22(a) where the current safe zone consists of e(q, b),

e(q, f) and e(q, d) (shown in broken lines). Assume that an object o1 is used for updating

the safe zone (r = 10). The range network of o1 is shown in Fig 6.22(b) (in thick lines).

The segment seg(d, k) lies within the range network of o1 and can be removed from the

safe zone. Fig. 6.22(b) shows the updated safe zone which consists of e(q, b), e(q, f) and

seg(q, k). Next we show that, to update the safe zone, we do not need to compute the

complete range network for every object.

We define the vertex flow for a vertex v with respect to an object o as F (v, o) =

r−MinNetDist(v, o). In Fig. 6.22, assume that range r is 10. The vertex flow of c with

Chapter 6. Continuous Monitoring of Moving Range Queries 212

q

4
3

7

3

5

5

4

2

a

b

c

d

e
f

g h

3

7

1

2

q

2
3

7
3

3

5

2

2
4

2

a

b

c

d

e
f

g h

3

4
1

2

j

k

o
1

o
2

o
1

o
2

(a) (b)

3

Figure 6.22: Updating the safe zone (r = 10)

respect to o1 is F (c, o1) = 10 − 3 = 7. Similarly, F (c, o2) = 10 − 4 = 6. The maximum

vertex flow Fmax(v) of a vertex v is the maximum of F (v, o) over all objects o considered

so far. In Fig. 6.22, the maximum vertex flow of c is 7 (i.e., Fmax(c) = 7).

The vertex flow F (v, o) denotes that every point p that lies within distance F (v, o)

of the vertex v lies on the range network RNo of object o. For instance, when the

range network of o1 is computed in Fig. 6.22(b), it discovers everything within distance

F (c, o2) = 7 of the vertex c.

We now show that we do not need to compute the complete range network for an

object o if its range network contains a vertex v such that F (v, o) ≤ Fmax(v). Consider

that the range network of object o1 has been considered and Fmax(v) = F (c, o1) = 7.

When the range network of the object o2 is being computed, the vertex c is discovered

and F (c, o2) = 6. Since F (c, o2) < Fmax(v), we do not need to further explore the range

network by considering the adjacent vertices of c. This is because every point within

distance 7 of c has already been discovered by the range network of o1 (whereas the

range network of o2 will discover every point within distance 6 of c).

Now, we define another condition that avoids the complete computation of range

network for certain objects. If a dead vertex v is discovered during the range network

Chapter 6. Continuous Monitoring of Moving Range Queries 213

computation of an object o, we do not need to further explore the vertex v. By definition

of a dead vertex v, its range network does not intersect the safe zone. This means that

every point within distance r of v lies outside the safe zone. Hence, the range network of

o that passes through the vertex v cannot affect the safe zone. In Fig. 6.22, the vertices

g and ℎ are the dead vertices. When the range network of o2 is being computed, it does

not need to further explore the vertex g. Recall that the vertex c was not required to be

explored because F (c, o2) < Fmax(c). Hence, during the range network computation of

o2, only the edge e(g, c) is discovered.

6.6 Experiments

First we present the experimental results for our approach in Euclidean space. Then,

in Section 6.6.6, we present the results for range queries in road networks. To evaluate

the performance of our proposed approach, we compare our approach with an optimal

algorithm and a näıve algorithm. We assume that the optimal algorithm already knows

the safe zone and updates the results only when the query leaves the safe zone. To

compute the initial results, the optimal algorithm visits the objects that lie within the

range. To update the results, the algorithm searches only the area that may contain the

new answers. We only consider the I/O cost for the optimal algorithm (the CPU time is

assumed to be zero).

The näıve algorithm prunes every object oi such that its circle does not intersect

with the circle of any guard object. That is, an object or rectangle can be pruned if its

distance from all guard objects is greater than 2r.

All the experiments were conducted on Intel Xeon 2.4 GHz dual CPU with 4 GBytes

memory. We used real data set as well as synthetic data set. The real data set2 contains

175, 813 points of interests in North America that corresponds to a data universe of

5000Km×5000Km. To verify the theoretical analysis, we created synthetic data sets

consisting 50, 000 to 150, 000 points following uniform distribution within the same data

2http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm

Chapter 6. Continuous Monitoring of Moving Range Queries 214

universe size. The objects are indexed by an R-tree with node size set to 2K.

Parameter Range

Number of objects (×1000) 50, 75, 100, 125, 150
Range (in Km) 50, 100, 150, 200, 250
Average speed (in Km/hr) 40, 60, 80, 100, 120

We simulated moving queries (moving cars) by using the spatio-temporal data gen-

erator described in [Bri02]. The average speed of moving queries varies from 40 Km/hr

to 120 Km/hr. All queries are continuously monitored for 5 minutes and the results

shown correspond to the average monitoring cost for a single query for the 5 minutes

duration. All the experimental results shown correspond to the real data set except the

results where we show the effect of number of objects. The table above shows the default

parameters.

6.6.1 Cost comparison

The cost of each algorithm consists of I/O cost (by charging 2ms for each node access)

and CPU cost (assumed zero for the optimal algorithm). The näıve algorithm was at

least 20 times slower3 than our algorithm for all settings so we exclude it from figures to

better illustrate the comparison of our algorithm with the optimal algorithm.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 50 100 150 200 250

T
im

e
(in

 s
ec

)

Range (in Km)

Our CPU Time
Our I/O Time

Optimal I/O Time

(a) Radius

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

50 75 100 125 150

T
im

e
(in

 s
ec

)

Number of objects (in thousands)

Our CPU Time
Our I/O Time

Optimal I/O Time

(b) Number of objects

Figure 6.23: Efficiency

In Fig. 6.23 and Fig. 6.24, we compare the cost of our algorithm with the cost of the

optimal algorithm for different ranges, different number of objects and varying speed.

3We also compared our algorithm with näıve algorithm for in-memory data and observed 30-70 times
better performance. This shows that our proposed approach performs good even for in-memory compu-
tation models.

Chapter 6. Continuous Monitoring of Moving Range Queries 215

The performance of our algorithm is close to the optimal algorithm. The main cost for

our proposed approach is the I/O cost which is very close to the I/O cost of the optimal

solution. This shows that the overhead of computing the safe zone is very small compared

to the cost of the range query.

6.6.2 Verification of the theoretical analysis

First, we study the escape probability and verify the theoretical results obtained. In our

experiments, the escape probability of a query is computed by dividing the number of

times it leaves the safe zone by the total number of movements recorded. We record

the movement every second and check whether the query lies within the safe zone or

not. Fig. 6.25 and Fig. 6.26 compare the escape probabilities with the theoretical results

for different values of different parameters. Please note that Fig. 6.26 corresponds to

the experiments run on the real data and it is evident that the theoretical results are

accurate even on the real data.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 40 60 80 100 120

T
im

e
(in

 s
ec

)

Speed (in Km/hr)

Our CPU Time
Our I/O Time

Optimal I/O Time

Figure 6.24: Efficiency (effect of speed)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

50 75 100 125 150

E
sc

ap
e

P
ro

ba
bi

lit
y

Number of objects (in thousands)

Practical
Theoretical

Figure 6.25: Escape probability vs data
cardinality

As expected, the escape probability increases with the number of objects. The range

and the speed have a similar effect on the escape probability. The results demonstrate that

the escape probability is small, which shows the effectiveness of our proposed approach

in real world settings.

In Fig. 6.27, we show the expected distance for queries run on the synthetic data

set with increasing number of objects and increasing range of the query. It shows that

the actual expected distance is close to the expected bounds we obtained in Section 6.4.

Chapter 6. Continuous Monitoring of Moving Range Queries 216

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

 50 100 150 200 250

E
sc

ap
e

P
ro

ba
bi

lit
y

Range (in Km)

Practical
Theoretical

(a) Effect of range

 0

 0.02

 0.04

 0.06

 0.08

 40 60 80 100 120

E
sc

ap
e

P
ro

ba
bi

lit
y

Speed (in Km/hr)

Practical
Theoretical

(b) Effect of speed

Figure 6.26: Escape probability

Moreover, the actual expected distance is from 300 meters to 1200 meters.

 0

 200

 400

 600

 800

 1000

 1200

50 75 100 125 150

D
is

ta
nc

e
(in

 m
et

er
s)

Number of Objects (in thousands)

Expected Lower Bound
Experimental

Expected Upper Bound

(a) Effect of data cardinality

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 50 100 150 200 250

D
is

ta
nc

e
(in

 m
et

er
s)

Range (in Km)

Expected Lower bound
Experimental

Expected Lower Bound

(b) Effect of range

Figure 6.27: Expected distance

Fig. 6.28 shows the average number of guard objects for all queries and compares the

theoretical bound with the actual number of guard objects. As stated in Section 6.4, our

theoretical upper bound is valid for the queries for which maximum distance to the safe

zone is smaller than C ⋅mup where C is a constant. We observed that when C is set to 2,

30% to 50% queries satisfy the constraint. We call such queries the nominated queries.

 0

 5

 10

 15

 20

50 75 100 125 150

of

 g
ua

rd
s

ob
je

ct
s

Number of Objects (in thousands)

Avg for all queries
Avg for nominated queries

upper bound for nominated queries

(a) Effect of data cardinality

 0

 5

 10

 15

 20

 50 100 150 200 250

of

 g
ua

rd
 o

bj
ec

ts

Range (in Km)

Avg for all queries
Avg for nominated queries

upper bound for nominated queries

(b) Effect of range

Figure 6.28: Number of guard objects

Chapter 6. Continuous Monitoring of Moving Range Queries 217

In Fig. 6.28, we show the average number of guard objects for all queries as well as

the average number of guard objects for the nominated queries. It is interesting to note

that the average number of guard objects for all queries is around 5 regardless of the

experiment settings.

6.6.3 Effectiveness of the proposed access order

In Fig. 6.29, we show the effectiveness of our proposed access order. We tried two other

access orders namely MinFirst and RandomAccess. In MinFirst access order, the objects

are accessed in increasing order of their distances from the query. In RandomAccess, the

objects are accessed randomly. However, to improve the performance of RandomAccess,

we give priority to the objects that lie within the range over the objects that lie too far

from the query.

 0

 10

 20

 30

 40

 50

 60

 50 100 150 200 250

of

 o
bj

ec
ts

 a
cc

es
se

d

Range (in Km)

Our Access Order
Random Access

Figure 6.29: Effectiveness of access order

 0

 10

 20

 30

 40

 50

 60

 50 100 150 200 250

of

 u
np

ru
ne

d
ob

je
ct

s

Range (in Km)

All Pruning Rules
Rectangle based pruning

Figure 6.30: Effectiveness of pruning
rules

For each access order, we record the number of objects considered for updating the

safe zone. MinFirst considers from 100 to 1300 objects when the range is increased from

50 Km to 250 Km. We exclude it from Fig. 6.29 to better illustrate the comparison of

the other two access orders. Our proposed algorithm accesses around 6 objects when

the range becomes larger. Note that an optimal access order will access only the guard

objects (the number of guard objects is around 5). This shows that our proposed access

order is close to the optimal access order.

Chapter 6. Continuous Monitoring of Moving Range Queries 218

6.6.4 Effectiveness of the pruning rules

In Fig. 6.30, we show the effectiveness of the rectangle based pruning rules and the guard

objects based pruning rules. As expected, although the rectangle based pruning rule is

computationally cheap, it is unable to prune many objects. On the other hand, the guard

objects based pruning rules are more effective.

6.6.5 Effectiveness of Smart-Update

Fig. 6.31 shows the effectiveness of our proposed smart-update. In Fig. 6.31(a), we show

the cost of our algorithm with and without using the smart-update. We also show the

performance of the optimal algorithm if the smart-update is not applied, i.e., every time

a query leaves the safe zone, the optimal approach without the smart-update accesses all

the objects within the range and sends to the client. The effectiveness of our proposed

smart-update is evident from Fig. 6.31(a). As the range increases, the performance gain

by the smart-update increases because it avoids to visit a larger area.

 0

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250

T
im

e
(in

 s
ec

)

Average speed (in Km/hr)

Our (with smart-update)
Our (without smart-update)

Optimal (without smart-update)

(a) Effect on Cost

 5

 95

 1350

 50 100 150 200 250

of

 o
bj

ec
ts

Range (in Km)

Transmitted
Answer Size

(b) Effect on data transmission

Figure 6.31: Effectiveness of the smart-update

Fig. 6.31(b) shows the average number of objects transmitted to the query whenever

the server receives an update request. It also shows the total number of objects that lie

within the range (shown as answer size). Please note that a log scale is used to better

illustrate the trend. If the results are updated without using the smart-update, all the

objects that lie within the range are to be sent again. Using our proposed smart-update

approach, the number of objects that are sent to client are around 5. Note that this

Chapter 6. Continuous Monitoring of Moving Range Queries 219

number includes the number of guard objects that are sent to the client.

6.6.6 Range queries in road networks

We use the road map of California4 that consists of 21694 road segments (edges). We

generated queries moving with default speed of 80 Km/hr. Each query starts at a ran-

domly chosen vertex. Whenever the query reaches at a vertex, one of its adjacent vertex

is randomly chosen as destination and the query continues travelling. Each query is mon-

itored for 5 minutes and the reported time is the total time for the 5 minutes duration

of a query. Näıve algorithm recomputes the results whenever the query reports loca-

tion update. In Fig. 6.32, we change the number of objects and the range of the query

and observe that our approach is up to two orders of magnitude faster than the Näıve

algorithm.

 0

 0.5

 1

 1.5

 2

 2.5

 20 40 60 80 100

T
im

e
(in

 s
ec

)

Number of objects (in thousands)

NAIVE
Our

(a) Effect of data size

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 50 75 100 125 150

T
im

e
(in

 s
ec

)

Range (in Km)

NAIVE
Our

(b) Effect of range

Figure 6.32: Range queries in a road network

In Fig. 6.33, we show the effectiveness of our proposed access order. Similar to

the experiments for Euclidean distance based queries, we observe that our access order

performs better thanMinFirst access order and the random access order. MinFirst access

order was outperformed by both the random access order and our access order so we do

not include it in Fig. 6.33.

4http://www.cs.fsu.edu/ lifeifei/SpatialDataset.htm

Chapter 6. Continuous Monitoring of Moving Range Queries 220

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

of

 o
bj

ec
ts

 a
cc

es
se

d

Number of Objects (in thousands)

Our Access Order
Random Access

(a) Effect of data size

 0

 5

 10

 15

 20

 25

 50 75 100 125 150

of

 o
bj

ec
ts

 a
cc

es
se

d

Range (in Km)

Our Access Order
Random Access

(b) Effect of range

Figure 6.33: Effectiveness of access order

6.7 Summary

In this chapter, we focus on the distance based range queries that continuously change

their locations in a Euclidean space. We present an efficient and effective monitoring

technique based on the concept of a safe zone. The safe zone of a query is the area with a

property that while the query remains inside it, the results of the query remain unchanged.

Hence, the query does not need to be re-evaluated unless it leaves the safe zone. Our

contributions are as follows. 1) We propose a technique based on powerful pruning rules

and a unique access order which efficiently computes the safe zone and minimizes the

I/O cost. 2) We theoretically determine and experimentally verify the expected distance

a query moves before leaving the safe zone and, for majority of queries, the expected

number of guard objects. 3) Our experiments demonstrate that the proposed approach

is close to optimal and is an order of magnitude faster than a näıve algorithm. 4) We

also extend our technique to monitor the queries in a road network. Our algorithm is up

to two order of magnitude faster than a näıve algorithm.

Chapter 7

A Unified Algorithm to Answer

Top-k Pairs Queries

In this chapter, we study a generalized version of k closest pairs query problem called

top-k pairs query. We provide a unified framework to answer a broad class of top-k pairs

queries including k closest and k-furthest pairs queries and their variants. This chapter

is based on our research reported in [CLW+11].

7.1 Overview

Given a set of objects {o1, ⋅ ⋅ ⋅ , oN
} and a ranking function that returns the score of a

pair of objects (ou, ov), a top-k pairs query returns k pairs with the best scores. An

important and well studied special case of the top-k pairs query is the k closest pairs

query which returns k pairs with the smallest distances. The k closest pairs queries

have been extensively studied in the context of computational geometry (see [Smi97] and

references therein).

The database community has also conducted significant research on the k closest (or

most similar) pairs queries, k furthest (or most dissimilar) pairs queries and their vari-

ants [HS98, CMTV00, YL02, SZS03]. However, all the existing techniques are developed

221

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 222

to solve some specific problems and there does not exist a unified approach that answers

different variants of the top-k pairs queries (e.g., different Lp distances). Another inter-

esting variation for which no efficient solution exists is to find the pairs of the objects

that are similar to each other in one subspace and dissimilar in another subspace. We

are the first to provide a unified framework that supports a broad class of top-k pairs

queries including the above mentioned queries.

We present a unified approach to efficiently answer the top-k pairs queries based

on generic scoring functions which are not supported by the existing work. Consider

a simple example of an insurance company. The manager might want to retrieve two

insurance agents who sell very similar amount of policies (i.e., the total premium of their

sold policies is similar) but receive very different salaries. Suppose that the relevant

information is stored in a table named agent. The manager may issue the following

query to retrieve the top-k pairs of agents.

Q1: select a.id, b.id from agent a, agent b

where a.id < b.id

order by

|a.sold - b.sold| - |a.salary - b.salary|

limit k

Here ∣x−y∣ denotes the absolute difference of x and y. Note that the order by clause

prefers the pair of agents with larger difference in their salaries and smaller difference in

the amount of the policies they sold1. The condition a.id < b.id is used to avoid the pair

(a, b) being repeated as (b, a).

While the example shows a simple ranking criteria, in the real applications, the users

may define more sophisticated scoring functions. Our framework allows the users to

define a different scoring function for each attribute involved in the query. Such scoring

functions are called local scoring functions. The users define a global scoring function

1Without loss of generality, we assume that the top-k pairs queries retrieve k pairs with the smallest
overall scores.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 223

that computes the final score of a pair by combining its scores on all attributes.

Our framework supports any global scoring function that is monotonic and any local

scoring function that is loose monotonic. A wide range of functions that are used in many

real applications are monotonic. Although we define monotonic and loose monotonic

scoring functions in Section 7.2.1, we remark here that the loose monotonic functions are

more general than the monotonic functions. In the above example, the two local scoring

functions are ∣a.sold−b.sold∣ and −∣a.salary−b.salary∣, respectively. The global scoring

function is the sum of the local scores.

Our framework does not fix the number of attributes involved in the query. In other

words, the users can issue a top-k pairs query on any subset of the attributes using a

different loose monotonic scoring function for each attribute. This enables us to support

many interesting queries (e.g., similarity in one subspace and dissimilarity in another).

We further generalize the supported top-k pairs queries by classifying them into chro-

matic and non-chromatic top-k pairs queries. The chromatic queries are further classified

into homochromatic and heterochromatic top-k pairs queries. Suppose that each object

in the database has been assigned a color. A homochromatic top-k pairs query returns

the top-k pairs among the pairs that contain two objects having the same color. On the

other hand, a heterochromatic top-k pairs query considers only the pairs that contain

two objects having different colors. A top-k pairs query that does not consider the colors

of the objects (i.e., all pairs are considered) is called a non-chromatic top-k pairs query.

In the query Q1, the user may want to consider only the pairs of agents who work

under different managers. The user may issue a heterochromatic top-k pairs query by

adding the condition a.manager ∕= b.manager in the where clause of the query. Note

that the heterochromatic queries are more general than the bichromatic queries. The

bichromatic queries assume that some of the objects are assigned blue color and others

are assigned red color. Only the pairs that contain one red object and one blue object are

considered. Existing work on k closest pairs queries [HS98, CMTV00] solve bichromatic

queries and the extension to heterochromatic queries is either non-trivial or inefficient.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 224

Below, we summarize our contributions.

∙ We are first to provide a unified and efficient approach for a broad class of top-k

pairs queries. Our framework does not require any pre-built data structure, has

low memory requirement and is easy to implement.

∙ We theoretically analyse the performance of the proposed algorithms and show that

the expected performance is optimal when the number of attributes involved is two

or less2.

∙ Our extensive experiments demonstrate a significant improvement over the existing

best known solution for k closest pairs query. For the more general top-k pairs

queries, we compare our algorithm with a näıve algorithm and observe up to three

orders of magnitude improvement.

∙ Due to the generality of the framework, it can support several other interest-

ing queries (e.g., skyline pairs, rank-based top-k pairs, and exclusive top-k pairs

queries). In Section 7.6, we present efficient solutions for both the chromatic and

non-chromatic variants of these queries and provide a detailed theoretical analysis.

The rest of the chapter is organized as follows. In Section 7.2, we formally define the

problem. We present our framework and its advantages in Section 7.3. In Section 7.4,

we present our technique to create and maintain internal memory and external memory

sources which is the core part of our approach. We present our query processing algorithm

in Section 7.5. In Section 7.6, we present techniques to answer other variants of top-k

pairs queries. Experiment results are given in Section 7.7. Section 7.8 summarizes this

chapter.

2When d attributes are involved, the expected time complexity is O(dV
d−1

d k
1

dLog N) and expected

IO cost is O(d
B
V

d−1

d k
1

d (Log
M

B

N
B
)) where V is the total number of valid pairs, N is the total number of

objects, B is the number of pairs that can be stored in one disk block and M is the number of pairs that
can be stored in the main memory.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 225

7.2 Preliminaries

7.2.1 Problem Definition

First, we define monotonic and loose monotonic scoring functions. A function f is called

a monotonic function if it satisfies f(x1, ⋅ ⋅ ⋅ , xn) ≤ f(y1, ⋅ ⋅ ⋅ , yn) whenever xi ≤ yi for

every 1 ≤ i ≤ n.

Now, we define the loose monotonic functions. Let s(., .) be a scoring function that

takes two values as parameter and returns a score. A function s(., .) is a loose monotonic

function if for every value xi both of the following are true: i) for a fixed xi and every xj >

xi, s(xi, xj) either monotonically increases or monotonically decreases as xj increases,

and ii) for a fixed xi and every xk < xi, s(xi, xk) either monotonically increases or

monotonically decreases as xk decreases.

The absolute difference of two values (e.g., ∣xi − xj∣) is a loose monotonic function.

This is because for a fixed xi and any value xj larger than it, the absolute difference

monotonically increases when xj increases. Similarly, for any fixed xi and any value xk

smaller than it, the absolute difference monotonically increases as xk decreases. Please

note that the loose monotonic functions are more general because these require the scores

to be monotonic only with respect to every individual xi and the function may not be

monotonic in general. All monotonic functions are loose monotonic functions but the

converse may not be true for some functions. For example, the absolute difference of two

values is a loose monotonic function but it is not a monotonic function. The average of

two values is a loose monotonic function as well as a monotonic function.

For ease of presentation, we classify loose monotonic functions into different cate-

gories. A loose monotonic function is called right increasing (resp. decreasing) function

if for every xj > xi for the fixed xi, s(xi, xj) monotonically increases (resp. decreases)

as xj increases. For example, the absolute difference is a right increasing function. A

loose monotonic function is called left increasing (resp. decreasing) function if for every

xk < xi for the fixed xi, s(xi, xk) monotonically increases (resp. decreases) as k decreases.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 226

For instance, the absolute difference is a left increasing function whereas the average of

two values is a left decreasing function.

Let d be the number of attributes specified by the user for a top-k pairs query. For each

attribute i, the user specifies a loose monotonic scoring function si(., .) that computes the

score of a pair on the attribute i. Such scoring function is called a local scoring function

and the score si(a, b) of a pair (a, b) is called its local score. The users are allowed to

define a different local scoring function for each attribute. The user defines a monotonic

global scoring function f that takes d local scores as parameter and returns the final

score SCORE(a, b) of a pair (a, b) as f(s1(a, b), ⋅ ⋅ ⋅ , sd(a, b)).

Score-based top-k pairs query. Given a set of objects O, a non-chromatic top-k pair

query returns a set of pairs P ⊆ O × O that contains k pairs such that for any pair

(a, b) ∈ P and any pair (a′, b′) /∈ P , SCORE(a, b) ≤ SCORE(a′, b′).

Chromatic queries. Consider that each object in a set of objects O is assigned a

color. A chromatic query is similar to a non-chromatic query except for an additional

constraint; that is, only the pairs that meet the color requirement are considered. A

homochromatic top-k pairs query considers only the pairs that have two objects having

the same color. In contrast, a heterochromatic top-k pair query considers only the pairs

that contain objects with different colors.

We define the skyline pairs query, the rank-based top-k pairs query, and the exclusive

top-k pairs queries in Section 7.6.1, Section 7.6.2, and Section 7.6.3, respectively.

7.2.2 Top-k Query Processing

Our algorithm uses some existing top-k query processing algorithms that combine mul-

tiple ranked sources and return the top-k objects. Therefore, in this section, we briefly

describe these algorithms. These algorithms assume that each source Si contains the ob-

jects ranked on their scores according to a preference i. Let xi be the score of an object

in a source Si. The final score of the object is computed by using a monotonic function

f(x1, ⋅ ⋅ ⋅ , xd) where d is the number of sources. The algorithms report k objects with

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 227

the smallest final scores.

The top-k algorithms assume that the objects in a source can be accessed in two

ways. A sorted access on a source reads the next object in the sorted order. A random

access returns the score of any specified object in a given source. In a random access,

the specified object is searched in the source and its score is returned. It is important

to note that not all the sources can support both types of accesses (e.g., a search engine

provides the sorted access but does not support a random access).

Now, we briefly introduce three well known algorithms.

Fagin’s Algorithm (FA). FA [FLN03] assumes that the sources support both sorted

and random accesses. Let there be d sources Si, ⋅ ⋅ ⋅ , Sd. FA works as follows.

1. Do sorted access in parallel on each of the d sources. Go to step 2 when there are at

least k objects that have been returned by every source.

2. For each object that has been returned by at least one source, do the random

accesses on the other sources to retrieve its scores on remaining sources and compute its

final score. Return k objects with the smallest final scores.

A major problem with FA is that it uses unbounded buffer (i.e., the number of objects

stored in the main memory may be arbitrarily large).

Threshold Algorithm (TA). TA (independently proposed in [FLN03, NR99, GBK00])

also assumes that the sources support both sorted and random accesses. TA works as

follows.

1. Do sorted accesses in parallel on each of the d sources. For each object o returned

from a source Si, do the random accesses on every other source to obtain its scores in the

other sources. Compute the final score of o using the monotonic function f . Maintain a

heap that contains k objects with the smallest scores. Let Wk be the largest of the scores

of the objects maintained in the heap.

2. Let xi be the score of the last object returned from the source Si through a

sorted access. After every sorted access, update the threshold value as t = f(x1, ⋅ ⋅ ⋅ , xd).

Terminate the algorithm when t ≥Wk. Report the objects in the heap as top-k objects.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 228

It has been shown that the number of accesses by TA cannot be larger than the

number of accesses by FA. Furthermore, TA is optimal in number of accesses when every

source supports both the sorted and random accesses. Moreover, the buffer size of TA is

O(k) because at any time it keeps only the best k objects in its buffer.

No Random Access (NRA) Algorithm. NRA [FLN03] assumes that the sources do

not support the random accesses. The algorithm works as follows.

1. Do the sorted accesses in parallel on each of the d sources. For each returned object

o, compute its best possible score B(o) and its worst possible score W (o) by assuming

the best and worst possible scores on the sources that have not yet returned it. Maintain

a heap that contains k objects with the smallest worst possible scores W (o).

2. Let Wk be the largest of the worst possible scores of k objects in the heap. At

each sorted access, update Wk and the best possible score B(o) of every seen object o.

Terminate the algorithm when B(o) ≥Wk for every seen object o. Report the objects in

the heap as the top-k objects.

It has been shown that NRA is optimal in the number of accesses when the random

access is not supported by the sources. However, like FA, it also requires an unbounded

buffer. Moreover, the best possible scores of all seen objects are to be updated whenever

an object is returned by a sorted access.

Mamoulis et al. [MYCC07] present several interesting observations and propose an

algorithm LARA that significantly improves the performance of NRA. LARA consists of

two phases. In growing phase, the objects that are returned by the sorted accesses form

a candidate set. They prove that no candidate object can be pruned during the growing

phase. Hence, update of the best possible scores is not required. Let xi be the last score

seen on a source Si and Wk be the ktℎ smallest worst score of the seen objects. The

growing phase completes when t ≥ Wk where t = f(x1, ⋅ ⋅ ⋅ , xd) and denotes the best

possible score of any unseen object.

In shrinking phase, the candidates are divided in 2d categories based on the sources

on which they have been seen. For each group, the candidate with the smallest worst

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 229

score is called the leader. They prove that only the best possible scores of the leaders are

to be updated whenever a new object is returned by a sorted access. If the leader of a

group can be pruned, the whole group is pruned. The algorithm stops when there is no

leader with its best possible score smaller than Wk.

7.3 Our Proposed Framework

Let d be the number of local scoring functions involved in the top-k pairs query. We

map our problem to the well studied problem of top-k query that combines the scores

from different ranked sources (see the previous section). More specifically, we maintain d

sources (please see Fig. 7.1) such that each source Si incrementally returns the pair with

the best score according to the itℎ local scoring function. The existing top-k algorithms

(e.g., FA, TA and NRA) view these sources as the ranked inputs and can be used to

retrieve the top-k pairs by combining these ranked inputs.

Figure 7.1: Our framework

Most of the existing work on the top-k queries can be applied to solve the problem

of the top-k pairs queries. However, these algorithms assume that the sources can report

the elements in a sorted order. Hence, it is important to develop efficient techniques to

create and maintain the sources such that each source can return the pairs of objects in

a sorted order. A straight forward solution to create a source Si is to sort all the possible

pairs according to their local scores on the itℎ attribute. However, this solution requires

storing and sorting O(V) pairs where O(V) is the number of valid pairs (this number is

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 230

O(N2) for non-chromatic queries if N is the number of objects). Clearly, the time and

the space complexity of this straight forward approach may be prohibitive.

In the next section, we present an optimal internal memory algorithm and an optimal

external memory algorithm to create and maintain such sources. The internal memory

algorithm uses O(N) space and is optimal in time complexity. The external memory

algorithm is I/O optimal.

Below we highlight a few advantages of our framework.

1. No pre-built indexes required. Our proposed algorithm does not require any pre-

built indexes, i.e., there does not exist any index at the time a query is issued. We remark

here that the indexes like R-tree usually index all the dimensions (i.e., attributes) of the

objects and the queries that involve a subset of these dimensions may not be answered

efficiently by these indexes. Moreover, the pruning rules used on these indexes are based

on the distance metrics and may not work for the generic scoring functions.

2. Known memory requirement. The existing techniques for k-closest pairs

queries [HS98, CMTV00] use heap to store the intermediate nodes of the R-trees. The

size of the heap may become as large as O(V) and the system may run out of memory. In

contrast, our external memory algorithm has a bounded memory requirement (it requires

O(k) space in addition to 2d buffer pages).

3. Efficient. Although our proposed approach supports more general top-k pairs

queries and does not require any pre-built indexes, our experimental results demonstrate

that the proposed approach is in general more efficient than the existing solutions of k

closest pairs queries. We also conduct theoretical analysis and show that the expected

cost of our proposed approach is optimal for the queries that involve two or less attributes.

4. Easily extendible. Due to the generality of the framework, it can be used to

answer other types of queries. For example, a variation of FA [FLN03] algorithm on top

of our ranked sources can be used to solve skyline pairs query that returns every pair

that is not worse than any other pair. In Section 7.6, we demonstrate the extensibility

of our framework by showing that it can efficiently solve several interesting queries like

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 231

skyline pairs, rank-based top-k pairs, and exclusive top-k pairs queries.

5. Feasible for implementation in a DBMS. Unlike the existing techniques that

target specific problems, our general algorithmic framework solves a broad class of top-k

pairs queries (including all the existing variants) and is easy to implement. Moreover,

the proposed technique outperforms existing algorithms both theoretically and experi-

mentally. Hence, it is a good choice to be implemented in any DBMS.

7.4 Maintaining The Sources

7.4.1 Internal Memory Source

First, we define some terminologies. Suppose that all the objects are sorted in ascending

order of their attribute values such that o1 ≤ o2 ≤ ⋅ ⋅ ⋅ ≤ o
N
. For any pair (ou, ov), we

refer to the first object ou in the pair as host and the second object ov as guest. A pair

(ou, ov) means that the object ou is a host to a guest ov.

For the ease of presentation, we assume that the local scoring function s(., .) satisfies3

s(ou, ov) = s(ov, ou). To avoid reporting a pair (ou, ov) again as (ov, ou), we will consider

only the pairs (ou, ov) such that u < v. This implies that every object ou can host only

the objects that are on the right side of ou in the sorted list o1 ≤ o2 ≤ ⋅ ⋅ ⋅ ≤ o
N
. For

chromatic queries, only the objects that meet the color requirement and are on the right

side of ou will be considered its guests. Let ov and ov′ be two guests of ou. We say that

ov is a better guest of ou than ov′ if s(ou, ov) < s(ou, ov′). An object ov is called the best

guest of a host ou if for every other guest ov′ of the host ou, s(ou, ov) ≤ s(ou, ov′). We

say that an object ou has hosted the object ov, if the pair (ou, ov) has been reported to

the main algorithm.

Algorithm 15 presents the details of creating and maintaining a source. Initially,

all the objects are sorted in ascending order of their attribute values (ties are broken

3The scoring functions for which s(ou, ov) ∕= s(ov, ou) can be easily handled by joining two sources
such that the first source considers only the pairs (ou, ov) for every u < v and the second source considers
only the pairs (ov, ou) for every u < v.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 232

Algorithm 15 Creating and maintaining a source

1:InitializeSource()

1: sort the objects in ascending order of their values

2: for each object ou do

3: ov ← the best guest of ou

4: insert the pair (ou, ov) into heap with score s(ou, ov)

getNextBestPair()

1: get the top pair (ou, ov) from the heap

2: if next best guest of ou exists then

3: ov′ ← the next best guest of ou

4: insert the pair (ou, ov′) in heap with score s(ou, ov′)

5: return (ou, ov)

arbitrarily). Then, for each object ou, a pair (ou, ov) is created such that ov is the best

guest of ou. All these pairs are inserted in a heap.

Whenever a request for the next best pair arrives, the source retrieves the top pair

(ou, ov) from the heap and reports it to the main algorithm. The next best pair (ou, ov′)

is inserted in the heap where ov′ is the next best guest of ou. At any stage during the

execution, the next best guest of ou is the best guest among the guests of ou which has

not been hosted by ou earlier.

Example 7.4.1 Consider the example of Fig. 7.2 which shows six objects o1 to o6 sorted

on their attribute values. The values inside the circles are the attribute values. Assume

that the scoring function is the absolute difference. A pair (ou, ov) is shown by a directed

edge from the host ou to the guest ov. Initially, for each object, a pair with its best

guest is created and inserted in the heap. Note that the best guest of an object is its

right adjacent object when the function is absolute difference. Fig. 7.2(a) shows the pairs

(see the edges) that are inserted in the heap. The number on an edge corresponds to the

score of the pair. The best pair is (o3, o4) and its score is 1. When this is retrieved, the

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 233

Figure 7.2: Illustration of Algorithm 15

algorithm determines that the next best guest of o3 is o5 and inserts (o3, o5) in the heap

with score 6 (see Fig. 7.2(b)). Now the top pair of the heap is (o2, o3) which is returned

when the system requests the next best pair from this source. The next best guest of o2 is

o4 so a new pair (o2, o4) is inserted in the heap with score 3 (see Fig. 7.2(c)).

The intuitive justification of the correctness of the algorithm is that at any stage,

we keep the best guests (among those that it has not hosted yet) for each object in the

heap. This implies that for every pair that does not exist in the heap either there exists

a better pair in the heap or the pair has already been reported to the main algorithm.

The following lemma proves the correctness of the algorithm.

Lemma 7.4.2 For any pair (ox, oy) that is not present in the heap and has not been

reported earlier, there exists at least one pair (ou, ov) in the heap such that s(ou, ov) ≤

s(ox, oy).

Proof First we prove it for the case when x < y. For each object ox, we always have

one object ov in the heap (if ox has not already hosted all valid guests) such that ov is its

best guest among the objects that it has not hosted yet. If ox has hosted all valid guests,

this implies that the pair (ox, oy) has been hosted. Otherwise, there must be at least one

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 234

pair (ox, ov) in the heap such that s(ox, ov) ≤ s(ox, oy). This is because an object ox will

not host oy unless it has hosted all the guests that are better than oy.

Now, assume x > y. Following the similar argument as above, if the pair (oy, ox)

has not been reported then there exists at least one pair (oy, ov) in the heap such that

s(oy, ov) ≤ s(oy, ox).

In order to achieve the optimal complexity, the algorithm must find the best guests

for all N objects in O(N). Moreover, the algorithm must find the next best guest of any

object ou in O(1).

Before we show the details of how to do these operations with required complexity,

we introduce the concept of left adjacent and right adjacent objects. A left (resp. right)

adjacent object of ou is the first object ox on the left (resp. right) side of ou in the sorted

list o1 ≤ o2 ≤ ⋅ ⋅ ⋅ ≤ o
N

such that the pair (ou, ox) satisfies the color requirement.

Figure 7.3: (a) Non-chromatic (b) Heterochromatic (c) Homochromatic

Fig. 7.3 shows an example where the objects o1 to o6 are shown. Some objects

are shaded (o2, o4 and o5) and others are white (o1, o3 and o6). Fig. 7.3(a), (b) and

(c) show the adjacent objects for non-chromatic queries, heterochromatic queries and

homochromatic queries, respectively. The adjacent objects are shown with broken lines.

An arrow from an object ox to oy indicates that oy is the adjacent object of ox in that

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 235

direction.

Later in this section, we show that the left and the right adjacent objects of all the

objects can be determined in O(N).

Finding the best guest for each object ou

Below, we describe the procedure for the right increasing and the right decreasing func-

tions (see Section 7.2.1 for the definitions).

For right increasing functions. Recall that if the scoring function is right increasing

then the score s(ou, ov) ≤ s(ou, ov′) if v < v′ (i.e., ov′ is on the right side of ov in the

sorted list). Hence, for any object ou, its best guest is its right adjacent object. For

example, in Fig. 7.3(c), o3 is the best guest of o1 if the scoring function is right increasing

function (e.g., absolute difference).

For right decreasing functions. For any object ou, the best guest in this case is

the right most object ov such that the pair (ou, ov) meets the color requirement. More

specifically, for non-chromatic queries, the best guest of any object ou is o
N
. For example,

in Fig. 7.3(a) the best guest of every object is o6 if the scoring function is a right decreasing

function (e.g., s(ou, ov) = −(ou + ov)).

For the heterochromatic queries, if o
N

has a color different than ou then o
N

is the

best guest of ou. Otherwise the left adjacent object of o
N

is the best guest of ou because

it is guaranteed to have a color different than ou. In the example of Fig. 7.3(b), o6 is the

best guest of o2, o4 and o5 whereas o5 is the best guest of o1 and o3.

For the homochromatic queries, we scan the sorted list o1 ≤ ⋅ ⋅ ⋅ ≤ oN once and

maintain the right most object of each color. For each object ou, its best guest is the

right most object of the same color. In the example of Fig. 7.3(c), o6 is the best guest

for o1 and o3 whereas o5 is the best guest of o2 and o4.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 236

Finding next best guest of any object ou

Let ov be the current best guest of the object ou. The next best guest of ou can be

determined in O(1). Below, we describe how to find the next best guests for the right

increasing functions and the procedure is similar for the right decreasing functions.

For the non-chromatic queries and the homochromatic queries, the next best guest

ov′ for an object ou is the right adjacent object of ov. In the example of Fig. 7.3(c), let

o3 be the current guest of o1. The next best guest of o1 is o6 which is the right adjacent

object of o3.

For the heterochromatic queries, the next best guest of ou is o
v+1

if o
v+1

has a color

different than ou. Otherwise, the right adjacent object of ov+1
is guaranteed to have a

different color and hence is the next best guest of ou. Consider the example of Fig. 7.3(b)

and assume that the current best guest of the object o2 is o3. When (o2, o3) is reported,

the algorithm checks o4 to see if it is the next best guest of o2. Since o2 and o4 have the

same color, the next best guest of o2 is o6 which is the right adjacent object of o4.

Finding the adjacent objects

Now we illustrate how to add pointers to the adjacent objects in O(N) time. For the

non-chromatic queries, the procedure is trivial. So, we first discuss the procedure for

determining the right adjacent objects for the heterochromatic queries. The procedure

starts with setting the right adjacent object of o
N
to NULL. Then, it starts scanning the

sorted list of the objects from right to left. For each object ou, if ou+1
has a different

color than ou then o
u+1

is set as the right adjacent object of ou. Otherwise, the right

adjacent object of ou+1
is set as the right adjacent object of ou.

Consider the example of Fig. 7.3(b). The right adjacent object of o6 is set to NULL.

The right adjacent object of o5 is o6 because they have different colors. The right adjacent

object of o4 is not o5 because they have same color. So, the right adjacent object of o5

(which is o6) is set as the right adjacent object of o4. The algorithm continues in this

way. The left adjacent objects can be set similarly by scanning the list from left to right.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 237

For the homochromatic queries, we assign the right adjacent objects as follows. While

we scan the list from right to left, we maintain the last seen object of each color. For

any object ou, its right adjacent object is the last seen object of the same color (NULL

if no object has been seen of this color). The left adjacent objects are set similarly by

scanning the list from left to right.

Complexity

The first pair is returned in O(N Log N) (the objects are sorted and O(N) pairs are

inserted in the heap). We remark that this meets the lower bound of returning the closest

pair in one dimension [BO83]. Since our general framework covers the closest pairs, the

lower bound of the algorithm is O(N Log N) hence our algorithm is optimal.

As illustrated earlier, the next best guest of any object ou can be determined in O(1).

For each host ou, the heap contains at most one pair (ou, ov). Hence, the maximum size

of the heap is O(N) which implies that each heap operation takes O(Log N). In other

words, a source incrementally returns the next best pair in O(Log N).

7.4.2 External Memory Source

The basic idea of the external memory algorithm is the same as the internal memory

algorithm. However, there are following two main challenges: 1) the heap cannot be

stored in the internal memory and 2) finding the next best guest of an object requires

accessing the sorted list of the objects which is stored in the external memory (this means

that the algorithm would need to access the external memory every time the next best

guest is to be determined).

We address the first challenge by using the external memory priority queue proposed

by Arge [Arg03]. The basic idea of the external priority queue (or heap) is to retrieve

and insert the elements in a batch which reduces the amortized I/O cost. Arge shows

that the external priority queue can do an insert or delete operation in O(1
BLogM

B

N
B)

amortized I/O where B is the number of elements that can be stored in one disk page,

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 238

M ≥ 2B is the number of elements that can be stored in the internal memory and N is

the number of elements in the priority queue. For details, please see [Arg03].

We introduce the notion of dummy pairs to address the second challenge (i.e., to find

the next best guest of an object without accessing the external memory). A dummy pair

with a host ou and a guest ov is denoted as (ou, ov). The pairs (ou, ov) we introduced

earlier are called the regular pairs hereafter. Recall that when a regular pair (ou, ov) is

retrieved from the heap, a pair (ou, ov′) is created and inserted in the heap where ov′ is the

next best guest of ou. In contrast, when a dummy pair (ou, ov) is retrieved from the heap,

a dummy pair (ou′ , ov) is created and inserted in the heap where ou′ is the next best host

of ov. The best host ou is defined in a similar way as the best guest. More specifically, we

say that an object ou is a better host of ov than ou′ if s(ou, ov) < s(ou′ , ov). Finding the

next best host is similar to finding the next best guest as described in previous section.

In Fig. 7.4, for each object, we show a regular pair with its best guest (curved arrows

pointing right) and a dummy pair with its best host (connector style arrows pointing

left). The scoring function is the sum of the attribute values and the score of each pair

is shown on its edge.

Recall that when a pair (ou, ov) is retrieved from the heap, the next best guest ov′

is determined by using the adjacent object information of ov. For our external memory

algorithm, we propose to store the adjacent object information with both the regular

pairs and the dummy pairs. More specifically, with a regular pair (ou, ov), we attach the

information of adjacent objects of the host ou. In contrast, for a dummy pair (ou, ov)

we attach the information of adjacent objects of the guest ov. The object that stores

the adjacent object information in a pair is marked with a star. For example, (★ou, ov)

denotes that the adjacent object information of ou is attached with the pair (ou, ov).

Algorithm 16 presents the details of creating and maintaining an external memory

source. The main idea behind the algorithm is that the heap is modified such that

whenever a pair (★ou, ov) is retrieved from the heap, its dummy pair (ou, ★ov) is the next

best pair in the heap. These two pairs are retrieved and are used as follows; The next best

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 239

Algorithm 16 Creating and maintaining external memory source

1:InitializeSource()

1: sort the objects in ascending order of their values

2: for each object oi do

3: attach adjacent object’s information with oi

4: oj ← the best guest of oi

5: ok ← the best host of oi

6: insert the pair (★oi, oj) into heap with score s(oi, oj)

7: insert the dummy pair (ok, ★oi) into heap with score s(ok, oi)

getNextBestPair()

1: get the top pair (★ou, ov) from the heap

2: get the next top pair (which is dummy pair (ou, ★ov))/* Lemma 7.4.4 */

3: if next best guest of ou exists then

4: ov′ ← the next best guest of ou

5: insert the pair (★ou, ov′) in heap with score s(ou, ov′)

6: if next best host of ov exists then

7: ou′ ← the next best host of ov

8: insert the dummy pair (ou′ , ★ov) into heap with score s(ou′ , ov)

9: return (★ou, ov)

guest of ou is determined by using the adjacent object information of ov which is stored

in the dummy pair (ou, ★ov). Similarly, the next best host of ov can be determined by

using the adjacent object information of ou which is stored in the regular pair (★ou, ov).

It is easy to see that the next best pairs can be formed without accessing the external

memory.

Modifying the heap priority function. It is important to clarify that if there exists

more than one pair with the same score then the next best pair may not be the dummy

pair of (ou, ov). Consider the example of Fig. 7.4, where several pairs have score 14. If

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 240

7 7 7 7 20

14 14 14 27

30

50

o
1

o
2 o

3
o
4 o

5
o
6

14
14

14
27

37

Figure 7.4: Illustration of dummy pairs

the heap accesses the pair (o2, o3), the next best pair cannot be its dummy pair (o2, o3)

because it has not been inserted in the heap yet. To guarantee that the next best pair

is always the dummy pair of the retrieved pair, we modify the heap priority function as

follows.

If two pairs have the same score, the heap gives priority based on the IDs of their

guest objects. More specifically, if the scoring function is a right increasing function then

the pair with the smaller ID of the guest object is given preference. If the scoring function

is a right decreasing function then the pair with the larger ID of the guest object is given

preference. The ID of each object in a source is its position in the list sorted in ascending

order of attribute values. For instance, the ID of an object ou is u.

If two pairs have the same score and the same guest object then the heap gives priority

based on the IDs of their host objects. More specifically, if the scoring function is a left

increasing function then the heap prefers the pair with the larger ID of the host object. If

the function is a left decreasing function then the heap prefers the pair with the smaller

ID of the host object.

If two pairs have the same score, the same guest object and the same host object

then one of them is a regular pair and the other is its dummy pair. In this case, the heap

gives priority to the regular pair.

Lemma 7.4.3 and Lemma 7.4.4 guarantee the correctness of the algorithm.

Lemma 7.4.3 Given that the heap uses the priority function as described above. If a

dummy pair (ou, ov) is the top pair of the heap then its regular pair (ou, ov) has already

been retrieved from the heap.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 241

Proof We prove the lemma for a function that is right increasing and left decreasing

function. The proof for other functions is similar.

Assume that (ou, ov) is the top pair. If the object ou does not have any pair (ou, ov′)

in the heap it implies that it has hosted ov (i.e., (ou, ov) has been retrieved from the

heap). If there exists a pair (ou, ov′) in the heap and v′ < v, then s(ou, ov′) ≤ s(ou, ov)

because the function is right increasing. This contradicts that (ou, ov) is the top pair

because the heap would prefer (ou, ov′) (even if the score s(ou, ov) = s(ou, ov′), the heap

would prefer the pair (ou, ov′) because it has a guest with smaller ID).

If v′ = v, this means that the regular pair (ou, ov) exists in the heap and a dummy

pair cannot be the top pair in presence of its regular pair. If v′ > v, this implies that the

pair (ou, ov) has already been retrieved because, for a right increasing function, the pair

of ou with its guests that have smaller IDs are considered first.

Lemma 7.4.4 Assume that the heap uses the priority function as described above. If a

pair (ou, ov) is the top pair of the heap then its dummy pair (ou, ov) is the second top

pair.

Proof We prove the lemma for a function that is right increasing and left decreasing

function. The proof for other functions is similar.

We prove this by contradiction. Assume that (ou, ov) is not present in the heap. At

any stage, each host ov contains a dummy pair (ou′ , ov) in the heap. If no such pair exists

or u′ > u then this implies that the dummy pair (ou, ov) has already been retrieved which

violates Lemma 7.4.3. If u′ < u then (ou′ , ov) would be the top pair instead of (ou, ov).

This is because s(ou′ , ov) ≤ s(ou, ov) and the dummy pair (ou′ , ov) would be preferred

even when s(ou′ , ov) = s(ou, ov) because the heap prefers the pair with smaller host ID if

the score and the guest objects are same.

Please note that once the source is created, it does not require to access the external

memory to create new pairs. The only external memory I/Os are due to insertion and

deletion from the external memory heap. The cost of returning the first pair is sorting the

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 242

objects and inserting O(N) pairs in the external heap. Hence, the cost is O(NBLogM
B

N
B)

which is I/O equivalent to O(N Log N) internal memory algorithm and hence is opti-

mal [Vit01]. The amortized I/O cost for retrieving next best pair is O(LogM
B

N
B) which is

I/O equivalent to the cost of internal memory source.

7.5 Query Processing Algorithm

7.5.1 Technique

We apply the threshold algorithm (TA) [FLN03, NR99, GBK00] to combine the scores

of a pair from different sources and return the top-k pairs. However, please note that TA

assumes that the sources support the random accesses (see Section 7.2.2). In other words,

when a pair is returned from a source Si, TA needs to obtain its score on every other

attribute. We enable TA to access the scores of a pair on other attributes as follows.

For internal memory algorithms, we assume that the objects are stored in the main

memory (this consumes O(dN) memory space). When a pair (ou, ov) is returned from

one of the sources, we use the object table and retrieve the attribute values of ou and ov

and compute the score of (ou, ov) on every other attribute.

For the external memory algorithm, doing the random access requires accessing the

object table (which exists in the external memory). This would be quite expensive

because we need to look up the attribute values of two objects for each seen pair and

this may require two I/Os. One solution is to apply NRA algorithm [FLN03] because

it does not require random accesses. However, NRA algorithm requires an unbounded

buffer (see Section 7.2.2) and the main memory consumption may be prohibitively large

(it may be O(V) where V is the total number of valid pairs).

To enable random accesses for TA, we modify each source Si such that each pair

stores d attribute values of both of the objects. This increases the amortized I/O cost

of creating the external memory source by a factor d because the number of entries that

can be stored in one disk block is reduced. However, doing this allows us to compute the

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 243

score of each pair on every attribute without any additional I/O. Although this approach

may increase the disk usage, the external memory sources are required only during the

query processing and the data can be deleted after the query has been answered.

Incrementally returning top-k pairs. Incremental algorithms return the results one-

by-one, i.e., the partial results are incrementally reported to the users without waiting

for all the results to be computed. We show that we can modify TA such that it reports

top-k pairs incrementally. For instance, the best pair is reported to the user before the

computation of remaining top-(k-1) pair is completed. In some applications, incremental

algorithms are preferred [HS98] because i) the query engine can use the algorithm in

pipelined fashion and ii) such algorithms aim to report the results as soon as possible

and the user may terminate the algorithm if he is happy with top-m (for m < k) results

returned so far. In Section 7.6.3, we demonstrate the importance of incrementally report-

ing the results where we use this feature to optimize the performance of our algorithm

for answering exclusive top-k pairs queries.

Recall that TA maintains Wk which corresponds to the largest of the scores of the

objects maintained in the heap (see Section 7.2.2). The algorithm terminates when the

threshold t becomes at least equal to Wk. Let Wi be the i-th largest score of the objects

maintained in the heap. It can be easily proved that when t ≥ Wi, the object with i-th

largest score in the heap is among top-i pairs. We modify TA such that it starts by

setting i = 1 and reports the best pair as soon as t ≥ W1. The algorithm continues by

iteratively incrementing i by one and reporting the i-th best pair as soon as t ≥ Wi. It

can be easily shown that the complexity of this variation of TA is the same as that of

the original TA.

7.5.2 Complexity Analysis

The number of elements accessed by TA is always less than or equal to the number of

elements accessed by Fagin’s Algorithm (FA) [FLN03] (see Section 7.2.2). FA algorithm

stops the sorted accesses when exactly k elements are returned from all d sources. Let

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 244

V be the number of elements in each source. The expected number of sorted accesses

by FA is T = O(V (d−1)/dk1/d) under the assumption that the score of an element in one

source is independent of its score in other sources [Fag99].

As the cost of TA is always less than or equal to FA, the number of pairs our algorithm

is expected to access from each source is O(T) assuming that the score of a pair in one

source is independent of its score in the other sources. The total number of accesses from

all d sources is O(dT). As shown earlier, the cost of accessing a pair from a source is

O(Log N), hence the total expected cost 4 for the internal memory algorithm is given by

Eq. (7.1).

O(dT Log N) = O(d V
d−1

d k
1

dLog N) (7.1)

For the non-chromatic queries, the total number of valid pairs O(V) is O(N2). Hence

the expected cost of our algorithm to answer a two dimensional closest pair query is

O(N Log N) which is optimal in algebraic decision tree model [BO83].

The cost of our external memory algorithm can be obtained similarly. The amortized

I/O cost of accessing dT (T pairs from each source) is O(dTB (LogM
B

N
B)) where B is the

number of pairs that can be stored in one block and M ≥ 2B is the number of pairs

that can be stored in the main memory reserved for an external priority queue. For

a two dimensional non-chromatic closest pair queries, the expected amortized I/O cost

is O(NB (LogM
B

N
B)) which is I/O equivalent to O(N Log N) internal memory algorithm

hence is optimal [Vit01].

The space usage of the internal memory algorithm is O(dN) because the main al-

gorithm stores a table containing N objects with d attributes for each object and each

source stores a table of N objects with one attribute value for each object. The main

memory usage of the external memory algorithm is O(k + dM) where M is the memory

used for each source. The minimum memory an external source requires is 2B, hence the

4Note that the cost analysis includes the cost of creating the sources. The cost of creating d sources
is O(d(N Log N)) which is dominated by Eq. (7.1). Same holds for the cost analysis of the external
memory algorithm. Our experiment results also include the cost of creating the sources.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 245

minimum main memory requirement is O(k + 2dB).

7.6 Extensions

7.6.1 Skyline Pairs Query

A pair (x, y) is said to dominate another pair (a, b) if for every attribute i, si(x, y) ≤

si(a, b) and for at least one attribute j, sj(x, y) < sj(a, b). A skyline pairs query returns

every pair that is not dominated by any other pair.

It can be shown that for any monotonic global scoring function, the best pair is

always one of the skyline pairs. In other words, the skyline pairs query gives shortlisted

candidate pairs such that for every candidate pair there exists a global scoring function

for which it is the best pair. Hence if the users cannot define a suitable scoring function,

they can select a pair from the skyline pairs that best meets their requirement.

Consider the example of a person who is interested in buying a broadband internet

connection and a home phone connection. He might want to retrieve the pairs (broadband

and phone) that have low total monthly cost, low total setup fee and shorter average

contract length. Suppose that a database stores the information of broadband and home

phones provided by different companies. While the score-based top-k pairs queries can

be used to retrieve the top-k pairs, the user may instead prefer to retrieve all the pairs

that are not dominated by any other pair (i.e., return every pair such that no other pair

has lower total monthly cost, lower total setup fee and shorter average contract length).

Technique

For the ease of the presentation, we assume that all the pairs in a source have unique

scores. Later, we will present the approach to handle the case when more than one

pair can have same score. Our algorithm is similar to Fagin’s Algorithm (FA) (see

Section 7.2.2). However, unlike FA algorithm, we address the problem of unbounded

buffer. Our algorithm works as follows.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 246

1 . Do the sorted accesses on each source Si. For each newly seen pair p, determine its

score on all other attributes. Compare p with existing skyline pairs and include it in the

set of skyline pairs if it is not dominated by any existing skyline pair. Otherwise, discard

it.

2. Terminate when at least one object has been seen under the sorted accesses from all

the sources. Report the skyline pairs.

The correctness of the algorithm follows from the fact that a pair p cannot be domi-

nated by any pair p′ that is accessed after it. This is because the score of p′ is larger than

p in at least one source. The termination condition is also correct because if a pair p is

seen in every source then every pair p′ that has not been seen in any source is dominated

by p.

If more than one pairs have same score in a source Si then a pair p can be dominated

by a pair p′ that is accessed after it. This is because p′ may have a score equal to p in

the source Si and may have smaller scores in all other sources. We address this issue

as follows. Let xi be the score of a pair p that has been accessed from a source Si. We

discard the pair p if it is dominated by any of the existing skyline pairs. Otherwise, we

insert it in a list C which contains the candidate skyline pairs. When a pair p′ is accessed

from Si, if its score is equal to xi it is compared with every pair in C and the pairs that

are dominated by p′ are deleted. Whenever the score of p′ is larger than xi, all the pairs

in C are confirmed as the skyline pairs and are inserted in the set of skyline pairs.

Let scorei be the score of a pair p in a source Si such that p has been seen under

sorted accesses on all sources. The algorithm terminates if the score xi of the last pair

seen in a source Si is larger than scorei. This is because every unseen pair has a score

on Si larger than that of p and cannot have score less than the score of p on every

other source. The proof of correctness is straight forward and is omitted. Note that the

algorithm is incremental, i.e., it can report the skyline pairs without computing all of the

skyline pairs.

A k-skyband [PTFS05] query returns every element that is dominated by at most

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 247

(k−1) other elements. A k-dominant skyline [CJT+06] query returns every element that

is not dominated by any other element in k or more dimensions. We remark that the

extension of the algorithm to answer k-skyband pairs query and k-dominant skyline pairs

query is straight forward.

Analysis

We assume that the pairs have unique scores in each source. The number of accesses

from each source is equal to the accesses by FA (because the algorithm stops when at

least one object has been returned from all sources). So, the expected number of accesses

from each source is T = O(V (d−1)/d) (the value of k is one). The expected number of

total accesses on all the sources is O(dT).

For each retrieved pair, we compare it with all the existing skyline pairs. The average

number of skyline pairs is estimated to be O(Logd−1V) [BKST78]. Since V is at most

O(N2), the expected number of skyline pairs is O(Logd−1N). Hence the expected cost of

the internal memory skyline pairs algorithm is O(dT Logd−1N). The expected amortized

I/O cost is the same as the cost of score-based top-k (k = 1) pairs query obtained because

the cost was obtained using the number of accesses by FA.

The lower bound on the cost of the skyline pairs queries is O(N Log N). This is

because the lower bound cost of the closest pairs query is O(N Log N) and a closest

pairs query can be solved by scanning the skyline pairs once. It is easy to see that the

expected cost of our algorithms meets the lower bound of the skyline pairs queries if two

or less attributes are involved. The expected main memory usage of the internal memory

algorithm is O(dN +Logd−1N) because in addition to the object table, it also stores the

existing skyline pairs. The expected main memory requirement of the external memory

algorithm is O(k + 2dB + Logd−1N).

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 248

7.6.2 Rank-based Top-k Pairs Queries

In order to define a suitable scoring function, the users must have sufficient domain

knowledge. Moreover, it is difficult to define a global scoring function on the attributes

that are incompatible (e.g., dollars and inches) [FKS03]. In such cases, the users can

issue a rank-based top-k pairs query defined below.

First, we define the rank of a pair (a, b) on an attribute i denoted by ranki(a, b). Let

si be the loose monotonic scoring function for the attribute i. ranki(a, b) is the number

of pairs (x, y) for which si(x, y) < si(a, b). In other words, if the pairs are sorted in

ascending order of their scores on itℎ attribute, ranki(a, b) is the rank of the pair (a, b)

in the sorted order.

Given a global scoring function f , the final rank-based score R SCORE of a pair

(a, b) is;

R SCORE(a, b) = f(rank1(a, b), ⋅ ⋅ ⋅ , rankd(a, b)) (7.2)

Given a set of objects O, a rank-based top-k pairs query returns a set of pairs P ⊆

O × O that contains k pairs such that for any pair (a, b) ∈ P and any pair (a′, b′) /∈ P ,

R SCORE(a, b) ≤ R SCORE(a′, b′).

Technique

When a pair p is seen on a source Si, although its score on the other sources can be

determined, it might not be possible to determine its rank on the other sources. In other

words, the random access on a source cannot determine the rank of a pair in this source.

However, if a pair p is seen under the sorted access then its rank is the number of pairs

that have been returned by this source and have smaller scores. This can be easily done

by maintaining a counter for each source. The problem of rank-based top-k pairs can be

solved by using NRA [FLN03] because the sorted accesses are possible but the random

accesses are not possible.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 249

As mentioned in Section 7.2.2, there are two major weaknesses of NRA. First is that

whenever a new element is seen under the sorted access, the best possible scores of all

the previously seen pairs are to be updated. This problem has been addressed by LARA

algorithm [MYCC07] which we briefly described in Section 7.2.2. The second problem

is that NRA uses an unbounded buffer. We reduce its memory usage by the following

observation. A pair p that is dominated by k other pairs cannot be the top-k pair. Hence,

we only need to maintain the (k + 1)-skyband pairs. Other pairs can be safely pruned.

We remark that, by using the strategy presented in Section 7.5.1, NRA can be mod-

ified to report the top-k pairs in an incremental fashion.

Analysis

In the worst case, the growing phase of LARA (see Section 7.2.2) completes when there

are at least k elements that are seen on all the sources. Hence, the expected number

of pairs accessed from each source is at most equal to the number of pairs accessed by

FA. So, the expected number of pairs accessed from each source during the growing

phase is T = O(V (d−1)/d ⋅ k1/d). In the growing phase, when a pair p is retrieved, it is

compared against all (k+1)-skyband pairs to see if it can be pruned. The expected size of

(k + 1)-skyband is O(k Logd−1N) [ZLZ+09]. So, the expected cost of the growing phase

is O(dkTLogd−1N) because in total dT pairs are accessed and each pair is compared with

every pair in the (k + 1)-skyband.

Now, we estimate the number of elements accessed by the shrinking phase of LARA

(which cannot be more than the number of elements accessed by NRA). We assume that

the global function is sum of the local scores. Moreover, we assume that the score of every

pair in a source is unique. As stated earlier, when O(T) elements are accessed from each

source, the algorithm is expected to see k elements that have been returned by all the

sources. The worst possible score of these k elements is Wk = dT (the rank of the pair is

T in each source). If dT elements are accessed from each source, then the algorithm can

stop. This is because the final score of every object that is not seen in at least one source

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 250

cannot be smaller than Wk = dT . Hence, the number of accesses by NRA on each source

is at most dT where T = O(V (d−1)/d ⋅k1/d). The total number of accesses on all d sources

is O(d2T). The cost of each access in the shrinking phase is O(Logk + 2d) [MYCC07].

Hence the expected total cost of the shrinking phase is O(d2T (Log N + Log k + 2d)).

The total cost of the internal memory rank-based top-k pairs query is the sum of

the cost of the growing phase and the cost of the shrinking phase as computed above.

The expected amortized I/O cost of the external memory algorithm is O(d
2T
B LogM

B

N
B)

because d2T pairs are expected to be accessed from the sources.

The expected main memory requirement for the internal memory algorithm is O(dN+

k Logd−1 N) because the pairs in (k + 1)-skyband are also kept in the memory. The

expected main memory requirement of the external memory algorithm is O(2dB +

k Logd−1 N).

7.6.3 Exclusive Top-k Pairs Queries

Consider a set S containing top-k pairs. We say that an object ou satisfies the exclusive-

ness constraint if ou appears at most once in the set of pairs S, i.e., there exists at most

one pair related to ou in S.

An exclusive top-k pairs (ETP) query retrieves k pairs with the smallest scores such

that every object ou satisfies the exclusiveness constraint. In such queries, if the best pair

returned by the query is (ou, ov) then the algorithm continues retrieving the remaining

top-(k − 1) pairs by ignoring the objects ou and ov and the pairs involving these two

objects. The traditional top-k pairs queries studied earlier in this chapter are called

inclusive top-k pairs queries throughout this section.

Exclusive k closest pairs query [UMY07] is a special case of exclusive top-k pairs

queries and it uses Euclidean distance as the scoring function. An ETP query has many

interesting applications. For example, an exclusive k closest pairs query can be issued

to solve car-parking assignment problem [UMY07] where each parking slot is to be re-

served for at most one car (the car that is closest to it). Consider another example of

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 251

a recruitment agent who has a list of applicants and a list of jobs. On a given day, he

may want to arrange k interviews (one interview corresponds to one job-applicant pair).

He may issue an exclusive top-k pairs query to retrieve k job-applicant pairs such that

the scores (suitability) of the reported job-applicant pairs are better than the remaining

pairs. Due to time constraints, it may not be possible for an applicant to appear in more

than one interviews on a given day. Hence, the agent may issue the query such that every

applicant satisfies the exclusiveness constraint.

In the above example, the agent may have no problem arranging more than one in-

terviews for a single job in a single day. Hence, he may not require that every job also

satisfies the exclusiveness constraint. Although, for the sake of simplicity, we focus to

present the techniques for the case where every object is required to satisfy the exclu-

siveness constraint, we remark that our techniques can be easily extended to answer the

queries where only a certain type of objects (e.g., applicants) are required to satisfy the

exclusiveness constraints. Also, our techniques can be easily applied to solve more gen-

eral exclusiveness constraint. A more general exclusiveness constraint requires that an

object ou appears at most m times in the top-k pairs.

We also remark that our techniques can be easily extended to answer rank-based

exclusive top-k pairs queries. However, in this section, we focus only on the score-based

exclusive top-k pairs queries.

Technique

As described in Section 7.2.2, the threshold algorithm (TA) stops when the threshold

t is at least equal to Wk where Wk is the score of k-th best pair seen so far. In other

words, Wk is the worst score of the current top-k pairs maintained in a heap. Note that

TA cannot be directly applied for ETP queries because the heap may contain more than

one pairs involving the same object. Hence, Wk may not correspond to the score of k-th

exclusive best pair.

To answer ETP queries, TA needs to be modified such that every object in the heap

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 252

satisfies the exclusiveness constraint (i.e., for each object ou, there exists at most one pair

in the heap that involves ou). After this modification, Wk corresponds to the score of

current k-th best exclusive pair. This guarantees that the stopping condition is correct.

The heap can be easily modified to ensure that every object in the heap satisfies the

exclusiveness constraint . We do this as following. Assume that a new pair p is retrieved

by TA and p.score is its score. If p.score is greater than Wk then p is discarded because

it cannot be one of the top-k exclusive pairs. Otherwise, we check if there exists a pair p′

in the heap such that both p and p′ have one common object. If p.score is smaller than

p′.score then p′ is deleted from the heap and p is inserted in the heap. This is because

p′ cannot be one of the top-k exclusive pairs in the presence of p. Otherwise, if p.score

is larger than p′.score then p is discarded.

Optimizations.

Assume that TA is modified in the way as described in Section 7.5.1 such that it

incrementally reports the top-k exclusive pairs. If the algorithm reports a pair p = (ou, ov)

as one of the top-k exclusive pairs, we should modify the sources such that they ignore

every pair that contains either ou or ov. To do this, we can delete ou and ov from the

list of objects so that the corresponding pairs are not considered by the source. This

improves the efficiency of the sources because the sources are required to handle fewer

objects and hence fewer pairs.

Next, we show how to efficiently delete an object ou and all the pairs related to it

from a source Si. When an object ou is deleted, the following three steps should be taken

to guarantee the correctness of Algorithm 15 (the readers are encouraged to refresh their

memories by going through Algorithm 15).

Step 1. Delete from the heap every pair that contains ou.

Step 2. For each deleted pair (ox, ou), insert (ox, ow) in the heap where ow is the next

best guest of ox. This step guarantees that the heap contains, for each host ox, a pair

formed with its best guest among the guests that it has not hosted earlier.

Step 3. Adjust the left and right adjacent objects after the deletion of ou.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 253

First, we present the techniques to efficiently implement the step 3. Then, we present

the techniques to efficiently implement steps 1 and 2.

Implementation of Step 3. Without loss of generality, we show the technique of how

to adjust the pointers of right adjacent objects after an object ou is deleted from a source.

The technique for adjusting the pointers for left adjacent objects is similar. Fig. 7.5 shows

an example where only the pointers for right adjacent objects are shown. Adjusting the

pointers for non-chromatic queries is the same as adjusting the pointers for a linked list.

Hence, we omit the details.

For heterochromatic queries, we adjust the pointer as follows. Assume that the object

ou is deleted. We need to adjust any pointer that points to ou. In other words, if ou

was a right adjacent object of an object ox, we need to determine the new right adjacent

object of ox. If the object ou+1 (the object next to ou) has a color different than ox then

the right adjacent object of ox is ou+1. Otherwise, if ox and ou+1 have the same color

then the right adjacent object of ou+1 is set as the right adjacent object of ox because it

is guaranteed to have a color different from ox.

Consider the example of Fig. 7.5(b) and assume that the deleted object is o3. Since

o3 is the right adjacent object of o2, we need to adjust the right adjacent object of o2

after o3 is deleted. Since o4 (the next object of o3) has the same color as of o2, o4 is not

the right adjacent object of o2. Hence, o6 which is the right adjacent object of o4 is set

as the right adjacent object of o2.

For homochromatic queries, we adjust the pointers as follows. Assume that ou is the

deleted object and we need to adjust the right adjacent object of ox. The right adjacent

object of ox is set as the right adjacent object of ou. Consider the example of Fig. 7.5(c)

and assume that o3 is deleted. The right adjacent object of o1 is to be adjusted. The

new right adjacent object of o1 is o6 which is the right adjacent object of o3.

Implementation of Step 1 and Step 2. First, we show a straight forward approach to

implement the step 1 and step 2. Then, we show a better approach. A straight forward

approach to delete all the pairs related to ou is to maintain the pointers to each pair in

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 254

Figure 7.5: (a) Non-chromatic (b) Heterochromatic (c) Homochromatic

the heap that is related to ou. When ou is deleted, these pointers may be used to delete

the related pairs. When a pair (ox, ou) is being deleted, the next best guest ow of ox is

determined in the way as explained in Section 7.4.1 and the new pair (ox, ow) is inserted

in the heap.

Next, we show a more efficient approach. Consider the example of Fig. 7.6(a). Recall

from the description of Example 7.4.1 that all the pairs connected by the arrows are the

pairs that have been inserted in the heap. More specifically, the pairs (o1, o2), (o2, o5),

(o3, o5), (o4, o5) and (o5, o6) are inserted in the heap with scores 6, 8, 6, 5 and 10,

respectively. Now assume that the object o5 is deleted. The algorithm needs to delete

the pairs (o2, o5), (o3, o5), (o4, o5) and (o5, o6) from the heap. Note that each deletion

from the heap takes O(log N) where N is the number of pairs in the heap. Next, we

present a strategy that guarantees that each object has at most two pairs related to it in

the heap.

Recall that Algorithm 15 ensures that each object ou can have at most one pair (ou, ov)

in the heap such that ou is the host object. For instance, there is only one pair in the

heap (o5, o6) for which o5 is the host object (see the outgoing edge of o5 in Fig. 7.6(a)).

However, there may be more than one pairs in the heap for which ou is the guest object.

For example, there are three pairs (o2, o5), (o3, o5), (o4, o5) for which o5 is the guest object

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 255

Figure 7.6: Invitation list of o5

(see the incoming edges of o5 in Fig. 7.6(a)).

We modify Algorithm 15 such that each object ou has at most one pair in the heap

for which ou is the host object. In other words, even if there are more than one incoming

edges of ou, only at most one incoming edge is inserted in the heap (the one with the

smallest score). In the example of Fig. 7.6(b), the pair (o4, o5) is inserted in the heap.

The other incoming edges of o5 (shown in broken lines) are not inserted in the heap.

Instead, they are inserted in a list called the invitation list of o5 as shown in Fig. 7.6(b).

The invitation list of an object o5 records the objects that will host o5 in future. For

instance, when the pair (o4, o5) is reported to the main algorithm, the invitation list is

used to insert a new pair (o3, o5) in the heap.

The invitation list of each object ou is always kept sorted so that the next pair that

is to be inserted in the heap can be determined efficiently. Note that the cost of keeping

the invitation list sorted is O(log m) per insertion where m is the size of the invitation

list. Note that if the invitation list is not maintained and all these pairs are inserted in

the heap (as done in Algorithm 15), the cost would be higher. This is because the cost of

inserting a pair in the heap is O(log N) which is higher than O(log m) because N > m.

When an object ou is deleted, for each object ox in its invitation list, the next best

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 256

guest ow is determined and the object ox is inserted in the invitation list of ow.

Analysis

We provide the analysis for the simpler version of our algorithm and the cost of the

optimized algorithm is always at most equal to the cost of the simpler version. Assume

that the algorithm terminates after accessing Z elements from each source. Let M be

the average number of valid pairs containing any object ou. If a pair (ou, ov) is reported

to the user, TA ignores at most 2M unseen pairs (M pairs containing ou and M pairs

containing ov). If k pairs are reported, the number of ignored pairs is at most 2kM .

Assuming that the algorithm terminates after accessing Z pairs from each source, the

number of pairs that the algorithm ignores is at most Z⋅2kM
V where V is the total number

of valid pairs. The algorithm stops when T = O(V (d−1)/d ⋅ k1/d) have been seen from

each source [Fag99] excluding the pairs that have been ignored.

Z − Z ⋅ 2kM
V

= V (d−1)/d ⋅ k1/d (7.3)

The above equation can be solved to compute the value of Z. Note that Z is at most

equal to V (the total number of valid pairs).

Z = min(V,
V

V − 2kM
⋅ V (d−1)/d ⋅ k1/d) (7.4)

For non-chromatic queries, V is at most N2 and M is equal to N . Hence, the number

of elements accessed from each source is equal to min(N2, N
N−2k ⋅N2(d−1)/d ⋅ k1/d). Note

that this number is N/(N − 2k) times the number of pairs accessed for the score-based

top-k pairs queries studied in Section 7.5. Hence, for the queries where k << N (which

is the case in many real world applications), the cost of our algorithm to answer exclusive

top-k pairs queries is close to the cost of our algorithm to answer inclusive top-k pairs

queries.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 257

7.7 Experiments

We conducted extensive experiments on both real and synthetic data sets. We show that

our algorithm for the score-based top-k pairs queries outperforms the existing best known

algorithm (KCPQ) [CMTV00] for the k-closest pairs queries. For the queries that use

more generic functions, we compare our algorithm with a näıve algorithm because there

does not exist any other work to handle such queries.

7.7.1 k-Closest Pairs Queries

We compare our algorithm with the best known k-closest pairs algorithm called KCPQ [CMTV00].

In accordance with [CMTV00], the page size for both of the algorithms is set to 1K. The

k closest pairs query joins two data sets each containing 100, 000 objects and returns the

k closest pairs. k is set to 10 in all experiments unless mentioned otherwise.

It has been noted that the overlap between the data sets is one of the main fac-

tors [CMTV00] that affect the performance of the existing algorithms. Fig. 7.7 shows

the effect of the overlap on KCPQ and our algorithm. In Fig. 7.7(a), we run both of the

algorithms in the internal memory and observe that our algorithm is 2 to 3 times faster

when the overlap is at least 40%. For the smaller overlaps, the performance of KCPQ is

better because most of the intermediate nodes of the R-trees are quickly pruned. How-

ever, its performance is still not significantly better than our algorithm. Note that our

algorithm is not sensitive to the data overlap.

 1

 2

 3

 0 20 40 60 80 100

T
im

e
(s

ec
on

ds
)

Overlap (in %)

KCPQ
Our

(a) Internal Memory

20

40

60

80

 0 20 40 60 80 100

IO

 (
 in

 th
ou

sa
nd

s
)

Overlap (in %)

KCPQ
10%
25%
50%

100%

(b) External Memory

Figure 7.7: Effect of overlapping

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 258

Fig. 7.7(b) shows the performance of both of the algorithms in the external memory.

The heap of KCPQ algorithm contains the intermediate nodes of the R-trees. Conse-

quently, it uses larger amount of main memory. The buffer size for our algorithm is

set according to the main memory usage of KCPQ. More specifically, we run our algo-

rithm with the buffer size set to 100%, 50%, 25% and 10% of the memory used by KCPQ.

Fig. 7.7(b) demonstrates that when the overlap is 40% or more, our algorithm performs

better even when the memory used by our algorithm is 10% of the memory used by

KCPQ.

 1
 2
 3
 4
 5
 6
 7

Uniform Normal Correlated Anti-Corr

T
im

e
(s

ec
on

ds
)

Data distribution

KCPQ
Our

(a) Internal memory

50

100

150

200

Uniform Normal Correlated Anti-Corr

IO

 (
in

 th
ou

sa
nd

s)

Data distribution

KCPQ
Our

(b) External memory

Figure 7.8: Different data distributions

We also conducted several experiments on different data distributions. More specifi-

cally, we generated the data sets following uniform, normal, correlated and anti-correlated

distributions. For each distribution, we generated two data sets with 50% overlap between

them. Fig. 7.8 demonstrates that our algorithm is not affected by the data distribution

and performs significantly better than KCPQ.

We compared the two algorithms for several other parameters and data sets and

observed that although our algorithm supports more general scoring functions and does

not require pre-built indexes, it outperforms KCPQ for all settings except when the

overlap is too small.

7.7.2 Queries Involving Generic Scoring Functions

For the general scoring functions, we compare our algorithms with a näıve algorithm.

The näıve algorithm uses nested loop to join a data set with itself (block nested loop for

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 259

external memory processing). The disk page size is set to 4K. The buffer size for each

of our external memory source is set to 2 pages (this is the minimum required by the

external priority queue [Arg03]).

Real Data

The real data set5 consists of location data consisting of 304, 895 location points belonging

to 87 zip codes of USA. The zip codes roughly map to different towns (or suburbs). Each

point in the data set corresponds to a residential block. We extracted the coordinates

of the streets and the number of addresses along each street. We treat the center of

each street as a residential block and the number of addresses along the street as the

population of the block. For each block, we randomly generate a value which denotes the

average rent of the houses in the residential block. All of the attributes are normalized

to a unit space. The global scoring function we used is the sum of the local scores.

Table 7.1: The queries used on real data
Preference Heterochromatic Homochromatic

1&2: Distance close far
3: Population high high
4: Rent low low

We use several heterochromatic and homochromatic queries each involving two to

four attributes. Table 7.1 shows some of the queries we use on the real data. First two

preferences involve two attributes (i.e., the two location coordinates of each block). A

heterochromatic query on these two attributes retrieve the closest pairs of blocks such

that each block is located in a different suburb. For a query involving d preferences, we

use the first d preferences for that query listed in the table. For example a homochromatic

query on three attributes retrieves the pairs of blocks (located in the same suburb) that

are far from each other and have high total population. k is set to 10 for all queries.

Fig. 7.9 shows that the näıve algorithm is three orders of magnitude slower than our

internal memory algorithm and uses an order of magnitude more IOs. The query time

5http://www.census.gov/geo/www/tiger/

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 260

 0.3

 1.2

 1200

[1,2] [1-3] [1-4]

T
im

e
(s

ec
on

ds
)

Preferences

NAIVE
HETERO

HOMO

(a) Internal Memory

 0.05
 0.08

 0.6

 1.8

[1,2] [1-3] [1-4]

IO
 (

in
 M

ill
io

n)

Preferences

NAIVE
HETERO

HOMO

(b) External Memory

Figure 7.9: Real data

for our algorithm is low which demonstrates the applicability of our approach in the real

world applications. Similar results were observed when the queries were run for other

parameters.

Synthetic Data

The default synthetic data set contains the points following a uniform distribution. Each

object is randomly assigned a color. The number of colors vary from 50 to 250. The local

scoring functions used by the algorithms are the sum and the absolute difference. The

global scoring function is a weighted aggregate (we allow negative weights). For each

dimension, a local scoring function is randomly chosen (sum or absolute difference) and

is assigned a random weight.

Table 7.2: Experiment parameters
Parameter Range

Number of objects (×1000) 100, 200, 300, 400, 500
Number of colors 50, 100, 150, 200, 250
Number of attributes 2, 3, 4, 5, 6
k 1, 10, 25, 50, 100

We present the results for the homochromatic top-k queries. The results for the non-

chromatic and the heterochromatic queries follow similar trends. Table 7.2 shows the

default parameters in bold.

Fig. 7.10 and Fig. 7.11 study the effect of increasing the number of objects and the

number of attributes, respectively. While the performance of both of the algorithms

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 261

degrades, our algorithm scales very well.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

100 200 300 400 500

T
im

e
(s

ec
on

ds
)

Number of objects (in thousands)

NAIVE
Our

(a) Internal Memory

 0

 1

 2

 3

 4

 5

100 200 300 400 500

IO

 (
in

 M
ill

io
n)

)

Number of objects (in thousands)

NAIVE
Our

(b) External Memory

Figure 7.10: Effect of number of objects

 0
 100
 200
 300
 400
 500
 600
 700
 800

 2 3 4 5 6

T
im

e
(s

ec
on

ds
)

Number of attributes

NAIVE
Our

(a) Internal Memory

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 2 3 4 5 6

IO

 (
in

 M
ill

io
ns

)

Number of attributes

NAIVE
Our

(b) External Memory

Figure 7.11: Effect of number of attributes

 0

 100

 200

 300

 400

 500

 600

 700

 1 10 25 50 100

T
im

e
(s

ec
on

ds
)

k

NAIVE
Our

(a) Internal Memory

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1 10 25 50 100

IO

 (
in

 M
ill

io
ns

)

k

NAIVE
Our

(b) External Memory

Figure 7.12: Effect of k

Fig. 7.12 studies the effect of k. The performance of our algorithm is better for smaller

k. The näıve algorithm is not affected by k because it considers all the pairs regardless

of the value of k.

Fig. 7.13 studies the effect of number of colors. Our algorithm performs slightly bet-

ter when the number of colors is large. This is mainly because the number of valid pairs

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 262

decreases when the number of colors is large. However, the effect is not very signifi-

cant because the number of pairs that are accessed from each source is not significantly

affected.

 2.5
 4

 650

 50 100 150 200 250

T
im

e
(s

ec
on

ds
)

Number of colors

NAIVE
Our

(a) Internal Memory

 0.1
 0.15

 1.8

 50 100 150 200 250

IO

 (
in

 M
ill

io
ns

)

Number of colors

NAIVE
Our

(b) External Memory

Figure 7.13: Effect of number of colors

Finally, we present the results for the skyline pairs queries and the rank-based top-k

pairs queries. As stated earlier, the näıve algorithms perform extremely bad. Therefore,

we compare the performance of our proposed algorithms (for the score-based queries, the

rank-based queries and the skyline queries) to give the readers an insight about the cost

of each type of query.

 0.01

 0.1

 1

 10

 100

 1000

 2 3 4 5 6

T
im

e
(s

ec
on

ds
)

Number of attributes

Rank-based
Skyline

Score-based

(a) Internal Memory

 0.1

 1

 10

 100

 2 3 4 5 6

IO

 (
in

 M
ill

io
n)

Number of attributes

Rank-based
Skyline

Score-based

(b) External Memory

Figure 7.14: Comparison of different top pairs queries

Fig. 7.14 shows the cost of the three algorithms when different number of attributes

are involved in the query. The score-based top-k queries are the easiest to solve among

the three and the rank-based top-k pairs queries are the hardest. The cost of each of the

algorithms increases with the number of attributes used in the query.

Chapter 7. A Unified Algorithm to Answer Top-k Pairs Queries 263

7.8 Summary

Top-k pairs queries have many real applications. k closest pairs queries, k furthest pairs

queries and their bichromatic variants are some of the examples of the top-k pairs queries

that rank the pairs on distance functions. While these queries have received significant

research attention, there does not exist a unified approach that can efficiently answer all

these queries. Moreover, there is no existing work that supports top-k pairs queries based

on generic scoring functions. In this chapter, we present a unified approach that supports

a broad class of top-k pairs queries including the queries mentioned above. Our proposed

approach allows the users to define a local scoring function for each attribute involved

in the query and a global scoring function that computes the final score of each pair by

combining its scores on different attributes. We propose efficient internal and external

memory algorithms and our theoretical analysis shows that the expected performance of

the algorithms is optimal when two or less attributes are involved. Our approach does not

require any pre-built indexes, is easy to implement and has low memory requirement. We

conduct extensive experiments to demonstrate the efficiency of our proposed approach.

Chapter 8

Final Remarks

8.1 Conclusions

In this thesis, we present efficient techniques to answer various proximity based spatial

queries under different settings. Chapters 3 to 5 present our research on computing

reverse nearest neighbors. We present efficient algorithms to answer moving range queries

in Chapter 6. Chapter 7 provides our unified approach to answer top-k pairs queries

including k-closest pairs queries and their variants. Below are the details.

In chapter 3, we study the problem of continuous reverse k nearest neighbor mon-

itoring in Euclidean space and in spatial networks. Our proposed approach does not

only significantly improve the computation time but also reduces the communication

cost for client-server architectures. We also present a thorough theoretical analysis for

our Euclidean space RNN algorithm. Furthermore, we show that our algorithms can

be extended to handle other variants of RNN queries in Euclidean space and in spatial

networks. Experiment results demonstrate an order of magnitude improvement in terms

of both the computation time and the communication cost.

In chapter 4, we introduce the concept of influence zone which does not only have

applications in target marketing and market analysis but can also be used to answer

snapshot and continuous RkNN queries. We present a detailed theoretical analysis to

264

Chapter 8. Final Remarks 265

study different aspects of the problem. Extensive experiment results verify the theoret-

ical analysis and demonstrate that influence zone based algorithm outperforms existing

algorithms. We also extend our technique to compute influence zone in dimensionality

higher than two. We present efficient techniques to update the influence zone as the

underlying data set is updated by insertions or deletions of the objects.

In chapter 5, we study the problem of reverse nearest neighbor queries on uncertain

data and proposed novel pruning rules that effectively prune the objects that cannot be

the RNNs of query. We propose an efficient algorithm and present several optimizations

that significantly reduce the overall computation time. Using real data set and synthetic

data set, we illustrate the efficiency of our proposed approach. Although we focus on

discrete case, the pruning rules we presented can be applied when the uncertain objects

are represented by probability density functions.

In chapter 6, we present a safe zone based approach to efficiently monitor distance

based range queries in Euclidean space and in road networks. We conduct a rigorous the-

oretical analysis to study the effectiveness of our safe zone based approach for Euclidean

distance based range queries. More specifically, we analyse the probability that a query

leaves the safe zone within a time unit and the expected distance it travels before leaving

the safe zone. For the queries that satisfy certain constraints, we give an upper bound

on the expected number of guard objects. The theoretical results are verified by an ex-

tensive experimental study. The experiment results also demonstrate that the proposed

approach for Euclidean distance based range queries is close to optimal. We also show

that our network distance based algorithm is an order of magnitude faster than a näıve

approach.

In chapter 7, we present a unified approach to answer a broad class of top-k pairs

query including the k closest pairs queries, the k furthest pairs queries and their vari-

ants. We are also first to study the problem of rank-based top-k pairs queries, skyline

pairs queries and exclusive top-k pairs queries. The expected performance of the pro-

posed algorithms is optimal when the queries involve two or less attributes. Extensive

Chapter 8. Final Remarks 266

experiments demonstrate the efficiency of our proposed algorithms.

8.2 Open Problems

In chapter 3, we propose Lazy Updates that computes RNN queries by assigning each

object and query a rectangular region called the safe region. We provide a theoretical

analysis that shows the relation of the size of the safe region to the computation and

communication cost of the system. Ideally, a system should automatically determine

a size for the safe regions such that the computation and communication cost is mini-

mized. However, automatic computation of the optimal size of the safe region remains

an interesting and challenging open problem. Also, the theoretical analysis for our RNN

algorithm for spatial networks is an open problem. Apparently, it is challenging to con-

duct the analysis even if some quite simple (and probably too strong) assumptions are

made (e.g., each edge has equal length, the number of objects on each edge is the same

etc.).

Theoretical analysis for the probabilistic reverse nearest neighbors queries is also an

open problem. Also, we assumed that the uncertain objects are independent. It will be

useful to develop the techniques to answer RNN queries on the data sets that do not

satisfy this assumption, i.e., the uncertain objects are correlated.

In chapter 6, we propose a safe zone based approach to continuously monitor the

moving range queries. Our technique represents the safe zone by a set of objects called

the guard objects. The number of guard objects is important because it affects the

overall efficiency as well as the cost of checking whether a query is within its safe zone

or not. We provided a theoretical analysis and obtained an upper bound on the number

of the guard objects for every query that has the diameter of the safe zone no more than

a constant times its expected value. However, the analysis on the expected number of

guard objects for the queries that do not satisfy this diameter requirement still remains

an open problem.

Chapter 8. Final Remarks 267

8.3 Directions for Future Work

In this section, we propose several possible directions for future work.

8.3.1 Influence Zone in Spatial Networks

In Chapter 4, we present the concept of influence zone which is an area such that an

object o is the RkNN of q if and only if o is inside the influence zone. We present efficient

techniques to compute the influence zone in Euclidean space. A possible future work is

to compute the influence zone in spatial networks. As shown in Chapter 4, influence zone

based computation of snapshot and continuous RkNN queries in Euclidean space is more

efficient than the existing techniques. It will be interesting to see whether the influence

zone based RkNN processing technique for spatial networks can outperform the existing

techniques. We conjecture that the influence zone based technique to process continuous

bichromatic RkNN queries in spatial networks will outperform the existing techniques.

This is because once the influence zone has been computed, the technique would require

only to monitor the users that enter or leave the influence zone.

8.3.2 Influence Zone Based Communication Efficient Techniques

In Chapter 3, we present Lazy Updates that continuously monitors RkNN queries and

does not only improve the computation time but also reduces the communication cost of

the system. However, our influence zone based technique to monitor continuous RkNN

queries focuses only on reducing the computation time. Recall that, to continuously

monitor RkNN queries, our influence zone based algorithm only needs to monitor the

users that enter or leave the influence zone. Hence, the algorithm can save the commu-

nication cost by requiring the users to report their locations only when they enter the

influence zone or when they leave the influence zone. To do this effectively, each user can

be assigned a safe region of a simple shape (e.g., a rectangular region) such that as long

as it remains inside this region it does not cross the boundary of the influence zone (i.e.,

it either remains inside the influence zone or it remains outside the influence zone). An

Chapter 8. Final Remarks 268

effective approach will aim to assign the safe region that i) is of a simple shape so that

the user can easily check whether it is inside its safe region or not, and ii) maximizes the

time the user remains inside it so that the communication cost is minimized.

8.3.3 Continuous Spatial Queries on Uncertain Data

Most of the existing work on continuous spatial queries assume that the location data

is accurate. However, due to the limitation of measuring equipment and delayed data

updates, the locations reported by the objects are not always accurate. It is an interesting

research direction to develop techniques to continuously monitor various spatial queries

by taking into consideration that the locations reported by moving objects and queries

are uncertain. Recently, this research direction has gained some attention [TTC+11,

BKM+11, PDL11] and it is hoped that, in near future, more techniques will be developed

for other spatial queries on continuous uncertain data.

Bibliography

[AKK+09] Elke Achtert, Hans-Peter Kriegel, Peer Kröger, Matthias Renz and Andreas

Züfle. Reverse k-nearest neighbor search in dynamic and general metric

databases. In EDBT, pages 886–897, 2009.

[AP05] Fabrizio Angiulli and Clara Pizzuti. An approximate algorithm for top-k

closest pairs join query in large high dimensional data. Data Knowl. Eng.,

53(3):263–281, 2005.

[AQ09] Mikhail J. Atallah and Yinian Qi. Computing all skyline probabilities for

uncertain data. In PODS, pages 279–287, 2009.

[AQY11] Mikhail J. Atallah, Yinian Qi and Hao Yuan. Asymptotically efficient al-

gorithms for skyline probabilities of uncertain data. ACM Trans. Database

Syst., 36(2):12, 2011.

[Arg03] Lars Arge. The Buffer Tree: A Technique for Designing Batched External

Data Structures. Algorithmica, 2003.

[BEK+11] Thomas Bernecker, Tobias Emrich, Hans-Peter Kriegel, Matthias Renz, and

Stefan Zankl Andreas Züfle. Efficient Probabilistic Reverse Nearest Neigh-

bor Query Processing on Uncertain Data. In PVLDB, 2011.

[Ben75] Jon Louis Bentley. Multidimensional Binary Search Trees Used for Asso-

ciative Searching. Commun. ACM, 18(9):509–517, 1975.

269

BIBLIOGRAPHY 270

[BJKS02] Rimantas Benetis, Christian S. Jensen, Gytis Karciauskas and Simonas

Saltenis. Nearest Neighbor and Reverse Nearest Neighbor Queries for Mov-

ing Objects. In IDEAS, 2002.

[BKM+11] Thomas Bernecker, Hans-Peter Kriegel, Nikos Mamoulis, Matthias Renz

and Andreas Züfle. Continuous Inverse Ranking Queries in Uncertain

Streams. In SSDBM, pages 37–54, 2011.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider and Bernhard

Seeger. The R*-Tree: An Efficient and Robust Access Method for Points

and Rectangles. In SIGMOD Conference, pages 322–331, 1990.

[BKST78] Jon Louis Bentley, H. T. Kung, Mario Schkolnick and Clark D. Thompson.

On the Average Number of Maxima in a Set of Vectors and Applications.

J. ACM, 1978.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance

of Large Ordered Indices. Acta Inf., 1:173–189, 1972.

[BO83] Michael Ben-Or. Lower Bounds for Algebraic Computation Trees (Prelim-

inary Report). In STOC, 1983.

[Bri02] Thomas Brinkhoff. A Framework for Generating Network-Based Moving

Objects. GeoInformatica, 2002.

[BSI08] George Beskales, Mohamed Soliman and Ihab Francis Ilyas. Efficient Search

for the Top-k Probable Nearest Neighbors in Uncertain Databases. In

VLDB, 2008.

[CBL+10] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang

and Wei Wang. Multi-guarded safe zone: An effective technique to monitor

moving circular range queries. In ICDE, pages 189–200, 2010.

BIBLIOGRAPHY 271

[CBL+11] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang

and Wei Wang. Continuous Monitoring of Distance-Based Range Queries.

IEEE Trans. Knowl. Data Eng., 23(8):1182–1199, 2011.

[CC05] Hyung-Ju Cho and Chin-Wan Chung. An Efficient and Scalable Approach

to CNN Queries in a Road Network. In VLDB, pages 865–876, 2005.

[CCMC08] Reynold Cheng, Jinchuan Chen, Mohamed F. Mokbel and Chi-Yin Chow.

Probabilistic Verifiers: Evaluating Constrained Nearest-Neighbor Queries

over Uncertain Data. In ICDE, pages 973–982, 2008.

[CCX09] Reynold Cheng, Lei Chen 0002, Jinchuan Chen and Xike Xie. Evaluating

probability threshold k-nearest-neighbor queries over uncertain data. In

EDBT, pages 672–683, 2009.

[CHC04] Ying Cai, Kien A. Hua and Guohong Cao. Processing Range-Monitoring

Queries on Heterogeneous Mobile Objects. In Mobile Data Management,

2004.

[CJT+06] Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung and

Zhenjie Zhang. Finding k-dominant skylines in high dimensional space. In

SIGMOD, 2006.

[CLW+10] Muhammad Aamir Cheema, Xuemin Lin, Wei Wang, Wenjie Zhang and

Jian Pei. Probabilistic Reverse Nearest Neighbor Queries on Uncertain

Data. IEEE Trans. Knowl. Data Eng., 22(4):550–564, 2010.

[CLW+11] Muhammad Aamir Cheema, Xuemin Lin, Haixun Wang, Jianmin Wang

and Wenjie Zhang. A unified approach for computing top-k pairs in multi-

dimensional space. In ICDE, pages 1031–1042, 2011.

[CLZ+09] Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang, Wei Wang and Wen-

jie Zhang. Lazy Updates: An Efficient Technique to Continuously Monitor-

ing Reverse kNN. PVLDB, 2(1):1138–1149, 2009.

BIBLIOGRAPHY 272

[CLZZ] Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang and Ying Zhang.

Efficiently Processing Snapshot and Continuous Reverse k Nearest Neigh-

bors Queries. The VLDB Journal (currently under review).

[CLZZ11] Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang and Ying Zhang.

Influence zone: Efficiently processing reverse k nearest neighbors queries.

In ICDE, pages 577–588, 2011.

[CMTV00] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis and Michael

Vassilakopoulos. Closest Pair Queries in Spatial Databases. In SIGMOD,

2000.

[CPK03] Reynold Cheng, Sunil Prabhakar and Dmitri V. Kalashnikov. Querying

Imprecise Data in Moving Object Environments. In ICDE, pages 723–725,

2003.

[CSZY09] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou and Jeffrey Xu Yu. Monitoring

path nearest neighbor in road networks. In SIGMOD Conference, pages

591–602, 2009.

[CXP+04] Reynold Cheng, Yuni Xia, Sunil Prabhakar, Rahul Shah and Jeffrey Scott

Vitter. Efficient Indexing Methods for Probabilistic Threshold Queries over

Uncertain Data. In VLDB, pages 876–887, 2004.

[CZL+11] Muhammad Aamir Cheema, Wenjie Zhang, Xuemin Lin, Ying Zhang and

Xuefei Li. Continuous Reverse k Nearest Neighbors Queries in Euclidean

Space and in Spatial Networks. The VLDB Journal, 2011.

[DYM+05] Xiangyuan Dai, Man Lung Yiu, Nikos Mamoulis, Yufei Tao and Michail

Vaitis. Probabilistic Spatial Queries on Existentially Uncertain Data. In

SSTD, pages 400–417, 2005.

BIBLIOGRAPHY 273

[EKK+10] Tobias Emrich, Hans-Peter Kriegel, Peer Kröger, Matthias Renz and An-

dreas Züfle. Boosting spatial pruning: on optimal pruning of MBRs. In

SIGMOD Conference, pages 39–50, 2010.

[Fag99] Ronald Fagin. Combining Fuzzy Information from Multiple Systems. J.

Comput. Syst. Sci., 58(1):83–99, 1999.

[FKS03] Ronald Fagin, Ravi Kumar and D. Sivakumar. Efficient similarity search

and classification via rank aggregation. In SIGMOD, 2003.

[FLN03] Ronald Fagin, Amnon Lotem and Moni Naor. Optimal aggregation algo-

rithms for middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[FNPS79] Ronald Fagin, Jürg Nievergelt, Nicholas Pippenger and H. Raymond Strong.

Extendible Hashing - A Fast Access Method for Dynamic Files. ACM Trans.

Database Syst., 4(3):315–344, 1979.

[GBK00] Ulrich Güntzer, Wolf-Tilo Balke and Werner Kießling. Optimizing Multi-

Feature Queries for Image Databases. In VLDB, 2000.

[GG98] Volker Gaede and Oliver Günther. Multidimensional Access Methods. ACM

Comput. Surv., 30(2):170–231, 1998.

[GL04] Bugra Gedik and Ling Liu. MobiEyes: Distributed Processing of Continu-

ously Moving Queries on Moving Objects in a Mobile System. In EDBT,

pages 67–87, 2004.

[GRSY97] Jonathan Goldstein, Raghu Ramakrishnan, Uri Shaft and Jie-Bing Yu. Pro-

cessing queries by linear constraints. In PODS, 1997.

[Gut84] Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Search-

ing. In SIGMOD Conference, 1984.

[Güt94] Ralf Hartmut Güting. An Introduction to Spatial Database Systems. VLDB

J., 3(4):357–399, 1994.

BIBLIOGRAPHY 274

[GWYL04] Bugra Gedik, Kun-Lung Wu, Philip S. Yu and Ling Liu. Motion adaptive

indexing for moving continual queries over moving objects. In CIKM, 2004.

[Hai94] Eric Haines. Graphics Gems IV, Kapitel Point in Polygon Strategies. Aca-

demic Press Professional, Cambridge, 1994.

[HCLZ09] Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin and Ying Zhang.

Efficient Construction of Safe Regions for Moving kNN Queries over Dy-

namic Datasets. In SSTD, pages 373–379, 2009.

[HCLZ11] Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin and Wenjie

Zhang. A Unified Algorithm for Continuous Monitoring of Spatial Queries.

In DASFAA (2), pages 104–118, 2011.

[HCQL10] Mahady Hasan, Muhammad Aamir Cheema, Wenyu Qu and Xuemin Lin.

Efficient Algorithms to Monitor Continuous Constrained Nearest Neighbor

Queries. In DASFAA (1), pages 233–249, 2010.

[HS98] Gı́sli R. Hjaltason and Hanan Samet. Incremental Distance Join Algorithms

for Spatial Databases. In SIGMOD, 1998.

[HXL05] Haibo Hu, Jianliang Xu and Dik Lun Lee. A Generic Framework for Moni-

toring Continuous Spatial Queries over Moving Objects. In SIGMOD Con-

ference, pages 479–490, 2005.

[IK95] Christian Icking and Rolf Klein. Searching for the Kernel of a Polygon - A

Competitive Strategy. In Symposium on Computational Geometry, pages

258–266, 1995.

[ISS03] Glenn S. Iwerks, Hanan Samet and Kenneth P. Smith. Continuous K-

Nearest Neighbor Queries for Continuously Moving Points with Updates.

In VLDB, pages 512–523, 2003.

BIBLIOGRAPHY 275

[JKPT03] Christian S. Jensen, Jan Kolárvr, Torben Bach Pedersen and Igor Timko.

Nearest neighbor queries in road networks. In GIS, pages 1–8, 2003.

[KF93] Ibrahim Kamel and Christos Faloutsos. On Packing R-trees. In CIKM,

1993.

[KKPR06] Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle and Matthias Renz. Prob-

abilistic Similarity Join on Uncertain Data. In DASFAA, pages 295–309,

2006.

[KKR07] Hans-Peter Kriegel, Peter Kunath and Matthias Renz. Probabilistic

Nearest-Neighbor Query on Uncertain Objects. In DASFAA, pages 337–

348, 2007.

[KKR08] Hans-Peter Kriegel, Peer Kröger and Matthias Renz. Continuous proximity

monitoring in road networks. In GIS, page 12, 2008.

[KM00] Flip Korn and S. Muthukrishnan. Influence Sets Based on Reverse Nearest

Neighbor Queries. In SIGMOD, 2000.

[KMS+07] James M. Kang, Mohamed F. Mokbel, Shashi Shekhar, Tian Xia and

Donghui Zhang. Continuous Evaluation of Monochromatic and Bichromatic

Reverse Nearest Neighbors. In ICDE, 2007.

[KS04a] M. Kolahdouzan and Cyrus Shahabi. Voronoi-Based K Nearest Neighbor

Search for Spatial Network Databases. In VLDB, pages 840–851, 2004.

[KS04b] Mohammad R. Kolahdouzan and Cyrus Shahabi. Continuous K-Nearest

Neighbor Queries in Spatial Network Databases. In STDBM, pages 33–40,

2004.

[KT06] Axel Küpper and Georg Treu. Efficient proximity and separation detection

among mobile targets for supporting location-based community services.

Mobile Computing and Communications Review, 10(3):1–12, 2006.

BIBLIOGRAPHY 276

[L09] Xiang Lian and Lei Chen 0002. Efficient processing of probabilistic reverse

nearest neighbor queries over uncertain data. VLDB J., 18(3):787–808,

2009.

[LDH06] Fuyu Liu, Tai T. Do and Kien A. Hua. Dynamic Range Query in Spatial

Network Environments. In DEXA, pages 254–265, 2006.

[LLL+10] Guohui Li, Yanhong Li, Jianjun Li, LihChyun Shu and Fumin Yang. Con-

tinuous reverse k nearest neighbor monitoring on moving objects in road

networks. Inf. Syst., 35(8):860–883, 2010.

[LNY03] King-Ip Lin, Michael Nolen and Congjun Yang. Applying Bulk Insertion

Techniques for Dynamic Reverse Nearest Neighbor Problems. IDEAS, 2003.

[LPM02] Iosif Lazaridis, Kriengkrai Porkaew and Sharad Mehrotra. Dynamic Queries

over Mobile Objects. In EDBT, pages 269–286, 2002.

[LZZC11] Xuemin Lin, Ying Zhang, Wenjie Zhang and Muhammad Aamir Cheema.

Stochastic skyline operator. In ICDE, pages 721–732, 2011.

[MCA06] Mohamed F. Mokbel, Chi-Yin Chow and Walid G. Aref. The New Casper:

Query Processing for Location Services without Compromising Privacy. In

VLDB, pages 763–774, 2006.

[MHP05] Kyriakos Mouratidis, Marios Hadjieleftheriou and Dimitris Papadias. Con-

ceptual Partitioning: An Efficient Method for Continuous Nearest Neighbor

Monitoring. In SIGMOD, 2005.

[MPBT05] Kyriakos Mouratidis, Dimitris Papadias, Spiridon Bakiras and Yufei Tao. A

Threshold-Based Algorithm for Continuous Monitoring of k Nearest Neigh-

bors. TKDE, pages 1451–1464, 2005.

BIBLIOGRAPHY 277

[MXA04] Mohamed F. Mokbel, Xiaopeng Xiong and Walid G. Aref. SINA: Scal-

able Incremental Processing of Continuous Queries in Spatio-temporal

Databases. In SIGMOD Conference, pages 623–634, 2004.

[MYCC07] Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng and David W. Cheung.

Efficient top- aggregation of ranked inputs. ACM Trans. Database Syst.,

32(3):19, 2007.

[MYPM06] Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias and Nikos

Mamoulis. Continuous Nearest Neighbor Monitoring in Road Networks.

In VLDB, pages 43–54, 2006.

[NR99] Surya Nepal and M. V. Ramakrishna. Query Processing Issues in Image

(Multimedia) Databases. In ICDE, 1999.

[NZTK08] Sarana Nutanong, Rui Zhang, Egemen Tanin and Lars Kulik. The V*-

Diagram: a query-dependent approach to moving KNN queries. PVLDB,

1(1):1095–1106, 2008.

[OBSC99] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara and Sung Nok Chiu. Spa-

tial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley,

1999.

[PBGK10] Michalis Potamias, Francesco Bonchi, Aristides Gionis and George Kollios.

k-Nearest Neighbors in Uncertain Graphs. PVLDB, 3(1):997–1008, 2010.

[PDL11] Liping Peng, Yanlei Diao and Anna Liu. Optimizing Probabilistic Query

Processing on Continuous Uncertain Data. PVLDB, 4(11):1169–1180, 2011.

[PJLY07] Jian Pei, Bin Jiang, Xuemin Lin and Yidong Yuan. Probabilistic Skylines

on Uncertain Data. In VLDB, pages 15–26, 2007.

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational Geometry An

Introduction. Springer, 1985.

BIBLIOGRAPHY 278

[PTFS05] Dimitris Papadias, Yufei Tao, Greg Fu and Bernhard Seeger. Progressive

skyline computation in database systems. ACM Trans. Database Syst.,

30(1):41–82, 2005.

[PXK+02] Sunil Prabhakar, Yuni Xia, Dmitri V. Kalashnikov, Walid G. Aref and

Susanne E. Hambrusch. Query Indexing and Velocity Constrained Index-

ing: Scalable Techniques for Continuous Queries on Moving Objects. IEEE

Trans. Computers, 51(10):1124–1140, 2002.

[PZMT03] Dimitris Papadias, Jun Zhang, Nikos Mamoulis and Yufei Tao. Query Pro-

cessing in Spatial Network Databases. In VLDB, pages 802–813, 2003.

[QTJ+08] Shaojie Qiao, Changjie Tang, Huidong Jin, Shucheng Dai and Xingshu

Chen. Constrained k-closest pairs query processing based on growing win-

dow in crime databases. In ISI, 2008.

[SAA00] Ioana Stanoi, Divyakant Agrawal and Amr El Abbadi. Reverse Nearest

Neighbor Queries for Dynamic Databases. In ACM SIGMOD Workshop,

2000.

[SET09] Maytham Safar, Dariush Ebrahimi and David Taniar. Voronoi-based reverse

nearest neighbor query processing on spatial networks. Multimedia Syst.,

15(5):295–308, 2009.

[SFT03] Amit Singh, Hakan Ferhatosmanoglu and Ali Saman Tosun. High dimen-

sional reverse nearest neighbor queries. In CIKM, 2003.

[SJLS08] Huan-Liang Sun, Chao Jiang, Jun-Ling Liu and Limei Sun. Continuous

Reverse Nearest Neighbor Queries on Moving Objects in Road Networks.

In WAIM, pages 238–245, 2008.

[SKS02] Cyrus Shahabi, Mohammad R. Kolahdouzan and Mehdi Sharifzadeh. A

road network embedding technique for k-nearest neighbor search in moving

object databases. In ACM-GIS, pages 94–10, 2002.

BIBLIOGRAPHY 279

[Smi97] Michiel Smid. Closest-Point Problems in Computational Geometry. In

Handbook on Computational Geometry, published by Elsevier Science, 1997.

[SPP+08] Dragan Stojanovic, Apostolos N. Papadopoulos, Bratislav Predic, Slobo-

danka Djordjevic-Kajan and Alexandros Nanopoulos. Continuous range

monitoring of mobile objects in road networks. Data Knowl. Eng., 64(1):77–

100, 2008.

[SR01] Zhexuan Song and Nick Roussopoulos. K-Nearest Neighbor Search for Mov-

ing Query Point. In SSTD, pages 79–96, 2001.

[SRAA01] Ioana Stanoi, Mirek Riedewald, Divyakant Agrawal and Amr El Abbadi.

Discovery of Influence Sets in Frequently Updated Databases. In VLDB,

2001.

[SSH86] Michael Stonebraker, Timos K. Sellis and Eric N. Hanson. An Analysis of

Rule Indexing Implementations in Data Base Systems. In Expert Database

Conf., pages 465–476, 1986.

[SY03] Shashi Shekhar and Jin Soung Yoo. Processing in-route nearest neighbor

queries: a comparison of alternative approaches. In GIS, pages 9–16, 2003.

[SZS03] Jing Shan, Donghui Zhang and Betty Salzberg. On Spatial-Range Closest-

Pair Query. In SSTD, pages 252–269, 2003.

[TCX+05] Yufei Tao, Reynold Cheng, Xiaokui Xiao, Wang Kay Ngai, Ben Kao and

Sunil Prabhakar. Indexing Multi-Dimensional Uncertain Data with Arbi-

trary Probability Density Functions. In VLDB, pages 922–933, 2005.

[TP02] Yufei Tao and Dimitris Papadias. Time-parameterized queries in spatio-

temporal databases. In SIGMOD Conference, pages 334–345, 2002.

[TPL04] Yufei Tao, Dimitris Papadias and Xiang Lian. Reverse kNN search in arbi-

trary dimensionality. In VLDB, 2004.

BIBLIOGRAPHY 280

[TPS02] Yufei Tao, Dimitris Papadias and Qiongmao Shen. Continuous Nearest

Neighbor Search. In VLDB, pages 287–298, 2002.

[TSS00] Yannis Theodoridis, Emmanuel Stefanakis and Timos K. Sellis. Efficient

Cost Models for Spatial Queries Using R-Trees. IEEE Trans. Knowl. Data

Eng., 2000.

[TTC+11] Goce Trajcevski, Roberto Tamassia, Isabel F. Cruz, Peter Scheuermann,

David Hartglass and Christopher Zamierowski. Ranking continuous nearest

neighbors for uncertain trajectories. VLDB J., 20(5):767–791, 2011.

[TTS09] Quoc Thai Tran, David Taniar and Maytham Safar. Reverse k Nearest

Neighbor and Reverse Farthest Neighbor Search on Spatial Networks. T.

Large-Scale Data- and Knowledge-Centered Systems, 1:353–372, 2009.

[TYM06] Yufei Tao, Man Lung Yiu and Nikos Mamoulis. Reverse Nearest Neighbor

Search in Metric Spaces. TKDE, 18(9), 2006.

[UMY07] Leong Hou U, Nikos Mamoulis and Man Lung Yiu. Continuous Monitoring

of Exclusive Closest Pairs. In SSTD, 2007.

[Vit01] Jeffrey Scott Vitter. External Memory Algorithms and Data Structures:

Dealing with Massive Data. ACM Computing Surveys, 33:2001, 2001.

[WCY06] Kun-Lung Wu, Shyh-Kwei Chen and Philip S. Yu. Incremental Processing

of Continual Range Queries over Moving Objects. IEEE Trans. Knowl.

Data Eng., 18(11):1560–1575, 2006.

[Wid05] Jennifer Widom. Trio: A System for Integrated Management of Data,

Accuracy, and Lineage. In CIDR, pages 262–276, 2005.

[WW06] Xiaoyuan Wang and Wei Wang. Continuous Expansion: Efficient Process-

ing of Continuous Range Monitoring in Mobile Environments. In DASFAA,

pages 890–899, 2006.

BIBLIOGRAPHY 281

[WYCT08a] Wei Wu, Fei Yang, Chee Yong Chan and Kian-Lee Tan. Continuous Reverse

k-Nearest-Neighbor Monitoring. In MDM, 2008.

[WYCT08b] Wei Wu, Fei Yang, Chee Yong Chan and Kian-Lee Tan. Finch: Evaluating

Reverse k-Nearest-Neighbor Queries on Location Data. In VLDB, 2008.

[WZ08] Haojun Wang and Roger Zimmermann. Snapshot location-based query

processing on moving objects in road networks. In GIS, page 50, 2008.

[WZK06] Haojun Wang, Roger Zimmermann and Wei-Shinn Ku. Distributed Contin-

uous Range Query Processing on Moving Objects. InDEXA, pages 655–665,

2006.

[XMA05] Xiaopeng Xiong, Mohamed F. Mokbel and Walid G. Aref. SEA-CNN:

Scalable Processing of Continuous K-Nearest Neighbor Queries in Spatio-

temporal Databases. In ICDE, pages 643–654, 2005.

[XZ06] Tian Xia and Donghui Zhang. Continuous Reverse Nearest Neighbor Mon-

itoring. In ICDE, page 77, 2006.

[YL01] Congjun Yang and King-Ip Lin. An Index Structure for Efficient Reverse

Nearest Neighbor Queries. In ICDE, 2001.

[YL02] Congjun Yang and King-Ip Lin. An index structure for improving nearest

closest pairs and related join queries in spatial databases. In IDEAS, 2002.

[YM07] Man Lung Yiu and Nikos Mamoulis. Reverse Nearest Neighbors Search in

Ad Hoc Subspaces. TKDE, 19(3):412–426, 2007.

[YPK05] Xiaohui Yu, Ken Q. Pu and Nick Koudas. Monitoring K-Nearest Neighbor

Queries Over Moving Objects. In ICDE, 2005.

[YPMT05] Man Lung Yiu, Dimitris Papadias, Nikos Mamoulis and Yufei Tao. Reverse

Nearest Neighbors in Large Graphs. In ICDE, 2005.

BIBLIOGRAPHY 282

[ZL01] Baihua Zheng and Dik Lun Lee. Semantic Caching in Location-Dependent

Query Processing. In SSTD, pages 97–116, 2001.

[ZLZ+09] Wenjie Zhang, Xuemin Lin, Ying Zhang, Wei Wang and Jeffrey Xu Yu.

Probabilistic Skyline Operator over Sliding Windows. In ICDE, pages 1060–

1071, 2009.

[ZZL+11] Ying Zhang, Wenjie Zhang, Xuemin Lin, Bin Jiang and Jian Pei. Rank-

ing uncertain sky: The probabilistic top-k skyline operator. Inf. Syst.,

36(5):898–915, 2011.

[ZZP+03] Jun Zhang, Manli Zhu, Dimitris Papadias, Yufei Tao and Dik Lun Lee.

Location-based Spatial Queries. In SIGMOD Conference, pages 443–454,

2003.

Appendix A

Proofs

A.1 Related Glossary

Antipodal Corners: Let C be a corner of rectangle R1 and C ′ be a corner in R2,

the two corners are called antipodal corners if for every dimension i where C[i] = R1L[i]

then C ′[i] = R2H [i] and for every dimension j where C[j] = R1H [j] then C ′[j] = R2L[j].

Fig A.1 shows two rectangles R1 and R2. The corners D and O are antipodal corners.

Similarly, other pairs of antipodal corners are (B,M), (C,N) and (A,P).

Antipodal half space: A half space that is defined by the bisector between two

antipodal corners is called antipodal half space. Fig A.1 shows two antipodal half spaces

HM :B and HP :A.

Normalized half space: Let M and B be two points in hyper-rectangles R and Q,

respectively. The normalized half space H ′
M :B is a space defined by a bisector between M

and B that passes through a point c such that c[i] = (QL[i] +RL[i])/2 for all dimensions

i for which B[i] > M [i] and c[j] = (QH [i] + RH [j])/2 for all dimensions j for which

B[j] ≤ M [j]. Fig A.1 shows two normalized (antipodal) half spaces H ′
M :B and H ′

P :A.

The point c for each half space is also shown. The inequalities (A.1) and (A.2) define the

half space HM :B and its normalized half space H ′
M :B, respectively.

d
∑

i=1

(B[i]−M [i]) ⋅ x[i] <
d

∑

i=1

(B[i]−M [i])(B[i] +M [i])

2
(A.1)

283

Chapter A. Proofs 284

O

A B

CD

M

N

P

H
M:B

H’
M:B

H’
P:A

H
P:A

R
1

R
2

c
c

Figure A.1: Antipodal corners and half
spaces

d
∑

i=1

(B[i]−M [i]) ⋅ x[i] <

d
∑

i=1

(B[i]−M [i]) ×

⎧



⎨



⎩

(QL[i] +RL[i])

2
if B[i] > M [i])

(QH [i] +RH [i])

2
otherwise

⎫



⎬



⎭

(A.2)

Note that the right hand side of the inequality (A.1) can never be smaller than the right

hand side of inequality (A.2) because M and B both lie in hyper-rectangles R and Q,

respectively. For this reason H ′
M :B ⊆ HM :B.

Set of More Expressive Half Spaces: A set of half spaces S1 = {Hi:q, ...,Hn:q} is

more expressive than any other half space Hj:q if it holds that ∩nx=iHx:q ⊆ Hj:q. Note

that if S1 is a set of more expressive half spaces then ∩nx=iHx:q ∩Hj:q = ∩nx=iHx:q. For

example, the set of half spaces {HM :q,HN :q} in Fig. A.2 is more expressive than the half

space HL:q and the shaded area is HM :q ∩HN :q ∩HL:q = HM :q ∩HN :q.

Chapter A. Proofs 285

A.2 Proofs

Lemma A.2.1 Let there be two subspaces SP1 and SP2;

SP1 ⇒ y < Ax+B (A.3)

SP2 ⇒ y < Cx+D (A.4)

where x and y are variables and A, B, C and D are constants. Both the subspaces

intersect each other at x = Ix = D−B
A−C . If the whole space is partitioned into two partitions

Pn1 and Pn2 such that Pn1 contains all the points for which x ≥ Ix and Pn2 contains

all the points where x ≤ Ix. Then we can say;
⎧



































⎨



































⎩

⎧











⎨











⎩

SP1 ⊆ SP2; in Pn1

AND

SP2 ⊆ SP1; in Pn2

⎫











⎬











⎭

if C > A

⎧











⎨











⎩

SP2 ⊆ SP1; in Pn1

AND

SP1 ⊆ SP2; in Pn2

⎫











⎬











⎭

otℎerwise

⎫



































⎬



































⎭

Proof We prove the case when C > A and the proof of the other case is similar. Note

that for x = Ix, the right hand sides of both the inequalities (A.3) and (A.4) would be

equal and for x > Ix the right hand side of the inequality (A.4) is greater than right hand

side of inequality (A.3) because C > A. This means every point that lies in Pn1 and

satisfies inequality (A.3) would also satisfy the inequality (A.4). Hence SP1 ⊆ SP2 in

space where x ≥ Ix. Similarly, it can be proved that SP2 ⊆ SP1 in space where x ≤ Ix.

Also the proof for the case when C ≤ A is similar.

Lemma A.2.2 Let there be three half spaces SP1, SP2 and SP3 defined by the following

inequalities;

SP1 ⇒ y < Ax+B (A.5)

Chapter A. Proofs 286

SP2 ⇒ y < Cx+D (A.6)

SP3 ⇒ y < Ex+ F (A.7)

where x and y are variables and A, B, C, D, E and F are constants. The set of half

spaces {SP1, SP2} is always more expressive1 than SP3 if both of the following are true;

1. A > E > C

2. F−B
A−E ≥ D−F

E−C

Proof Since A > E > C, we can obtain from Lemma A.2.1;

SP2 ⊆ SP3; if x ≥ D − F

E − C
(A.8)

SP3 ⊆ SP2; if x ≤ D − F

E − C
(A.9)

SP3 ⊆ SP1; if x ≥ F −B

A−E
(A.10)

SP1 ⊆ SP3; if x ≤ F −B

A−E
(A.11)

Since F−B
A−E ≥ D−F

E−C , we obtain by joining the inequalities (A.8) and (A.10);

SP2 ⊆ SP3 ⊆ SP1; if x ≥ F −B

A−E
(A.12)

From inequalities (A.12) and (A.11), it can be noted that in the whole space SP3 is

either a superset of SP1 or SP2. Hence SP1 ∩ SP2 ⊆ SP3.

1The set of more expressive half spaces is defined in Glossary (Section A.1).

Chapter A. Proofs 287

Lemma A.2.3 Let M and N be two points in d-dimensional space such that M [i] = N [i]

for all except one dimension j. Let q be a query point and MN be the line joining the

points M and N . The set of half spaces {HM :q,HN :q} is more expressive than any HL:q

where L is any point on the line segment MN . Fig. A.2 shows the line and half spaces

in 2d space.

q

H
M:q

M N
L

H
N:q

H
L:q

I
MNI

LM

I
LN

x-axis

y
-a
x
is

Figure A.2: Lemma A.2.3 in 2d-space

q

H
M:q

M N

H
N:q

H
O:q

x-axis

y
-a
x
is

OP

H
P:q

L
J K

Figure A.3: Lemma A.2.4 in 2d-space

Proof The half-subspace HN :q and HM :q are defined by inequality (A.13) and inequal-

ity (A.14), respectively;

d
∑

i=1,i ∕=j

(q[i]−N [i]) ⋅ x[i] < (N [j] − q[j]) ⋅ x[j] +
d

∑

i=1

(q[i]2 −N [i]2)/2 (A.13)

d
∑

i=1,i ∕=j

(q[i]−M [i]) ⋅ x[i] < (M [j] − q[j]) ⋅ x[j] +
d

∑

i=1

(q[i]2 −M [i]2)/2 (A.14)

Let A = (N [j] − q[j]), B =
∑d

i=1(q[i]
2 − N [i]2)/2, C = (M [j] − q[j]) and D =

∑d
i=1(q[i]

2 −M [i]2)/2 be constants and y =
∑d

i=1,i ∕=j(q[i] −M [i]) ⋅ x[i] be a variable.

Note that M [i] = N [i] for all except jtℎ dimension, so we can write inequalities (A.13)

Chapter A. Proofs 288

and (A.14) as;

HN :q ⇒ y < A ⋅ x[j] +B (A.15)

HM :q ⇒ y < C ⋅ x[j] +D (A.16)

For any point L on the line MN , let E = (L[j]− q[j]) and F =
∑d

i=1(q[i]
2 −L[i]2)/2

be a constant. Then HL:q is represented by the inequality (A.17);

HL:q ⇒ y < E ⋅ x[j] + F (A.17)

Without loss of generality, if we assume M < L < N then A > E > C. Since

M [i] = N [i] = L[i] for all except jtℎ dimension, we calculate F−B
A−E and D−F

E−C which

are (N [j] + L[j])/2 and (M [j] + L[j])/2, respectively. Since F−B
A−E > D−F

E−C , it is proved

from Lemma A.2.2 that the set of half spaces {HM :q,HN :q} is more expressive than any

HL:q.

Lemma A.2.4 Let q be a query point, R be a hyper-rectangle in d-dimensional space and

{C1, C2, ..., C2d} be its corners. The set of half spaces {HC1:q,HC2:q, ...,HC
2d

:q} is more

expressive than every other half space HL:q where L is any point in the hyper-rectangle

R.

Proof We present the proof for a 2d-rectangle and it can be extended to prove the Lemma

for high-dimensional hyper-rectangles. In Fig. A.3, a rectangle has been shown with four

corners M , N , O and P . Note that for every point L in rectangle there exist two points J

and K on the boundary of rectangle such that {HJ :q,HK:q} is more expressive than HL:q

(Lemma A.2.3). For the same reasoning, note that {HN :q,HO:q} is more expressive than

HK:q and {HM :q,HP :q} is more expressive than HJ :q. Hence {HM :q,HN :q,HO:q,HP :q} is

a set of more expressive half spaces than every half space HL:q. It is easy to see that this

reasoning can be extended to prove the Lemma for hyper-rectangles in higher-dimensions.

Chapter A. Proofs 289

Lemma A.2.5 Let there be two d dimensional hyper-rectangles Q and R. The set of

normalized half spaces {H ′
C1:C′

1

, ...,H ′
C

2d
:C′

2d
} is more expressive than any half space HM :N

where Ci is itℎ corner of R and C ′
i is its antipodal corner in Q.

Proof Let M be any point in hyper-rectangle R and N be any point in hyper-rectangle

Q. If we prove that the set of normalized half spaces {H ′
C1:C′

1

, ...,H ′
C

2d
:C′

2d
} is more

expressive than any normalized half space H ′
M :N , we can say that it is more expressive

than the half space HM :N because H ′
M :N ⊆ HM :N by the definition of normalized half

spaces.

Unless the two points M and N are antipodal corners, it holds true that there exist

two points Y and Z in R and Q, respectively, such that for all dimensions i except j,

Y [i] = M [i] and Z[i] = N [i] and for dimension j at least one of the following two holds

true;

Case 1: (Y [j] = RH [j]) > M [j] and (Z[j] = QH [j]) > N [j]

Case 2: (Y [j] = RL[j]) < M [j] and (Z[j] = QL[j]) < N [j]

We present the proof for case 1 and the proof for case 2 is similar. Let A, B, C, D,

E, F and G be constants and y be variable defined as;

y =

d
∑

i=1,i ∕=j

(N [i] −M [i]) ⋅ x[i]

A = Y [j]−N [j] = RH [j] −N [j]

C = M [j]− Z[j] = M [j] −QH [j]

E = M [j]−N [j]

G =

d
∑

i=1,i ∕=j

N [i]−M [i]

2
×

⎧



⎨



⎩

(QL[i] +RL[i]); if N [i] > M [i]

(QH [i] +RH [i]); otherwise

⎫



⎬



⎭

Chapter A. Proofs 290

B = G+
N [j]− Y [j]

2
×

⎧



⎨



⎩

(QL[j] +RL[j]); if N [j] > Y [j]

(QH [j] +RH [j]); otherwise

⎫



⎬



⎭

D = G+
Z[j]−M [j]

2
×

⎧



⎨



⎩

(QL[j] +RL[j]); if Z[j] > M [j]

(QH [j] +RH [j]); otherwise

⎫



⎬



⎭

F = G+
N [j]−M [j]

2
×

⎧



⎨



⎩

(QL[j] +RL[j]); if N [j] > M [j]

(QH [j] +RH [j]); otherwise

⎫



⎬



⎭

The normalized half spaces H ′
Y :N ,H ′

M :Z and H ′
M :N are defined by the following in-

equalities.

H ′
Y :N ⇒ y < A ⋅ x[j] +B (A.18)

H ′
M :Z ⇒ y < C ⋅ x[j] +D (A.19)

H ′
M :N ⇒ y < E ⋅ x[j] + F (A.20)

According to the Lemma A.2.2, if A > E > C and F−B
A−E ≥ D−F

E−C then the set of normalized

half spaces {H ′
Y :N ,H ′

M :Z} is more expressive than the normalized half space H ′
M :N . It

is easy to observe that A > E > C now we compute F−B
A−E and D−F

E−C . There are two

possibilities.

Possibility 1: N [j] ≤ M [j]; In this case N [j] is always less than Y [j] and F−B
A−E =

(QH [i]+RH [i])
2 . On the other hand Z[j] might be greater, lesser or equal to M [j]. To

maximize D−F
E−C , we assume that Z[j] > M [j] and compute D−F

E−C = (QL[i]+RL[i])
2 . Hence

F−B
A−E > D−F

E−C .

Possibility 2:N [j] > M [j]; In this case Z[j] is always greater than M [j]. We can

compute that D−F
E−C = (QL[i]+RL[i])

2 . On the other hand N [j] might be greater, lesser or

equal to Y [j]. To minimize F−B
A−E , we assume that N [j] > Y [j] and compute F−B

A−E =

(QL[i]+RL[i])
2 . Hence F−B

A−E ≥ D−F
E−C .

Chapter A. Proofs 291

We have proved that the set of normalized half spaces {H ′
M :Z ,H

′
Y :N} is more expres-

sive than the normalized half space H ′
M :N . It can be found that for any such H ′

M :Z (or

H ′
Y :N), there exists a set of normalized half spaces that is more expressive unless M and

Z (or Y and N) are two antipodal corners. Hence the set of antipodal normalized half

spaces {H ′
C1:C′

1

, ...,H ′
C

2d
:C′

2d
} is more expressive than any other normalized half space

H ′
M :N where M and N are the points in hyper-rectangle R and Q, respectively. Since

H ′
M :N ⊆ HM :N , we can say that the set {H ′

C1:C′
1

, ...,H ′
C

2d
:C′

2d
} is more expressive than

any half space HM :N . This completes the proof.

Lemma A.2.6 Let Q and R be two hyper-rectangles in d dimensional space such that for

every dimension i, either RH [i] ≤ QL[i] or QH [i] ≤ RL[i] and for at least one dimension

j either RH [j] < QL[j] or QH [j] < RL[j] (i.e; there exists a dominance relationship

such that R is dominated by Q). Let Fp and p be two points such that p > (Fp[i] =

(QH [i]+RH [i])/2) for any dimension i for which QH [i] ≤ RL[i] and p < (Fp[j] = (QL[j]+

RL[j])/2) for any dimension j for which RH [j] ≤ QL[j] (i.e; p is dominated by Fp in the

same way as R is dominated by Q). Then we can say maxdist(p,R) > mindist(p,Q).

Proof We can prove the lemma by showing that the point p lies in every normalized half

space H ′
M :N where M is a point in R and N is a point in Q. The normalized half space

can be defined as;

d
∑

i=1

(N [i]−M [i]) ⋅ x[i] <

d
∑

i=1

(N [i]−M [i]) ×

⎧



⎨



⎩

(QL[i] +RL[i])

2
if N [i] > M [i])

(QH [i] +RH [i])

2
otherwise

⎫



⎬



⎭

(A.21)

We evaluate the left hand side of the inequality (A.21) w.r.t Fp (e.g; x[i] = Fp[i]);

d
∑

i=1

(N [i] −M [i])×

⎧



⎨



⎩

QL[i] +RL[i])

2
if QL[i] ≥ RH [i]

QH [i] +RH [i])

2
if RL[i] ≥ QH [i]

⎫



⎬



⎭

(A.22)

Chapter A. Proofs 292

It can be observed that the value in (A.22) is always equal to the RHS of the inequal-

ity (A.21) because M is a point in R and N is a point in Q. So for any dimension i where

QL[i] ≥ RH [i], N [i] −M [i] is always positive. Similarly, for any dimension j for which

RL[i] ≥ QH [i], N [i]−M [i] is always negative.

Furthermore, it can be noted by the definition of the point p that the LHS of the

inequality (A.21) when evaluated w.r.t p is always less than what we obtained in (A.22).

Hence p lies in every normalized half space H ′
M :N .

Index

antipodal corners, 42, 151, 283

antipodal half space, 42, 151, 283

boolean range query, 54, 71

chromatic query, 223, 226

bichromatic query, 223

heterochromatic query, 223, 226

homochromatic query, 223, 226

closest pairs query, 6

conceptual grid tree, 51, 125

continuous query, 7

continuous RkNN query, 33, 95

continuous range query, 179

convex vertex, 101

escape probability, 199

even-odd test, 122

Faign’s Algorithm (FA), 227

frontier point, 46, 155

geographic database, 1

geometric database, 1

half space, 35, 96

antipodal half space, 42, 151, 283

normalized half space, 43, 152, 283

set of most expressive half spaces, 284

higher midpoint, 42

image database, 1

influence set, 91

influence zone, 92, 95

k closest pairs query, 6, 221

k nearest neighbors query, 6

kernel point, 107

loose monotonic function, 225

lower midpoint, 42

monotonic function, 225

nearest neighbors query, 6

No Random Access Algorithm (NRA), 228

normalized half space, 43, 152, 283

perpendicular bisector, 35, 96

pictorial database, 1

possible world, 146

random access, 227

range network, 205

range query, 5, 178

293

INDEX 294

boolean range query, 54, 71

circular range query, 113, 178

rectangular range query, 178

window query, 178

reverse k nearest neighbors query, 6, 28, 91

bichromatic RkNN query, 33, 95

monochromatic RkNN query, 33, 95

probabilistic RNN query, 146

safe zone, 180, 205

server-initiated updates, 38

shortest network distance, 63

snapshot query, 7

sorted access, 227

source-initiated updates, 38

spatial access method, 2

spatial database, 1

spatial index, 2

spatial network, 63

segment, 63, 204

star-shaped polygon, 107

sweeping region, 200

Threshold Algorithm (TA), 227

top-k pairs query, 221

exclusive query, 250

rank-based query, 248

score-based query, 226

skyline pairs query, 245

Voronoi cell, 112

	Introduction
	A Major Challenge
	Some Popular Spatial Queries
	Basic Spatial Queries
	Proximity Based Spatial Queries
	Various Problem Settings for Spatial Queries

	Contributions
	Reverse k Nearest Neighbor Queries
	Continuous Monitoring of Moving Range Queries
	k-Closest Pairs Queries

	Thesis Organization

	Related Work
	Reverse Nearest Neighbor Queries
	RNN Queries in Euclidean Space
	RNN Queries in Spatial Networks

	Continuous Range Queries
	Range Queries in Euclidean Space
	Range Queries in Spatial Networks

	Probabilistic Spatial Queries on Uncertain Data
	k Closest Pairs Queries

	Lazy Updates: Continuously Monitoring RkNN Queries
	Overview
	Background Information
	Problem Definition
	Most closely related techniques
	Motivation

	Query Processing in Euclidean Space
	Framework
	Pruning Rules
	Continuous RNN Monitoring
	Cost Analysis
	Extensions

	Query Processing in Spatial Networks
	Terminology
	Problem Characteristics
	Framework
	Filtering
	Verification
	Safe regions consisting of more than one edges
	Extensions

	Experiment Results
	Query Processing in Euclidean Space
	Query Processing in Spatial Networks

	Summary

	Influence Zone Based Processing of RkNN Queries
	Overview
	Problem Definition
	Computing Influence Zone
	Problem Characteristics
	Algorithm
	Checking containment in the influence zone
	Extension to higher dimensions

	Applications in RkNN Processing
	Snapshot Bichromatic RkNN Queries
	Snapshot Monochromatic RkNN Queries
	Continuous monitoring of RkNNs

	Theoretical Analysis
	Area of Influence Zone
	Number of RkNNs
	IO cost of our algorithms
	Complexity Analysis

	Handling data updates
	Solution overview
	Handling an insertion
	Handling a deletion

	Experiments
	Snapshot RkNN queries
	Continuous Monitoring of RkNN
	Handling data updates

	Summary

	Reverse Nearest Neighbors Queries on Uncertain Data
	Overview
	Problem Definition and Preliminaries
	Problem Definition
	Preliminaries

	Pruning Rules
	Half Space Pruning
	Dominance Pruning
	Metric Based Pruning
	Probabilistic Pruning
	Integrating the pruning rules

	Proposed Solution
	Shortlisting
	Refinement
	Verification

	Experiment Results
	Comparison with other possible solutions
	Performance on real data set and effect of data distribution
	Effect of data size
	Effect of probability threshold and width of hyper-rectangle
	Evaluation of different phases
	Effectiveness of pruning rules
	Effect of hyper-rectangle width on the size of result

	Summary

	Continuous Monitoring of Moving Range Queries
	Overview
	Framework
	Solution Overview
	Pruning Rules

	Technique
	Access order
	Algorithm
	Trimming the safe zone
	Updating the safe zone when query leaves it

	Theoretical Analysis
	Escape Probability (Pesc)
	Expected distance (m)
	Expected number of guard objects

	Range Queries in Road Networks
	Solution Overview
	Pruning Rules
	Algorithm
	Updating the safe zone

	Experiments
	Cost comparison
	Verification of the theoretical analysis
	Effectiveness of the proposed access order
	Effectiveness of the pruning rules
	Effectiveness of Smart-Update
	Range queries in road networks

	Summary

	A Unified Algorithm to Answer Top-k Pairs Queries
	Overview
	Preliminaries
	Problem Definition
	Top-k Query Processing

	Our Proposed Framework
	Maintaining The Sources
	Internal Memory Source
	External Memory Source

	Query Processing Algorithm
	Technique
	Complexity Analysis

	Extensions
	Skyline Pairs Query
	Rank-based Top-k Pairs Queries
	Exclusive Top-k Pairs Queries

	Experiments
	k-Closest Pairs Queries
	Queries Involving Generic Scoring Functions

	Summary

	Final Remarks
	Conclusions
	Open Problems
	Directions for Future Work
	Influence Zone in Spatial Networks
	Influence Zone Based Communication Efficient Techniques
	Continuous Spatial Queries on Uncertain Data

	Proofs
	Related Glossary
	Proofs

