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Abstract

Location-based services rely heavily on efficient methods that
search for relevant points-of-interest (POIs) close to a given
location. A k nearest neighbors (kNN) query is one such
example that finds k closest POIs from an agent’s location.
While most existing techniques focus on finding nearby POIs
for a single agent, many applications require POIs that are
close to multiple agents. In this paper, we study a natural ex-
tension of the kNN query for multiple agents, namely, the
Aggregate k Nearest Neighbors (AkNN) query. An AkNN
query retrieves k POIs with the smallest aggregate distances
where the aggregate distance of a POI is obtained by aggre-
gating its distances from the multiple agents (e.g., sum of its
distances from each agent). Existing search heuristics are de-
signed for a single agent and do not work well for multiple
agents. We propose a novel data structure COLT (Compacted
Object-Landmark Tree) to address this gap by enabling ef-
ficient hierarchical graph traversal. We then utilize COLT
for a wide range of aggregate functions to efficiently answer
AkNN queries. In our experiments on real-world and syn-
thetic data sets, our techniques significantly improve query
performance, typically outperforming existing approaches by
more than an order of magnitude in almost all settings.

1 Introduction
Finding nearby relevant objects, and in particular points-of-
interest (POIs), efficiently is a critical task in a variety of
planning and scheduling applications including, e.g., real-
time path planning in video maps (Bulitko, Björnsson, and
Lawrence 2010) or location-based services. Nearby relevant
POIs are typically obtained by using a range query or a k
Nearest Neighbors (kNN) query. A range query (Papadias et
al. 2003) returns all POIs within a given distance from an
agent’s location, e.g., find all restaurants within 1 km from a
user. A kNN query (Zhong et al. 2015) returns the k closest
POIs from an agent’s location, e.g., find three fuel stations
closest to a taxi driver. The distance metric may be Euclidean
distance (i.e., “as the crow flies”) or road network distance
(i.e., the length of the shortest path). In this paper, we con-
sider road network distance as it is a more accurate measure
of proximity in many real-world applications such as map-
based services and is capable of representing a variety of
metrics such as physical distance, travel time, toll cost, etc.
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While the aforementioned queries retrieve POIs that are
close to a single agent, in many applications (e.g., ride-
sharing (Stiglic et al. 2015; Drews and Luxen 2013)), it is
important to obtain nearby POIs considering the locations of
multiple agents. An aggregate k nearest neighbors (AkNN)
query (Yiu, Mamoulis, and Papadias 2005) is a natural ex-
tension of a kNN query for multiple agents that retrieves
POIs considering their aggregate distance from the agents.
Given a POI p and a set of agents Q, the aggregate distance
of p from the agents is dagg(Q, p) = agg(d(qi, p), ∀qi∈Q)
where d(qi, p) denotes the road network distance from an
agent qi to p and agg() is an aggregate function. For ex-
ample, when the aggregate function is sum, dagg(Q, p) =∑

qi∈Q d(qi, p) and when the aggregate function is max,
dagg(Q, p) = maxqi∈Q d(qi, p). An AkNN query returns
k POIs with the smallest aggregate distances. In the rest of
the paper, we use the term query location to refer to the lo-
cation of an agent whenever clear by context. For the ease of
presentation, we assume the road network to be undirected
(i.e., d(x, y) = d(y, x) for any two points x and y). The pro-
posed techniques can be easily extended for directed road
networks (e.g., with one-way roads).

AkNN queries have many real-world applications. Con-
sider a group of friends planning to meet at a restaurant.
They might want to choose a restaurant such that the to-
tal distance they need to travel is minimized. They can is-
sue an AkNN query to find k restaurants with the smallest
aggregate distances where the aggregate function is sum.
Similarly, consider an urban planning problem that requires
building a fire station at one of many candidate sites with the
goal to minimize the distance of the station from the furthest
residential area in the city. In this case, an AkNN (k = 1)
query can be used to choose a candidate site p such that its
aggregate distance (with function max) from the set of res-
idential areas is minimum among all candidate sites. While
we focus on AkNN queries in road networks, it is worth not-
ing that AkNN queries have applications in a wide variety of
domains and can be used for other types of graphs such as
social networks and wireless sensor networks, etc.

The AkNN queries can also be used to solve another im-
portant query named a shortest detour query. Given a source
s and a target t, a shortest detour query returns a POI p such
that d(s, p) + d(p, t) is minimized. Consider the example of
a user who wants to stop at a gas station on the way from her
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home to work. In this case, a shortest detour query helps find
the gas station that minimizes the total distance she needs to
travel. Note that a shortest detour query is a special case of
an AkNN query where s and t are considered to be the query
locations and the aggregate function is sum.

Limitations of Existing Techniques

The key to efficiently retrieving nearby POIs in road net-
works is in developing heuristics to find the most promis-
ing POI candidates. Heuristics to answer AkNN queries
have largely been borrowed from kNN techniques (Yiu,
Mamoulis, and Papadias 2005; Zhu et al. 2010; Yao et al.
2018), which is problematic in several ways. First, intuitions
to find kNNs do not necessarily translate to AkNNs. For
example, the most efficient kNN heuristic (Abeywickrama
and Cheema 2017) uses a recurrence rule stating that the k-
th nearest POI must be adjacent to the k − 1 nearest POIs.
The rule is exploited by storing the 1st nearest POI of ev-
ery query location and the adjacency relationships between
POIs. However, AkNN queries involve retrieving POIs by
an aggregate distance from multiple query locations. Thus,
the recurrence rule is no longer true and cannot be applied,
rendering the heuristic unsuitable.

Given this, a more appropriate heuristic to find AkNNs is
to conduct a hierarchical search on the road network. (Yiu,
Mamoulis, and Papadias 2005) search an R-tree (Guttman
1984) containing the POIs in a top-down manner accord-
ing to a Euclidean distance heuristic, similar to another
kNN technique (Papadias et al. 2003). When constructed,
the R-tree recursively divides POIs into subsets by Mini-
mum Bounding Rectangles (MBRs). During search, a lower-
bound aggregate distance for all POIs in a child R-tree node
is computed using the Euclidean distances to its MBR. Now
the most promising tree branches can be visited to pinpoint
result POIs. However, this is not ideal for road networks as
Euclidean distance is only a loose lower-bound especially on
metrics like travel time, making the heuristic less efficient.
Moreover, the inefficiency is exacerbated for AkNNs as the
error will also be aggregated.

Landmark Lower-Bounds (LLBs) are a more accurate
alternative to Euclidean distance (Goldberg and Harrelson
2005). They involve pre-computing and storing certain dis-
tances to landmarks in the road network, which can then be
used to compute a lower-bound between any two locations
using the triangle inequality. However, there is no hierarchi-
cal data structure to compute minimum LLBs to groups of
POIs in the same way as R-trees using Euclidean distance.

Contributions

We propose techniques to overcome the diverse challenges
mentioned above. Our contributions are summarized below.

• We present two hierarchical data structures, SL-Tree and
COLT. These add significantly more landmarks than pre-
vious methods, while still keeping the data structures rea-
sonably small in theory and practice. COLT, the main in-
dex used for querying, is particularly light-weight. It is
also the first index to support hierarchical traversal of the
road network to locate POIs by landmark lower-bounds.

• Utilizing COLT and part of the SL-Tree, we propose a
heuristic search algorithm to efficiently answer AkNN
queries. Our algorithm is particularly adept at AkNN
queries due to a unique property of COLT for convexity-
preserving aggregate functions such as sum and max.

• We demonstrate the significant improvement in query
time and heuristic efficiency of our techniques on real-
world datasets through extensive experiments, achieving
up to two to three orders of magnitude improvement.

2 Preliminaries

Road Network: We define a road network as a graph
G = (V,E). V is a vertex set and E is an edge set. Each
edge (u, v) ∈ E connects two vertices with weight w(u, v)
representing any real positive metric, e.g., length or travel
time of the edge. Network distance d(s, t) is the minimum
sum of weights connecting vertices s and t. We consider
queries and objects on graph vertices for simpler exposition.

Aggregate k Nearest Neighbor (AkNN) Queries: Given
a set of query vertices Q ∈ V , a set of object vertices P ∈ V ,
and an aggregation function agg, an AkNN query retrieves
the k objects in P with minimum aggregate distances from
set Q. Aggregate distance dagg(Q, p) to object p is com-
puted by aggregating the network distances to p from each
query vertex q ∈ Q by function agg. In this paper, we focus
on presenting techniques for the case when agg function is
either sum or max. We remark that AkNN queries are also
known as Group kNN queries (Papadias et al. 2004).

Landmark Lower-Bounds (LLBs): Lower-bounds based
on landmarks, also called differential heuristics (Goldenberg
et al. 2011), involve selecting a set L of m “landmark” ver-
tices and then pre-computing distances from each landmark
to all vertices in V . Given two vertices q and p, a lower-
bound on network distance can be computed by (1) using
the distances to landmark li and the triangle inequality. The
maximum lower-bound over all m landmarks given by (2)
gives a tighter lower-bound and is typically accurate even
for small m (Goldberg and Harrelson 2005).

LBli(q, p) = |d(li, q)− d(li, p)| ≤ d(q, p) (1)

LBmax(q, p) = max
li∈L

(|d(li, q)− d(li, p)|) (2)

Lower-Bound Aggregate Distance: (Yiu, Mamoulis, and
Papadias 2005) showed, for monotonic aggregate functions,
the aggregate of lower-bound distances to object p from each
query vertex in Q is a lower-bound LBagg(Q, p) on aggre-
gate distance dagg(Q, p), as in Lemma 1.

Lemma 1. Given a monotonic aggregate function agg and
lower-bounds distances LB(qi, p) from each query ver-
tex qi ∈ Q to object p, the aggregation of the lower-
bound distances gives a lower-bound aggregate distance
on the true aggregate distance. I.e., LBagg(Q, p) =
agg(LB(q0, p), . . . , LB(q|Q|, p)) ≤ dagg(Q, p).
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(a) SL-Tree Subgraph Partitions (b) SL-Tree Node Hierarchy

Figure 1: Subgraph Landmark Tree (SL-Tree)

3 Data Structures

We now describe our data structures to index the road net-
work and object set for efficient hierarchical graph traversal.

Road Network Index: We first introduce the Subgraph-
Landmark Tree (SL-Tree) to index the road network. The
SL-Tree is a supporting index that we use to construct our
object index efficiently. Each node in the SL-Tree represents
a subgraph of the road network with the root being G. G
is recursively partitioned into b disjoint subgraphs of equal
size, stopping when a subgraph has no more than α vertices.
Figure 1a shows such a partitioning for b = 2 and α = 6
with the corresponding SL-Tree shown in Figure 1b. Note
that we refer to tree nodes and road network vertices.

For each node nT , we select m of its vertices as local
landmarks, e.g., l1 and l2 for m = 2 for S1 in Figure 1a
(landmarks for other nodes are omitted for clarity). We then
compute distances from each landmark li to every vertex in
nT ’s subgraph using Dijkstra’s search, which are then stored
in distance list DLi. Figure 1b shows the distance lists for
the landmarks of S1 (those for other nodes are again omit-
ted). Note that subgraphs are stored implicitly by mapping
road network vertices to the SL-Tree leaf nodes that con-
tains them. Any technique capable of partitioning graphs
into equally sized subgraphs can be used (the only partition-
ing constraint), e.g., METIS (Karypis and Kumar 1998).

Object Index: The SL-Tree can then be used to efficiently
construct our object index, the Compacted Object-Landmark
Tree (COLT). COLT is a carefully compacted version of the
SL-Tree for object set P . Compaction ensures that there are
m local landmarks for at most λ objects, to increase the like-
lihood of finding a tighter lower-bound for more objects.
Note that the SL-Tree is shared between construction of all
COLT indexes, i.e., for many different object sets.

Given SL-Tree T , COLT index C is constructed by vis-
iting nodes in T in a top-down manner and creating corre-
sponding nodes in C. Let nT be the currently visited node
in T (initially the root). A corresponding node nC is created
in C for nT . Let λ be the maximum number of objects in
a leaf node for COLT. If nT contains more than λ objects,
the search expands to its children. Otherwise, the search is
pruned at nC , which becomes a leaf-node of COLT. For the
new leaf nC , an Object Distance List ODLi is created in
nC for each landmark li in nT . These are simply the dis-
tance lists of nT , except with only the distances for object

(a) COLT Hierarchy (b) COLT Lower-Bounds

Figure 2: Compacted Object-Landmark Tree (COLT)

vertices from P . Any interior nodes with only one child are
merged with the child (keeping the child’s more localized
landmarks). Figure 2a shows a COLT index for λ = 2 con-
structed from the SL-Tree in Figure 1b based on the 5 object
vertices (green shaded vertices) in Figure 1a. Note that S1A

and S1B were removed as construction was pruned at S1 due
to its number of objects (the ODLs of other nodes are not
shown for clarity). Also note that we have chosen λ < α to
simplify the example, but generally require λ ≥ α to guar-
antee no leaf node and therefore no ODL contains more than
λ objects. For example, if every vertex in a leaf node is an
object there will be α objects in its ODL.

Each object distance list ODLi of leaf node nleaf in
C is sorted on distance. In non-leaf nodes nC , we only
store the minimum distance minnC ,li and maximum dis-
tance maxnC ,li to any object in the node from each of its
landmarks li. These are computed using distance lists in cor-
responding SL-Tree nodes. Next, we use this information to
compute lower-bounds to nodes and traverse the hierarchy.

Lower-Bound Heuristic for Graph Traversal

Similar to the lower bound in (1), we can compute a lower
bound for all objects contained within a node nC in COLT
index C by (3) for one landmark li ∈ nC . (4) gives the best
lower-bound over all m landmarks of nC :

LBli(nC , q) =

⎧⎨
⎩
d(li, q)−M+ if d(li, q) ≥ M+

M− − d(li, q) if d(li, q) ≤ M−

0 else
(3)

LBmax(nC , q) = max
li∈nC

(LBli(nC , q)) (4)

Thereby, M− := minnC ,li and M+ := maxnC ,li for
nC are already available in COLT. However, for non-root
nodes, d(li, q) in (3) is only available if li and q are in the
same subgraph. Pre-computing this distance for all V and
landmarks is infeasible given the space implications. Alter-
natively, computing d(li, q) on the fly using another tech-
nique is expensive and may be wasteful if the node does
not contain results. Interestingly, (3) still holds if we replace
the distances with lower-bound LB(li, q) and upper bound
UB(li, q), as in (5). The distance lists of the root or lowest
common ancestor SL-Tree node can be conveniently used
to compute the best LB(li, q) and UB(li, q) by (2) and its
upper-bound equivalent (by adding rather than subtracting
distances), respectively. Choosing the tightest over all land-
marks of nC gives an inexpensive and accurate bound even
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for a small number of landmarks:

LBli(nC , q) =

⎧⎨
⎩
LB(li, q)−M+ if LB(li, q) ≥ M+

M− − UB(li, q) if UB(li, q) ≤ M−

0 else
(5)

Landmark Choices: Additional landmarks closer to the
objects naturally lead to more accurate lower-bounds. Past
work has shown that landmarks on the fringe of the
graph also give better lower-bounds (Goldberg and Werneck
2005). Inspired by this, we choose landmarks from border
vertices of the subgraph, i.e., vertices with an edge leading
to a vertex in a different subgraph. First, we partition the
plane into m equally sized slices around the Euclidean cen-
ter of the subgraph, as if we were cutting a cake. We choose
1 border as a landmark from each slice. If a slice has no bor-
ders, we choose the slice vertex furthest from the Euclidean
center. If a slice has no vertices, we randomly choose a sub-
graph vertex to ensure m landmarks.

Effective Lower-Bounds: The accuracy of COLT’s inex-
pensive lower-bounds increases as we delve deeper into the
hierarchy. In Figure 2b, let us say we use l1 and its maximum
object distance to compute a lower-bound for the child node.
At the lower level, we may use the child’s landmarks like l2,
which are local to the objects and more likely to produce
a better lower-bound. This lets us differentiate tree branches
and pinpoint the most promising candidates. Next, we utilize
this as a decoupled heuristic for AkNN querying.

4 Query Algorithm for AkNN Search

Recent studies (Yao et al. 2018; Abeywickrama, Cheema,
and Taniar 2016) have shown that decoupled heuristics are
highly effective for POI search in road networks. Accord-
ingly, we utilize COLT to retrieve candidate objects (POIs)
likely to be AkNN results, by their lower-bounds and then
use another technique to compute network distances. While
iteratively retrieving further candidates, the set of the best k
candidates are updated, terminating when it can no longer be
improved. Interestingly, COLT considers fewer AkNN can-
didates to find the object with the minimum lower-bound
using a novel property of Object Distance Lists (ODLs).

Object Distance Lists and Convexity

Note that (1) can be expressed as an absolute value function
of form f(x) = |C − x| for some landmark l. Here, C is
the constant distance d(l, q) between the landmark l and the
query point q, and x is a variable distance d(l, p) depend-
ing on the object p ∈ P . Since absolute-value functions are
convex, f(x) is minimized for x closest to C. This prop-
erty is useful to find the minimum lower-bound in an Object
Distance List ODL for the landmark l for a single query ver-
tex q. Since ODL essentially stores the domain of x for all
objects in the node, the minimum lower-bound for the land-
mark l can be found by searching ODL for d(l, c) closest to
d(l, q) for some object c ∈ ODL. Since ODL is sorted, this
is possible using a modified binary search, as observed by
(Abeywickrama and Cheema 2017), in only O(log λ) time.

Finding the minimum lower-bound aggregate distance is
complicated by the presence of multiple query locations qi ∈
Q. From Lemma 1, we know the aggregate of lower-bound
distances from each query vertex qi is a lower-bound on ag-
gregate distance for monotonic functions (Yiu, Mamoulis,
and Papadias 2005). Therefore, the function to minimize be-
comes f(x) = agg(|C1−x|, · · · , |Cn−x|) for a monotonic
aggregate function agg where Ci is d(l, qi) for the given
landmark l and a query qi ∈ Q. At first glance, this might
suggest we need to search ODL for multiple values (i.e.,
once for each Ci) to find the object with minimum aggregate
lower-bound. Surprisingly, it is not necessary for aggregate
functions that preserve convexity. Moreover, we find that the
most widely used functions (Papadias et al. 2005), max and
sum, do preserve convexity. (Boyd and Vandenberghe 2004)
prove convexity preservation for a range of functions.

Specifically, once the minimum x∗ of the function f(x)
is found, iteratively retrieving the object that gives the next
smallest lower-bound simply requires checking the element
to the right or left of x∗ in ODL, due to the convexity of the
function. However, unlike the single query case, finding the
minimum of f(x) is not obvious for aggregate kNN queries.
Below, we show how to find the minimum for two common
aggregate functions, max and sum.

Lemma 2. Consider the aggregate function defined by the
sum of a set of absolute functions f(x) = sum(|C1 −
x|, · · · , |Cn − x|). The minimum x∗ of f(x) is the median
value of the constants C1, ..., Cn.

Proof. Let constants be sorted such that C1 ≤ C2 ≤ ... ≤
Cn. Let x∗ be the median of these constants. We show that
f(x∗) ≤ f(x′) for all x′. Let d = |x∗ − x′|. Without loss
of generality, assume x′ < x∗. For each Ck < x∗, the dif-
ference between |Ck − x∗| and |Ck − x′| is at most d, i.e.,
|Ck − x∗| − |Ck − x′| ≤ d. On the other hand, for each
Cj ≥ x∗, the difference between |Cj − x′| and |Cj − x∗| is
exactly d, i.e., |Cj − x′| − |Cj − x∗| = d. Since x∗ is me-
dian of the constants, the number of constants Cj ≥ x∗ is at
least �n

2 �. In other words, for at least half of the constants,
|Ci−x′|− |Ci−x∗| = d and for each of the remaining con-
stants, |Ci−x∗|− |Ci−x′| ≤ d. Thus, f(x∗) ≤ f(x′).

Lemma 3. Consider the aggregate function defined by the
maximum of a set of absolute functions f(x) = max(|C1 −
x|, · · · , |Cn − x|). The minimum x∗ of f(x) is Cmin+Cmax

2 ,
i.e., the average of the minimum and maximum constants.

Proof. For sorted constants, let C1 = Cmin and Cn =
Cmax. Note that f(x) = max(|C1 − x|, · · · , |Cn − x|) =
max(|C1−x|, |Cn−x|). Thus, the minimum value of f(x)
is C1+Cn

2 , i.e., minimum x∗ of f(x) is Cmin+Cmax

2 .

Query Processing

Algorithm 1 uses hierarchical graph traversal on the COLT
index to guide us towards ODLs most likely to contain
AkNN results. The algorithm maintains a priority queue PQ
containing objects and COLT nodes keyed by their aggregate
lower-bound distances from Q. The loop iteratively extracts
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Algorithm 1 Get AkNNs by COLT for query vertex set Q
1: function GETAKNNS(k,Q, agg, COLT, SLTree)
2: PQ ← φ � Priority queue keyed by lower-bound distance
3: R← φ � Max priority queue containing k best candidates
4: INSERT(PQ, COLT.root, 0) , Dk ←∞
5: while MINKEY(PQ) < Dk and PQ not empty do
6: c← EXTRACT-MIN(PQ)
7: if c is an object then
8: Compute agg. dist dagg(Q, c) using d(qi, c)∀qi ∈ Q
9: if dagg(Q, c) < Dk then

10: INSERT(R, c, dagg(Q, c)) � Check/update R & Dk

11: else if c is a non-leaf node, i.e., with no ODL then
12: for each child node e of c do
13: Compute LBagg(Q, e) for e by (4) and Lemma 1
14: INSERT(PQ, e, LBagg(Q, e))
15: else if c is a leaf node then
16: if c not seen before then
17: Set c.l to furthest landmark by LLB from Q
18: Compute network distances d(q, c.l)∀q ∈ Q
19: Initialize array c.d[] using query distances to c.l
20: Binary search c.l’s ODL for minimum of f(x)
21: Initialize c.RP /c.LP to index of minimum
22: RETRIEVEOBJECTSOL(PQ, Q, c)
23: Set best lower-bound LBagg(Q, c) using c.RP /c.LP
24: INSERT(PQ, c, LBagg(Q, c))
25: return R
26: function RETRIEVEOBJECTSOL(PQ, Q, c)
27: while LBagg,c.l(Q, p) < PQ.T op() do
28: p← object at c.RP or c.LP with smaller LBagg,c.l

29: INSERT(PQ, p, LBagg,max(Q, p))
30: Increment c.RP or decrement c.LP used at Line 28

the minimum lower-bound queue element. If an object is ex-
tracted, its exact aggregate distance is computed and the re-
sult set R and Dk is updated (lines 7-10). The result set R
maintains up to k objects with the smallest aggregate dis-
tances found so far by the algorithm and Dk corresponds to
the k-th largest aggregate distance among these objects. If
a non-leaf node is extracted then an aggregate lower-bound
score is computed according to (4) and (5) for each of its
child nodes (lines 12-14). If it is a leaf-node, it is initialized
if encountered for the first time (lines 16-21). A landmark is
chosen to determine the object list to process, the constants
in the absolute value functions are computed, and a binary
search is performed to find the minimizing list index given
by Lemma 2 or 3. Pointers RP and LP are initialized to the
index of the minimizing value. Then objects are retrieved
from the list using RETRIEVEOBJECTSOL and, if the list
is not completely searched, the node is re-inserted into PQ
with minimum lower-bound computed by RP or LP . We set
c.l (line 17) to the landmark furthest from the query vertices
(on average) by a lower-bound computed using the SL-Tree
and (2), to obtain tighter lower-bounds similar to fringe land-
marks in Section 3. Line 29 computes the maximum (best)
lower-bound aggregate distance for object p using available
network distances for any landmark (e.g., landmarks in the
root SL-Tree node or c.l in the leaf).
Proof Sketch for Correctness: The intuition behind the al-
gorithm’s correctness is that there is a lower-bound aggre-

gate distance for every object in the priority queue. That is,
a queue element for the object, or a queue element for a sub-
graph containing the object(s). Thus, when the algorithm ter-
minates, lower-bounds for all remaining objects are greater
than the true aggregate distance for the k result objects found
so far. In other words, no other object can have an aggregate
distance smaller than the current k result objects.

5 Complexity Analysis

In this section, we analyze the space and time complexity of
the proposed data structures COLT and SL-Tree. COLT is
converted from the SL-Tree, which is a complete b-ary tree.
There are at most O(|P |) leaf nodes in COLT. COLT may be
unbalanced as not all nodes in the SL-Tree may be included
in COLT. However, since we merge child nodes into their
parent nodes if the child does not have other siblings (com-
pressing the tree height), the total number of nodes will be
the same as a complete b-ary tree, i.e., O(|P |). However,
COLT’s space complexity is dominated by the m object dis-
tance lists (ODLs) stored in each leaf node. This results in
O(m|P |) total space as each object is only stored in one
ODL and we remark that m is a small constant. Similarly,
compression of COLT’s height via merging of single child
nodes into parent nodes results in an average depth in COLT
of O(log |P |). Given the top-down conversion and O(1)
look-ups of SL-Tree vertex distances lists as hash-tables,
propagating |P | objects to build ODLs and computing re-
quired values takes O(|P | log |P |) time. Sorting all ODLs
takes O(|P |λ log λ) time where λ is a small constant. Thus,
the total time complexity is O(|P | log |P |).

The height of the balanced SL-Tree, with branching factor
b and |V |

α leaf nodes, is O(logb
|V |
α ), i.e., O(log |V |) since

b and α are small constants. Given the disjoint partition-
ing, each vertex belongs to at most one tree node at each
level, meaning there are O(|V |) vertices per level. Then all
vertex distance lists associated with the SL-Tree will take
O(m|V | log |V |) space, since we store the distance from ev-
ery vertex to m landmarks at each level. This, of course,
dominates the O(|V |) space occupied by the tree nodes and
vertex-leaf node mapping. For level i, there will be at most
bi nodes, each with |V |

bi vertices. If a Dijkstra’s search from
each of the m landmarks is used to compute the distances
to the node’s vertices, then this may take O(bim |V |

bi log |V |
bi )

time for all nodes at level i. However, the Dijkstra’s search
may visit vertices outside the SL-Tree node’s subgraph, e.g.,
if a shortest path from a landmark to one vertex passes out-
side the subgraph. We multiply bi by a factor γ to indicate
how many additional vertices are visited by the search. In
practice, γ can be reduced by using techniques to limit the
search. A simple method is to use a bounding box around
the subgraph and use an A*-like lower-bounding heuristic
to prune the Dijkstra’s search. More complex techniques
like border-to-border shortcuts (Lee, Lee, and Zheng 2009)
or distance matrices (Zhong et al. 2015) can reuse distance
computations from lower-levels to reduce the graph at higher
levels and accelerate computation. We find that γ is a small
constant on average in practice, and the overall time com-
plexity for level i simplifies to O(m|V | log |V |). Multiply-
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Figure 3: Hierarchical Subgraph Vertex Ordering

ing by the height, the time complexity for the whole tree is
O(m|V |(log |V |)2). Thus, space and time cost only increase
by a factor of O(log |V |) over ALT.

Subgraph Vertex Ordering: It is not practicable in terms
of space cost to store the road network vertices associated
with each SL-Tree node (i.e., belonging to the subgraph as-
sociated with the SL-Tree node). This would involve storing
the same road network vertex at each level of the tree. Con-
sequently, vertices are only stored in the leaf node of the
SL-Tree. However, the construction time complexity analy-
sis given earlier depends on a top-down conversion of the
SL-Tree structure into a COLT tree. This involves deter-
mining which child SL-Tree node a road network vertex
belongs to in O(1) time. With implicit storage of vertices
in non-leaf nodes, this look-up would take O(log|V |) time,
by first finding the leaf node containing the vertex and fol-
lowing the hierarchy upwards. This can be avoided by an
ordering which groups vertices of child subgraphs recur-
sively as shown in Figure 3 and renumbering vertex IDs
based on this order. By simply storing the first and last ver-
tex ID of vertices in a child subgraph, point containment
can be performed in constant time O(1). As an added ben-
efit of subgraph vertex ordering, we reduce the space of the
SL-Tree distances lists by half as they need only store dis-
tances with the list in subgraph-vertex order. For very large
road networks this can entail gigabytes of storage saved.
Moreover, distance lists can be stored as arrays instead of
hash-tables, which consume a great deal more memory than
just its elements and are known to incur performance penal-
ties due to poor data locality (Šidlauskas and Jensen 2014;
Abeywickrama, Cheema, and Taniar 2016).

6 Experiments

Experimental Settings

Environment: We conduct experiments on a Linux (64-
bit) Amazon Web Services r5a.2xlarge instance with eight
AMD EPYC 2.5GHz CPU cores and 64GB of memory.
Code was written in single-threaded C++ and compiled by
g++ v5.4 with O3 flag. All experiments were conducted us-
ing memory-resident indexes for fast query processing.

Datasets: We use a real road network graph for the conti-
nental US with 23, 947, 347 vertices and 57, 708, 624 travel

Parameter Values

k 1, 5, 10, 25, 50
d 1, 0.1, 0.01, 0.001, 0.0001
A (%) 1, 5, 15, 50, 100
|Q| 2, 4, 8, 16, 32
Agg. Func. sum, max
Real-World
POI Set (|P |)

School (160,525), Park (69,338), Fast
Food (25,069), Post Office (21,319),
Hospitas (11,417), Hotels (8,742), Uni-
versity (3,954), Courthouse (2,161)

Table 1: Parameters (Defaults in bold if applicable)

time edges obtained from the 9th DIMACS Challenge1 com-
bined with 8 real POI sets for the US from OSM2, as
listed in Table 1 provided by (Abeywickrama, Cheema, and
Taniar 2016). For sensitivity analysis, we generate synthetic
POI sets chosen uniformly at random for density d where
d=|P |/|V |.
Parameters: We use parameter A to define a connected
subgraph of G with A% of the total vertices |V |. Query ver-
tices are then chosen uniformly at random from the A% sub-
graph. Similar to past studies (Yiu, Mamoulis, and Papadias
2005), this represents how “local” a group of query locations
are. We test the sensitivity of techniques to varying numbers
of results k, density d, query vertices |Q|, and subgraph per-
centages A. We also test two popular aggregate functions
max and sum. Parameter values are listed in Table 1 with
defaults in bold if applicable. We report query time over 500
queries, e.g., with 10 sets of objects and 50 sets of randomly
chosen query vertices for each object set.

Techniques: We compare our algorithm against the Incre-
mental Euclidean Restriction (IER) AkNN algorithm pro-
posed by (Yiu, Mamoulis, and Papadias 2005). We also ap-
ply their concurrent expansion approach to adapt the state-
of-the-art kNN heuristic based on Network Voronoi Dia-
grams (NVDs) by (Abeywickrama and Cheema 2017) for
AkNN queries. Each technique uses Pruned Highway La-
beling (PHL) (Akiba et al. 2014) implemented by its authors
to compute network distances, hence techniques are named
IER-PHL, NVD-PHL, and COLT-PHL. Using the same net-
work distance computation technique ensures a level playing

1http://www.dis.uniroma1.it/%7Echallenge9/
2http://www.openstreetmap.org
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Figure 5: Performance for max function

ALT (m=16) SL-Tree (m=4) PHL

Time 71s 25m 25m
Space 1.43GB 4.6GB 15.8GB

Table 2: Road Network Index Statistics (US)

COLT (m=4) NVD R-tree

Time 63ms 11s 6ms
Space 0.9MB 28MB 0.9MB

Table 3: Object Index Statistics (US,uniform
objects,d=0.001)

field, and as PHL is one of the fastest techniques, it will bet-
ter show the differences in overheads. We implemented all
other techniques, sharing subroutines and basic data struc-
tures to ensure fairness. Nonetheless, we also compare al-
gorithms on heuristic performance in terms of “false pos-
itives”, which is independent of the network distance tech-
nique. SL-Trees and COLT use branching factor b = 4, max-
imum object distance list size λ = 1024 (which is also α)
and m = 4 landmarks per node for ideal performance vs. in-
dex size. NVD uses the ALT index (Goldberg and Harrelson
2005) with m = 16 random landmarks to compute LLBs,
which we also use as it is essentially the root of an SL-Tree.

Real-World Query Performance

Figure 4 depicts query time on real-world POI datasets,
with the number of objects increasing from left to right.
COLT significantly outperforms the other methods across
the board, with up to two orders of magnitude improvement.
COLT tends to improve more on larger POI sets, where it is
more difficult to distinguish between objects. Next, our sen-
sitivity analysis delves deeper into this and other nuances of
query performance for varying parameters.

Sensitivity Analysis

Effect of d: The trend seen for real-world POIs is con-
firmed by increasing object density d in Figure 5a. Both IER
and NVD scales poorly with increasing d. With more ob-
jects, NVD-PHL must expand more adjacent objects to find
a common candidate for the same query vertices. While IER-
PHL finds it harder to distinguish objects using its less ac-
curate Euclidean lower-bound. In contrast, COLT’s tighter
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Figure 6: Performance for sum function

lower bounds and hierarchical traversal is more effective in
pruning subgraphs and pinpointing likely candidates.

Effect of k: COLT significantly outperforms the other
methods for varying k in Figure 5b. NVD-PHL and IER-
PHL query times do not vary significantly compared to
COLT (note the logarithmic scale). This suggests the same
amount of work is done irrespective of k and strongly im-
plies the competing techniques cannot effectively identify
good candidates and terminate quickly. For example, NVD-
PHL expands so many candidates to find the first AkNN,
that subsequent candidates have already been encountered.

Effect of |Q|: We investigate query time as the number of
query vertices increases in Figure 5c. Increasing query ver-
tices involves computing additional lower-bounds and net-
work distances to candidates, thus query time increases for
all methods. However, COLT scales better because it con-
ducts a single binary search on its object distance lists irre-
spective of the number of query vertices. On the other hand,
NVDs require additional concurrent expansions as AkNN
results are less likely to be close to any single query vertex.

Effect of A: Recall that A is the percentage of graph ver-
tices in a subgraph from which we choose query vertices.
With increasing A query vertices become further apart, e.g.,
to represent a query by a logistics company placing depots
nation-wide. For A = 1%, NVD-PHL performance is closer
to COLT in Figure 5d. For NVDs, this scenario is similar to
kNN queries where it excels, as more query vertices share
the same 1NN and concurrent expansions overlap. IER does
not benefit from this as its lower-bounds are still inaccurate.
In a sense, queries become “harder” with increasing A and
COLT scales extremely well in that case.
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Figure 7: Heuristic performance

Effect of Aggregate Function: We evaluate another pop-
ular aggregate function, sum, in Figure 6. Both IER and
COLT have higher query times for sum than max because
sum also sums the error of the lower-bound. This effect is
amplified by the hierarchical nature of IER and COLT, ex-
plaining the relative improvement of NVD-PHL. However,
COLT’s tighter lower-bounds make it more robust to this
than IER and still significantly outperforms both methods.

Heuristic Efficiency: We measure the efficiency of the
heuristics in Figure 7 using machine-independent metrics.
Figure 7a shows the number of network distances computed
to non-result POIs. The poor query time performance of IER
is explained by the significantly higher network distances
computed. However, NVDs do not compute much more net-
work distances than COLT. As both methods use landmark
lower-bounds (LLBs), that are more accurate than IER’s Eu-
clidean distance, they both avoid computing network dis-
tances. The poor query time of NVDs can be explained by
Figure 7b, which shows NVDs computing a significantly
higher number of LLBs than COLT. This confirms expan-
sion in NVDs encounters a significantly higher number of
objects than COLT’s hierarchical search.

Pre-Processing Costs

Table 2 details the road network pre-processing costs in
terms of time and space. SL-Tree consumes greater space
than ALT, but not significantly so. Moreover, only the root
node of the SL-Tree is required for query processing, which
has the same index size as ALT. The indexing time is com-
parable to PHL, which possesses one of the fastest pre-
processing times for high-performance indexes (Akiba et al.
2014). Table 3 lists the pre-processing costs for object in-
dexes used by each technique for default density 0.001×|V |.
Note that object indexes are constructed for each object set
(e.g., the set of restaurants). COLT is significantly smaller
and faster to construct than NVDs and is comparable to R-
trees as both have space complexity linear to the input.

7 Related Work

A recent experimental study (Abeywickrama, Cheema, and
Taniar 2016) on the kNN problem provided an in-depth re-
view of the state-of-the-art. The key findings of this study
were the surprising performance of IER and the implications
this had on heuristics used in kNN. We refer the reader to
this paper for a detailed review of kNN techniques.

One of the most popular heuristics to estimate network
distances is landmark-based lower-bounds (LLBs) (Gold-
berg and Harrelson 2005) also often referred to as differ-
ential heuristics (Sturtevant et al. 2009; Goldenberg et al.
2011). (Kriegel et al. 2008) proposes a hierarchical land-
mark scheme to reduce index space cost. Other work (Gold-
berg and Werneck 2005) has focused on improving lower
bounds, e.g., through better landmark selection. These com-
pliment our work, e.g., better lower bounds reduce the
number of false hits. Other notable heuristics include Eu-
clidean distance-based heuristics (Rayner, Bowling, and
Sturtevant 2011), compressed path databases (Bono et al.
2019), portal-based true-distance (Goldenberg et al. 2010),
and FastMap (Cohen et al. 2018) heuristics.

Landmarks have been used to answer kNN queries by
(Kriegel et al. 2007; 2008) based on the multi-step kNN
paradigm (Seidl and Kriegel 1998). While these studies pro-
pose interesting improvements to using landmarks, the kNN
algorithms require creating a ranking by computing lower-
bounds to all objects. As discussed, this approach is not
scalable with object set size and not competitive with ex-
isting approaches in practice. VN3 (Kolahdouzan and Sha-
habi 2004) uses Network Voronoi Diagrams to answer kNN
queries. NVD-based techniques were also used to answer
continuous kNN queries (Zheng et al. 2016). (Mouratidis
et al. 2015) proposed computing landmark lower-bounds to
groups of users in a social network similar to (3). How-
ever, their technique is not designed for hierarchical graph
traversals and, unlike COLT, does not address the problem
of computing more accurate lower-bounds (e.g., with more
landmarks) necessary for an effective hierarchical search.

Road Network Embedding (Shahabi, Kolahdouzan, and
Sharifzadeh 2003) transforms the road network into higher
dimensional space and uses Minkowski metrics to estimate
network distance. However, the proposed kNN method is
approximate. Qiao et al. also propose an approximate tech-
nique (Qiao et al. 2013) using shortest path trees to compute
distance estimates based on tree distance, but their solution
applies to the keyword search problem in road networks.

The AkNN problem on road networks was addressed by
applying IER (Yiu, Mamoulis, and Papadias 2005). How-
ever, this experiences the same inaccuracy problems as IER
in kNN search, especially when edge-weights are not phys-
ical distance. In fact, AkNN search is more adversely af-
fected as it also aggregates the error. VN3 has also been ap-
plied to the AkNN problem (Zhu et al. 2010), but like the
kNN algorithm, it suffers from high pre-processing costs.

8 Conclusion

COLT elegantly combines several properties that benefit
AkNN search. First, AkNN queries involve multiple query
locations. Consequently, result objects are unlikely to be
near any query location and are more easily located using
the hierarchical subgraph traversal in COLT. Second, COLT
can compute better and inexpensive lower-bounds using lo-
calized landmarks at each level of the hierarchy. Combined
with its novel property for convexity preserving aggregate
functions, we can retrieve more promising candidates and
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terminate search sooner. This is demonstrated in our exper-
iments with COLT significantly outperforming competing
techniques on AkNN queries. Moreover, the data structures
used for querying are light-weight in both theory and prac-
tice. COLT is also a versatile data structure with potential
application to other search and planning problems, e.g., uti-
lizing the hierarchical search to find optimal meeting points
for ride-sharing. Further improvement of search heuristics
may also be possible, e.g., in the direction of Compressed
Differential Heuristics (Goldenberg et al. 2011).
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