
CircularTrip and ArcTrip:
Effective Grid Access Methods for

Continuous Spatial Queries

by

Muhammad Aamir Cheema

A THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTERS IN COMPUTER SCIENCE & ENGINEERING RESEARCH
(March 2007)

Supervisor: Dr. Xuemin Lin

i

Approval

This thesis entitled

CircularTrip and ArcTrip: Effective Grid Access Methods

for Continuous Spatial Queries

by

Muhammad Aamir Cheema

has been approved by the School of Computer Science and Engineering,

The University of New South Wales, Syndey Australia.

Supervisor: Dr. Xuemin Lin

The final copy of this thesis has been examined by the signatory and I find that both

the content and the form meet acceptable presentation standards of scholarly work in

the above mentioned discipline.

Signed

Date

ii

iii

Copyright Statement

I hereby grant the University of New South Wales or its agents the right to archive and

to make available my thesis or dissertation in whole or part in the University libraries in

all forms of media, now or here after known, subject to the provisions of the Copyright Act

1968. I retain all proprietary rights, such as patent rights. I also retain the right to use

in future works (such as articles or books) all or part of this thesis or dissertation. I also

authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation

Abstract International (this is applicable to doctoral theses only). I have either used no

substantial portions of copyright material in my thesis or I have obtained permission to

use copyright material; where permission has not been granted I have applied/will apply

for a partial restriction of the digital copy of my thesis or dissertation.

Muhammad Aamir Cheema

Signed

Date

Authenticity Statement

I certify that the Library deposit digital copy is a direct equivalent of the final officially

approved version of my thesis. No emendation of content has occurred and if there are

any minor variations in formatting, they are the result of the conversion to digital format.

Muhammad Aamir Cheema

Signed

Date

iv

v

Originality Statement

I hereby declare that this submission is my own work and to the best of my knowledge

it contains no materials previously published or written by another person, or substantial

proportions of material which have been accepted for the award of any other degree or

diploma at UNSW or any other educational institution, except where due acknowledge-

ment is made in the thesis. Any contribution made to the research by others, with whom

I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also

declare that the intellectual content of this thesis is the product of my own work, except

to the extent that assistance from others in the project’s design and conception or in

style, presentation and linguistic expression is acknowledged.

Muhammad Aamir Cheema

Signed

Date

vi

vii

Dedication

I dedicate this thesis to my parents who have always been my nearest and reverse

nearest neighbors1 [KM00] and have been so close to me that I found them with me

whenever I needed. It is their unconditional love that motivates me to set higher targets.

I also dedicate this thesis to my sisters (Shazia Cheema and Nadia Cheema) and broth-

ers (Muhammad Omer Cheema, Muhammad Umair Cheema and Muhammad Ammar

Cheema) who are my nearest surrounders2 [LLL06] and have provided me with a strong

love shield that always surrounds me and never lets any sadness enter inside.

1In a not-so-academic wording, your nearest neighbor is an object that is closest to you and your
reverse nearest neighbor is any object for which you are the closest object.

2Your nearest surrounders are the objects that are nearest to you and surround you completely.

viii

ix

Acknowledgements

I am very thankful to my parents for their love, support and encouragement and for

being with me on each and every step of my life. I am also very thankful to my eldest

brother Muhammad Omer Cheema for being very supporting and motivating.

I wish to express my gratitude to my supervisor Dr. Xuemin Lin for his help and

guidance. I feel thankful to him for his insightful advice and suggestions. I am also

thankful to Dr. Wei Wang for giving me generous amount of time whenever I needed

some help. I am grateful to Yidong Yuan with whom I worked during my research and

learnt a lot. I feel myself very lucky that I got very friendly colleagues. In particular,

I am thankful to Ying Zhang for being very helping and cooperative, Mahady Hasan

for being my closest colleague (it is also true literally, he sits very close to me), Yi Luo

especially for arranging group meetings, Wenjie Zhang especially for being the only other

colleague who is working on moving objects and Bin Jiang especially for being the only

masters student in our research group other than me.

I do not want to miss this opportunity to thank people who made my stay in Australia

an enjoyable experience without which I would not have been able to concentrate on my

research. First of all I am very thankful to Azeem Ahmad Cheema, my cousin who is

more like brothers, for being so caring and fun loving that made my stay in Australia a

memorable period of my life. I am also grateful to his family, my other brother Waseem

Ahmad Cheema and his family for being very caring and affectionate. Their kids gave

me so many reasons to smile. I also feel blessed that my brother and best friend Umair

was also here with me and I never felt lonely in his presence. I am also thankful to Assad

Mehmood for giving me company during coffee breaks.

I feel grateful to all my friends back in Pakistan for being in contact with me and

encouraging me. I am thankful to my younger brother and my crime partner Ammar for

keeping me informed about family events in his own special way. I am also thankful to

x

my best friends (they are best at finding something in me to complain about), Mohsin

Hasan and Samar Cheema, for being very caring and for keeping me up-to-date of issues

and events happening in Pakistan especially in our friends’ circle. I am thankful to my

intimate friend Irfan Ahmad for being too busy to be in contact. I am also thankful to

my sweet cousin Farman Ahmad Bajwa for always remembering me and especially for

always making me angry by telling me not to be angry. Finally, I am very grateful to

Daisy for giving me so many valuable suggestions for this part of my thesis. The best

advice she gave me was to include her name in acknowledgments.

I feel obliged to say “thanks” to so many people who have been doing so many good

things for me but I am afraid the list may go forever. Same as mathematicians write all

positive even numbers in very small space as {0, 2, 4, ...,∞}, below I try to write a shorter

acknowledgements. Let k be a positive integer, T be my lifetime, and dist(p, q) be the

distance between the hearts of any two people p and q reflecting the love the person p

has for q, I feel grateful to all people who have ever been among my k nearest neighbors

and/or k reverse nearest neighbors over the time period T .

xi

Abstract

A k nearest neighbor query q retrieves k objects that lie closest to the query point q

among a given set of objects P . With the availability of inexpensive location aware

mobile devices, the continuous monitoring of such queries has gained lot of attention

and many methods have been proposed for continuously monitoring the kNNs in highly

dynamic environment. Multiple continuous queries require real-time results and both

the objects and queries issue frequent location updates. Most popular spatial index,

R-tree, is not suitable for continuous monitoring of these queries due to its inefficiency

in handling frequent updates. Recently, the interest of database community has been

shifting towards using grid-based index for continuous queries due to its simplicity and

efficient update handling. For kNN queries, the order in which cells of the grid are

accessed is very important. In this research, we present two efficient and effective grid

access methods, CircularTrip and ArcTrip, that ensure that the number of cells visited for

any continuous kNN query is minimum. Our extensive experimental study demonstrates

that CircularTrip-based continuous kNN algorithm outperforms existing approaches in

terms of both efficiency and space requirement. Moreover, we show that CircularTrip and

ArcTrip can be used for many other variants of nearest neighbor queries like constrained

nearest neighbor queries, farthest neighbor queries and (k + m)-NN queries. All the

algorithms presented for these queries preserve the properties that they visit minimum

number of cells for each query and the space requirement is low. Our proposed techniques

are flexible and efficient and can be used to answer any query that is hybrid of above

mentioned queries. For example, our algorithms can easily be used to efficiently monitor

a (k + m) farthest neighbor query in a constrained region with the flexibility that the

spatial conditions that constrain the region can be changed by the user at any time.

xii

Contents

1 Introduction 1
1.1 Spatial Access Methods . 3
1.2 Spatial Queries . 5
1.3 Contributions . 8
1.4 Thesis Organization . 9

2 Related Work 11
2.1 k Nearest Neighbors Queries . 11

2.1.1 Snapshot kNN Queries . 13
2.1.2 Continuous kNN Queries . 15
2.1.3 kNN Queries in Spatial Networks 21
2.1.4 Approximate kNN Queries . 23
2.1.5 Distributed Processing of kNN Queries 25

2.2 Variants of Nearest Neighbor Queries . 28
2.2.1 Reverse Nearest Neighbor Queries 28
2.2.2 Constrained Nearest Neighbor Queries 33
2.2.3 Aggregate Nearest Neighbor Queries 36
2.2.4 All-Nearest Neighbor Queries . 39

3 Grid Access Methods 42
3.1 Motivation . 42
3.2 CircularTrip . 44

3.2.1 CircularTrip on 2D Grid . 45
3.2.2 Extension to Higher Dimensions 48

3.3 ArcTrip . 48
3.4 Summary . 51

4 CircularTrip Based Continuous kNN Algorithm 53
4.1 Motivations . 54
4.2 System Overview and Data Structure . 55
4.3 Initial kNN Computation . 56
4.4 Continuous Monitoring . 58

4.4.1 Handling Data Point Updates . 59
4.4.2 Handling Query Updates . 61
4.4.3 Complete Update Handling Module 63
4.4.4 Updating the Influence List . 64

xiii

CONTENTS xiv

4.5 Performance Analysis . 66
4.6 Experimental Study . 70

4.6.1 Evaluating Efficiency . 71
4.6.2 Evaluating Effect of Agility . 72

4.7 Conclusion . 74

5 Applications to Other Variants of NN Queries 75
5.1 Constrained Nearest Neighbor Queries . 76

5.1.1 Continuous Pie-Region kCNN queries 77
5.1.2 Continuous Donut-Region kCNN Queries 80
5.1.3 Continuous Donut-Pie kCNN Queries 83
5.1.4 Continuous kCNN Queries Over Irregular Region 86
5.1.5 Discussion . 87

5.2 Farthest Neighbor Queries . 88
5.2.1 Initial Computation . 88
5.2.2 Continuous Monitoring . 89
5.2.3 Discussion . 91

5.3 (k + m) NN Queries . 91
5.3.1 Technique . 91
5.3.2 Discussion . 92

5.4 Conclusion . 93

6 Conclusion 94

List of Figures

1.1 Google Maps (http://maps.google.com) . 2
1.2 Difficulty in Finding the Spatial Proximity of Objects 4
1.3 Effect of Different Distance Definitions on Nearest Neighbors 7

2.1 An Example of a NN Query on R-tree Index 14
2.2 YPK-CNN . 18
2.3 SEA-CNN . 19
2.4 CPM . 20
2.5 Example of Safe Regions . 26
2.6 Threshold-Based Algorithm for Monitoring a 3-NN Query 28
2.7 The Objects a and e are the Reverse Nearest Neighbors of q 30
2.8 Illustration of SAA . 31
2.9 Half-Plane Pruning . 32
2.10 The Monitoring Region of a Continuous RNN Query 33
2.11 Illustration of mindist(q, M, R) and minmaxdist(q, M, R) 34
2.12 Computation of a Constrained Nearest Neighbor Query 35
2.13 Node N1 can be pruned . 37
2.14 Different Pruning Metrics for All-NN Queries 41

3.1 Grid Index . 43
3.2 Minimal Set of Cells . 43
3.3 CircularTrip . 45
3.4 Next Intersected Cell is Either cc or cN 47
3.5 Minimum Angular Distance . 48
3.6 ArcTrip . 49
3.7 The Special Cell cspe is Always the Adjacent Cell of c in Dopp 50

4.1 System Overview and Data Structure . 56
4.2 A Nearest Neighbor Query . 57
4.3 Handling Data Point Updates . 61
4.4 Handling Query Updates . 62
4.5 Handling Multiple Updates . 64
4.6 Updating Influence Region . 66
4.7 An Example of Updates Handling by CPM 68
4.8 An Example of Updates Handling by CircularTrip-based Algorithm 69
4.9 Effect of δ . 72

xv

LIST OF FIGURES xvi

4.10 Effect of k . 72
4.11 Effect of N and n . 72
4.12 Data Movement . 73
4.13 Query Movement . 73
4.14 Time Efficiency . 73

5.1 Six Pie-Region Constrained NN Queries 78
5.2 A Continuous Pie-Region 1-CNN query . 79
5.3 A Varying Pie-Region Continuous 1-CNN Query 80
5.4 A Donut-Region kCNN Query . 81
5.5 Computation of a Donut-Region 1-CNN Query 82
5.6 A Varying Donut-Region Continuous 1-CNN query 83
5.7 Donut-Pie kCNN Query . 84
5.8 Computation of a Donut-Pie 1-CNN Query 85
5.9 Computation of a Varying Donut-Pie Region 1-CNN Query 85
5.10 Continuous kCNN Query Over Irregular Region R 87
5.11 Computation of a Farthest Nearest Neighbor Query 89
5.12 Update Handling of a Farthest Neighbor Query 90
5.13 A (k + m)NNs Query (k = 3, m = 2) . 92

List of Tables

2.1 Depth-First Search . 14
2.2 Best-First Search . 15

3.1 Math Notations . 44

xvii

Chapter 1

Introduction

A spatial database system can be defined as a database system that offers spatial data

types in its data model and query language, and supports spatial data types in its im-

plementation, providing at least spatial indexing and spatial join methods [Gut94]. The

spatial objects are composed of one or more points, lines and/or polygons. Fig. 1.1 shows

a map from Google Maps (http://maps.google.com) obtained by entering a query “Find

computer related businesses near University of New South Wales”. It shows different

representations of spatial objects. i.e., points, lines, regions. A point may represent a

data object for which only its location is important and its extent in space is not im-

portant. For example, the balloons labelled A to J point to the locations of computer

shops around the university. The lines represent the facilities of moving through space

or connections in space (i.e., roads, rivers). A region represents the spatial object for

which its spatial extent is also important. A region may consist of disjoint pieces each

containing many polygons. In the figure, University of New South Wales and Prince of

Wales Hospital are represented by regions.

Spatial databases are also termed as image, pictorial, geometric and geographic databases.

The application of spatial databases include Geographic Information Systems (GIS),

Computer Aided Design (CAD), Very-Large-Scale Integration (VLSI) designs, Multimedia

Information System (MMIS) and medicine and biological research.

1

Chapter 1. Introduction 2

Figure 1.1: Google Maps (http://maps.google.com)

Additional functionality must be added for databases to process spatial data objects

because spatial data objects have complex structure and are multidimensional and there

is no standard algebra defined for spatial data. Moreover, the spatial data objects are

usually dynamic and the storage structure should allow efficient insertions and deletions of

data. A spatial database needs to support different kind of spatial queries. For example,

a query may be issued to find all police stations in Sydney. Logically, this query is to

find one kind of spatial objects (police stations) that are contained by the other type of

spatial object (Sydney). Another example which we already have seen is a query to find

the computer shops near University of New South Wales. The spatial database needs

to find the spatial objects (computer shops) that are closer to some other spatial object

(the university).

To support the search operations on spatial data objects, special data structures are

needed to be designed. These data structures are usually called spatial indexes or spa-

tial access methods. In Section 1.1, we briefly describe why traditional one-dimensional

indexes cannot be used in spatial databases and we also discuss the important require-

ments a good spatial access method should meet. In Section 1.2, we describe few basic

and advanced spatial queries. Section 1.3 summarizes the contributions of this thesis

Chapter 1. Introduction 3

towards spatial databases. Thesis organization is presented in Section 1.4.

1.1 Spatial Access Methods

The main problem in design of spatial access methods is that there is no total ordering

among the spatial data objects that preserves spatial proximity. Consider, for example,

a user wants to find 5 restaurants closest to her location. One try to answer this query

is to build a one-dimensional index that contains the distances of all restaurants from

user’s location sorted in ascending order. To answer her query, we can return first 5

entries from the sorted index. However, this index cannot support a query issued by

some other user at a different location. In order to answer the query of this new user,

we will have to sort all the restaurants again in ascending order of their distances from

this user. The difficulty lies in the fact that there is no mapping from multidimensional

space into one-dimensional space so that the objects that are close in multidimensional

space are also close in the one-dimensional sorted index [GG98].

Another way to answer the queries of above type is to sort each restaurant in two lists.

First list (Listx) contains the restaurants sorted in ascending order on their x-coordinates.

The second list (Listy) may contain them sorted according to their y-coordinates. In

order to find 5 closest restaurants to a point p located at (px, py), we may first find few

candidates from Listx that are closest to px and then we could calculate their actual

distance from p by looking their value in Listy. However, this approach can be very

in-efficient because a restaurant that is closest to p in x-dimension may be the farthest

restaurant in y-dimension. Consider the example of Fig. 1.2 where the object closest

to p1 is to be found. The objects p3 and p4 are the closest objects to p1 in x and y

dimensions, respectively. However, the nearest object in the two-dimensional space is p2

which is not the closest object in any single dimension.

For the reason mentioned above, traditional one-dimensional access methods like B-

tree [BM72] and extendible hashing [FNPS79] are not suitable for spatial databases. An

Chapter 1. Introduction 4

p3

p1 p4

5

5

10

10

15

15

20

20

p2

Figure 1.2: Difficulty in Finding the Spatial Proximity of Objects

excellent survey on multidimensional access methods by Gaede et al. can be found in

[GG98]. Gaede et al. describe the requirements that multidimensional access methods

should meet, based on the properties of spatial data and their applications.

• Dynamics: Spatial data objects can be inserted and deleted in any order and the

spatial access methods should be able to continuously record the changes.

• Secondary/tertiary storage management: Even though the size of main mem-

ory is increasing, it is not always possible to store the complete database in main

memory. The access methods need to integrate secondary and tertiary storage in

seemless manner.

• Broad ranges of supported operations: The access methods should not sup-

port only one particular type of operation at the expense of other operations. For

example, an access method is not good if insertion of data points into it is efficient

but other operations like deletion of the points are slow.

• Independence of the input data and insertion sequence: The access meth-

Chapter 1. Introduction 5

ods should maintain their efficiency even when input data are highly skewed or the

insertion sequence is changed.

• Simplicity: Complex access methods are usually difficult to implement and are

error-prone thus not suitable for large-scale applications.

• Scalability: The access method should adapt well with the database growth.

• Time efficiency: The access method should provide fast spatial searches.

• Space efficiency: An index should be small in size compared to the data to be

addressed and therefore it must guarantee a certain storage utilization.

• Concurrency and recovery: In modern databases, multiple users run operations

on databases concurrently. The access methods should provide robust techniques

for transaction management without significant performance penalties.

• Minimum impact: The integration of an access method into a database system

should have minimum impact on the existing parts of the system.

There have been many spatial access methods proposed in last two decades. Some

of the popular spatial indexes are R-tree [Gut84] and its variants(e.g. R*-tree [BKSS90]

and R+-tree [SSH86]), kd-tree [Ben75] and the grid file [NHS84].

1.2 Spatial Queries

First we describe some very basic spatial queries and then we will define relatively

complex queries. One or more basic queries may be issued to answer these complex

queries. Let A and B be two multidimensional spatial data objects (points, lines or

regions), below we define some very basic spatial queries.

• LENGTH(A). Return the length of a spatial object (line) A.

Chapter 1. Introduction 6

• AREA(A). Return the area of any 2D region A.

• CENTROID(A). Return the centroid of a spatial object A. Centroid of an n-

dimensional object is the intersection of all hyperplanes that divide it into two parts

of equal moment about the hyperplane. Informally, it is the “average” of all points

of A.

• DISTANCE(A,B). Find the distance between A and B. If A and/or B are not

points, the distance definitions may be needed to be defined by the user. For exam-

ple, possible definitions of distance between the two objects may be the minimum

or maximum distance between them. Some other definition can also be applied.

For example, find the distance between the centroids of the two objects.

• EQUALS(A,B). If A and B have same spatial extent, return true.

• DISJOINT(A,B). Return true if A and B are disjoint (they do not have any

point in common).

• INTERSECTS(A,B). Return true if A and B intersect each other. Note that

this is exactly opposite operation to the disjoint operation.

• CONTAINS(A,B). If the object B is fully contained in A, return true.

Note that for all of the above queries, the database system does not need to access any

other object from the spatial index. These operations involve geometrical computation

based on the information of the two spatial objects A and B. Next we briefly describe the

queries that are more advanced and in order to answer these queries, the database system

may need to traverse spatial indexes or it may need to call few of the basic operations

described above.

1. Spatial Range Query(Q, dist). Find all the objects that lie within a given dis-

tance dist from the query object Q. In other words, find all objects X such that

DISTANCE(Q,X)≤ dist. For example, find all the restaurants that are within 10

km from my current location.

Chapter 1. Introduction 7

Figure 1.3: Effect of Different Distance Definitions on Nearest Neighbors

2. Containment Query(Reg). Find all the data objects that lie within the query

region Reg. Formally, return all the objects X for which CONTAINS(Reg,X)

returns true. For example, find all the aeroplanes that are currently in New York.

3. Exact Match Query(Q): Find all objects that have same spatial extent as

the object Q has. More specifically, find all the spatial objects X for which

EQUALS(Q,X) returns true. Consider, for an example, a query may be issued

to find a house that has same structure as my house.

4. Nearest Neighbor Query(Q). Find the closest object to the query object Q.

The problem may also be extended to k nearest neighbor (kNN) query, that is to

find k closest objects to the query object. More specifically, a k nearest neighbor

query is to find a set of objects R that contains k objects such that for all A ∈ R

and for all other objects B, DISTANCE(Q,A) ≤ DISTANCE(Q,B). Note that

the answer may change depending on the distance definition. Fig. 1.3 illustrates

this. The nearest neighbor of A is B if the distance between two points is defined

as the minimum distance between them. If the distance is defined as the maximum

distance between the two objects, C becomes the nearest neighbor of A.

Chapter 1. Introduction 8

One example of such queries is to find 10 closest gas stations to my current location.

Also note that other metrics than Euclidean distance may also be used. In above

example, the road distance may be used to find the nearest neighbors.

5. Spatial Join Query(R,S). Let R and S be two sets of objects, a spatial join

query is to find object pairs from these sets so that they satisfy some specified join

predicate. The examples of possible join predicates may include INTERSECTS,

DISJOINT, DISTANCE and CONTAINS operations defined above. An example

of such queries is to find all hotel-cinema pairs so that distance between them is

less that 1 km.

1.3 Contributions

With the availability of wireless networks and inexpensive mobile devices, continuously

monitoring of spatial queries over moving data objects has become a necessity to many

recent location-based applications. Consequently, a number of techniques [SR01, TP02,

TPS02, ZZP+03, ISS03, XMA+04, YPK05, HXL05, MHP05] have been developed to

efficiently process continuous k nearest neighbor (kNN)queries and its variants. Below

we summarize the contributions of this thesis to the continuous monitoring of spatial

queries1.

1. For continuous monitoring of spatial queries, the interest of database community

has been shifted towards using grid based index because R-tree cannot handle object

updates very efficiently. We design CircularTrip and ArcTrip, two novel grid access

methods that traverse grid cells according to their proximity to the query point.

2. We propose CircularTrip-based algorithm [CYL07] to continuously monitor kNN

queries and our extensive experiments demonstrate that our approach is 2 to 4

times faster than CPM [MHP05] which is currently the best known algorithm for
1This work was partially supported by the Australian Research Council (ARC) Discovery Grant

(DP0666428)

Chapter 1. Introduction 9

continuous kNN queries. Moreover, we prove that our CircularTrip based algorithm

accesses the minimum number of cells during the continuous monitoring of kNN

queries.

3. Our CircularTrip based algorithm is not only time efficient but it is also space

efficient. Its space usage is 50% to 85% of CPM’s space requirements.

4. We present the techniques based on CircularTrip and ArcTrip to continuously mon-

itor other variants of kNN queries like constrained nearest neighbor queries, farthest

neighbor queries and (k + m) nearest neighbor queries. Our proposed techniques

can easily be extended to answer any complex query that is hybrid of above men-

tioned queries. For example, our algorithms can be used to continuously monitor

(k+m) farthest neighbors in a constrained region where the spatial conditions that

constrain the region can be changed by the user at any time. Moreover, our pro-

posed algorithms preserve the properties that all the algorithms have low memory

requirements and the number of cells accessed for each type of query is minimum.

5. We give a detailed survey of previous work on spatial k nearest neighbor queries

and its popular variants.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

• A detailed survey of previous work on nearest neighbor queries and its variants has

been presented in Chapter 2.

• In Chapter 3, we present our grid access methods named CircularTrip and ArcTrip.

• A CircularTrip based algorithm for continuous monitoring of kNN queries is pre-

sented in Chapter 4. Comparison with previous best known approach (CPM) is

also presented in Chapter 4.

Chapter 1. Introduction 10

• In Chapter 5, we briefly describe the techniques to continuously monitor other

variants of kNN queries by using CircularTrip and ArcTrip.

• Chapter 6 concludes our research presented in this thesis.

Chapter 2

Related Work

In this chapter, we overview the work related to the nearest neighbor queries. In Sec-

tion 2.1, we survey the related work on kNN queries. We describe the popular variants

of kNN queries in Section 2.2.

2.1 k Nearest Neighbors Queries

Given a set of data points P and a query point q, and an integer k > 0, the k nearest

neighbors (kNN) query is to find a result set kNN that consists of k data points such

that for any p ∈ (P − kNN) and any p′ ∈ kNN , dist(p′, q) ≤ dist(p, q).

Nearest neighbor queries have received intensive attention in spatial database com-

munity in the past decade. A kNN query has various applications in spatial databases.

Consider, for example, a set of points in two dimensions representing cities. A kNN query

may be issued to find “what are the k closest cities from a point p”. In this section, we

present a brief overview of the work done on kNN queries. Since kNN queries are widely

studied by the researchers in different problem settings, we categorise the related work

according to the characteristics of problem settings as follows.

• Snapshot kNN queries: Find k > 0 objects from a static dataset that are closest

to a static query point according to Euclidean distance between them.

11

Chapter 2. Related Work 12

• Continuous kNN queries: Continuously report k > 0 objects, over a time period

T , from a continuously moving dataset that are closest to a continuously moving

query point. These type of queries are most related with our work.

• kNN queries in spatial networks: Find k > 0 objects that are closest to a query

point q according to their network distances from q. An example is “find k nearest

hotels from my current location”. Clearly, the underlying network is road network

and the network distance between two points may be different from the minimum

Euclidean distance between them. The problem can be extended to continuous

monitoring of kNNs on networks.

• Approximate kNN queries: Sometimes the data is very large or can be accessed

only once (e.g. in data streams). In such cases, finding exact kNNs is not efficient

so there are many solutions proposed to find the approximate k nearest neighbors of

queries with some guaranteed relative error. Such queries are called approximate-

kNN queries.

• Distributed processing of kNN queries: Different from previous problem set-

tings where a central server is solely responsible for computations, this problem is

to find kNNs assuming that the moving data points also have the computation and

storage capabilities. Such algorithms utilize the computation and storage capabil-

ities of mobile objects and aim to reduce computation load on the server and/or

communication cost between mobile objects and the server.

In Section 2.1.1, we overview the related work on snapshot kNN queries. Previous

work on continuous monitoring of kNN queries is given in Section 2.1.2. Section 2.1.3

surveys the work on kNN queries over spatial networks. Approximate kNN queries are

presented in Section 2.1.4. Section 2.1.5 reviews the work on distributed processing of

kNN queries.

Chapter 2. Related Work 13

2.1.1 Snapshot kNN Queries

As described earlier, a snapshot kNN query is to find the k nearest neighbors from

a static dataset. Snapshot queries are extensively studied by spatial database commu-

nity [Hen94, RKV95, KSF+96, PM97, KS97, SK98, HS99, CG99]. There have been many

spatial indexes proposed for multidimensional points but the R tree [Gut84] and its vari-

ants (especially R*-tree [BKSS90]) are the most popular ones. The most widely used

approaches to answer kNN queries [RKV95, HS99] use branch-and-bound algorithms on

R-tree while maintaining a list of k potential nearest neighbors in a priority queue.

Besides the branch-and-bound algorithms, there have also been attempts [KSF+96]

to use range queries to solve kNN queries. Basic idea is to first find a region that

guarantees to contain all kNNs and then to use a range query to retrieve the potential

kNNs. The improvements to this algorithms were proposed in [CG99] by improving the

region estimation. Seidl et al. [SK98] improved this algorithm by providing a better

search technique of the kNNs in the region.

As described earlier, most popular branch-and-bound algorithms [RKV95, HS99] tra-

verse the R-tree to retrieve k nearest neighbors. R-tree is traversed in depth-first manner

in [RKV95] and in best-first search manner in [HS99]. Fig. 2.1 shows spatial objects and

their corresponding R-tree. Below, we briefly describe these two popular R-tree traversal

methods with the help of Fig. 2.1.

Depth-First Search (DFS)

Starting from the root node, DFS visits the child nodes in a certain order. More specif-

ically, the order is determined by the mindist of each node from the query point q,

where mindist is the minimum distance between q and the node’s minimum bounding

rectangle (MBR). When a leaf node is reached, the objects are retrieved and the list

of nearest neighbor candidates is updated. Let q.distk be the distance of kth nearest

neighbor from q, clearly the algorithm does not need to visit any node N and its child

entries if mindist(N, q) ≥ q.distk.

Chapter 2. Related Work 14

Figure 2.1: An Example of a NN Query on R-tree Index

Fig. 2.1(a) illustrates an example of a nearest neighbor query: a, b, ..., h are the spatial

objects and q is the query point. Fig. 2.1(b) shows the corresponding R-tree, including

the root, intermediate nodes 1 and 2 and leaf nodes A,B,C and D. The algorithm first

visits node 1 because mindist(1, q) < mindist(2, q). Then, DFS visits node B (because

mindist(B, q) < mindist(A, q)). It computes the mindist of the object c and d in node

B and inserts d in the nearest neighbor candidate list q.kNN . DFS next visits the

node A but does not find a better candidate than d. Next node visited is 2. Since

mindist(C, q) < mindist(D, q), DFS visits the node C and finds object e that is closer

to q than d, so it replaces e with d in q.kNN . The next node to be visited is D, DFS

prunes it because mindist(D, q) > mindist(e, q). There is no other node to be visited

so DFS reports e as the final answer. Table 2.1 shows the nodes in the order they were

processed by DFS algorithm.

Node in Process candidate set (q.kNN) q.distk
1 φ ∞
B d mindist(d, q)
A d mindist(d, q)
2 d mindist(d, q)
C e mindist(e, q)

Table 2.1: Depth-First Search

Chapter 2. Related Work 15

Best-First Search (BFS)

BFS uses a priority queue to store the entries to be explored during the search. The

entries in priority queue are sorted by their mindist from q. For each popped entry e, all

its child are pushed into the queue if e is a node. If e is a leaf, all the objects it contains

are considered and the candidate set q.kNN and q.distk is updated, accordingly. The

algorithm stops as soon as the next popped entry has mindist greater than q.distk

Consider the same example of Fig. 2.1. BFS inserts nodes 1 and 2 in queue. The

node 1 is popped first and its child entries A and B are inserted in the priority queue

PQ which becomes PQ ={2,B,A}. Since 2 has the smallest mindist, it is popped next

and its child entries C and D are inserted in the queue (PQ ={C,B,A,D}). The next

entry is C, the object e is inserted in candidate set q.kNN and the q.distk is updated to

mindist(e, q). Algorithm stops because the next entry in queue B has mindist greater

than mindist(e, q). Table 2.2 shows the nodes in the order they were processed by DFS

algorithm.

Priority Queue candidate set (q.kNN) q.distk
1, 2 φ ∞

2, B, A φ ∞
C, B, A, D φ ∞
B, A, D e mindist(e, q)

Table 2.2: Best-First Search

2.1.2 Continuous kNN Queries

Different from a snapshot kNN query, continuous kNN queries are issued once and run

continuously to generate results in real-time along with the updates of the underlying

datasets. Since mobile devices are now able to detect their postions, the continuous

monitoring of the spatial queries have become one of the most interesting problems in

spatio-temporal databases. Objects send their location updates and the results of queries

are updated accordingly.

The problem of continuously monitoring kNN of moving objects has been investigated

Chapter 2. Related Work 16

largely in past few years. From the modeling and query language perspectives, continuous

monitoring of kNN queries was first addressed in [SWCD97]. Kollios et al. [KGT99] were

first to consider answering kNN queries for moving objects in 1D space. Song et al. [SR01]

presented the first algorithm for computation of a moving kNN query q over static data

set in high dimensional space. Server sends to client a number m > k of neighbors when

a kNN query is processed. The k nearest neighbors at a new location q′ will be among

the m objects of the first query q provided that the distance between q and q′ is within a

range determined by k and m. For the same setting where queries are moving and data

set is static, Zhang et al. [ZZP+03] proposed a solution that returns the NN of query q

along with its Voronoi cell, where Voronoi cell is the area in which the NN of query will

remain same.

Assuming that the velocity of linearly moving data objects is known, time-parameterized

queries [TP02] report the current NN set and its validity period and the next change of

the result that will occur at the end of the validity period. Such queries use TPR-

tree [SJLL00] or its variants such as TPR*-tree [TPS03](extension of R*-tree by aug-

menting the indexed objects and the MBRs with the velocity vectors). In [BJKS02],

authors propose a solution by depth-first traversal of TPR-tree. Their approach returns

all NN sets up to a future time assuming that the velocity vector of the query will not

change up to that time. Raptopoulou et al. [RPM03] proposed a method by combining

the merits of [TP02] and [BJKS02] which significantly reduces the I/O and CPU costs.

All of the above methods and [ISS03] work only when the future trajectories of ob-

jects are known at query time by either some linear function or some recursive func-

tion [TFPL04]. As discussed in Section 2.1.1, most widely used approach to answer

conventional snapshot kNN queries is using R-tree index. R-tree index cannot be used

for efficiently monitoring of kNN queries because it cannot support frequent updates of

data objects. Though a bottom-up update approach of updating R-tree was introduced

in [LHJ+03], recently the interest of database community has been shifted towards using

grid-based index to answer continuous kNN queries over highly dynamic data sets. Since

Chapter 2. Related Work 17

grid-based index is simple, it can be easily updated with the updates of data point loca-

tion updates. Kalashnikov et al. [KPH04] used the in-memory grid structure to monitor

continuous range queries. The most related and recent works [MHP05, XMA05, YPK05]

all employ grid-based index. The space is partitioned into a regular grid of cells δ×δ and

each algorithm computes the results of each query every T time units. These algorithms

do not make any assumption on the motion pattern of data points and/or query points.

Since these are the most recent, most related and the best known algorithms, we briefly

describe them below.

YPK-CNN

Yu et al. [YPK05] proposed a method for continuous monitoring of exact kNN queries

hereafter referred as YPK-CNN. The new query is evaluated in two steps. First the

algorithm searches for k objects around q in iteratively enlarged square R centered at

cell cq, the resident cell of query. Fig. 2.2 shows an example of 1-NN query where in

first step p1 is found with distance d from q. To guarantee the correctness of results,

YPK-CNN processes all the cells intersected by a square SR centered at cq with side

length 2.d + δ and updates the answer if necessary. Fig. 2.2(a) shows that the actual

answer p2 is found when all the cells within square of each side 2.d + δ (shaded cells) are

visited. YPK-CNN processes all objects from p1 to p6 in the running example.

Upon receiving the object updates, YPK-CNN uses the previous result of query to

update the new result. Let dmax be the maximum distance of the object p ∈ q.kNN

from q that is one of the previous nearest neighbors and has now moved farthest from q,

YPK-CNN updates the results as follows. Algorithm visits all the cells within square SR

with side length 2.dmax + δ. Fig. 2.2(b) shows that object p2 issues an update to location

p′2 so dmax is set to dist(p′2,q). YPK-CNN visits all objects (p1 to p10) in the shaded cells

of the figure and identifies p1 as the new NN. When a query point changes its location,

it is deleted and then handled as new query (i.e., its answer is computed from scratch).

Chapter 2. Related Work 18

(a) initial NN computation (b) Update Handling

Figure 2.2: YPK-CNN

SEA-CNN

Xiong et al. [XMA05] proposed SEA-CNN which focuses exclusively on monitoring the

NN changes, without including a module for the evaluation of initial results of a newly

registered query. Objects are indexed with grid in secondary memory. The answer region

of a query q is defined as the circle centred at q with radius best dist where best dist

is the distance of kth NN from q. The cells intersecting this circle store book-keeping

information to indicate the fact that they are affected by q.

Updates are handled by expanding the circle to radius dmax, the maximum distance

of all outgoing objects. In Fig. 2.3(a), the object p2 issues an update and dmax is set

as dist(p′2,q). Search region SR is set as the circle with radius r=dmax and all the cells

intersecting this circle (shaded cells in the figure) are visited and result is updated.

Finally, if the query q moves to a new location q′ as shown in Fig. 2.3(b), the SEA-CNN

sets r = best dist + dist(q, q′) and computes the new kNN set of q by processing all the

cells that lie in the circle centered at q′ with radius r. The processed cells are shown

shaded.

Chapter 2. Related Work 19

(a) p2 issues update (b) q issues update

Figure 2.3: SEA-CNN

CPM

The best known algorithm for continuous kNN queries is CPM proposed by Mouratidis et

al. [MHP05]. It visits minimal set of cells during initial computation. CPM organizes the

cells into conceptual rectangles based on their proximity to q. Each rectangle is defined

by a direction and a level number. The direction is U, D, L or R (for up, down, left, and

right), and the level number indicates the number of rectangles between the rectangle

and q. Fig. 2.4(a) illustrates the conceptual partitioning of space for q around the cell

c(4,4).

CPM initializes a heap by inserting cq, the resident cell of q with key 0, and the zero

level rectangle for each direction DIR, with key mindist(DIR0, q) which is the minimum

possible distance between the query and the rectangle DIR0. Then it starts deheaping

the entries. If the deheaped entry is a cell, it examines all the objects inside it and

updates the q.kNN accordingly, the list of k nearest neighbors. If the deheaped entry

is a rectangle DIRlvl, CPM enheaps (1) each cell c ∈ DIRlvl with key mindist(c, q)

and (2) the next level rectangle DIRlvl+1 with key mindist(DIRlvl+1, q). The algorithm

terminates when the next entry in the heap (either a cell or a rectangle) has key greater

Chapter 2. Related Work 20

than or equal to the best dist (the distance of kth Nearest Neighbor from q). It can

be easily seen that the algorithm only processes the cells that intersect with the circle

centered at q with radius equal to best dist. This is the minimal set of cells to visit in

order to guarantee the correctness. In Fig. 2.4(a), the shaded cells in light color are those

that are visited by the algorithm.

Figure 2.4: CPM

In order to handle the updates efficiently, CPM needs to store (1) visit list that

contains the cells visited during NN search (in ascending order with respect to their

mindist from q) and (2) search heap H that contains the entries e (cells and rectangles)

which were enheaped but were not deheaped (for which mindist(e, q) ≥ best dist). The

visit list, in our running example of Fig. 2.4(a), contains the light shaded cells. The

search heap H contains the shaded cells in dark color plus the four boundary rectangles

U2, R1,D1 and L2. The influence region of query q are the cells c such that mindist(c, q) ≤
best dist. In other words, this is the set of cells that intersect the circle centered at q

with radius best dist. Only updates affecting these cells can influence the NN result.

CPM handles the updates as follows: If an object p enters into the influence region

(incoming update), CPM inserts it in q.kNN and deletes the kth nearest neighbor. If an

Chapter 2. Related Work 21

object p leaves the influence region (outgoing update), CPM removes p from q.kNN and

calls the re-computation module to compute nearest neighbor set. NN re-computation

algorithm first starts visiting the cells in visit list of q and then it continues with the

entries of search heap H in the same way as it does in NN initial computation. The

algorithm stops when the next entry in visit list or search heap H has mindist greater

than or equal to the distance of kth NN found so far. Note that NN re-computation

algorithm is same as initial computation algorithm except that it re-uses the previous

information. i.e., It does not need to calculate the mindist of cells in visit list and it

avoids enheap and deheap operations.

Consider the example of Fig. 2.4(b) where an object p4 moves to p′4 (to illustrate

clearly, we ignore the update issued by p2). Since this is an incoming update, the object

p4 is added to the q.kNN and the old kthNN p2 is deleted from q.kNN . Now take the

example where p2 moves to p′2 (now we ignore the update of p4). Since it is an outgoing

update, the object p′2 is removed from the q.kNN and the NN re-computation module is

invoked.

To handle multiple updates, CPM counts the number of incoming and outgoing up-

dates for each query q. If incoming updates are greater than outgoing updates, the new

nearest neighbors can be found among the incoming objects. Otherwise, re-computation

module is called. If query q changes its position, it is deleted from the query list and

added as a new query at new location. Then, it is computed from scratch.

2.1.3 kNN Queries in Spatial Networks

Due to the importance of spatial networks in real-life applications, many approaches have

been presented to answer spatial queries on spatial networks. In practice, objects can

usually only move on a pre-defined set of trajectories as specified by underlying network

(road, railway, river etc.). Thus, the importance measure is the network distance, i.e.

the length of the shortest trajectory connecting two objects, rather than their Euclidean

distance. Since the most popular application of such queries is finding k closest objects

Chapter 2. Related Work 22

on a road-network, such queries are also called kNN queries on road-network. Continuous

monitoring of kNN queries on road-networks has also been studied extensively.

Jensen et al. [JKPT03] formalize the problem of kNN search in road-networks and

present a system prototype for such queries. Papadias et al. [PZMT03] describe a frame-

work that integrates network and Euclidean information, and answers various spatial

queries including kNN and range queries. They index the data objects with an R-tree

and utilize connectivity and location information to guide the search. Their approach is

based on generating a search region for the query point that expands from the query. The

advantages of their approach are: 1) it offers a method that finds the exact distance in

networks, and 2) the architecture can support other spatial queries like closest pair and

e-join queries. Since the number of links and nodes that are retrieved and examined are

inversely proportional to cardinality ratio of entities and number of nodes in the network,

the main disadvantage of this approach is a dramatic degradation in performance when

the above cardinality ratio is less than 10% which is the usual case for real world scenarios

(real data sets representing the road network and different type on entities in the State

of California show that this cardinality ratio is usually between 0.04% and 3% [KS04a]).

Kolahdouzan et al. [KS04a] proposed a new approach called V N3 for NN queries in

spatial network databases which precalculates the Network Voronoi Polygons (NVPs) and

some network distances. V N3 is based on the properties of the network Voronoi diagrams.

The intuition is that the NVPs can directly be used to find the first nearest neighbor of

a query q. Subsequently, the adjacency information of NVPs can be utilized to provide

a candidate set for other nearest neighbors of q. Though their approach outperforms

INE [PZMT03], but for higher densities of objects it suffers from computational overhead

of precalculating NVPs.

A faster but approximate kNN results are retrieved in [KS04b] by an embedding

technique that approximates the network distance with computationally simple functions.

Given a user-specified trajectory, a path kNN query retrieves the kNNs at any point in

the trajectory. Assume that we know the k + 1 NNs at some point o in the query

Chapter 2. Related Work 23

trajectory, and that their network distance from o is disti, for i = 1, ..., k + 1. Let

δ be the smallest difference between the distances of two consecutive NNs, i.e; δ =

min1≤i≤k{disti+1 − disti}. Shahabi et al.[SKS02] propose a path NN algorithm based

on the observation that any point in the query trajectory within distance δ/2 from o has

exactly same NN set as o.

Cho and Chung [CC05] solve the problem by retrieving kNN sets of all network nodes

in the query path and uniting them with the data objects falling in the path. It can be

observed that the resulting set contains kNNs of any point in the query trajectory. Hu

et al. [HLX06] proposed a new approach that simplifies the network by replacing the

graph topology with a set of interconnected tree-based structures called SPIE’s. For

each SPIE, they build an index and the algorithm computes kNNs by searching SPIE on

a predetermined path to avoid costly network expansions.

Mouratidis et al. [MYPM06] address the continuous monitoring of kNN queries in

road-networks with arbitrary object and query moving patterns. Their approach also

supports the case when the edge weights of underlying network may change at any time.

They present two approaches. The first one maintains the query results by processing

only updates that may invalidate the current NN sets. The second method follows the

shared execution paradigm. More specifically, it groups together the queries that fall in

the path between two consecutive intersections in the networks, and produces the results

by monitoring the NN sets of these intersections.

2.1.4 Approximate kNN Queries

Most of the work on kNN queries assumes that the data is disk-resident and can be

scanned multiple times. However, such work is not suitable for processing data streams

that typically require a one-pass algorithms as the data is not stored on disk and it is

too large to fit in main memory. So, queries on data streams do not have access to the

entire data set and query answers are typically approximate.

Bern et al. [Ber93] presented a quadtree based algorithm to answer approximate NN

Chapter 2. Related Work 24

queries. The approximate answer guarantees that the distance from the query point to

the returned point is at most 12.d1/2 times the distance from the query point to any

other point in the data structure where d is the dimensionality. However, their approach

is limited to find only a single NN and they did not discuss the extension of their approach

to answer k nearest neighbors. Moreover, the relative error depends on the dimensionality

d.

Problem of (1 + ε)-approximate kNN queries was studied in [AM93]. Let q.distk

be the distance of kth actual nearest neighbor of q from q, an approximate (1 + ε)kNN

query is to find a set of objects (1 + ε)kNN that contains k objects so that q(1+ε).distk ≤
q.distk × (1+ ε) where q(1+ε).distk is the distance of kth object in (1+ ε)kNN from q. The

relative error ε is a user specified constant. The algorithm proposed in [AM93] required

exponential time in d and linear space. Follow-up studies [AMN+98, KOR98, LCGMW02]

improved its time/space requirements.

Koudas et al. [KOTZ04] were the first to propose a solution to approximate kNN

queries with absolute error bounds. Given a dataset P , a query point q and a user

specified value e, they find a set ekNN that contains k points in P such that for any

p′ ∈ ekNN there exists a point p ∈ kNN (the actual kNN set) such that dist(p′, q) ≤
(dist(p, q) + e). Their technique is called DISC (aDaptive Indexing on Stream by space-

filling Curve). They partition the space into a grid so that the maximum distance between

any two points in any cell is at most e. To avoid storing all the points arriving in system,

they keep only K ≥ k objects in each cell c and discard the rest. They prove that the

exact kNN search on these stored objects corresponds to a valid ekNN answer over the

original data set. DISC indexes the data points with a B-tree that uses a space-filling

curve mechanism to facilitate fast updates and query processing. The index can be

adjusted to either 1) optimize memory utilization to answer ekNN queries under certain

accuracy requirements or 2) achieve the best possible accuracy under a given memory

constraint. DISC can process both snapshot and continuous ekNN queries.

Chapter 2. Related Work 25

2.1.5 Distributed Processing of kNN Queries

In previous problem settings, a central server is solely responsible for answering spatial

queries assuming that the clients have no or very few computation and storage capability.

Clients send queries to server, the server computes the results and sends answer back to

the clients. However, database community has also investigated the option of utilizing

the computation and storage capabilities of clients. One of the main design principles

is to develop efficient mechanisms that utilize the computational power at mobile ob-

jects, leading to significant savings in terms of server load and/or messaging cost when

compared to solutions relying on central processing of location information at the server

Prabhakar et al. [PXK+02] proposed a method to continuously monitor range queries,

called Q-index. They monitor the static range queries over moving data objects. The

main idea is to send a safe region to each moving object with the guarantee that the result

of any query will not change unless the object leaves its safe region. More specifically,

each object p is assigned a circular or rectangular region such that p needs to issue a

location update only if it leaves its region otherwise it does not affect the results of any

query. They build R-tree index on queries instead of moving objects due to intensive

updates of moving objects. Each object probes the index to find the query it influences.

Cai et al. [CHC04] propose MQM, another range monitoring method. The workspace is

divided into rectangular sub-domains and each object is aware only of the range queries

intersecting its resident region which may consist of many sub-domains. Each object

reports location update only when it crosses the boundary of any of these queries. When

an object leaves its resident region, the server computes a new resident region and sends

it to the object. The server computes the resident region by using a binary partitioning

tree which maintains for each sub-division of the workspace the queries that intersect it.

The number of sub-domains that form an object’s resident region depends on how many

queries it can store and process.

In both of the above approaches, the messaging cost of mobile objects is reduced

because mobile objects report location updates only when the result of some query is

Chapter 2. Related Work 26

Figure 2.5: Example of Safe Regions

expected to be changed. Gediket al. [GL04] propose an approach called MobiEyes that

significantly reduces the server load and the messaging cost. The idea of MobiEyes is

similar to that proposed in [CHC04] but MobiEyes can answer the moving range queries

which latter fails to answer. More specifically, the work space is partitioned using a

grid and for each query a monitoring region is maintained which is the union of grid

cells the query can potentially intersect. Any object that falls in monitoring region of

a query receives the information about query position and velocity. The objects report

to the server when they enter or leave the predicted query region. Note that this way

the objects monitor their spatial relationships with queries locally. Whenever a query

moves out of its current cell or changes its velocity, it notifies the server of this change

and server relays such position change information to the appropriate subset of objects

through broadcasts.

Hu et al. [HXL05] presented first distributed approach for monitoring continuous

nearest neighbor queries. They also employ the idea of safe regions which is a rectangular

region that guarantees that the results of any query will not change as long as the object is

inside its safe region. Fig. 2.5 shows two queries where Q1 is a nearest neighbor query and

Q2 is a range query. The safe regions of two objects a and b are Sa and Sb, respectively,

shown shaded in the figure. The current results of both queries will not change if both

objects remain in their safe regions.

Initial results of query are calculated using best-first search (BFS) on R-tree. The

Chapter 2. Related Work 27

moving objects issue location updates to the server only when they leave their safe regions.

Server receives the location updates and incrementally finds the new results of affected

queries and computes the new safe regions for the appropriate objects. Consider the

example of Fig. 2.5, where a moves out of Sa to a new location a′, the result of Q1

becomes undecided as either of the two objects could be the nearest neighbor. To resolve

the ambiguity, the server needs to know the exact location of b so server asks object b

to send its current location and computes the new result of Q1. Safe regions of both the

objects a and b are also needed to be updated.

Mouratidis et al. [MPBT05] propose a threshold-based algorithm that aims to min-

imize the communication cost between server and the data objects. Their proposed

method can be used for multiple queries with unknown motion pattern and for any dis-

tance definition. The basic idea is, for each kNN query q the objects are categorized in

two sets. The objects that belong to the result are called inner objects and the remaining

objects are called outer objects. For each object p, a threshold is calculated so that as

long as the object is within the range defined by the threshold it does not change the

result of the query. For clear illustration, consider the example of Fig. 2.6 where the three

nearest neighbors p1, p2 and p3 are inner objects and p4, p5 and p6 are outer objects.

The thresholds values are t1, t2 and t3 which define the range for each object such that if

its distance from q lies within the range the result is guaranteed to be unchanged. Each

threshold is set to the middle of distances of two consecutive neighbors of the query.

More specifically, the distance range for p1 is [0, t1), for p2 is [t1, t2), for p3 is [t2, t3) and

for remaining objects p4,p5 and p6 is [t3,∞).

When an object moves out of the range, it reports to the server and the server updates

the results and may assign new threshold. Consider the example when p1 moves to p′1,

the order of the two NNs may be changed. Server asks for the location of p2 and if it

is closer to q than p1, the results are changed accordingly. Otherwise, there is no result

change and only the new threshold t1 is computed and objects p1 and p2 are informed of

this new threshold. Clearly, all other objects are not required to be involved during this

Chapter 2. Related Work 28

Figure 2.6: Threshold-Based Algorithm for Monitoring a 3-NN Query

update.

Now consider the case where p3 moves to p′3 and issues a location update. Any of

the outer objects may become the new 3rd nearest neighbor depending on their current

locations. Server broadcasts a request to all the outer objects to send their latest locations

and updates p6 as the new 3rd-NN. A new threshold t3 is computed based on the new

positions of 3rd-NN (p6) and 4th-NN (p3) and server broadcasts this threshold value to

all outer objects and p6.

2.2 Variants of Nearest Neighbor Queries

In this section, we briefly describe the popular variants of nearest neighbor queries.

More specifically, we present the related work on reverse nearest neighbor queries in

Section 2.2.1. Constrained nearest neighbor queries are discussed in Section 2.2.2. In

Section 2.2.3, we review the problem of aggregate nearest neighbor queries. Finally,

Section 2.2.4 presents all-nearest neighbor queries.

2.2.1 Reverse Nearest Neighbor Queries

The most popular variant of nearest neighbor query is reverse nearest neighbor queries

that focuses on the inverse relation among points. A reverse nearest neighbor (RNN)

Chapter 2. Related Work 29

query q is to find all the objects for which q is their nearest neighbor. A reverse nearest

neighbor query is formally defined below.

Definition: Given a set of objects P and a query object q, a reverse nearest neighbor

query is to find a set of objects RNN so that for any object p ∈ P and r ∈ RNN ,

dist(r, q) ≤ dist(r, p).

RNN set of a query q may be empty or may have one or more elements. Korn et

al. [KM00] defined the RNN queries and provided a large number of applications. For

example, a two-dimensional RNN query may ask the set of customers affected by the

opening of a new store outlet location in order to inform the relevant customers. This

query can also be used to identify the location which maximizes the number of potential

customers. Consider another example, an RNN query may be issued to find the stores

outlets that are affected by opening a new store outlet at some specific location. Note

that in first example, there are two different sets (stores and customers) involved in RNN

query whereas in second example there is only one set (stores). Korn et al. defined

two variants of RNN queries. A bichromatic query (the first example) is to find the

reverse nearest neighbors where the underlying data set consists of two different types of

objects. A monochramtic RNN query (the second exampe) is to find the reverse nearest

neighbors where the data set contains only one type of objects. The problem of reverse

nearest neighbors is extensively studied in past few years [SAA00, YL01, SRAA01, MZ02,

LNY03, SFT03, TPL04, XZKD05, YPMT05, XZ06, TYM06, ABK+06]. Below we briefly

describe the most popular and general algorithms only.

Korn and Muthukrishnan [KM00] answer RNN query by pre-calculating a circle of

each object p such that the nearest neighbor of p lies on the perimeter of the circle as

shown in Fig. 2.7. The MBR of all these circles are indexed by an R-tree called RNN-

tree. The problem of RNN query is reduced to a point location query on RNN-tree that

returns all the circle containing q. For examples, circle of a and e contain q so both

are the reverse nearest neighbors of q. Yang et al. [YL01] improved their method by

RdNN-tree. Similar to RNN-tree, a leaf node of the RdNN tree contains the circles of

Chapter 2. Related Work 30

Figure 2.7: The Objects a and e are the Reverse Nearest Neighbors of q

data points. The intermediate nodes contain the minimum bounding rectangles (MBR)

of underlying points along with the maximum distance from every point in the sub-tree

to its nearest neighbor. The problem with above mentioned techniques is that they rely

on pre-computation and cannot deal with efficient updates. In order to alleviate this

problem, Lin et. al [LNY03] introduced a method for bulk insertion in the RdNN-tree.

Stanoi et al. [SAA00] eliminate the need for pre-computing the nearest neighbors of all

data points by utilizing an interesting property of reverse nearest neighbor queries. Their

approach is called SAA hereafter. SAA utilizes the fact that for any two-dimensional

RNN query q, the number of reverse nearest neighbors cannot exceed six. The algorithm

divides the space around q in six regions of equal size S0 to S5 as shown in Fig. 2.8. They

observe that for a nearest neighbor object oi of q in region Si; either oi is the RNN of q

or there is no RNN in Si. For example, o1 is the nearest neighbor of q in region S0 but

it is not the RNN because o0 lies closer to it than q. Consequently, there is no RNN of

q in S0 and the algorithm does not need to consider other objects in this region. Based

on this interesting property, SAA answers RNN queries in two steps. In first step, for

each of the six regions a nearest neighbor is found. All these nearest neighbors form a

Chapter 2. Related Work 31

Figure 2.8: Illustration of SAA

candidate list. In second step, a NN query is issued for each object in the candidate list

and the algorithm discards the objects from candidate list for which q is not the nearest

neighbor.

SAA suffers with the curse of dimensionality. The number of regions to be searched for

candidate objects increases exponentially with the dimensionality. Singh et al. [SFT03]

propose a solution that performs better than SAA in high-dimensional space. Given a

system parameter K, their proposed approach first computes K nearest neighbors of q

by using conventional R-tree approach. These K objects form the candidate list. In the

second step, they eliminate the objects from candidate list that are closer to some other

object in candidate list than q. Finally, for each object p in candidate list, a boolean

range query with range dist(p, q) is issued. A boolean range query is different from a

conventional range query in the sense that it terminates as soon as the first object is

found. Clearly, the objects for which the boolean range query does not return any object

are the RNNs of q. However, depending on the value of K, their approach may miss

some reverse nearest neighbor that was not retrieved by K nearest neighbor search in

first step of the algorithm.

Chapter 2. Related Work 32

Tao et al. [TPL04] utilize the idea of perpendicular bisector to reduce the search space.

Let AB be a line segment joining two points A and B, a perpendicular bisector ⊥ (A,B)

of the two points A and B is perpendicular to the line AB and passes through the

midpoint M of AB. Consider the example of Fig. 2.9(a) where a perpendicular bisector

⊥ (p, q) between two points p and q is shown. This perpendicular bisector divides the

space into two half planes PLq and PLp where PLq contains q and PLp contains p. It

can be noted that there cannot be any RNN in the plane PLp other than p (p is closer

to all points in PLp than q). Based on this property, any MBR can be pruned that falls

completely in PLp. The MBR N1 is pruned in the example of Fig. 2.9(a). Even if some

MBR does not fall completely in a half plane PLp1 of an object p1, it can be pruned if it

lies entirely in the union of PLp1 and PLp2 where PLp2 is the half-plane of another object

p2. Fig. 2.9(b) shows the pruning of MBR N2 because it falls in the union of half-planes

PLp1 and PLp2. Their approach can also be extended to answer RkNN queries that is

to find all objects for which q is one of their k nearest neighbors.

(a) Pruning with one point (b) Pruning with two points

Figure 2.9: Half-Plane Pruning

To the best of our knowledge, the only algorithm that can answer continuous reverse

nearest neighbor queries is proposed by Xia et al. [XZ06]. They utilize the idea presented

in [SAA00]. Consider the example of Fig. 2.10 where a continuous reverse nearest neigh-

bor (CRNN) query q is shown along with six regions S0 to S5. The monitoring region

of q consists of two parts: pie-regions and circ-regions. A pie-region in a partition Si is

Chapter 2. Related Work 33

Figure 2.10: The Monitoring Region of a Continuous RNN Query

a pie centered at q having the nearest neighbor of q in Si on the perimeter. Let pi be

the nearest neighbor of q in a region Si, the circ-region is a circle centered at pi having

q or an object nearer to pi than q on its perimeter. The shadowed areas are the six

pie-regions and the circles are six circ-regions. Intuitively, the pie-regions monitor the

updates that will change the candidate list and may possibly change the results. The

updates in circ-regions can make a previous result a false positive or can make a previous

false positive an RNN. In other words, any update outside the monitoring region (the

union of pie-region and circ-regions) cannot affect the results of query and can be ignored.

2.2.2 Constrained Nearest Neighbor Queries

Constrained nearest neighbor queries [FSAA01] can be defined as nearest neighbor queries

that are constrained to a specified region. This type of queries is targeted towards the

users who are particularly interested in nearest neighbors in a region bounded by certain

spatial conditions, rather than in searching for nearest neighbors in the entire data space.

There are many applications of this variant of nearest neighbor queries. For example,

a user may wish to find 5 nearest gas stations in San Francisco from his location. Clearly,

the constrained region is the map of San Francisco. Similarly, a user may issue a query to

find 10 nearest neighbors from his location to the North. In this example, the constrained

Chapter 2. Related Work 34

Figure 2.11: Illustration of mindist(q, M, R) and minmaxdist(q, M, R)

region is the sub-space that lies to the North of the user. Recall, six constrained nearest

neighbor queries are issued to find reverse nearest neighbor of a query [SAA00].

Ferhatosmanoglu et al. [FSAA01] propose a solution based on the best-first traversal

of R-tree. Their proposed pruning criteria makes their technique optimal with respect

to the number of I/O accesses. The proximity comparisons in [RKV95], based on the

Euclidean distance metric use the notion of mindist(q,M) and minmaxdist(q,M) where

q is a query point and M is a minimum bounding rectangle (MBR). More specifically,

mindist(q,M) is the shortest distance from q to the given MBR M and minmaxdist(q,M)

is the minimum distance from q to the furthest point on the closest face of the MBR

M . Fig. 2.11 illustrates these definitions. These metrics ensure that for a minimum

bounding rectangle M , there is at least one data point within the distance range of

[mindist(q,M),minmaxdist(q,M)]. Consider a 1-NN query, an MBR M ′ and its child

entries can be pruned if mindist(q,M ′) > minmaxdist(q,M) because by the defini-

tion it is known that M contains at least one object that is closer than all objects in

M ′. Note that M ′ and its child can also be pruned if there exists a point p such that

dist(p, q) < mindist(q,M ′).

Ferhatosmanoglu et al. notice that the above definitions of mindist and minmaxdist

Chapter 2. Related Work 35

Figure 2.12: Computation of a Constrained Nearest Neighbor Query

used in [RKV95] cannot yield correct results so they re-define these distance metrics as

follows: Let R be the constrained region, M be a minimum bounding rectangle (MBR)

and q be a query point, mindist(q,M,R) is the minimum distance between q and the

part of MBR that lies in R. Consider the example of Fig. 2.11, mindist(q,M,R) is the

minimum distance of q to the shaded area of M . Note that mindist(q,M) can never be

greater than mindist(q,M,R) (mindist(q,M) ≤ mindist(q,M,R)) hence this definition

provides a tighter pruning condition. minmaxdist(q,M,R) is the distance between q

and the furthest point on the closest face of M that is fully contained in R. In Fig.2.11,

there is only one edge of M that completely lies inside R, so minmaxdist(q,M,R) is the

distance from q to the farthest point on this edge as shown. It can be seen that with the

previous definition of minmaxdist(q,M), it cannot be guaranteed that there is at least

one object that lies in the range [mindist(q,M),minmaxdist(q,M) because that point

may lie outside the region R. According to the new definition, the condition that the

edge should be fully contained in R guarantees that there is at least one object that lies

in R within the range [mindist(q,M),minmaxdist(q,M,R)].

The authors prove that their approach is optimal with respect to the number of I/O

accesses. Consider the example of Fig. 2.12, there algorithm accesses only the MBR E.

The MBRs A and B are pruned because they do not lie in the constrained region R. MBR

Chapter 2. Related Work 36

C is pruned because mindist(q, C,R) > minmaxdist(q,E,R). Since mindist(q,B,R) <

mindist(q,D,R), B is accessed first and an object p is found. The MBR D is pruned

because mindist(q,D,R) > dist(p, q). The algorithm terminates and reports p as the

answer.

To the best of our knowledge, there does not exist any previous work on continuous

monitoring of constrained nearest neighbor queries. In chapter 5, we propose an efficient

solution for the problem of continuous monitoring of constrained nearest neighbor queries.

2.2.3 Aggregate Nearest Neighbor Queries

Aggregate nearest neighbor (ANN) queries are also called group nearest neighbor queries

(GNN) so we will use these names interchangeably hereafter. An aggregate nearest

neighbor query retrieves the data points with the smallest sum of distances to all query

points in a query group Q. The formal definition is given below.

Definition: Given a set of points P and a group of queries Q, an aggregate k

nearest neighbor query is to find a set of points R that contains k objects such that

for any p ∈ (P − R) and any p′ ∈ R, dist(p′, Q) ≤ dist(p,Q) where for any object o,

dist(o,Q) =
∑

∀qi∈Q dist(o, qi).

As an example, consider few friends want to meet at some city so that the overall

distance travelled is minimized. In this case the friends form the query group and the

cities are data points. An aggregate nearest neighbor query will return the city so that the

total distance travelled by all of them is minimum. Aggregate nearest neighbor queries

can also be used for clustering and outlier detection. Papadias et al. [PSTM04] give

another interesting application of aggregate nearest neighbor queries. The operability and

speed of very large circuit depends on the relative distance between various components,

the aggregate nearest neighbor queries can be issued to find the abnormalities and guide

relocation of components [NO97].

Papadias et al. [PSTM04] present three algorithms to answer aggregate nearest neigh-

bor queries called multiple query method (MQM), single point method (SPM) and mini-

Chapter 2. Related Work 37

Figure 2.13: Node N1 can be pruned

mum bounding method (MBM). All these algorithms traverse R-tree to answer aggregate

nearest neighbor (ANN) queries. Since their experiments show that MBM outperforms

other two algorithms, below we briefly describe MBM.

To prune the search space, MBM uses a minimum bounding rectangle M that contains

all query points in Q. The algorithm traverses R-tree and prunes the nodes that cannot

contain any candidate point. They prune the nodes based on two observations. Let

M be the MBR of Q, and best dist be the distance of the best ANN found so far. A

node N can be pruned if mindist(N,M) ≥ best dist/n where mindist(N,M) is the

minimum distance between nodes N and M and n is the cardinality of Q. Consider the

example of Fig. 2.13, where the node N1 can be pruned because mindist(N1,M) = 3 >

(best dist/2 = 2.5). This pruning can also be applied on data points. Whenever a data

point p is retrieved, first its minimum distance from the MBR M is calculated and the

data point p can be pruned if mindist(p,Q) > best dist/n.

Second observation provides a tighter pruning bound. Any node N can be pruned

if
∑

∀qi∈Q mindist(N, qi) ≥ best dist where mindist(N, qi) is the minimum distance be-

tween the node N and a query point qi. In the example of Fig. 2.13, the node N2 is

pruned because mindist(N2, q1) + mindist(N2, q2) = 6 > best dist, .

Li et al. [LLHH05] propose two ellipse-based pruning methods for the aggregate near-

est neighbor queries. Yiu et al. [YMP05] solve the problem of aggregate nearest neighbors

on road-network. In all above mentioned queries, the aim is to minimize the total sum

of the distances to the query points from a point p. Mouratidis et al. [MHP05] introduce

two other variants of aggregate nearest neighbor queries. In first variant the aim is to

Chapter 2. Related Work 38

find a point p ∈ P with the smallest distance from any query point in Q. We call such

queries as minimum aggregate nearest neighbor queries and define them as follows.

Minimum ANN Queries: Given a set of data points P and a group of query

points Q, a minimum ANN query is to find a point p ∈ P such that for any other

point p′ ∈ P , mindist(p,Q) ≤ mindist(p′, Q) where for any object o, mindist(o,Q) =

min∀qi∈Qdist(o, qi).

Consider, for an example, that few friends need to buy one laptop and there are many

shops in the city that sells their required laptop. They decide that the person who has

some shop nearest to his home will go to buy the laptop. They issue a minimum ANN

query. Their houses can be considered as data points and the shops can be treated as

query points.

Another variant of ANN is to find the object p that has lowest maximum distance

from query points in Q. We name such queries MinMax ANN queries and define as

follows.

MinMax ANN Queries: Given a set of data points P and a group of query

points Q, a MinMax ANN query is to find a point p ∈ P such that for any other

point p′ ∈ P , maxdist(p,Q) ≤ maxdist(p′, Q) where for any object o, maxdist(o,Q) =

max∀qi∈Qdist(o, qi).

Consider as an example that there are many proposed locations to establish a fire

brigade unit in a small town. The mayor wants to establish the fire brigade unit at a

place so that if any of the houses in town catches fire, the distance to that house from fire

brigade unit is minimum compared to the other proposed location. Clearly, the target

is to find a location so that the distance of farthest house from the fire brigade unit is

minimized. A MinMax ANN query will serve the purpose. The houses in this case are

query points and proposed locations are data points.

Mouratidis et al. also propose the solution of these variants of aggregate nearest

neighbor queries that is very similar to CPM algorithm discussed in Section 2.1.2.

Chapter 2. Related Work 39

2.2.4 All-Nearest Neighbor Queries

Given two object sets A and B, an all-nearest neighbor (all-NN) query is to find, for each

object in A, a nearest neighbor from B. The formal definition is given below.

Definition: Given two object sets A and B, an all-NN query(A,B) is to find for

each object ai ∈ A an object bj ∈ B such that for all other objects bk ∈ B, dist(bj , ai) ≤
dist(bk, ai).

The result of an all-NN(A,B) query consists of | A | object pairs < ai, bi >, where

| A | is the cardinality of set A and bi is the nearest neighbor of ai in set B. Note that

all-NN queries are not commutative. More specifically, all-NN(A,B)�= all-NN(B,A).

These queries are common in several applications. For example, a query may be

issued to find the nearest hospital for each housing society of a city. This may be an im-

portant query for urban planning. Such queries may also be issued for resource allocation

problems. Several clustering and outlier detection algorithms also use all-NN queries for

efficiency. Similar to aggregate nearest neighbor queries, all-NN queries can also be used

to detect abnormalities in very large circuits [NO97].

Few spatial join methods have been proposed that can be used to answer all-NN

queries. Brinkhoff et al. [BKS93] proposed a join method where both data sets are

assumed to be indexed by R-tree. The algorithm returns the objects from the sets A and

B that intersect each other. The algorithm traverses both trees and prunes any entry

pair < EA, EB >, if the nodes EA and EB do not overlap. The intuition is that these

nodes cannot contain any object ai that intersects some object bj . Clearly, the problem

of spatial join is different from finding all-NN because even if two nodes do not overlap

they can still contain two points ai and bj so that bj is the NN of ai. However, this

spatial join technique can be slightly changed to answer closest-pair problem which has

been used to answer all-NN queries [HS98, CMTV00]. A closest-pair (CP) problem is to

find a pair < ai, bj > from two sets A and B so that there is no other pair < ax, by > such

that dist(ax, by) < dist(ai, bj). The above spatial join method can be used to answer CP

queries. However, the difference is that sometimes the nodes that do not overlap will

Chapter 2. Related Work 40

have to be visited. The algorithm traverses the two R-tree indexes and recursively visits

the entry pairs < EA, EB > that has minimum distance among all other entries. Bohm

et al. [BK04] propose a k-nearest neighbor join method which searches k NNs from set B

for each object in A. If k = 1, the problem is same as All-NN query. GORDER [Hon04]

is another method to process k nearest neighbor joins.

A straight forward approach to answer an all-NN query is to perfrom one NN query on

data set B for each object in A. In [BKSS90], the authors propose several improvements

to reduce CPU and I/O costs. Zhang et al. [ZPMT04] proposed two approaches for the

case when data set B is indexed. Multiple nearest neighbor (MNN) method is similar

to an index-nested-loop join operation. For each object in A, MNN applies a NN query

on the R-tree of data set B. The order in which the objects from A are processed is

important because if two objects that are near to each other are processed one after the

other, a large percentage of the pages of the R-tree will be available in LRU memory for

the processing of the second object. To achieve a better order, the data set A is sorted

by some space filling curve [Bia69] which reduces the I/O cost for MNN. However, CPU

cost of MNN is still very high. To reduce the CPU cost, they propose batched nearest

neighbor (BNN) method. BNN splits the points in A into n disjoint groups. Then,

the R-tree of B is traversed once only for each group which significantly reduces the

number of distance computations hence a lower CPU cost. They also presented a hash-

based method, but their experiment proved that BNN outperforms hash-based methods

in most of the experiments.

The latest work on all-NN queries is proposed by Chen and Patel [CP07]. They

improve the pruning bounds presented by Corral et al. [CMTV04]. Let M and N be two

minimum bounding rectangles (MBR) for data points in A and B, respectively. Corral

et al. define MINMINDIST (M,N) as the minimum distance between the two MBRs.

The intuition is that this is the minimum possible distance between any two points present

in the MBRs (one point in M and one in N). They define MAXMAXDIST (M,N)

as the maximum distance between two MBRs M and N . These distance metrics are

Chapter 2. Related Work 41

Figure 2.14: Different Pruning Metrics for All-NN Queries

illustrated in Fig. 2.14. The pruning condition is that an MBR N ′ and its child entries can

be pruned if MAXMAXDIST (M,N) < MINMINDIST (M,N ′) because for every

point ai ∈ M , there always exists a point in N that lies closer to ai than all points in N ′.

Chen and Patel note that the pruning metric MAXMAXDIST is unnecessarily con-

servative and can be improved. They define another pruning metric MINMAXMINDIST

which is termed NXNDIST in short and is shown in Fig. 2.14. Intuitively, NXNDIST (M,N)

is the maximum possible distance of any object ai ∈ M to its nearest neighbor bi ∈ N . An

MBR N ′ and its child entries can be pruned if NXNDIST (M,N) < MINMINDIST (M,N ′)

because by the definitions of MBR and NXNDIST , for every point ai ∈ M , there always

exists a point in N that lies closer to ai then all points in N ′. We omit the mathemat-

ical definition and calculation of NXNDIST due to its complexity and refer interested

readers to [CP07].

Chapter 3

Grid Access Methods

In this chapter, we present our grid access methods CircularTrip and ArcTrip. In Sec-

tion 3.1, we describe the motivation behind these access methods. We present Cir-

cularTrip in Section 3.2 and ArcTrip is described in Section 3.3. Finally, Section 3.4

summarizes the chapter.

3.1 Motivation

A grid based index evenly partitions the space into cells. The extent of each cell c on each

dimension is δ. c[i, j] indicates the cell at column i and row j and the lower-left corner cell

of the grid is c[0, 0]. Clearly, point p with location coordinates (p.x, p.y) falls into the cell

c[�p.x/δ	, �p.y/δ]. An example of grid based index is shown in Figure 3.1. Compared

with other complicated spatial indexes (e.g., R-tree) grid based index is simple and can

be maintained efficiently in the dynamic environment. The order in which cells of grid are

accessed is important for efficient monitoring of the NN queries hence a need is to develop

an access method which minimizes the number of cells accessed. The minimum number of

cells that are needed to be accessed to answer any kNN query q are only the cells that lie

or intersect the circle with center q and radius q.distk (the shaded cells in Fig. 3.2), where

q.distk is the distance of kthNN from q. Any algorithm that visits a cell that lies outside

the circle, visits a cell which cannot have any result object. In contrast, any algorithm

42

Chapter 3. Grid Access Methods 43

that does not access any cell that lies or intersects the circle may potentially miss a valid

result object. To the best of our knowledge, CPM [MHP05] provides the only method

that tries to minimize the number of cells accessed. CPM minimizes the number of cells

accessed in initial computation of any kNN query by employing a conceptual partitioning

of grid into rectangles and using a heap as discussed in details in Section 2.1.2. However,

CPM accesses unnecessary cells during handling of the updates. Moreover, it also needs

to store some data structure for each registered query q.

cq

c[0,0]

c[5,2]

Figure 3.1: Grid Index

p2

distk

q

p1

Figure 3.2: Minimal Set of Cells

CPM partitions the space into conceptual rectangles and the rectangles do not reflect

spatial proximity to any point. We note that circle centered at query point represents

the better proximity and we use this intuition to develop our grid access methods. We

design CircularTrip and ArcTrip that access the cells according to their proximity to q

and minimize the number of cells accessed not only in initial computation of results but

also during the updates handling of nearest neighbor queries.

CircularTrip: Given a radius r, CircularTrip returns all the cells that intersect the

circle of radius r with center at q.

ArcTrip: Given a radius r and an angle range 〈θ1, θ2〉, ArcTrip returns all the cells that

intersect the circle of radius r with center at q and lie between angle range 〈θ1, θ2〉.
In next chapters, we will show how these access methods can be used to continuously

monitor kNN queries and its variants (i.e., constrained NN queries). We show that by

Chapter 3. Grid Access Methods 44

using our access method, these queries can be answered while maintaining the following

properties

• The number of cells accessed to continuously monitor kNN query and its variants

is minimum. i.e; it does not visit any unnecessary cell even during the handling of

updates.

• As opposed to CPM, there is no need to store any additional data structure for

each query.

We also prove that our proposed access methods computes the mindist(c, q) exactly

the same number of times as the number of cells it returns. Below in Table 3.1 we

summarize the math notations used throughout this thesis.

Notation Definition
p a moving data point
q the query point

p.x, p.y, q.x, q.y the x-axis (y-axis) coordinate of p (q)
c, c[i, j] a cell (at column i and row j)

cq the cell containing q
c.i, c.j column (row) value of cell c

δ cell side length
dist(p, q) the distance between p and q
q.kNN the kNN of q
q.distk the distance between the k-th NN and q

mindist(c, q), maxdist(c, q) the minimum (maximum) distance between c
and q

Table 3.1: Math Notations

3.2 CircularTrip

In this section, we present and analyze our access method named CircularTrip. As

described earlier, given a radius r and a query location q, CircularTrip returns a set of

cells C so that all the cells in it intersect the circle of radius r with center at q. Formally,

Cr = {∀c | mindist(c, q) < r ≤ maxdist(c, q)}. Figure 3.3 shows an example where

CircularTrip returns all the shaded cells. In Section 3.2.1, for the sake of simplicity we

Chapter 3. Grid Access Methods 45

present CircularTrip for 2 dimensional grid structure then we will discuss its extension

to higher dimensions in Section 3.2.2.

3.2.1 CircularTrip on 2D Grid

To collect a round of cells, CircularTrip starts from the cell cstart that is intersected by

the given circle and lies left to cq. CircularTrip starts checking the cells along the circle

in direction Dcur which is initially set as up. In order to make a clock-wise trip, the

Dcur needs to be changed from up to right to down to left to up. The direction Dnext

always holds the next direction of Dcur.

cNc

cc

cstart

Figure 3.3: CircularTrip

Without loss of generality, consider cell c intersected by the circle which locates in the

upper-left quadrant as shown in Fig. 3.3. The key fact is that the next cell intersected

by the circle (i.e., the cell in which the arc is connected to one in c) is the adjacent cell

either above c (i.e., the cell cc that is next cell in direction Dcur) or right to c (i.e., the

cN that is next cell in direction Dnext). This is because the outgoing circle crosses either

the upper boundary or the right boundary of c. These two adjacent cells, cc and cN ,

are called candidate adjacent cells of c. To collect the next cell intersected by the circle,

CircularTrip only needs to examine one of the candidate adjacent cells (i.e; check its

mindist(c, q) with the given radius r).

Chapter 3. Grid Access Methods 46

Algorithm 1 presents the implementation of CircularTrip algorithm. Though any cell

can be selected as cstart but in our implementation the left most cell of the round (as

shown in Fig. 3.3) is selected. CircularTrip examines the cells clockwise along the given

circle until cstart is encountered again. When the currently being examined cell c is at

the maximum level in Dcur, the directions to find its candidate adjacent cells are updated

accordingly (i.e., line 10 – 12). The cells when the directions Dcur and Dnext are changed

are shown dark shaded in Fig. 3.3. Moreover, for some of the cells, Dcur and the Dnext

are shown with solid and hollow arrows, respectively.

Algorithm 1 CircularTrip(G, q, r)
Input: G: the grid index; q: query point; r: the radius;

Output: all the cells which intersect the circle with center q and radius r;

1: C := ∅; c := cstart := c[i, j] (i := �(q.x − r)/δ	, j := �q.y/δ);
2: Dcur := Up; /* clockwise fashion: Up → Right → Down → Left → Up */

3: Dnext := Right /* always holds next direction to Dcur */

4: repeat

5: insert c into C;

6: c′ := the adjacent cell to c in Dcur direction;

7: if (mindist(c′, q) ≥ r) /* if c′ does not intersect the circle */ then

8: c′ := the adjacent cell to c in Dnext direction;

9: c := c′;

10: if ((Dcur = (up or down) and c.j = �(q.y± r)/δ) OR (Dcur = (right or left) and

c.i = �(q.x ± r)/δ)) then

11: Dcur := Dnext;

12: Dnext := the next direction to Dcur;

13: until c = cstart

14: return C;

Lemma 3.2.1 The total cost of CircularTrip to collect a round C of cells is to compute

Chapter 3. Grid Access Methods 47

mindist(c, q) of |C| cells, where |C| is the number of cells in round C.

Proof Let c be the current cell being examined and cc and cN be the cells next to c in

direction Dcur and Dnext, respectively. In order to prove Lemma 3.2.1, it is sufficient to

prove that algorithm needs to compute mindist of only one of cc or cN from q in order

to confirm the next intersected cell.

N

c

Figure 3.4: Next Intersected Cell is Either cc or cN

As can be seen from Fig. 3.4, selection of Dcur and Dnext is made so that following

two conditions hold.

mindist(cN , q) < mindist(c, q) < mindist(cc, q) (3.1)

maxdist(cN , q) < maxdist(c, q) < maxdist(cc, q) (3.2)

As cell c intersects the circle, it satisfies that

mindist(c, q) < r ≤ maxdist(c, q) (3.3)

From equations 3.1, 3.2 and 3.3, it can be concluded that
mindist(cN , q) < r < maxdist(cc, q) (3.4)

CircularTrip computes mindist(cc, q), and if mindist(cc, q) < r, then cc intersects

the circle as can be inferred in conjunction with equation 3.4 that mindist(cc, q) < r <

maxdist(cc, q).

Chapter 3. Grid Access Methods 48

If mindist(cc, q) ≥ r, then it infers that maxdist(cN , q) ≥ r because mindist(cc, q) =

maxdist(cN , q). So CircularTrip can confirm cN as next intersected cell without com-

puting its distance from q because for cell cN in conjunction with equation 3.4, it is

confirmed that mindist(cN , q) < r ≤ maxdist(cN , q).

3.2.2 Extension to Higher Dimensions

CircularTrip can be immediately extended to a higher dimensional space. Take 3D space

for example. The only difference is now CircularTrip (Algorithm 1) returns the cells

intersected by the sphere of radius r centered at q. Given a query q(x, y, z), CircularTrip

is invoked on the plane z = �p.z/δ	 and its results is C. Then, for each pair of cells in

C intersected by the planes parallel to the plane y = �p.y/δ	, call CircularTrip with one

of them as cstart and half of their distance as radius to collect all the satisfied cells. It is

immediately verified that properties of CircularTrip in 2D are all retained.

c1 c3

c2
minadist(c3,q)

c4

Figure 3.5: Minimum Angular Distance

3.3 ArcTrip

First we define minadist(q, c, 〈θ1, θ2〉) that is minimum angular distance of a cell c from

q and then we will give formal definition of ArcTrip.

Minimum angular distance (minadist(q, c, 〈θ1, θ2〉)): The minimum angular dis-

tance between a cell c and the query point q is Euclidean distance from q to the nearest

Chapter 3. Grid Access Methods 49

boundary of the portion of c that lies between angle range 〈θ1, θ2〉. Fig. 3.5 clarifies the

definition where minadist values of c1 and c2 are same as their mindist whereas minadist

of c3 is the minimum distance of the shaded area of c3 from q. Any cell that completely

lies outside the angle range has minadist = ∞. i.e; minadist(q, c4, 〈θ1, θ2〉) = ∞.

Now we define ArcTrip(q, r, 〈θ1, θ2〉): given a radius r and an angle range 〈θ1, θ2〉,
ArcTrip returns every cell c that intersects the circle of radius r with center at q and has

minadist(q, c, 〈θ1, θ2〉) smaller than r. Consider the example of Fig. 3.6, ArcTrip(q,r, θ1, θ2)

returns all the shaded cells.

cstart

cspe
q

Dcur

Figure 3.6: ArcTrip

ArcTrip algorithm is similar to CircularTrip. The algorithm starts with the cell

cstart that intersects the circle and lies at angle θ2. The cell cstart is shown in Fig. 3.6.

Mathematically, cstart = c[i, j] where i = �(q.x+ r.Cosθ2)/δ	 and j = �q.y + r.Sinθ2/δ);
The direction Dcur is selected according to the quadrant in which cstart lies. Fig. 3.6,

shows Dcur for different quadrants with jumbo arrows. In the example of Fig. 3.6, Dcur

is set as down. The algorithm continues exactly same as CircularTrip and terminates as

soon as the next cell that intersects the circle lies outside the range 〈θ1, θ2〉.
Note from Fig. 3.6, if we start from cstart as mentioned above, we may miss a cell cspe

that should have been returned by ArcTrip. We prove next that this special cell cspe is

always adjacent to cstart in direction opposite to Dcur. To address this issue, we always

Chapter 3. Grid Access Methods 50

next

cur

opp

rem

Figure 3.7: The Special Cell cspe is Always the Adjacent Cell of c in Dopp

first check whether the cell cspe should be inserted in C or not depending on whether

it lies in angle range 〈θ1, θ2〉 or not. If it lies in the angle range we include it in result

otherwise we ignore it (i.e; line 4 – 5 of Algorithm 2).

Lemma 3.3.1 Let cstart be the starting cell of ArcTrip as defined earlier and Dopp be

the opposite direction of Dcur. The only cell ArcTrip can miss is cspe that is always the

adjacent cell to cstart in direction Dopp.

Proof It can be immediately verified that the cspe is one of the four cells adjacent to

cstart (in Fig. 3.7 cstart is shown as c). The cells in direction Dcur and Dnext will be

checked during execution of ArcTrip and will be inserted if intersect the circle. So cspe

can only be the cell either in direction Dopp or the remaining direction Drem.

Let copp and crem be the adjacent cells to cstart in direction Dopp and Drem, respec-

tively. It can be immediately verified that minadist(q, crem, 〈θ1, θ2〉) is always greater

than r (otherwise it would have been the starting cell cstart), so ArcTrip does not need

to check it. We are left only with copp and hence it is cspe.

Algorithm 2 presents the implementation of ArcTrip. Note that CircularTrip can be

considered a special case of ArcTrip where angle range is the whole space. More specifi-

cally we can say that CircularTrip(q, r) is exactly same as ArcTrip(q, r, 〈−180◦, 180◦〉).

Chapter 3. Grid Access Methods 51

3.4 Summary

In this chapter we have presented a novel access method CircularTrip which returns

the cells according to their proximity to q. We also presented ArcTrip which can be

considered a more general form of CircularTrip and we will show in next chapters how

these two access methods can be used to efficiently monitor kNN queries, constrained

NN queries and other variants.

Chapter 3. Grid Access Methods 52

Algorithm 2 ArcTrip(G, q, r, 〈θ1, θ2〉)
Input: G: the grid index; q: query point; r: the radius; 〈θ1, θ2〉: angle range

Output: all the cells that have minadist smaller than r and intersect the circle with

center q and radius r

1: c := cstart := c[i, j] (i := �(q.x + r.Cosθ2)/δ	, j := �q.y + r.Sinθ2/δ);C := ∅;

2: Dcur :=direction relevant to the quadrant of cstart /* (Quadrant:Direction)→ (1 :

right), (2 : up), (3 : left), (4 : down) */

3: Dnext := the next direction of Dcur

4: copp :=the adjacent cell to c in direction opposite to Dcur

5: if (minadist(copp, q, 〈θ1, θ2〉) < r ≤ maxdist(copp, q)) then insert copp into C

6: repeat

7: insert c into C;

8: c′ := the adjacent cell to c in Dcur direction;

9: if c′ does not intersect the circle then

10: c′ := the adjacent cell to c in Dnext direction;

11: c := c′;

12: if ((Dcur = (up or down) and c.j = �(q.y± r)/δ) OR (Dcur = (right or left) and

c.i = �(q.x ± r)/δ)) then

13: Dcur := Dnext;

14: Dnext := the next direction to Dcur;

15: until minadist(c′, q, 〈θ1, θ2〉) > r

16: return C;

Chapter 4

CircularTrip Based Continuous

kNN Algorithm

Different from a snapshot kNN query, continuous kNN queries are issued once and run

continuously to generate results in real-time along with the updates of the underlying

datasets. Therefore, it is crucial to develop in-memory techniques to continuously process

kNN queries due to frequent location updates of data points and query points. In many

applications [XMA05, YPK05, MHP05], it is also crucial to support the processing of

a number of continuous kNN queries simultaneously; consequently, scalability is a key

issue.

To address the scalability, we focus on two issues: (1) minimization of computation

costs; and (2) minimization of the memory requirements. We study continuous kNN

queries against the data points that move around in an arbitrary way. Similar to the

previous work [XMA05, YPK05, MHP05], we assume that the dataset is indexed by

an in-memory grid index. Based on CircularTrip presented in Chapter 3 , we present

an efficient algorithm to continuously monitor kNN queries.Compared with the most

advanced algorithm CPM [MHP05], our CircularTrip-based continuous kNN algorithm

has the following advantages.

1. time efficient: although both algorithms access the minimum number of cells for

53

Chapter 4. CircularTrip Based Continuous kNN Algorithm 54

initial computation, minimum cells are accessed during continuous monitoring in

our algorithm.

2. space efficient: our algorithm does not employ any book-keeping information used

in CPM (i.e., visit list and search heap for each query).

Our experimental study demonstrates that CircularTrip-based continuous kNN algo-

rithm is 2 to 4 times faster than CPM, while its memory usage is only 50% to 85% of

CPM.

4.1 Motivations

As discussed in Section 2.1.2, CPM is the best known approach for continuous monitor-

ing of kNN queries. Though CPM has performance advantages compared to previous

continuous kNN algorithms, it has some serious shortcomings described below.

Space Requirement To update the results of any query q, CPM needs to maintain

the extra book-keeping information (i.e., visit list and heap).

Recomputation When one point p ∈ q.kNN moves farther from q than q.distk, CPM

has to recompute all the kNNs to reflect the update. To do that, CPM examines the cells

recorded in the book-keeping information corresponding to q (first processes the visit list

and then the heap) till the new kNNs are found. Though, those cells form the minimal

set of cells required to be accessed during the initial kNN computation, it is not necessary

to access all of them in the update computation. For example, in the case where only the

kth NN of q moves farther from q, we do not need to look into the previously accessed

cells maintained in the visit list as the new kth NN must lie in the cells intersecting the

circle with center q and radius q.distk only. Therefore, CPM is not optimal during the

continuous monitoring.

Chapter 4. CircularTrip Based Continuous kNN Algorithm 55

Query updates Once CPM receives the location update from a query q, q and all of its

related information (i.e., q.kNN and the book-keeping information) is deleted and then

a new continuous query is issued on the new location and computed from the scratch.

Obviously, such computation does not utilize the previous computed information of q.

We show that by employing CircularTrip, our kNN algorithm guarantees that the

minimum number of cells are accessed during computation of initial results and continu-

ous monitoring. CircularTrip based algorithm overcomes the problems described above.

4.2 System Overview and Data Structure

Suppose that P is a set of 2-dimensional moving data points. Each data point p ∈ P

is represented by (p.x, p.y). The data points change their location in an unpredictable

fashion and frequently. At each timestamp, the data point p which moves from ppre to

pcur, issues a location update as 〈p.id, ppre, pcur〉. Updates of query points are recorded

similarly.

Figure 4.1 illustrates our continuous kNN query monitoring system. There are four

components in the system, query table, kNN computation module, monitoring computa-

tion module, and CircularTrip module. Once a new continuous kNN query arrives, it is

first registered in the query table. Then, kNN computation module retrieves the initial

kNN results. When either data points or query points move, monitoring computation

module receives the location updates and reports the new kNN results to the correspond-

ing queries. CircularTrip module is invoked by both the kNN computation module and

monitoring computation module, which guarantees the minimum number of cells are ac-

cessed during all the computation. By accessing or visiting a cell, we mean that all the

objects lying inside it are retrieved and their distances from q are calculated. We use

another term encountering a cell by which we mean to calculate the mindist of that cell

from q. Clearly, the cost of encountering a cell is negligible as compared to accessing a

cell.

Each cell c contains an object list Pc that contains all the objects lying in c. Influence

Chapter 4. CircularTrip Based Continuous kNN Algorithm 56

Grid Based
Index

kNN
Computation

Module

Monitoring
Computation

Module

Query
Table

Continuous
kNN

Queries

Location
Updates

Query
Results

kNN
Query

Circular
-Trip

Module

Cell

p... ...
Object List

q... ...
Influence List

Figure 4.1: System Overview and Data Structure

list Qc of a cell c contains every query q such that mindist(c, q) ≤ q.distk. Intuitively,

influence list of cell c records all the queries q affected by this cell c. Both the object lists

and influence lists are implemented as hash tables so that insertion, deletion or retrieval

of any element takes constant time.

As shown in Algorithm 3, our CircularTrip-based continuous kNN algorithm consists

of two phases. In phase 1, the initial results of each new continuous kNN query are

computed. Then, the results are incrementally updated by continuous monitoring module

at each time stamp upon the moves of query points and data points. Both phases take

advantages of CircularTrip algorithm. Phase 1 and phase 2 are presented in Section 4.3

and Section 4.4, respectively.

Algorithm 3 Continuous kNN Algorithm
Description:

phase 1:initial kNN computation (Algorithm 4)

Retrieve the initial kNN results for each new query.

phase 2: continuous monitoring (Algorithm 5) (at each time stamp)

receive updates

update the results

4.3 Initial kNN Computation

The basic idea of kNN computation algorithm is to access the cells around query point

q round by round. A round Ci contains all the cells that intersect the circle of radius

Chapter 4. CircularTrip Based Continuous kNN Algorithm 57

ri = r0 + iδ centered at q. To collect a round Ci, we call our CircularTrip algorithm with

radius set as ri. Formally, Ci = {∀c | mindist(c, q) < ri ≤ maxdist(c, q)}. r0 is the the

first circle’s radius. Obviously, r0 is at most maxdist(cq, q); otherwise cell cq will not be

accessed by the algorithm. Examples of rounds are shown as the shaded cells in Fig. 4.2.

In each round, the algorithm accesses the cells in ascending order of their mindist(c, q).

The algorithm terminates when the next cell to be accessed has mindist(c, q) ≥ q.distk.

q

Round 1 Round 2

r0

p1

p2

q

p1

p2

distk

Round 3

q

p1

p2

r0+
distk

Figure 4.2: A Nearest Neighbor Query

The detailed kNN computation algorithm is shown in Algorithm 4. In the algorithm,

the cells c in a round are maintained in a heap H so that they are accessed in ascending

order of their mindist(c, q). Initially, all cells of round C0 are inserted into a heap. In

each iteration, if the top entry eH of the heap with mindist(eH , q) not smaller than

q.distk (= ∞, initially), it is immediately known that kNN have been found and the

computation terminates. Otherwise, dist(p, q) is computed for every data point p ∈ eH

and q.kNN and q.distk are updated if dist(p, q) is smaller than q.distk. After all the cells

in the heap are processed, the current radius r is checked with q.distk. If r is smaller than

q.distk, all the cells in the next round with radius as min{r + δ, q.distk} are collected.

Among them, the cells which were not processed before (i.e., q is not in their influence

list) are inserted into the heap and examined in the same way till kNN are found.

Lemma 4.3.1 In a grid consisting of cells with size δ × δ, given a cell c and a query

point q where c does not contain q, δ ≤ maxdist(c, q) − mindist(c, q) ≤ √
2δ.

Chapter 4. CircularTrip Based Continuous kNN Algorithm 58

According to Lemma 4.3.1, a cell is intersected by at most two consecutive circles

(e.g., the dark shaded cells in Fig. 4.2). Although these cells are encountered twice

during kNN computation (i.e., these cells appear in two rounds), they are accessed once

only. This is because for a query q (1) our kNN algorithm only accesses the cells where

q is not in their influence lists; and (2) q will be inserted into its influence list after a cell

is accessed. In fact, Theorem 4.3.2 proves the upper bound of the total number of times

the cells are encountered in our algorithm.

Theorem 4.3.2 In kNN algorithm, the total number of times the cells are encountered

is at most 1.27 times of the number cells in the minimum set of cells.

Proof Let R be q.distk/δ and |Ci| be the number of cells in round Ci. The total number

of times the cells are encountered is at most 4R2 and the number of cells in the minimum

set of cells is at least πR2. As a result, the ratio of them is at most 4R2/πR2 = 1.27.

Example Fig. 4.2 illustrates a concrete example of an NN query. As no data point is

found in the first round, the algorithm continues to process the cells in the next round

with radius (r0 + δ). In this round, p1 is found and q.distk is updated to be dist(p1, q).

Then, a third round with radius q.distk (as dist(p1, q) < r0 +2δ) is processed because the

previous radius is smaller than q.distk. In round 3, q.kNN and q.distk are updated after

p2 is found. Computation stops when q.distk (= dist(p2, q)) is less than mindist(eH , q)

of the top entry eH .

4.4 Continuous Monitoring

Recall that at each time stamp, data point p which moves from ppre to pcur issues an

update 〈p.id, ppre, pcur〉. The updates of query points are recorded similarly. Upon these

location updates, continuous monitoring module identifies the affected queries and incre-

Chapter 4. CircularTrip Based Continuous kNN Algorithm 59

Algorithm 4 ComputeNN(G, q, k)
Input: G: the grid index; q: query point; k: an integer;

Output: the kNN of q;

1: q.distk := ∞; q.kNN := ∅; H := ∅; r := r0 := maxdist(cq, q);

2: insert the cells returned by CircularTrip(G, q, r) into H;

3: while H �= ∅ and mindist(eH , q) < q.distk do

4: insert q into the influence list of eH ;

5: ∀p ∈ eH , compute dist(p, q) and update q.distk and q.kNN ;

6: remove eH from H;

7: if H = ∅ and r < q.distk then

8: r := min{r + δ, q.distk};
9: cells C := CircularTrip(G, q, r);

10: ∀c ∈ C, insert c into H if q �∈ the influence list of c;

11: return q.kNN ;

mentally updates their results. The goal of this phase is to maximize sharing previous

computation and results.

4.4.1 Handling Data Point Updates

Regarding a query q, the update of data point p can be classified into 3 categories:

• internal update: dist(ppre, q) ≤ q.distk and dist(pcur, q) ≤ q.distk; Clearly, only

the order of q.kNN is affected so we update the order of data points in q.kNN

accordingly.

• incoming update: dist(ppre, q) > q.distk and dist(pcur, q) ≤ q.distk; p may have

become a result so we insert it in q.kNN .

• outgoing update: dist(ppre, q) ≤ q.distk and dist(pcur, q) > q.distk; p is deleted from

q.kNN because it is no more a part of the answer set.

Chapter 4. CircularTrip Based Continuous kNN Algorithm 60

It is immediately verified that only the queries recorded in the influence lists of cell

cppre or cell cpcur may be affected by the update 〈p.id, ppre, pcur〉, where cppre (cpcur) is

the cell containing ppre (pcur). Therefore, after receiving an update 〈p.id, ppre, pcur〉,
continuous monitoring module checks these queries q only and takes the necessary action

as described above. Note that a new point registered at system can be treated as an object

update assuming ppre be at infinite distance from q. Similarly, a point deletion can be

considered as an object moved to a location at infinite distance from q (dist(pcur, q) = ∞).

After all the updates are handled as described above, we update the results of each

affected query q as follows.

• Case 1: if | q.kNN |≥ k. We keep only k closest points to q and delete all others.

Then, q.distk is updated accordingly. After updating the results, q.distk may become

smaller. So, we have to remove q from the influence lists of cells c whose mindist(c, q) is

greater than current q.distk. The update of influence lists is discussed in section 4.4.4.

• Case 2: if | q.kNN |< k. The recomputation is similar to initial kNN computation

but we only need to find the new (k− | q.kNN |) nearest neighbors of q instead of all

kNNs. The only difference is that, we set the radius of the first circle r0 as q.distk and

then initialize q.distk to be ∞. Similar to Algorithm 4, we repeatedly collect cells round

by round and examine them in ascending order of their minimum distance to q till all

kNNs are found. When accessing a cell, we only consider data points p which do not

already belong to q.kNN .

Example Fig. 4.3 shows an example where q is an NN query and data point p2 moves

to p′2. The first update shown in Fig. 4.3(a) is outgoing update as q’s NN p2 moves far

away. To handle it, cells of round with radius q.distk are collected and accessed (i.e.,

shaded cells). Since p1 is found in this round, a second round with radius dist(p1, q)

is processed (i.e., striped cells). Then, computation ends as no new NN is found. To

handle the second update of Fig. 4.3(b), as p′2 is closer to q than its NN p1, we simply

replace q.kNN with p′2 and remove q from the influence lists of cells c that lie in the

bold rectangle but whose mindist(c, q) is greater than q.distk. The details of updating

Chapter 4. CircularTrip Based Continuous kNN Algorithm 61

q

distk

p1

p2

p'2

outgoing update

(a) Handling an outgoing update p′
1

q

distk
p1

p'2

p2

incoming update

(b) Handling an incoming update

Figure 4.3: Handling Data Point Updates

influence list will be presented in Section 4.4.4

4.4.2 Handling Query Updates

To handle update 〈q.id, qpre, qcur〉 of query q, the straight forward way is to delete

its results and all of its related information (e.g., remove q from the influence lists

of related cells), and then issue a new query on location qcur and compute it from

scratch. Clearly, this update computation does not utilize the previous computed in-

formation. Let qpre.distk (qcur.distk) be the distance of kth NN from q when q at qpre

(qcur). The kNN results of q at location qpre and qcur share nothing if and only if

dist(qpre, qcur) > qpre.distk + qcur.distk. Without loss of generality, we assume dataset

follows uniform distribution. Consequently, qpre.distk = qcur.distk. Note that for other

distributions, the similar formula can be derived by density functions. Therefore, in order

to maximize sharing previous computed results, we delete the previous query and issue

a new query only when query point moves farther than 2qpre.distk.

Handling single query update is described as follows.

• Case 1: dist(qpre, qcur) ≥ 2qpre.distk. Query q and its kNN result are discarded first.

Chapter 4. CircularTrip Based Continuous kNN Algorithm 62

Then, we remove q from the influence lists of cells which lie in the rectangle containing

the circle with center at qpre and radius as qpre.distk. After that, a new continuous kNN

query is issued on qcur.

• Case 2: dist(qpre, qcur) < 2qpre.distk. We first calculate dist(p, qcur) for every kNN

p of qpre and update qcur.distk as the maximum of them. i.e., qcur.distk = max∀p∈q.kNN

dist(p, qcur). Then, recompute kNN for qcur in the similar way to the initial kNN compu-

tation. The first circle’s radius r0 is max{max(cq, q), qpre.distk−dist(qpre, qcur)}. During

computation, the data points in qpre.kNN are skipped as they have been computed al-

ready. Clearly, the cells with maxdist(c, qpre) ≤ qpre.distk are also skipped as all data

points in these cells belong to qpre.kNN .

q
distk

p1

p2

q'

r = distk- dist(q’, q)

r

Round 1

(a) p1 is found in first round

q
distk

p1

p2

q'r

r = dist(p1, q’)

Round 2

(b) p1 is confirmed as NN

Figure 4.4: Handling Query Updates

Example In Fig. 4.4, an NN query q moves to q′. To handle this update, we first

update q.kNN and q.distk by calculating the distance between q′ and its current NN

p2. Then, we examine the cells intersected by the circle with center at q′ and radius

(qpre.distk − dist(q′, q)). Note that only the shaded cells of Fig. 4.4(a) in this round are

accessed as others (i.e., striped cells) satisfy maxdist(c, qpre) ≤ qpre.distk. Since p1 is

found, the radius of next round is dist(p1, q
′). Similarly, in round 2 only the shaded cells

Chapter 4. CircularTrip Based Continuous kNN Algorithm 63

of Fig. 4.4(b) are processed. Finally, influence lists of related cells (i.e., cells in the bold

square and with mindist(c, qcur) > qcur.distk) are updated (i.e, remove q from them).

4.4.3 Complete Update Handling Module

In section 4.4.1 we described how to update the results on receiving data point updates

and we discussed handling the updates of queries in section 4.4.2. Now we describe how

to deal with data point and query point updates simultaneously at each time stamp. Our

update handling module consists of two phases.

•receive updates: First we receive the query point updates and then we handle data

point updates. For each query update, if dist(qpre, qcur) ≥ 2qpre.distk, we delete q and

insert a new query in system. Otherwise, we mark the query as moving and calcu-

late dist(p, qcur) for every kNN p of qpre and temporarily set qcur.distk as (qpre.distk +

dist(qpre, qcur).

After handling query updates, we receive point updates. For each query q affected

by a point update, we insert (delete) p in (from) q.kNN if it is an incoming (outgoing)

update. Only the order of q.kNN is changed in case of internal update.

•update results: We update the results of all affected queries in this phase. The new

queries are updated by calling initial computation module described in Algorithm 4. The

affected queries that were not moved are handled as described in section 4.4.1. The

queries marked as moving are updated by first setting the qcur.distk equal to the distance

of kth data point in q.kNN (set as ∞ if | q.kNN |< k). The update algorithm is similar

to initial kNN algorithm and the radius of first round r0 is max{max(cq, q), (qpre.distk −
dist(qpre, qcur)}. During computation, the data points that are already in q.kNN are

ignored. Clearly, the cells with maxdist(c, qpre) ≤ qpre.distk are also skipped as all the

data points in these cells belong to q.kNN . The algorithm terminates when the next cell

c to be accessed has mindist(c, q) ≥ qcur.distk.

Example Fig. 4.5 presents a concrete example of our complete update handling module.

As shown in Fig. 4.5(a), the data points p2 and p3 move to p′2 and p′3, respectively. The

Chapter 4. CircularTrip Based Continuous kNN Algorithm 64

qdistk

p1

p2

q'r

p'2

p'3

p3

(a) q, p2 and p3 issue location updates

q
distk

p1

p2

p3

r = distk- dist(q’, q)

r q'

(b) p1 is found as new NN

Figure 4.5: Handling Multiple Updates

query q also issues location update at q′. Our update handling module first considers

the query update and marks it as moving. q.kNN is updated by calculating dist(p2, q
′).

Then q.distk is temporarily set as (dist(q, q′) + dist(q, p2). Now algorithm considers the

data point updates and p2 is deleted from q.kNN as it is an outgoing update. The data

point p3 is inserted in q.kNN because it is an incoming update (dist(q′, p3) < (q.distk =

dist(q, q′) + dist(q, p2)). Now the result of q is updated by calling first round with r

as shown in Fig. 4.5(b). The data point p1 is found and to confirm it as answer a last

round with radius set as dist(q′, p1) is called. The algorithm accesses shaded cells and

the striped cells are ignored because those are fully contained in the dotted circle. i.e;

for each striped cell c, maxdist(c, q) ≤ distk).

Algorithm 5 summarizes the complete update handling module.

4.4.4 Updating the Influence List

After updating the results, we may have to remove q from the influence lists of cells c

whose mindist(c, q) is greater than current q.distk. Consider the running example of

Fig. 4.6(a) where after the update of results, both the shaded and striped cells contain q

Chapter 4. CircularTrip Based Continuous kNN Algorithm 65

Algorithm 5 Handling Multiple Updates
Description:

Step 1: receive updates

1: for each query update 〈q.id, qpre, qcur〉 do

2: case 1: insert q into Qnew if dist(qpre, qcur) ≥ 2qpre.distk;

3: case 2: insert q into Qmoving if dist(qpre, qcur) < 2qpre.distk;

4: for each q (�∈ Qnew) affected by each data point update 〈p.id, ppre, pcur〉 do

5: insert q into Qupdate;

6: case 1: insert p into q.kNN if incoming update;

7: case 2: remove p from q.kNN if outgoing update;

Step 2: update results

8: for each query q ∈ Qupdate \ Qmoving do

9: if |q.kNN | ≥ k then

10: update q as Case 1 in Section 4.4.1;

11: else update q as Case 2 in Section 4.4.1;

12: update query q ∈ Qnew (q ∈ Qmoving) as Case 1 (Case 2) in Section 4.4.2;

in their influence lists whereas only the shaded cells can actually influence the query. So

we need to remove q from the influence lists of all striped cells.

A straightforward approach to update influence lists is to first identify a square that

contains all the shaded and striped cells. Then, we could check mindist(c, q) of all the

cells c in the square and could delete the cells for which mindist(c, q) > distk. However,

this approach requires computing mindist of many cells which can be avoided. We use

CircularTrip to efficiently update the influence lists as follows: First we call CircularTrip

with radius r = q′.distk and mark all the returned cells as shown shaded in Fig. 4.6(b).

Then, we identify a square that contains all the shaded and striped cells. The side length

of the square can be at most max{qpre.distk, 2 × (dist(qpre, qcur) + qcur.distk)}. Now we

remove q from the cells contained in the square that lie outside the marked circle. To

do this, for each row of the square, we start processing the cells from the left most cell

Chapter 4. CircularTrip Based Continuous kNN Algorithm 66

r q'

q

r = q'.distk

(a) before update

r q'

q

(b) after update

Figure 4.6: Updating Influence Region

towards the right end cell of the square. For each cell c, we delete q from the influence

list. We stop if a cell c is marked or if it resides outside of the square. If the cell c is

marked, we continue deleting q from the influence lists from the cells in the same row

from right end to left end unless some marked cell is found. The update of influence

lists completes when all rows are processed in the way described above. Note that this

approach requires computing mindist of only the shaded cells of Fig. 4.6(b).s

4.5 Performance Analysis

First we present the proof that our algorithm answers the kNN queries by accessing

minimum number of cells and then we compare it with CPM.

Proof of optimality and correctness: Given a query q, in our continuous kNN

algorithm, the minimal set of cells are all accessed and only these cells are accessed.1.

Proof Let qold.distk be the distance of kth nearest neighbor from q before the update

and qnew.distk be the distance of kth nearest neighbor after the result has been updated.
1The case when query q reports location update and is treated as new query is exception to this claim.

Chapter 4. CircularTrip Based Continuous kNN Algorithm 67

For the case, when qnew.distk < qold.distk, our algorithm updates the results without

accessing any cell (i.e., in case when number of incoming updates is greater than outgoing

updates). So we only consider the case when qnew.distk ≥ qold.distk.

First we identify the minimal set of cells C that has to be accessed in order to

guarantee the correctness then we will show that our algorithm does not access any cell

c′ /∈ C.

Corollary 4.5.1 Only the cells c that has maxdist(c, q) > qold.distk can contain the new

nearest neighbor.

Corollary 4.5.2 Only the cells c that has mindist(c, q) ≤ qnew.distk can contain the

new nearest neighbor.

From corollaries 4.5.1 and 4.5.2, it can be inferred that the minimal set of cells is C,

such that for all c ∈ C, maxdist(c, q) > qold.distk and mindist(c, q) ≤ qnew.distk.

First we show that our algorithm does not access any unnecessary cell. To update the

results, our algorithm starts by calling CircularTrip with radius qold.distk. As the radius

of subsequent calls to CircularTrip is always greater than qold.distk, it can be immediately

verified that no cell c can be returned such that maxdist(c, q) < qold.distk (satisfies

corollary 4.5.1). Moreover, our algorithm accesses cells in strictly ascending order and

stops as soon the next cell has mindist(c, q) ≥ qnew.distk (satisfies corollary 4.5.2).

Now as a proof of correctness we show that our algorithm accesses all the cells in min-

imal set of cells C. The algorithm starts by calling CircularTrip with radius qold.distk

and the cells c that have maxdist(c, q) ≥ qold.distk > mindist(c, q) are retrieved. Al-

gorithm iteratively calls CircularTrip with radius increased by δ unless kNNs are found.

According to lemma 4.3.1, this increment of δ guarantees that no cell is missed.

Note that initial computation can be considered a special case of update handling

where qold.distk is zero.

As compared with CPM, our CircularTrip-based algorithm has following advantages.

Chapter 4. CircularTrip Based Continuous kNN Algorithm 68

• CPM accesses minimum possible number of cells only during initial computation of

a query but our algorithm accesses minimal set of cells throughout the life of query.

To illustrate that CPM accesses unnecessary cells during update handling, we present

a concrete example in Fig. 4.7, where update handling of a k(= 4)NN query q is shown.

Fig. 4.7(a) shows the initial computation of q where the result is q.kNN = {p1, p2, p3, p4}.
The light-shaded cells are accessed during this computation and form the visit list. The

dark-shaded cells and four rectangles (L5, U6, R6 and D6) are the entries in heap H after

the initial results have been computed by CPM..

p1
p2

p3p5 p4

5

6

6

6

(a) A k(= 4)-NN query evaluated by CPM

p1
p2

p3

6

6

p5

7

6

(b) p4 is deleted, {p1, p2, p3, p5} is updated result

Figure 4.7: An Example of Updates Handling by CPM

Consider an update deletes the object p4, CPM cannot update the result by starting

from the heap H because the new result p5 is in visit list (a cell that was deheaped from

H). In order to update the results, CPM first needs to access all the cells in visit list and

then it continues with heap H. It stops when the next entry (cell or rectangle) in heap has

mindist ≥ dist(p5, q). Fig. 4.7(b) shows the update of the results. During this update,

CPM accesses light-shaded cells of Fig. 4.7(b). The heap H contains the dark-shaded

cells and four rectangles (L6, U6, R7 and D6) after the result has been updated.

Chapter 4. CircularTrip Based Continuous kNN Algorithm 69

Fig. 4.8 shows the update handling of the same query by our CircularTrip based algo-

rithm. When p4 is deleted, our algorithm calls CircularTrip with radius set as dist(p4, q)

as shown by dotted circle in Fig. 4.8(b). The new result p5 is found and the algorithm

calls CircularTrip with radius dist(p5, q) just to confirm that it does not miss any result.

The algorithm accesses only the shaded cells of Fig. 4.8(b) and it can be seen that num-

ber of cells accessed by our algorithm is much smaller than that of CPM (compare the

light-shaded cells of Fig. 4.8(b) and Fig. 4.7(b).

p1
p2

p3p5 p4

(a) A k(= 4)-NN query

p1
p2

p3
p5

(b) p4 is deleted from q.kNN and p5 is added

Figure 4.8: An Example of Updates Handling by CircularTrip-based Algorithm

• Our algorithm does not need to store any book-keeping information for efficient

updates as opposed to CPM which stores visit list and heap.

CPM stores visit list and search heap H to use them during updates. The size of visit

list and heap H can be approximated to be (4 + �2 × q.distk/δ�2). (i.e., four rectangles

+ cells in rectangle of side length 2 × q.distk).

The size of both the visit list and search heap H never decreases unless q reports

location update in which case both the visit list and heap H are deleted. Even when the

influence region is shrunk, the size of visit list and heap H remains unchanged. On the

other hand, when the influence region expands the visit list and heap H also expand.

Chapter 4. CircularTrip Based Continuous kNN Algorithm 70

• CPM does not utilize the previously computed information when a query reports

location update.

Once CPM receives the location update from a query q, q and all of its related information

(i.e., q.kNN and the book-keeping information) are deleted and then a new continuous

query is issued on the new location and computed from the scratch. Clearly, this approach

does not utilize the previously computed information. Based on density function, our

algorithm makes an optimistic estimate and utilizes the previously computed information

if it is expected to be more efficient. Otherwise, the results are updated by deleting

and treating q as a new query. In any case, our algorithm performs better than CPM

(our experiments demonstrate that the initial computation module of CircularTrip based

algorithm is faster than initial computation module of CPM because we do not need to

maintain extra book-keeping information).

4.6 Experimental Study

In this section, we evaluate our continuous kNN algorithm. Since CPM significantly

outperforms other existing algorithms, it is used as a benchmark algorithm in our evalu-

ation. The following algorithms have been implemented by C++. All experiments were

conducted on the PCs with P4 3.2GHz CPU and 2GB memory.

1. CPM: CPM continuous kNN algorithm [MHP05].

2. CircularTrip: our CircularTrip-based continuous kNN algorithm (Algorithm 3).

In accordance with the experimental study of previous work [XMA05, MHP05], the

same spatio-temporal data generator [Bri02] is employed. Specifically, this data generator

outputs a set of data points moving on the road network of Oldenburg, a German city.

Every data point is represented by its location at successive time stamps. Parameter

data point agility indicates the percentage of total data points that report their location

updates at each time stamp. After reaching its destination, a moving data point randomly

Chapter 4. CircularTrip Based Continuous kNN Algorithm 71

selects a new destination and continues moving toward it. Moving speed may be slow,

medium, and fast. Data points with slow speed move 1/250 of the extent of space per time

stamp. Medium and fast speed are 5 and 25 times faster than slow speed, respectively.

Continuous kNN queries are generated in the similar way. All queries are evaluated at

each time stamp and the length of evaluation is 100 time stamps. Table below lists the

parameters which may potentially have an impact on our performance study. In our

experiments, all parameters use default values unless otherwise specified.

Parameter Range Default Values
cell size (δ) 1

2048 , 1
1024 , 1

512 , 1
256 , 1

128 , 1
64

1
256

number of NNs (k) 1, 4, 16, 64, 256 16
number of data points (N) 30, 50, 70, 100, 150, 200 (K) 100K
number of queries (n) 1, 3, 5, 7, 10 (K) 5K
data point agility 10, 30, 50, 70 (%) 50%
query agility 10, 30, 50, 70 (%) 30%
moving speed slow, medium, fast medium

4.6.1 Evaluating Efficiency

In this subsection, we evaluate efficiency of our continuous kNN algorithm against dif-

ferent settings. The first set of experiments is conducted on various cell sizes. Fig. 4.9

shows the experimental results of CPU time and space requirement.

The larger the cells are, the larger the influence region of a query is. Here, influence

region of a query q is the total area of cells c whose mindist(c, q) ≤ q.distk. As a result,

the time costs of both algorithms on grid index with larger cells is more than ones with

smaller cells. On the other hand, when the cells are too small (i.e., δ = 1
2048), many cells

are empty which introduces more costs. It is clear that CircularTrip outperforms CPM

on all cell sizes and CPM is more sensitive to cell size than CircularTrip. As described

before, CircularTrip does not keep any book-keeping information. So, its memory space

is always less than CPM’s. The numbers above bars in Fig. 4.9 (b) are ratios of their

memory spaces.

The second experiment tests an effect of k. From the experiment results as shown

in Fig. 4.10, we can see that CircularTrip is always 2 times faster than CPM while its

Chapter 4. CircularTrip Based Continuous kNN Algorithm 72

 0

 100

 200

 300

 400

 500

 600

1/641/1281/2561/5121/10241/2048

T
im

e
(s

)

CPM
CicularTrip

(a) Time

 0

 10

 20

 30

 40

 50

1/641/1281/2561/5121/10241/2048

M
em

or
y

(M
B

)

52%

57%

67% 76% 81% 83%

CPM
CircularTrip

(b) Space

Figure 4.9: Effect of δ

 0

 200

 400

 600

 800

 1000

256641641

T
im

e
(s

)

CPM
CicularTrip

(a) Time

 0

 10

 20

 30

256641641
M

em
or

y
(M

B
)

78% 77% 76%
77%

78%CPM
CircularTrip

(b) Space

Figure 4.10: Effect of k

 0

 100

 200

 300

 400

 200 150 100 70 50 30

T
im

e
(s

)

CPM
CircularTrip

(a) Varying N (×1K)

 0

 100

 200

 300

 400

 10 7 5 3 1

T
im

e
(s

)

CPM
CircularTrip

(b) Varying n (×1K)

Figure 4.11: Effect of N and n

memory space is at most 78% of CPM’s.

The final experiment in this part is to evaluate an impact of cardinality of data

points and queries. The experiment results are depicted in Fig. 4.11. Following the

trends in the previous experiments, CircularTrip is faster than CPM on all settings. It

is interesting that with the number of queries increasing, performance of CPM degrades

more significantly than CircularTrip. This is because our algorithm minimizes both

initial kNN computation costs and continuous monitoring cost while only the cost of

initial kNN computation is minimized in CPM. When n = 10K, CPM is 4 times slower

than CircularTrip.

4.6.2 Evaluating Effect of Agility

We first evaluate effects of agility and moving speed of data points. The CPU time

of both algorithms is reported in Fig. 4.12. It demonstrates that when more location

updates are issued at each time stamp, CPM’s performance decreases more rapidly than

CircularTrip. This is because to update results of the affected queries, CPM has to re-

examine cells in their visit lists which causes more cells to be accessed during continuous

monitoring. On the other hand, both algorithms are not sensitive to the moving speed

Chapter 4. CircularTrip Based Continuous kNN Algorithm 73

of data points.

 0

 100

 200

 300

 70 50 30 10

T
im

e
(s

)
CPM

CircularTrip

(a) Varying Agility (%)

 0

 50

 100

 150

 200

 250

fastmediumslow

T
im

e
(s

)

CPM
CircularTrip

(b) Varying Speed

Figure 4.12: Data Movement

 0

 50

 100

 150

 200

 250

 70 50 30 10

T
im

e
(s

)

CPM
CircularTrip

(a) Varying Agility (%)

 0

 50

 100

 150

 200

 250

fastmediumslow

T
im

e
(s

)

CPM
CircularTrip

(b) Varying Speed

Figure 4.13: Query Movement

 0

 20

 40

 60

 80

 100

200K150100705030

T
im

e
(s

)

CPM
CircularTrip

(a) Initial Cost

 0

 50

 100

 150

 200

 250

200K150100705030

T
im

e
(s

)

CPM
CircularTrip

(b) Monitoring Cost

Figure 4.14: Time Efficiency

Similarly, effects of agility and moving speed of queries are evaluated and the results

are shown in Fig. 4.13. Due to the fact that CPM always deletes and issues new queries to

update the moving queries, its time cost increases when more queries move. Performance

of CircularTrip is stable because it takes advantages of previous computed results when

handling query updates. Also, moving speed of queries does not affect both algorithms.

In the last set of experiments, we study the efficiency of initial computation and

continuous monitoring separately. In the first experiment, all queries are moving and

all data points are static. We slightly modify our algorithm so that it handles moving

queries as the same as CPM. Clearly, for both algorithm all costs are initial computation

cost only. Fig. 4.14(a) illustrates the results with respect to the data points cardinality.

Although both algorithms access minimum number of cells, sCircularTrip’s initial cost

is 2 to 4 times smaller than CPM’s because CPM has to maintain extra book-keeping

information for each query. The second experiment studies continuous monitoring cost

where all queries are static and their initial costs are omitted. As shown in Fig. 4.14(b), it

is confirmed that CircularTrip accesses less cells than CPM during continuous monitoring.

As a short summary, our performance evaluation indicates that compared with CPM,

Chapter 4. CircularTrip Based Continuous kNN Algorithm 74

CircularTrip-based kNN algorithm is not only more time-efficient but also more space-

efficient. Moreover, our algorithm is more scalable than CPM regarding cell size, k, and

cardinality as well as agility and moving speed of data points and queries.

4.7 Conclusion

In this chapter, we proposed an efficient CircularTrip-based continuous kNN algorithm.

Compared with the existing algorithm, our technique accesses the minimum set of cells

for initial computation and significantly reduces the continuous monitoring cost, while

less memory space is required.

Chapter 5

Applications to Other Variants of

NN Queries

In this chapter, we show how CircularTrip or ArcTrip can be used to efficiently monitor

the variants of NN queries. Our CircularTrip or ArcTrip based algorithms to answer such

queries preserve the following properties

1. Algorithms visit minimum number of cells during the continuous monitoring of

these queries

2. No extra book-keeping information is required to answer the queries

To the best of our knowledge, there is no existing approach that can efficiently monitor

such queries. Though CPM can be used to answer such queries, it is easy to verify that

CPM is not efficient.

The rest of the chapter is organized as follows. In section 5.1, we present algorithms

for constrained NN queries. We present the technique to continuously monitor farthest

neighbors in Section 5.2. (k + m)-NN queries are discussed in Section 5.3.

75

Chapter 5. Applications to Other Variants of NN Queries 76

5.1 Constrained Nearest Neighbor Queries

A constrained nearest neighbor query (CNN) [FSAA01] is a nearest neighbor query that

is constrained to a specific region. This type of queries is of interest to the users who wish

to find the nearest neighbor in some constrained region and not in the whole space. We

had discussed the previous work on constrained nearest neighbor queries in Section 2.2.2.

In [FSAA01], authors propose different techniques to answer CNN queries but to the best

of our knowledge there is no efficient algorithm available for continuously monitoring the

CNN queries. Continuous kCNN query can be defined as to monitor the k nearest

neighbors in a constrained region. The constrained region is bounded by certain spatial

conditions. Below, we categorise continuous kCNN queries based on the constraints that

bound the region.

• Continuous Pie-Region kCNN Queries: The continuous k constrained nearest

neighbors queries where the region is bounded by some angle range 〈θ1, θ2〉 are called

continuous Pie-Region kCNN queries. Formally, it monitors the kNNs among a set

of objects P ′ ⊆ P such that all objects in P ′ lie within the specified angle range.

We call it Pie-Region queries because the constrained region is a pie shaped region.

• Continuous Donut-Region kCNN Queries: Donut-Region kCNN queries are

the continuous kCNN queries where the region is constrained by distance bounds.

Let dL and dU be the lower and upper distance bounds, respectively. Continuous

Donut-Region kCNN queries can be formally defined as monitoring the kNNs among

a set of objects P ′ ⊆ P such that for all p ∈ P ′, dU ≥ dist(p, q) ≥ dL.

• Continuous Donut-Pie kCNN Queries: As apparent from the name, a Donut-

Pie kCNN query constrains the region by both the angle and distance bounds. Let

〈θ1, θ2〉 be the angle range and dL and dU be the lower and upper distance bounds,

respectively. Continuous Donut-Pie queries monitor the kNNs among the set of

objects P ′ ⊆ P such that for all p ∈ P ′, dU ≥ dist(p, q) ≥ dL and p lies within the

Chapter 5. Applications to Other Variants of NN Queries 77

angle range 〈θ1, θ2〉. The region looks like a pie taken from a donut, so we name it

Donut-Pie queries.

• Continuous kCNN Queries over Irregular Region: Given an irregular region

R, such queries are to continuously monitor kNNs among the data objects P ′ ⊆ P

that lie inside R.

In this section we present techniques for continuous monitoring of these kCNN queries.

We also present the techniques where the spatial conditions that constrain the region can

be changed by the user at any time and our approach visits minimum number of cells

for all the updates. More specifically, we present our technique to answer continuous

pie-region kCNN queries in section 5.1.1, donut-region kCNN queries in section 5.1.2,

donut-pie kCNN queries in section 5.1.3 and continuous monitoring of kCNN queries

over irregular shaped region is described in section 5.1.4. In section 5.1.5 we give the

concluding remarks showing the superiority of our approach.

5.1.1 Continuous Pie-Region kCNN queries

As defined earlier, a continuous pie-region kCNN query q with the angle bounds 〈θ1, θ2〉
is to find k nearest neighbors among a set of points P ′ ⊆ P such that all points in P ′ lie

within the angle range 〈θ1, θ2〉. Such kCNN queries have many applications. Consider,

for example, a user might be interested in only the points that are in north-east. In this

case a query with angle range 〈90◦, 180◦〉 will be issued.

Recall that in order to continuously monitor reverse nearest neighbors, six continuous

CNN queries are issued [XZ06] as discussed in Section 2.2.1. Each continuous CNN query

monitors the nearest neighbors in its region that covers an angle range of 60◦ degrees as

shown in Fig. 5.1. The algorithm needs to continuously monitor nearest neighbors in the

six constrained regions from S0 to S5. Continuous CNN query that monitors constrained

region S1 can be denoted as q〈60◦,120◦〉 because it monitors the nearest neighbors in the

region that is bounded by the angle range 〈60◦, 120◦〉.

Chapter 5. Applications to Other Variants of NN Queries 78

Figure 5.1: Six Pie-Region Constrained NN Queries

Technique

We presented ArcTrip in chapter 3 and now we discuss how ArcTrip can be used to

efficiently monitor continuous pie-region kCNN queries. The continuous monitoring of a

kCNN query q with angle range 〈θ1, θ2〉 is similar to the continuous monitoring of NN

queries described in chapter 4. The only difference is that we call ArcTrip(q, r, 〈θ1, θ2〉)
instead of CircularTrip(q, r) and for any object p that lies outside the constrained region

dist(p, q) = ∞.

Below we describe the continuous monitoring of the pie-region kCNN query assuming

that initial results are known because the computation of initial results is trivial. Similar

to monitoring of NN queries, the update modules handles the updates by categorising

them as internal, incoming and outgoing updates. After handling all the updates, if

q.kNN contains more than or equal to k objects, the result of query is updated by

selecting the k closest objects and deleting others. Otherwise if q.kNN contains less

than k objects, ArcTrip with angle range 〈θ1, θ2〉 and radius q.distk is called and radius

is incremented by δ everytime unless kNNs are found.

Example In Fig. 5.2(a), the object p1 was the constrained nearest neighbor of q and

q.distk = dist(p1, q). The shaded cells are those that were visited during initial computa-

Chapter 5. Applications to Other Variants of NN Queries 79

q

p1

p'1

p2

p3

p4

(a) p1 issues an update at p′
1

q

p1

p2

p3

p4

(b) p2 is new CNN

Figure 5.2: A Continuous Pie-Region 1-CNN query

tion. The object p1 reports update at location p′1 and it is deleted from q.kNN because

its distance (dist(p1, q) = ∞) > q.distk (an outgoing update) . To update the results of

the query, the algorithm starts calling ArcTrip with angle range 〈θ1, θ2〉 and radius set

as q.distk. The radius is iteratively increased by δ every time unless the new CNN p2 is

found. The algorithm visits shaded cells shown in Fig. 5.2(b) to update the results.

Extension to Varying Pie-Region Continuous kCNN Queries

At any time a user may wish to change the spatial conditions that constrain the region

of a continuous kCNN query. For example a user may change the angle range that

bounds the pie-region which may expand or shrink the constrained region. Consider the

running example of Fig. 5.3 where p2 is the CNN of q. The user changes (expands) the

constrained region and the new pie-region is now constrained by angle range 〈θ1, θ3〉.
Below we describe how we update the result of such queries by visiting the minimum

possible number of cells.

If the angle range is decreased, the old kCNNs that lie outside the new angle range

are deleted and the algorithm continues with the ArcTrip of new angle range and radius

r = q.distk until kCNNs are found. If the angle range increases, we visit only the cells

that lie in the angle range that is not covered by the old angle range. The example below

illustrates how the update works when the constrained region is expanded.

Example In Fig. 5.3, the user has changed the angle range to 〈θ1, θ3〉 that has increased

Chapter 5. Applications to Other Variants of NN Queries 80

q

p1

p2

p3

p4
p'2

(a) change in constrained region and location of p2

q

p1p3

p4
p2

(b) p4 is new CNN

Figure 5.3: A Varying Pie-Region Continuous 1-CNN Query

the size of pie-region. The old CNN p2 also issues update at location p′2 and is deleted

from q.kNN because it is an outgoing update. The algorithm first visits the cells that

lie in angle range 〈θ2, θ3〉 by calling ArcTrip with iteratively increased radius (initially

set as maxdist(cq, q)). At this stage p3 is found but it is not considered because it lies

outside the constrained region. The algorithm continues till the radius exceeds q.distk.

The algorithm sets the radius of ArcTrip to q.distk and angle range is reset to 〈θ1, θ3〉.
ArcTrip is iteratively called with this new angle range and radius increased by δ and the

new CNN (p4) is found which is reported as answer. Note that the algorithm visits only

the shaded cells of Fig. 5.3(b) and the result cannot be guaranteed if any of these cells is

missed.

5.1.2 Continuous Donut-Region kCNN Queries

In this section we present algorithm to continuously monitor a kCNN query where the

region of the query is constrained by distance from q. Formally, such a query q con-

tinuously monitors the nearest neighbors among a set of objects P ′ ⊆ P such that for

all p ∈ P ′, dU ≥ dist(p, q) ≥ dL where dU and dL are the upper and lower bounds of

distance, respectively. Let CU and CL be the circles centered at q and with radii dU and

dL, respectively. The constrained region is the donut shaped area CU −CL shown shaded

in Fig. 5.4.

As opposed to simple NN queries where the result would have been p1, the result

Chapter 5. Applications to Other Variants of NN Queries 81

p2

p3

dU
p1

dL q

Figure 5.4: A Donut-Region kCNN Query

of such query is p2 because p1 does not satisfy the constraint. Such queries have many

applications. For example a user might be interested in kNNs that are not nearer to him

than 10km and not farther than 20km. Below we present the continuous monitoring of

such queries.

Technique

The continuous monitoring of donut-region kCNN queries is exactly same as the contin-

uous monitoring of kNN queries with the only difference that the distance of any object

p that lies outside the range is considered infinity and the starting radius of CircularTrip

is set as dL. Consider the example of Fig. 5.5, where a 1-CNN query q is issued with

distance bounded by dL and dU . The algorithm starts by calling the CircularTrip with

radius set as dL and then increases it by δ everytime unless kNNs are found. Algorithm

finds p2 which is reported as answer. Algorithm visits only the cells that are shown

shaded in Fig. 5.5. Note that, this is the minimal set of cells that is required to be visited

in order to guarantee the correctness.

The continuous monitoring of kCNN is similar to the monitoring of simple kNN

queries. Note that simple kNN queries can be considered a special case of donut-region

Chapter 5. Applications to Other Variants of NN Queries 82

dL q
p3

p1

p2

dU

Figure 5.5: Computation of a Donut-Region 1-CNN Query

kCNN queries with dL = 0 and dU = ∞.

Extension to Varying Donut-Region Continuous kCNN Queries

To show the flexibility of our technique, in this section we present the approach to answer

the continuous kCNN queries where the distance bounds dU and dL can be changed by

user at any time. Consider the running example of Fig. 5.6, where the lower bound is

changed from d′L to dL. Below we present the technique to efficiently compute the nearest

neighbor after such change in constraints.

Suppose the lower distance bound is changed from d′L to dL and upper bound is

changed from d′U to dU . Let q.distk be the distance of current kth NN from q. To update

the results, first we delete the objects from q.kNN that do not lie in the new range.

More specifically we delete every p ∈ q.kNN where dist(p, q) < dL or dist(p, q) > dU . If

dL < d′L, the algorithm starts calling CircularTrip with radius dL and iteratively increases

it by δ unless kNNs are found or radius equals or exceeds d′L. If kNNs are not found

and the radius equals to d′L, the algorithm continues by calling CircularTrip with radius

q.distk unless kNNs are found or the radius equals to dU . Note that, if radius equals to

Chapter 5. Applications to Other Variants of NN Queries 83

dU and kNNs have not been found this means there are less than k objects that lie in

the constrained region. We illustrate our technique with following example.

Example Consider the example of Fig. 5.6(a), where the lower bound of the donut-region

has been changed from d′L to dL. Since the current CNN, p2, still lies in new constrained

region we keep it in q.kNN . The algorithm starts calling CircularTrip with radius dL

and the object p1 is found. p1 is ignored because it does not lie in the constrained region.

The algorithm iteratively calls CircularTrip with radius increased by δ everytime unless

it equals d′L. The algorithm should now continue by calling CircularTrip with q.distk but

because the distance of current CNN p2 is dist(p2, q) = q.distk so algorithm stops and

confirms p2 as the nearest neighbor. During this update, the algorithm visits the shaded

cell of Fig. 5.6(b).

d'L

p3

p1

p2
dU

dL

(a) Lower bound changes from d′
L to dL

p3

p2
dU

dL
d'L

p1

(b) p2 is still the CNN

Figure 5.6: A Varying Donut-Region Continuous 1-CNN query

5.1.3 Continuous Donut-Pie kCNN Queries

In section 5.1.1, we presented our technique to continuously monitor the kCNN queries

where the region is constrained by some angle range and in section 5.1.2 we discussed how

Chapter 5. Applications to Other Variants of NN Queries 84

we can use CircularTrip to answer continuous kCNN queries with the region constrained

by some distance bound. In this section we discuss the kCNN queries in the region which

is constrained by both the angle range and the distance.

q

p1p3
dL

dU

p2 p4

Figure 5.7: Donut-Pie kCNN Query

The user specifies an angle range 〈θ1, θ2〉 and the distance range dL and dU where dL

is the lower bound and dU is the upper bound. The query q is to continuously monitor

the kNNs in the region bounded by the defined distance and angle range constraints.

The constrained region is shown shaded in Fig. 5.7.

Technique

Let 〈θ1, θ2〉 be the angle range and dL and dU be the lower and upper distance bounds,

respectively. The algorithm starts calling ArcTrip with angle range 〈θ1, θ2〉 and radius

set as dL. ArcTrip is iteratively called with radius incremented by δ unless kNNs are

found. Fig. 5.8 shows an example where p2 is reported as CNN. The algorithm visits the

shaded cells.

Continuous monitoring of such kCNN queries is similar to continuous monitoring of

kNN queries with the difference that ArcTrip is called instead of CircularTrip and the

distance of any object p that lies outside the constrained region is considered infinity.

Chapter 5. Applications to Other Variants of NN Queries 85

q

p1

p2

p3

p4

dL

dU

Figure 5.8: Computation of a Donut-Pie 1-CNN Query

Extension to Varying Donut-Pie Region Continuous kCNN Queries

In this section we will extend our approach to answer the queries where the user can

change the constraints at any time. Consider the running example of Fig. 5.9(a) where

p2 is the CNN of q. The user changes the constrained region by changing the angle range

and distance bounds. The angle range is changed from 〈θ1, θ2〉 to 〈θ1, θ3〉 and the lower

distance bound has been changed from d′L to dL. Now the algorithm needs to monitor

the nearest neighbors in a bigger constrained region (the closed shape shown with thick

boundary). The idea behind updating the result of such queries is simply look in the area

that was not looked before. ArcTrip with suitable angle range and radius can be used

for this purpose. Below we give an extensive example that will illustrate the monitoring

of such queries.

q

p1

p2

p3

p4

d'L

dL

p'

(a) constrained region and location of p2 changes

q

p1

p2

d'L
dL

p3

p4

q.distk

(b) p4 is the new CNN

Figure 5.9: Computation of a Varying Donut-Pie Region 1-CNN Query

Chapter 5. Applications to Other Variants of NN Queries 86

Example In Fig. 5.9(a), the angle range constraint is changed from 〈θ1, θ2〉 to 〈θ1, θ3〉
and the lower distance bound is changed from d′L to dL. The current CNN p2 issues

update to p′. Since it is an outgoing update so p2 is deleted from q.kNN . Fig. 5.9(b)

shows the computation of the new CNN in new constrained region. The algorithm starts

by calling ArcTrip with radius dL and angle range 〈θ1, θ3〉. The radius of ArcTrip is

increased iteratively unless kNNs are found or when it reaches d′L. Algorithm finds the

object p3 but it is ignored because it lies outside the constrained region. Now algorithm

continues by calling ArcTrip with angle range 〈θ2, θ3〉 and radius set as d′L. ArcTrip is

iteratively called with increased radius in the same angle range unless the radius reaches

q.distk. The angle range of ArcTrip is now again reset to 〈θ1, θ3〉. The algorithm continues

and p4 is found which is reported as answer. In order to update the result, the algorithm

visits the shaded cells of Fig. 5.9(b) which form the minimal set of cells in order to

guarantee the correctness.

5.1.4 Continuous kCNN Queries Over Irregular Region

In this section we show that our technique can easily be extended to continuously mon-

itor the kCNN queries over irregular region. Consider the irregular region R shown in

Fig. 5.10(a). We can easily monitor the nearest neighbors to q in this irregular region

R. Let dL be the minimum distance of R from q and dU be the maximum distance of R

from q. Similarly, let 〈θ1, θ2〉 be the minimum angle range that fully covers R as shown

in Fig. 5.10(b).

Continuous monitoring of kCNN query over this irregular region R is exactly same as

continuous monitoring of a donut-pie region bounded by angle range 〈θ1, θ2〉 and distance

bounds dL and dU as presented in section 5.1.3. The only difference is that the cells and

points that lie outside R are ignored.

Chapter 5. Applications to Other Variants of NN Queries 87

q

p1

p3

p2

p4 R

(a) The irregular region

q

p1

p3

dL

p2

p4dU

(b) forming a donut-pie region kCNN query

Figure 5.10: Continuous kCNN Query Over Irregular Region R

5.1.5 Discussion

The continuous monitoring of constrained nearest neighbor queries have become impor-

tant. Recently, algorithms have been proposed to continuously monitor reverse nearest

neighbor queries [XZ06, KMS+07] and each algorithm needs to continuously monitor

nearest neighbor in constrained regions. We have shown that our novel access methods

CircularTrip and ArcTrip can be used to continuously monitor various continuous kCNN

queries. Our approach is flexible, efficient and can easily replace previous algorithms

used for continuous monitoring of constrained nearest neighbor queries.

To show the flexibility of our approach we show that it can be extended to answer the

continuous kCNN queries where the constrained region can be changed at any time and

for all the algorithms presented the number of visited cells is minimum. To the best of our

knowledge there is no existing approach that can efficiently answer such queries. Though

CPM can be used to compute the initial results of few of such queries by considering

only the cells and rectangles that lie in the constrained region but the rectangle based

partitioning of CPM is not specifically designed to prioritize cells based on their angle

from q so its performance becomes poor for continuous monitoring of such queries and

Chapter 5. Applications to Other Variants of NN Queries 88

even worse for varying constrained region CNN queries.

5.2 Farthest Neighbor Queries

Given a set of points P and a query point q, a k farthest neighbor query is to find a

result set R which contains k objects such that for any p ∈ (P − R) and for any p′ ∈ R,

dist(p′, q) ≥ dist(p, q). The continuous monitoring of k farthest neighbors (kFN) is to

continuously update the results affected by the movement of query point q and data

points p ∈ P .

Farthest neighbor queries have various applications. A farthest neighbor query q

determines the minimum radius of the circle centered at q which will cover all the data

points in P . Similarly, a k farthest neighbors query can be issued to find the minimum

radius of the circle around q so that only k − 1 points lie outside the circle. Consider

another application where a team of commandos is on a mission and the leader wants that

no member of the team is more than 10km away from him. Clearly, the members who

are farther from him needs more of his attention. He might be interested in k farthest

team members so that he can monitor their activities and can advise them not to move

too far from him.

5.2.1 Initial Computation

Initial computation of k farthest neighbors is very similar to the computation of nearest

neighbors. The algorithm initially calls CircularTrip with radius set as R where R is the

maximum distance of q from the region in which the farthest neighbors are to be found.

As opposed to nearest neighbor queries, the cells returned by CircularTrip are inserted

in a heap according to their maxdist from q. The cells are visited in descending order of

their maxdist and the radius of CircularTrip is decreased by δ everytime. Let q.distk be

the distance between q and kth farthest neighbor found so far, the algorithm stops when

the radius of CircularTrip becomes smaller than or equal to q.distk.

Chapter 5. Applications to Other Variants of NN Queries 89

p2

p3

R
p1

q

(a) A farthest neighbor query

q

p1

R

p2

p3

(b) p3 is the farthest neighbor

Figure 5.11: Computation of a Farthest Nearest Neighbor Query

Example Consider a query q shown in Fig. 5.11(a) where a farthest neighbor is to be

found in the shaded area. Algorithm first makes a CircularTrip with radius R and visits

the returned cells in descending order of their maxdist but no object is found. Next

time the algorithm calls CircularTrip with radius R − δ and finds object p3. Finally,

CircularTrip is called with radius set as q.distk = dist(p3, q) and the object p2 is found.

The newly found object p2 is not the farthest neighbor because dist(p2, q) < dist(p3, q).

The algorithm terminates and reports p3 as the farthest neighbor. The shaded cells of

Fig. 5.11(b) are visited during the computation.

5.2.2 Continuous Monitoring

Continuous monitoring of a k farthest neighbors is also very similar to that of a k nearest

neighbors query. Let q.kFN be the set of k farthest neighbors of q. In monitoring

of k farthest neighbors, an update < p.id, ppre, pcur > is considered outgoing update if

dist(ppre, q) ≥ q.distk and dist(pcur, q) < q.distk. Similarly, an update is considered

incoming if dist(ppre, q) < q.distk and dist(pcur, q) > q.distk. During update handling,

the algorithm deletes an object p from q.kFN if it issues an outgoing update and inserts

Chapter 5. Applications to Other Variants of NN Queries 90

it in q.kFN if it issues an incoming update. After handling all the updates, if q.kFN

contains more than or equal to k objects, the algorithm keeps k farthest objects and

deletes all other. On the other hand, if q.kFN contains less than k objects, the algorithm

updates the result by calling CircularTrip with radius q.distk and iteratively decreasing

it by δ unless k farthest neighbors have been found.

p1
R

p2

p3

p'3 q.distk

(a) p3 issues an update at p′
3

p1

p2

p3

R

q.distk

(b) p2 is new farthest neighbor

Figure 5.12: Update Handling of a Farthest Neighbor Query

Example Consider the running example of Fig. 5.12(a) where the current farthest neigh-

bor p3 issues an update at location p′3. It is an outgoing update because dist(p3, q) ≥
q.distk and dist(p′3, q) < q.distk, so the object p3 is deleted from q.kFN . In order to up-

date the result, the algorithm starts calling CircularTrip with radius set equal to q.distk

as shown in Fig. 5.12(b). The cells returned by CircularTrip are visited in descending

order of their maxdist and the object p2 is found. p2 is inserted in q.kFN and q.distk

is updated to dist(p2, q). Finally, CircularTrip is called with radius set to dist(p2, q) and

all the returned cells are visited. Since no new object is found, p2 is returned as result.

The algorithm visits the shaded cell of Fig. 5.12(b) and the result cannot be guaranteed

if any of the cells is missed.

Chapter 5. Applications to Other Variants of NN Queries 91

5.2.3 Discussion

To the best of our knowledge there is no efficient approach that can continuously monitor

farthest neighbor queries. SEA-CNN and YPK-CNN are very inefficient because they

are designed only to find the nearest neighbors of some query points. Extension of

CPM to farthest neighbor queries is non-trivial. Moreover, a rectangle gives a better

approximation only for smaller circles. As the size of circle grows, the approximation

yielded by rectangle become worse. For this reason, CPM’s approximation of proximity

of cells to q becomes worse once the rectangles becomes farther from query point which

is the case for farthest neighbor queries. On the other hand, our grid access methods

can easily monitor farthest neighbor queries without any performance degradation. This

shows the effectiveness of our presented grid access methods.

5.3 (k + m) NN Queries

At any time a kNN query can be updated by the user to continuously monitor (k+m)

nearest neighbors instead of k nearest neighbors of q where m > −k. The queries that

support such updates on the number of nearest neighbors are called (k +m)NNs queries.

It gives flexibility to the user that he can change, at any time, the number of nearest

neighbors he wants to continuously monitor. Below we show that by using our approach

such kind of queries can be efficiently answered without visiting any unnecessary cell.

5.3.1 Technique

Consider a kNN query has been updated to (k + m)NN query where k nearest neighbors

of the query are already known. If 0 > m > −k, then the update of the results is trivial.

We only keep (k + m) closest objects among q.kNN and delete all other objects. If

m > 0, then the results are updated as follows. Let q.distk be the distance of kth nearest

neighbor of the query q. The algorithm starts calling CircularTrip with radius set equal

Chapter 5. Applications to Other Variants of NN Queries 92

to q.distk and iteratively increases it by δ unless all (k + m) nearest neighbors have been

found.

p2

p3

q.distk

p4

p5

p7

p6

p1

(a) kNN query (k = 3)

p1

p2

p3

q.distk

p4

p5

p7

p6

(b) query updated to (k + m)NN query (m = 2)

Figure 5.13: A (k + m)NNs Query (k = 3, m = 2)

Example Consider the example of Fig. 5.13 where a user who was monitoring k (=

3) nearest neighbors changes the query so that it now monitors (k + m = 5) nearest

neighbors. Fig. 5.13(a) shows q.distk that corresponds to the distance of 3rd nearest

neighbor from q. In order to update the results such that it includes (k + m) NNs,

the algorithm calls CircularTrip with radius set as q.distk = dist(p3, q) and iteratively

increases it and p4 and p5 are found and reported as 4th and 5th nearest neighbors of q,

respectively. In order to update the kNN query to the (k + m)NN query, the algorithm

has visited the shaded cells of Fig. 5.13(b).

5.3.2 Discussion

To the best of our knowledge, there is no existing approach that can efficiently update

a kNN query to a (k + m)NN query. Even though CPM stores extra book-keeping

information (visit list and heap), it cannot efficiently update such query. CPM will need

to first visit all the cells in visit list and than continue with the heap in order to find (k+m)

Chapter 5. Applications to Other Variants of NN Queries 93

NNs. Note that, CPM will visit the same number of cells that it visits to compute the

initial result of a newly issued kNN (k = k + m) query. i.e; it does not utilize the

information of previously known k nearest neighbors. Our algorithm, in contrast, utilizes

previous information efficiently and answers the query by visiting minimum number of

cells.

5.4 Conclusion

In this chapter, we present techniques for several variants of k nearest neighbor queries.

We believe that CircularTrip and ArcTrip can be used to continuously monitor many

other variants of nearest neighbor queries (e.g., nearest surrounder queries [LLL06] and

aggregate nearest neighbor queries). Though CPM can be used to answer some of these

queries but it is not efficient because CPM was designed only for k nearest neighbor

queries. Our CircularTrip-based algorithm performs 2 to 4 times better than CPM even

for kNN queries and it is easy to verify that for the variants presented in this chapter,

our presented approaches are still optimal in accessing the number of cells. Hence the

performance of our approaches is expected to be much faster than all previous approaches.

Moreover, it is easy to see that our approach can answer any query that is a hybrid

of above mentioned queries. For example, we can use ArcTrip to continuously monitor

(k + m) farthest neighbors in a Donut-Pie constrained region where the constraints that

define the region may be changed by the user at any time. For all these queries, our

proposed algorithms visit minimum number of cells.

Chapter 6

Conclusion

We presented two grid traversal methods named CircularTrip and ArcTrip that return

the cells based on their proximty to the query point. CircularTrip returns all the cells

around query point q that intersect the circle with center at q and radius r. ArcTrip goes

one step further and returns only the cells that intersect the circle of radius r and lie

within some specific angle range. We have shown that the access methods are efficient

and flexible. More specifically, each access method computes the mindist of | C | number

of cells where | C | is the number of cells returned by the access method.

We show the effectiveness of our grid access methods by introducing an algorithm

for continuous monitoring of kNN queries. Our experimental results show that our

CircularTrip-based algorithm is 2 to 4 times faster than CPM which is previously best

known algorithm. We prove that our algorithm accesses minimum number of cells for any

continuous k nearest neighbor query. Moreover, our algorithm uses less memory space.

Unlike CPM, CircularTrip-based algorithm does not need any book-keeping information

and still achieves a better performance. The space usage of our algorithm is 50% to 85%

of CPM’s space requirements.

We also proposed algorithms for continuously monitoring other variants of kNN

queries like constrained nearest neighbor queries, farthest neighbor queries and (k + m)-

NN queries. All previous approaches fail to efficiently monitor such queries. Our algo-

94

Chapter 6. Conclusion 95

rithms are very flexible, efficient and can easily be integrated to answer more complex

queries. For example, our proposed algorithms can be easily used to answer (k + m)

farthest neighbors in a constrained region where the spatial conditions that constrain the

region can be changed by the user at any time. Moreover, all of the presented algorithms

preserve the basic properties of visiting minimum number of cells for each continuous

query and no book-keeping information is required.

Bibliography

[ABK+06] Elke Achtert, Christian Bohm, Peer Kroger, Peter Kunath, Alexey

Pryakhin and Matthias Renz. Efficient reverse k-nearest neighbor search

in arbitrary metric spaces. In SIGMOD ’06: Proceedings of the 2006 ACM

SIGMOD international conference on Management of data, Seiten 515–526,

New York, NY, USA, 2006. ACM Press.

[AM93] Arya and Mount. Approximate Nearest Neighbor Queries in Fixed Dimen-

sions. In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Con-

ference on Theoretical and Experimental Analysis of Discrete Algorithms),

1993.

[AMN+98] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman and

Angela Y. Wu. An optimal algorithm for approximate nearest neighbor

searching fixed dimensions. Journal of the ACM, 45(6):891–923, 1998.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associa-

tive searching. Commun. ACM, 18(9):509–517, 1975.

[Ber93] Marshall Bern. Approximate closest-point queries in high dimensions. Inf.

Process. Lett., 45(2):95–99, 1993.

[Bia69] T. Bially. Space-Filling Curves: Their Generation and Their Applica-

tion to Bandwidth Reduction. IEEE Transactions on Information Theory,

15(6):658–664, 1969.

96

BIBLIOGRAPHY 97

[BJKS02] R. Benetis, C. Jensen, G. Karciauskas and S. Saltenis. Nearest Neighbor

and Reverse Nearest Neighbor Queries for Moving Objects, 2002.

[BK04] Christian Böhm and Florian Krebs. The k-Nearest Neighbour Join: Turbo

Charging the KDD Process. Knowl. Inf. Syst., 6(6):728–749, 2004.

[BKS93] Thomas Brinkhoff, Hans-Peter Kriegel and Bernhard Seeger. Efficient pro-

cessing of spatial joins using R-trees. In SIGMOD ’93: Proceedings of

the 1993 ACM SIGMOD international conference on Management of data,

Seiten 237–246, New York, NY, USA, 1993. ACM Press.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider and Bernhard

Seeger. The R*-tree: an efficient and robust access method for points and

rectangles. In SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD in-

ternational conference on Management of data, Seiten 322–331, New York,

NY, USA, 1990. ACM Press.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance

of Large Ordered Indices. Acta Inf., 1:173–189, 1972.

[Bri02] Thomas Brinkhoff. A Framework for Generating Network-Based Moving

Objects. GeoInformatica, 6(2):153–180, 2002.

[CC05] Hyung-Ju Cho and Chin-Wan Chung. An efficient and scalable approach

to CNN queries in a road network. In VLDB ’05: Proceedings of the 31st

international conference on Very large data bases, Seiten 865–876. VLDB

Endowment, 2005.

[CG99] Surajit Chaudhuri and Luis Gravano. Evaluating Top-k Selection Queries.

In VLDB’99, Seiten 397–410, 1999.

[CHC04] Y. Cai, K. Hua and G. Cao. Processing Range-Monitoring Queries on

Heterogeneous Mobile Objects, 2004.

BIBLIOGRAPHY 98

[CMTV00] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis and Michael

Vassilakopoulos. Closest pair queries in spatial databases. In Proceedings

1994 ACM SIGMOD Conference, Dallas, TX, Seiten 189–200, 2000.

[CMTV04] A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos. Al-

gorithms for Processing K-closest-pair Queries in Spatial Databases, 2004.

[CP07] Yun Chen and Jignesh M. Patel. Efficient Evaluation of All-Nearest-

Neighbor Queries. To appear in ICDE, 2007.

[CYL07] Muhammad Aamir Cheema, Yidong Yuan and Xuemin Lin. CircularTrip:

An Effective Algorithm for Continuous kNN Queries. To appear in the 12th

International Conference on Database Sytems for Advanced Applications

(DASFAA), 2007.

[FNPS79] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger and H. Raymond

Strong. Extendible hashing- a fast access method for dynamic files. ACM

Trans. Database Syst., 4(3):315–344, 1979.

[FSAA01] Hakan Ferhatosmanoglu, Ioanna Stanoi, Divyakant Agrawal and Amr El

Abbadi. Constrained Nearest Neighbor Queries. Lecture Notes in Computer

Science, 2121:257–??, 2001.

[GG98] Volker Gaede and Oliver Günther. Multidimensional access methods. ACM

Computing Surveys, 30(2):170–231, 1998.

[GL04] B. Gedik and L. Liu. MobiEyes: Distributed Processing of Continuously

Moving Queries on Moving Objects in a Mobile System, 2004.

[Gut84] Antonin Guttman. R-trees: a dynamic index structure for spatial search-

ing. In SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD interna-

tional conference on Management of data, Seiten 47–57, New York, NY,

USA, 1984. ACM Press.

BIBLIOGRAPHY 99

[Gut94] Ralf Hartmut Guting. An introduction to spatial database systems. The

VLDB Journal, 3(4):357–399, 1994.

[Hen94] Andreas Henrich. A Distance Scan Algorithm for Spatial Access Structures.

In ACM-GIS, Seiten 136–143, 1994.

[HLX06] Haibo Hu, Dik Lun Lee and Jianliang Xu. Fast Nearest Neighbor Search

on Road Networks. In EDBT, Seiten 186–203, 2006.

[Hon04] Chenyi Xia Hongjun. GORDER: An Efficient Method for KNN Join Pro-

cessing, 2004.

[HS98] Gı́sli R. Hjaltason and Hanan Samet. Incremental distance join algorithms

for spatial databases. Seiten 237–248, 1998.

[HS99] Gı́sli R. Hjaltason and Hanan Samet. Distance browsing in spatial

databases. ACM Transactions on Database Systems, 24(2):265–318, 1999.

[HXL05] Haibo Hu, Jianliang Xu and Dik Lun Lee. A Generic Framework for Mon-

itoring Continuous Spatial Queries over Moving Objects. In SIGMOD,

Seiten 479–490, 2005.

[ISS03] Glenn S. Iwerks, Hanan Samet and Kenneth P. Smith. Continuous K-

Nearest Neighbor Queries for Continuously Moving Points with Updates.

In VLDB, Seiten 512–523, 2003.

[JKPT03] Christian S. Jensen, Jan Kolarvr, Torben Bach Pedersen and Igor Timko.

Nearest neighbor queries in road networks. In GIS ’03: Proceedings of the

11th ACM international symposium on Advances in geographic information

systems, Seiten 1–8, New York, NY, USA, 2003. ACM Press.

[KGT99] George Kollios, Dimitrios Gunopulos and Vassilis J. Tsotras. Nearest

Neighbor Queries in a Mobile Environment. In Spatio-Temporal Database

Management, Seiten 119–134, 1999.

BIBLIOGRAPHY 100

[KM00] Flip Korn and S. Muthukrishnan. Influence sets based on reverse nearest

neighbor queries. Seiten 201–212, 2000.

[KMS+07] James Kang, Mohamed Mokbel, Shashi Shekhar, Tian Xia and Donghui

Zhang. Continuous Evaluation of Monochromatic and Bichromatic Reverse

Nearest Neighbors. To appear in ICDE, 2007.

[KOR98] Eyal Kushilevitz, Rafail Ostrovsky and Yuval Rabani. Efficient search for

approximate nearest neighbor in high dimensional spaces. Seiten 614–623,

1998.

[KOTZ04] N. Koudas, B. Ooi, K. Tan and R. Zhang. Approximate NN queries on

streams with guaranteed error /performance bounds, 2004.

[KPH04] Dmitri V. Kalashnikov, Sunil Prabhakar and Susanne E. Hambrusch. Main

Memory Evaluation of Monitoring Queries Over Moving Objects. Distrib.

Parallel Databases, 15(2):117–135, 2004.

[KS97] Norio Katayama and Shin’ichi Satoh. The SR-tree: an index structure for

high-dimensional nearest neighbor queries. Seiten 369–380, 1997.

[KS04a] Mohammad Kolahdouzan and Cyrus Shahabi. Voronoi-Based K Nearest

Neighbor Search for Spatial Network Databases, 2004.

[KS04b] Mohammad R. Kolahdouzan and Cyrus Shahabi. Continuous K-Nearest

Neighbor Queries in Spatial Network Databases. In STDBM, Seiten 33–40,

2004.

[KSF+96] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot Siegel and

Zenon Protopapas. Fast Nearest Neighbor Search in Medical Image

Databases. In The VLDB Journal, Seiten 215–226, 1996.

[LCGMW02] C. Li, E. Chang, H. Garcia-Molina and G. Wiederhold. Clustering for

approximate similarity search in high-dimensional spaces, 2002.

BIBLIOGRAPHY 101

[LHJ+03] M. Lee, W. Hsu, C. Jensen, B. Cui and K. Teo. Supporting frequent

updates in R-Trees: A bottom-up approach, 2003.

[LLHH05] Hongga Li, Hua Lu, Bo Huang and Zhiyong Huang. Two ellipse-based

pruning methods for group nearest neighbor queries. In GIS ’05: Pro-

ceedings of the 13th annual ACM international workshop on Geographic

information systems, Seiten 192–199, New York, NY, USA, 2005. ACM

Press.

[LLL06] Ken C. K. Lee, Wang-Chien Lee and Hong Va Leong. Nearest Surrounder

Queries. In ICDE ’06: Proceedings of the 22nd International Conference

on Data Engineering (ICDE’06), Seite 85, Washington, DC, USA, 2006.

IEEE Computer Society.

[LNY03] King-Ip Lin, Michael Nolen and Congjun Yang. Applying Bulk Insertion

Techniques for Dynamic Reverse Nearest Neighbor Problems. ideas, 00:290,

2003.

[MHP05] Kyriakos Mouratidis, Marios Hadjieleftheriou and Dimitris Papadias. Con-

ceptual Partitioning: An Efficient Method for Continuous Nearest Neigh-

bor Monitoring. In SIGMOD, Seiten 634–645, 2005.

[MPBT05] Kyriakos Mouratidis, Dimitris Papadias, Spiridon Bakiras and Yufei Tao.

A Threshold-Based Algorithm for Continuous Monitoring of k Nearest

Neighbors. IEEE Transactions on Knowledge and Data Engineering,

17(11):1451–1464, 2005.

[MYPM06] Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias and Nikos

Mamoulis. Continuous nearest neighbor monitoring in road networks. In

VLDB’2006: Proceedings of the 32nd international conference on Very

large data bases, Seiten 43–54. VLDB Endowment, 2006.

[MZ02] J. Maheshwari and N. Zeh. On reverse nearest neighbor queries, 2002.

BIBLIOGRAPHY 102

[NHS84] J. Nievergelt, Hans Hinterberger and Kenneth C. Sevcik. The Grid File:

An Adaptable, Symmetric Multikey File Structure. ACM Trans. Database

Syst., 9(1):38–71, 1984.

[NO97] K. Nakano and S. Olariu. An Optimal Algorithm for the Angle-Restricted

All Nearest Neighbor Problem on the Reconfigurable Mesh, with Applica-

tions:. IEEE Transactions on Parallel and Distributed Systems, 8(9):983–

990, 1997.

[PM97] Apostolos Papadopoulos and Yannis Manolopoulos. Performance of Near-

est Neighbor Queries in R-Trees. In ICDT ’97: Proceedings of the 6th

International Conference on Database Theory, Seiten 394–408, London,

UK, 1997. Springer-Verlag.

[PSTM04] Dimitris Papadias, Qiongmao Shen, Yufei Tao and Kyriakos Mouratidis.

Group Nearest Neighbor Queries. In ICDE ’04: Proceedings of the 20th

International Conference on Data Engineering, Seite 301, Washington, DC,

USA, 2004. IEEE Computer Society.

[PXK+02] S. Prabhakar, Y. Xia, D. Kalashnikov, Walid G. Aref and S. Hambrusch.

Query Indexing and Velocity Constrained Indexing: Scalable Techniques

For Continuous Queries on Moving Objects, 2002.

[PZMT03] D. Papadias, J. Zhang, N. Mamoulis and Y. Tao. Query Processing in

Spatial Network Databases, 2003.

[RKV95] Nick Roussopoulos, Stephen Kelley and Frédéric Vincent. Nearest neighbor

queries. Seiten 71–79, 1995.

[RPM03] K. Raptopoulou, A. N. Papadopoulos and Y. Manolopoulos. Fast Nearest-

Neighbor Query Processing in Moving-Object Databases. Geoinformatica,

7(2):113–137, 2003.

BIBLIOGRAPHY 103

[SAA00] Ioana Stanoi, Divyakant Agrawal and Amr El Abbadi. Reverse Nearest

Neighbor Queries for Dynamic Databases. In ACM SIGMOD Workshop

on Research Issues in Data Mining and Knowledge Discovery, Seiten 44–53,

2000.

[SFT03] A. Singh, H. Ferhatosmanoglu and A. Tosun. High Dimensional Reverse

Nearest Neighbor Queries, 2003.

[SJLL00] Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger and Mario A.

Lopez. Indexing the Positions of Continuously Moving Objects. In SIG-

MOD Conference, Seiten 331–342, 2000.

[SK98] Thomas Seidl and Hans-Peter Kriegel. Optimal Multi-Step k-Nearest

Neighbor Search. In SIGMOD Conference, Seiten 154–165, 1998.

[SKS02] Cyrus Shahabi, Mohammad R. Kolahdouzan and Mehdi Sharifzadeh. A

road network embedding technique for k-nearest neighbor search in moving

object databases. In ACM-GIS, Seiten 94–10, 2002.

[SR01] Zhexuan Song and Nick Roussopoulos. K-Nearest Neighbor Search for

Moving Query Point. In SSTD ’01: Proceedings of the 7th International

Symposium on Advances in Spatial and Temporal Databases, Seiten 79–96,

London, UK, 2001. Springer-Verlag.

[SRAA01] Ioana Stanoi, Mirek Riedewald, Divyakant Agrawal and Amr El Abbadi.

Discovery of Influence Sets in Frequently Updated Databases. In The

VLDB Journal, Seiten 99–108, 2001.

[SSH86] Michael Stonebraker, Timos K. Sellis and Eric N. Hanson. An Analysis of

Rule Indexing Implementations in Data Base Systems. In Expert Database

Conf., Seiten 465–476, 1986.

[SWCD97] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain and Son Dao. Modeling

and Querying Moving Objects. In ICDE, Seiten 422–432, 1997.

BIBLIOGRAPHY 104

[TFPL04] Yufei Tao, Christos Faloutsos, Dimitris Papadias and Bin Liu. Prediction

and indexing of moving objects with unknown motion patterns. In SIG-

MOD ’04: Proceedings of the 2004 ACM SIGMOD international conference

on Management of data, Seiten 611–622, New York, NY, USA, 2004. ACM

Press.

[TP02] Yufei Tao and Dimitris Papadias. Time-Parameterized Queries in Spatio-

Temporal Databases. In SIGMOD Conference, 2002.

[TPL04] Yufei Tao, Dimitris Papadias and Xiang Lian. Reverse kNN Search in

Arbitrary Dimensionality. In VLDB, Seiten 744–755, 2004.

[TPS02] Yufei Tao, Dimitris Papadias and Qiongmao Shen. Continuous Nearest

Neighbor Search. In VLDB, Seiten 287–298, 2002.

[TPS03] Yufei Tao, Dimitris Papadias and Jimeng Sun. The TPR*-Tree: An Opti-

mized Spatio-Temporal Access Method for Predictive Queries, 2003.

[TYM06] Yufei Tao, Man Lung Yiu and Nikos Mamoulis. Reverse Nearest Neigh-

bor Search in Metric Spaces. IEEE Transactions on Knowledge and Data

Engineering, 18(9):1239–1252, 2006.

[XMA+04] Xiaopeng Xiong, Mohamed F. Mokbel, Walid G. Aref, Susanne E. Ham-

brusch and Sunil Prabhakar. Scalable Spatio-temporal Continuous Query

Processing for Location-Aware Services, 2004.

[XMA05] Xiaopeng Xiong, Mohamed F. Mokbel and Walid G. Aref. SEA-CNN:

Scalable Processing of Continuous K-Nearest Neighbor Queries in Spatio-

temporal Databases. In ICDE, Seiten 643–654, 2005.

[XZ06] Tian Xia and Donghui Zhang. Continuous Reverse Nearest Neighbor Mon-

itoring. In ICDE ’06: Proceedings of the 22nd International Conference

on Data Engineering (ICDE’06), Seite 77, Washington, DC, USA, 2006.

IEEE Computer Society.

BIBLIOGRAPHY 105

[XZKD05] Tian Xia, Donghui Zhang, Evangelos Kanoulas and Yang Du. On com-

puting top-t most influential spatial sites. In VLDB ’05: Proceedings of

the 31st international conference on Very large data bases, Seiten 946–957.

VLDB Endowment, 2005.

[YL01] Congjun Yang and King-Ip Lin. An Index Structure for Efficient Reverse

Nearest Neighbor Queries. In Proceedings of the 17th International Confer-

ence on Data Engineering, Seiten 485–492, Washington, DC, USA, 2001.

IEEE Computer Society.

[YMP05] Man Lung Yiu, Nikos Mamoulis and Dimitris Papadias. Aggregate Nearest

Neighbor Queries in Road Networks. IEEE Transactions on Knowledge and

Data Engineering, 17(6):820–833, 2005.

[YPK05] Xiaohui Yu, Ken Q. Pu and Nick Koudas. Monitoring K-Nearest Neighbor

Queries Over Moving Objects. In ICDE, Seiten 631–642, 2005.

[YPMT05] Man Lung Yiu, Dimitris Papadias, Nikos Mamoulis and Yufei Tao. Reverse

Nearest Neighbors in Large Graphs. In ICDE ’05: Proceedings of the 21st

International Conference on Data Engineering (ICDE’05), Seiten 186–187,

Washington, DC, USA, 2005. IEEE Computer Society.

[ZPMT04] Jun Zhang, Dimitris Papdias, Nikos Mamoulis and Yufei Tao. All-Nearest-

Neighbors Queries in Spatial Databases. In SSDBM ’04: Proceedings of

the 16th International Conference on Scientific and Statistical Database

Management (SSDBM’04), Seite 297, Washington, DC, USA, 2004. IEEE

Computer Society.

[ZZP+03] J. Zhang, M. Zhu, D. Papadias, Y. Tao and D. Lee. Location-based spatial

queries, 2003.

