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ABSTRACT
In this paper, we study continuous detour queries in the indoor
space. A continuous detour query finds the nearest indoor detour
object like an ATM or a printer for a moving user walking towards
a target location in an indoor venue, where the detour distance for
an indoor object is measured as the total indoor distance of the
object from the user’s current and target locations. The continuous
detour query has been already studied for the outdoor space, but the
solutions are not adaptable for the indoor space due to the unique
characteristics of indoor venues. We develop the first solution for
efficient processing of the continuous detour query in the indoor
space. The novelty of our solution comes from the computation
of safe zones for the indoor objects by exploiting the geometric
properties of hyperbolas, additively weighted Voronoi diagram and
indoor partitions. The safe zone represents an area such that the
nearest detour object remains unchanged as long as the user is in
this area. The key ideas behind the efficiency of our solution are
reducing the number of re-evaluation of the detour queries for the
location change of a moving user, pre-computing the safe zones,
and indexing them using a grid structure. The experiments show
that our solution can process continuous detour queries efficiently
and reduces the communication overhead.
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1 INTRODUCTION
Indoor location-based services (LBSs) play an important role in
planning daily activities with convenience as people usually spend
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most of their time inside the indoor venues like offices, shopping
centers, transport facilities, and libraries. Although the efficient
processing of various outdoor LBSs has been extensively studied
over the last couple of decades, the indoor LBSs had not received
significant attention due to various reasons [3]. Thanks to the recent
advances in indoor positioning technologies, the indoor LBSs have
started to receive attention from the research community. Recently,
it was shown [17] that the outdoor query processing techniques [1,
2, 8, 29, 30] are not efficiently applicable for indoor LBSs due to
the unique characteristics of indoor venues. For example, in the
road network setting, people move along the roads whereas the
buildings are normally organized into partitions with walls, doors,
stairs and lifts, and people are free to move inside a partition. Thus,
to continue the proliferation of indoor LBSs, it is essential to develop
efficient solutions for processing location based queries in indoor
venues.

In this paper, we propose the first solution for continuous detour
queries in indoor venues, an essential class of LBSs that allows a
moving user to continuously monitor the nearest detour object
(e.g., an ATM, a printer, check-out counter) while walking towards
a target location in an indoor venue. For example, a user in a library
may want to visit a check-out kiosk before returning to the car
park. A detour query returns the indoor object that has the smallest
detour distance, where the detour distance is measured as the total
indoor distance of an indoor object from the user’s current and
target locations. However, it is common that an indoor user deviates
from her planned path to the target location which may result in a
change to the nearest detour object. For example, the library user
may deviate from her current path to have a look at some books
along her way or a user in a shopping centre may enter a store
to look at some products. Furthermore, the users may also miss a
turn while walking towards the nearest indoor detour object. In
such scenarios, the nearest indoor detour object may continuously
change as the user walks which requires continuously updating
the results.

Processing a continuous detour query using a detour query for
every location update of a moving user would incur a high process-
ing overhead. Thus, the efficiency of a continuous detour query
processing algorithm for indoor venues highly depends on reducing
the number of re-evaluations of the detour queries. This also results
in excessive communication cost between the client and the server
because the up-to-date results need to be sent to the user at each
timestamp. To address this issue, in addition to the current nearest
indoor detour object, our solution provides a user with additional
information so that the user does not need to communicate with
the server for the re-evaluation of the detour query for moving
within a specific area.
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Since the density of the indoor objects is much higher than
that of the outdoor space, performing all computations in query
time is not feasible for the indoor space. We develop a novel tech-
nique to compute the safe zones for indoor objects by exploiting the
geometric properties of hyperbolas, additively weighted Voronoi
diagrams [12] and indoor partitions. A safe zone for an indoor ob-
ject represents an area where it is guaranteed that the indoor object
remains the nearest detour object with respect to a partition door
for a user who is moving towards a fixed target point. Our safe
zone computation technique does not depend on any query time
parameter and thus, allows us to pre-compute the safe zones and
use them for query processing. Pre-computed safe zones signifi-
cantly reduce the query computational overhead for identifying
the nearest detour objects, and the communication overhead by al-
lowing the user to have the nearest detour objects for a guaranteed
area without sending a re-evaluation request of the detour query
to the location-based service provider.

The underlying idea of our solution is to divide the problem of
finding a nearest detour for a user’s current and target locations
into two subproblems: identifying the minimum local detour and
the minimum remote detour with respect to an indoor partition. For
the minimum local detour, using the stored safe zones, we find the
indoor object that has the smallest detour distance among all indoor
objects in the indoor partition where the user is currently located.
We also develop an efficient algorithm to identify the indoor ob-
ject that has the smallest detour distance among all indoor objects
outside the user’s current partition and we consider the identified
indoor object as the minimum remote detour. Finally, the indoor
object that provides the smallest detour distance between the mini-
mum local detour and the minimum remote detour is selected as
the query answer.

The query answer, a grid cell representing an area that may
overlap with the safe zones of one or multiple indoor objects along
with other additional information are sent to the user. The query
answer may change as the user moves but as long as the user
resides within the grid cell (denoted as the client-side safe zone),
the user can compute the new nearest indoor detour object without
communicating with the server. Moreover, the user’s location is
sent to the server for finding the nearest indoor detour object, if
the user moves outside the client-side safe zone.

Continuous detour queries have been addressed in the outdoor
space [11, 13]. In the road networks, users are restricted to move
towards the roads and thus, the existing solution [11] for processing
continuous detour queries in the road network is not applicable for
indoor scenarios. On the other hand, [13] continuouslymonitors the
nearest detour objects in the outdoor space in presence of obstacles
like a building, a river or a fence. Due to the random distribution
of the obstacles in the outdoor space, the solution [13] performs all
computations during query time and is prohibitive for the indoor
space.

The contributions of this paper are summarized as follows:

• We are the first to study the continuous detour queries in
the indoor space.
• Wepropose an efficient solution for continuouslymonitoring
the nearest indoor detour object for a user walking towards
a fixed target location.

• We develop a novel technique to pre-compute the safe zones
for indoor objects inside a partition.
• We perform an extensive set of experiments and show that
our solution performs significantly better than the competi-
tors.

The remainder of the paper is organized as follows. In Section 2,
we discuss the works related to our problem. In Section 3, we
formulate the problem of the continuous detour query. Section 4
presents our solution for efficient processing of the continuous
detour queries. In Section 5, we present the experimental results
and in 6, we conclude the paper with the future research direction.

2 RELATEDWORK
2.1 Query Processing in the Indoor Space
The literature [17] shows that the existing outdoor query processing
techniques fall short in indoor space as they do not consider unique
properties of an indoor space such as hallways and rooms. Thus,
the efficient indoor query processing has received a significant
attention recently. A large body of work for querying indoor data,
shortest distance/path, range and k nearest neighbour queries under
various settings can be found in [10, 21, 22, 27].

The indexing structures that take into account the uniqueness
of the indoor space have been proposed for efficient indoor query
processing. Xie et al. [20] develop a composite indexing structure
called indR-tree, that indexes indoor entities into different layers,
namely the geometric layer, the topological layer, and the object
layer. Yang et al. [23] propose a distance-aware indoor space model
called accessibility base (AB) graph that describes the topology
of a indoor space by capturing the fundamental connectivity and
accessibility.

D2D graph [23] is one of the most notable techniques which
has been used in most of the studies in literature since they enable
various query processing techniques in road networks [2, 29, 30]
to be applied in the indoor space. D2D graph represents doors in
the indoor space as vertices. A weighted edge between two ver-
tices is created if they are connected to the same indoor partition
(e.g., room, hallway) where the edge weight is the indoor distance
between the corresponding doors. Lu et al. [9] propose a distance
aware indoor space data model along with efficient distance compu-
tation algorithms. To support efficient distance aware queries, they
use a distance matrix, which is derived from the indoor topology
and indoor distances. Also, they propose a room-based expansion
algorithm to process distance queries along with accessibility graph
which captures the essential connectivity and the accessibility of
the indoor space.

Shao et al. [17] introduce an efficient indexing structure called
IP-tree that takes into account unique indoor properties in tree
construction and query processing. In an IP-tree, adjacent indoor
partitions (e.g., rooms, hallways, staircases) are combined to form
leaf nodes. Then, the adjacent leaf nodes are combined to form
intermediate nodes. This process is iteratively continued until all
nodes are combined into a single node (i.e., root node). VIP-tree [17]
is an improvement of the IP-tree. Compared to the existing indexing
techniques, VIP-tree has demonstrated more efficiency and higher
scalability. Thus, we use the VIP-tree as our indexing structure in
this study.
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2.2 Detour Queries in the Outdoor Space
In-Route Nearest Neighbor Queries (IRNN) in [18, 26] are designed
assuming users are stick to a fixed daily route where they even
return back to the particular route after visiting a detour facility.
Hence, they compute the nearest neighbours with the minimum
detour distance from the fixed route. Chen et al. [7] introduce Path
Nearest Neighbour (PNN) which capable of monitoring nearest
neighbour for both scenarios where user move along the preferred
path and user deviated from the preferred path. Basically, they
monitor the nearest neighbour for a dynamically changing path
rather than a query point. Hence, these works cannot be extend
to answer detour queries. Shang et al. [15] study a detour problem
where a preferred path is given along with a detour distance thresh-
old. They initially divide the path into set of segments and find
candidates whose detour distances less than the given threshold.
Then they find the best detour point after validating the candidates.
Thus, these techniques cannot be extended as the path must be
predetermined.

[11] proposes a solution where an order-k shortest path tree is
incrementally build. In an indoor graph, door to door edge represent
an indoor partition which may consists of many objects. Hence,
constructing a shortest path tree is not possible for indoor space as
the space inside the partition must be considered as Euclidean space.
Even though they study a similar problem to ours, we find that their
techniques cannot be extended to answer detour queries in indoor
space. Moreover, [13] investigates detour queries in obstructed
space. They propose an approach that constructs safe zones by
retrieving k + x nearest obstructed detour objects with respect to
the user location. We find their work have different aims compared
to our problem.

A variant of nearest neighbor queries called aggregated nearest
neighbor can also be utilized to answer detour snapshot queries. Yiu
et al. [25] propose three techniques that utilize Euclidean distance
bounds, spatial access methods and network distance material-
ization structures. [19, 31] present approaches based on network
voronoi diagram. Each of these approaches consist of two phases,
namely, searching phase and pruning phase. In searching phase,
they continuously search for next NN from each query point until
a common object is found. After a candidate set is obtained, they
continuously expand the search by computing the next NN for a
certain query point while pruning unqualified objects. Zhang et
al. [28] study a variant of ANN query that takes into account both
spatial proximity and textual similarity. They propose an indexing
schema called dual-granularity where bitmaps are integrated into
a G-tree. They consider POIs on the edges as newly added vertices
to the network graph. Thus, it may expand the scale of the original
graph by several times, thereby leading to high space and query
overheads. Briefly, we find all these techniques are inapplicable in
answering detour queries in indoor space. Next, we discuss route
planning queries in indoor space which can be used to answer
snapshot detour queries. Shao et al. [16] are the first to study the
indoor trip planning queries. They propose an exact solution called
VIP-tree neighbour expansion (VNE). In this study, they assume
that the number of indoor points in the indoor venues are very
small. Thus, their techniques cannot be extended to answer detour
queries. In [14], they get the aggregated distance to an indoor object

from given two indoor points by utilizing VIP-tree indexing struc-
ture. We adopt their techniques in this study. Even though their
techniques can be extended to answer detour snapshot queries,
the performance is similar to the naive approach as they have to
compute results per location update.

3 PROBLEM DEFINITION
D2D Graph. An indoor space consists of partitions and doors. A
D2D graph [23] is used to represent an indoor space. In a D2D
graph, each door is represented as a graph node. A weighted edge
between two nodes is created if they are connected to the same
indoor partition (e.g., room, hallway) where weight of the edge is
the indoor distance between the corresponding doors. In this paper,
we use D2D graph to model the indoor space because it is the one of
the popular models and allows efficient query processing as shown
in [17].

VIP-Tree. Shao et al. [17] introduce an indexing structure called
IP-tree which is based on a D2D graph. In an IP-tree, adjacent in-
door partitions (e.g. rooms, hallways, staircases) are combined to
form leaf nodes. Then, the adjacent leaf nodes are combined to form
intermediate nodes. This process is iteratively continued until all
nodes are combined into a single node (i.e., root node). VIP-Tree or
Vivid IP-Tree is an improvement of the IP-tree. Further details can
be found in [17] . We utilize the VIP-tree to index the indoor space.

Indoor Objects. Let pi ∈ P be an indoor point representing an
indoor object1. The location of an indoor point pi is given by x and
y coordinates.

Definition 3.1 (Detour). Given a set of indoor points P, the detour
D = {ps ,pi ,pt } is a route from a given source indoor point ps to a
given target indoor point pt going through an indoor point pi ∈ P
(denoted as detour point).

Definition 3.2 (Candidate Partition). Given a set of indoor points
P, an indoor partition I is called a candidate partition only if it
consists of at least one indoor point p ∈ P.

Definition 3.3 (Local/Remote Detour). Given a detourD = {ps ,pi ,pt }
is called a local detour (denoted by DL) if the detour point, i.e., pi ,
belongs to the current indoor partition I where the user resides
in. Otherwise, if the detour point lies outside the current indoor
partition, it is called a remote detour (denoted by DR ).

Moreover, when the context is ambiguous, we define a local
detour by DL

i :j = {ps → pi → dj → pt } where pi is an indoor
point and dj is a partition door. And a remote detour starts at door
dj by DR

j .

Definition 3.4 (Detour Query). Given a set of indoor points P, a
query q = ⟨ps ,pt ⟩ where ps denotes the current user location and
pt denote the target indoor point. The detour query returns the
detour D = {ps ,pi ,pt } subject to:

L(D) = arg min
∀pi ∈P

d(ps ,pi ) + d(pi ,pt ) (1)

where d(pi ,pj ) is the shortest indoor distance between indoor
points pi and pj and the L(D) is the indoor distance of the detour.
1In this paper, we use the terms indoor object and indoor point interchangeably.
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Table 1: The summary of notations

Notation Definition

pi an indoor point
qi a detour query
I an indoor partition
Si :j the splitter between points pi and pj
Hi :j the region where DL

i :j is the minimum
DL
i :j the minimum local detour from point pi via door dj

DR
i the minimum remote detour at door di

d(pi ,pj ) the indoor distance between points pi and pj
L(D) the indoor distance of detour D

Definition 3.5 (Continuous Detour Query). Given an indoor space
and a moving detour query where ps continuously changes as a
user moves. The continuous detour query continuously finds the
minimum detour w.r.t the current user point ps .

4 OUR SOLUTION
In this section, we develop an efficient solution for processing
continuous detour queries in indoor venues. The key idea behind the
efficiency of our solution is to use the concept of safe zones [4–6]. A
safe zone is an area where the query results does not change as long
as the query is inside it, i.e., the areas where indoor objects remain as
the nearest detour objects for a user moving towards a fixed target
location. We exploit the geometric properties of hyperbolas [24],
additively weighted (AW) Voronoi diagrams (or AWVDs) and indoor
partitions to compute such safe zones. A significant advantage of
our safe zone computation technique is that it does not depend
on the query time parameters and thus, allows us to pre-compute
the safe zones and index them for use during the query evaluation.
Since the density of indoor objects is much higher than the outdoor
space, computing the safe zones during the query evaluation is not
feasible for the indoor space. Pre-processed safe zones significantly
reduce the computational complexity of finding the nearest detour
objects and allow us to provide users with guaranteed areas where
the users can locally determine the nearest detour objects without
re-evaluating the detour queries for their changed locations. Since a
user can freely move inside an indoor partition, the straightforward
evaluation of a continuous detour query by using a detour query
for every location update of the moving user would incur excessive
processing overhead.

Our solution is based on the client-server paradigm for process-
ing the continuous detour queries in the indoor space. The server is
the location-based service provider and it is responsible for evaluat-
ing the continuous detour queries while the client is the user who
issues a continuous detour query. The clients send location updates
to the server as they move outside the guaranteed area. The server
is responsible for maintaining the up-to-date results for the queries
with respect to the user’s movements. We divide the problem of
finding the nearest detour objects into two subproblems, where
we compute the minimum local and remote detours separately for
each location update. Hence, the query result, i.e., the minimum de-
tour, for a location update can efficiently be determined by utilizing

Figure 1: Example of a splitter

the results of the subproblems. Intuitively, when a movement of a
user does not invalidate the previous results of a subproblem, such
results can be reused to obtain the minimum detour for the new
location of the user. Section 4.1 presents the proposed techniques
to pre-compute the safe zones, and find the minimum local detour
with respect to a user’s current and target locations. Section 4.2
introduces an efficient algorithm that utilizes the VIP-tree to find
the minimum remote detour for a given door of an indoor par-
tition. Section 4.3 explains the algorithm for evaluating a detour
query and Section 4.4 presents the techniques for monitoring the
nearest detour against the continuous location updates. Finally,
Section 4.5 discusses a competitive algorithm that performs the
local computation for a detour query by generating all possible local
detours.

4.1 Local Computation
In this section, we explain the process of obtaining the minimum
local detour for a given user location. We denote this process as
the "local computation". We propose an efficient solution that uti-
lizes safe zones to quickly identify the minimum local detour for a
given indoor point. First, we introduce a pre-processing method to
construct such safe zones. Then, we present an indexing method
to store the pre-processing results, i.e., safe zones, to be utilized in
query processing.

4.1.1 Pre-processing. Naively, the minimum local detour can be
determined by generating all possible local detours. Since the in-
door space consists of thousands of objects, such an approach is
computationally expensive. By exploiting the geometric properties
of the hyperbolas, we identify safe zones in the indoor space, where
a user’s movement does not change the current local detour point
that provides the smallest detour distance with respect to a door of
an indoor partition. Since these safe zones are independent of the
query parameters, we pre-compute and utilize them in the query
processing to perform the local computation efficiently. Before we
present the pre-processing method, we introduce the following
definitions.

As Figure1 shows, a hyperbola is a set of points, such that for any
point P of the set, the absolute difference of the distances to two
fixed points F1, F2 (the foci), is constant, i.e. , H = {P | |d(P , F1) −
d(P , F2)| = 2a}. Note that the curve goes through vertex V2 divides
the space into two half spaces where d(P̂ , F1) − d(P̂ , F2) < 2a if the
point P̂ in the left half space and d(P̂ , F1)−d(P̂ , F2) > 2a if the point
P̂ in the right half space. Hence, we define such a curve as follows.
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Figure 2: Example of region divided by a splitter

Definition 4.1 (Splitter). Given a hyperbola of |d(P , Fi )−d(P , Fj )| =
2a. We identify one of the curves as a splitter that divides the space
into two half spaces d(P , Fi )−d(P , Fj ) < 2a and d(P , Fi )−d(P , Fj ) >
2a, denoted by Si :j where i and j are the two foci. The correspond-
ing vertex that the curve goes through is called the split point.

Figure 2 depicts an indoor partition I with door d1. The partition
consists of two indoor points p1,p2. Assume that the partition I
is the only candidate partition in the indoor space. Hence, the
minimum detour must be one of the local detours passes through
the door d1 , i.e., DL

1:1 = {ps → p1 → d1 → pt } and DL
2:1 = {ps →

p2 → d1 → pt }.
LetH1:1 andH2:1 be the regions inside the indoor partition where

DL
1:1 and DL

2:1 are minimum detours respectively. When ps lies in
the region H1:1, the following inequality must be satisfied.

L(DL
1:1) < L(DL

2:1)

d(ps ,p1) + d(p1,d1) + d(d1,pt ) < d(ps ,p2) + d(p2,d1) + d(d1,pt )

d(ps ,p1) − d(ps ,p2) < d(p2,d1) − d(p1,d1)

According to the Definition 4.1, we can construct a splitter (i.e.,
S1:2) by selecting the indoor pointsp1,p2 as foci and 2a = d(p2,d1)−
d(p1,d1). The most important step in constructing a splitter is to
determine the split point correctly. Let point x be the split point and
point c be the center. Then the split point is determined as follows,

d(p1,x) − d(p1, c) = a

d(p1,x) −
d(p1,p2)

2
=

1
2

(
d(p2,d1) − d(p1,d1)

)
d(p1,x) =

1
2

(
d(p1,p2) + d(p2,d1) − d(p1,d1)

) (2)

Once the splitter S1:2 is constructed, space is divided into two half
spaces d(p,p1) −d(p,p2) < 2a (i.e., the shaded area in Figure 2) and
d(p,p1)−d(p,p2) > 2a which is basically the requiredH1:1 andH2:1
regions respectively. Intuitively, these two regions act as safe zones
where we can guarantee that the minimum local detour does not
change until the current location of the user is within a particular
region. Moreover, as the Equation (2) depicts, the splitter S1:2 is
independent of the query parameters. Hence, these two regions can
be pre-computed and utilized in query time to quickly identify the
minimum local detour that goes through the door d1 with respect
to a location update inside the partition I .

Furthermore, for the candidate partitions with indoor points
more than two, we need to construct splitters for each possible
pair of indoor points to determine such safe zones. Note that these

Figure 3: Example of 4 × 4 grid

regions are AW Voronoi cells with additive weight d(di ,pj ) which
is the distance between indoor point pj and door di . Hence, in
the pre-processing approach, we generate AW Voronoi diagram for
each partition door di . In query processing, we can easily determine
the minimum local detour that goes through a particular door by
looking at the corresponding AW Voronoi cell with respect to the
current user location. For the indoor partitions that have more than
one door, AW Voronoi diagram for each door di is created with the
additive weight d(di ,pi ). For such a partition, the local computa-
tion is done as follows. First, the minimum local detour points with
respect to each door is obtained using corresponding AW Voronoi
diagrams. Then, these results are evaluated to determine the mini-
mum local detour point. We observed that the number of doors of
a candidate partition is very small in real-world applications, i.e., at
most 3-4 doors. Thus, the local computation can be done efficiently.

4.1.2 Safe zone Indexing. As we have already stated, AW Voronoi
diagrams for each candidate partition is determined by constructing
the splitters between the indoor points. Since these Voronoi cells
are formed by curved splitters, such an AWVoronoi diagram cannot
be easily indexed unless they are approximated using polygons. But
it incurs inaccurate results in query time. Hence, we accompanied
an approach that index AW Voronoi diagrams by utilizing the grid
data structure. In our grid index, the space of the corresponding
indoor partition is subdivided into 2n × 2n grid cells (where n > 0)
as shown in Figure 3. Then in each grid cell, we store the splitters
that overlap with the cell. To record these overlapping splitters in
each grid cell, we used conceptual tree-based grid access method [6]
where we consider the root of the conceptual tree is a rectangle
covering the whole indoor partition. Then the root cell is divided
into four equal grid cells that represent the next level of the tree. The
process continues until each entry of the leaf level represents one
grid cell. During the process, for an intermediate cell, we take into
account the splitters overlaps with the cell and only these splitters
are considered when marking the child cells of the particular cell.
By doing this, we significantly improve the process of constructing
the AW Voronoi diagrams for a given partition.

Figure 3 shows an example of AW Voronoi diagram (which is
a 4 × 4 grid) for door d1 of the partition I . The grid cell with cell
ID 2 will be marked with S1:2 and S2:3 as they overlap with the
particular grid cell. Similarly, grid cell with cell ID 11 is marked
with S1:3 and S2:3. The grid cells with cell IDs 1, 3, 9, 13, 16 remains
empty as they are not overlap by a splitter which indicates that
these grid cells are completely inside AW Voronoi cells. Thus, the
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Algorithm 1: getRemoteDetour(dk ,pt )
Data: VIP-tree V , a door dk , an indoor point pt
Result: minimum remote detour DR

1 p ← ∅; D ← ∅
2 Q .enqueue (V .root, 0);
3 while Q is not empty do
4 element ← Q .dequeue();
5 if element is a point then
6 p ← element ;
7 end
8 else if element is a partition then
9 foreach point pa in element do

10 foreach {di , dj } door combination do
11 minCost ←

d (dk , di ) + d (dj , pt ) + d(di , pk ) + d (pk , dj );
12 Q .enqueue (pa,minCost );
13 end
14 end
15 end
16 else

// element is a tree node

17 foreach child-node N of element do
18 minCost ← d (dk , N ) + d (N , pt );
19 Q .enqueue (N ,minCost );
20 end
21 end
22 end
23 DR ← {di , p, pt }
24 return DR ;

minimum local detour point (i.e., the corresponding indoor point
of the Voronoi Cell) for a user location within these grid cells can
be quickly determined. For the grid cells with overlapping split-
ters, the minimum local detour point is determined by evaluating
corresponding overlapping splitters.

4.2 Remote Computation
In this section, we present an efficient approach to compute results
for our second subproblem which is determining the minimum re-
mote detour with respect to the user’s location (denoted as "remote
computation"). Intuitively, for any user location inside an indoor
partition, the minimum remote detour must be a remote detour that
starts from one of the partition doors. Hence, we propose a best first
search algorithm getRemoteDetour(), i.e., Algorithm 1, that retrieves
the minimum remote detour from a given door to the query target
point, i.e., pt . This algorithm accesses the VIP-tree components,
i.e., tree nodes, partitions and indoor points, based on the small-
est aggregated indoor distance from the given door and the query
target point to retrieve the minimum remote detour point. After
obtaining the minimum remote detour points for each partition
door, the minimum remote detour with respect to the user location
can be readily determined. Moreover, if the next location update is
within the same partition, then we can reuse these remote detour
results to determine the minimum remote detour for the new user
location. As Algorithm 1 illustrates, we traverse each level of the
VIP-tree starting from the root node (line 2) and compute the detour
costs for tree nodes at each level. We terminate the algorithm when

the min-priority queue Q is empty (line 3) or the minimum detour
point is found (line 5-6). We enqueue each element with the detour
distance as its key value. In each iteration we dequeue the element
with the minimum key value, i.e., smallest detour distance. If the
dequeued element is a node we enqueue all the child nodes (line
16-21). If the element is an indoor partition then we enqueue all the
indoor points inside the partition. Note that, an indoor point may
be enqueued multiple times into the queue as the detours through
different door combination are possible (line 8-15). When the de-
queued element is an indoor point, the algorithm is terminated and
the indoor point along with its detour distance is returned (line 24).

4.3 Query Processing
Now we proceed to explain our solution that utilizes the results
of the two subproblems, i.e., local and remote computations, to
determine the minimum detour for a given detour query. When the
sytem is initiated, the AW Voronoi diagrams of all the partitions are
loaded into the server memory. Thus, the AW Voronoi diagram for
an indoor partition can be accessed efficiently in the query process-
ing. As Algorithm 2 illustrates, first, we initialize I with the current
partition (line 3). Next we compute the remote detours for each
door of the partition I (line 5). Meanwhile, we update the minimum
remote detour with respect to the current user location by selecting
the remote detour with the smallest detour distance (line 6-7). Then,
we check whether the current partition, i.e., I , is a candidate parti-
tion (line 10). If so we must perform the local computation to obtain
the minimum local detour point. Thus, we utilize each of the AW
Voronoi diagrams of partition doors to compute the minimum local
detour. Initially, the grid cell that the current user location ps lies
is identified. Then, the splitters overlaps with the corresponding
grid cell are retrieved (line 14). Also, we store these splitters using
a list, i.e., sList , (in Section 4.3.1, we explain the purpose of storing
these splitters). Next, the minimum local detour point is obtained by
evaluating the overlapping splitters. (line 12-14). After determining
the local detour points per door, we generate the corresponding
local detours to find the one with minimum detour distance among
them (line 15-17). Note that, the shortest path distances from door
di to target point pt , i.e., dt(di ,pt ), must be determined to compute
the local detour distances. Then the safe zone for the user is con-
structed (line 21). Note that the safe zone for the user is computed
using the indexed safe zones of the indoor points and the detail
of the construction of such a safe zone for the user is discussed
in Section 4.3.1. The minimum detour is determined by selecting
the minimum of the remote and local detours (line 22). Finally, the
minimum detour and the safe zone are returned (line 23).

4.3.1 Safe zone Construction for Users. In order to reduce the com-
munication cost, we send a safe zone such that the client device can
monitor the query results by itself without contacting the server.
Even though the actual safe region for a minimum local detour
via a door is the corresponding AW Voronoi cell, we assign the
area of the grid cell that user located in. The reason behind this is
to reduce the workload at the client-side by sending only a small
number of boundaries to monitor (Note that an AW Voronoi cell
may consist of a large number of boundaries.) Since a grid cell may
belong to different AW Voronoi cells, the overlapping splitters of
the particular cell are sent to the user to determine the minimum
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Algorithm 2: Query Processing
Data: VIP-tree V , a query q = {ps , pt }
Result: Minimum Detour D , Safe zone Z

1 DR ← ∅; DL ← ∅; sList ← ∅;
2 I ← current partition;
// Remote Computation

3 foreach di door of I do
4 DR

i ← getRemoteDetour(di , pt ) ; // Algorithm 1

5 if d (ps , di )+L(DR
i ) < L(DR ) then

6 DR ← DR
i ; // minimum remote detour w.r.t ps

7 end
8 end
// Local Computation

9 if I is a candidate partition then
10 foreach di door of I do
11 Cell ← the corresponding grid cell
12 sList ← sList ∪ the set of splitters overlaps with Cell ;
13 pj ← local detour point for di
14 L(DL

i ) ← {ps → pj → di → dt };
15 if L(DL

i ) < L(DL ) then
16 DL ← DL

i ; // minimum local detour w.r.t ps
17 end
18 end
19 end
20 construct Z ; // Section 4.3.1

21 D ←min {DR, DL };
22 return D, Z ;

local detour point for the next location update without commu-
nicating the server. Moreover, the distances of the shortest paths
from each partition door are also sent to assist the client-side local
computation. In addition to that, the remote detours for each door
are sent to the user for the client-side remote computation. Thus,
the client device can compute the query result for the next location
update without communicating with the server if the user is still
inside the safe zone. Note that, for a non-candidate partition, only
the remote computation is required. Thus, we assign the whole
space of the indoor partition as the safe zone and send the material-
ized remote detours to support the client-side remote computation.
Hence, the client device can determine the minimum detour for any
location update within the particular partition without contacting
the server.

4.4 Continuous Monitoring
The result of the query needs to be continuously monitored since
the user is continuously moving and user movements may change
the query result. Naively, the server can recompute the query result
at each time the server receives a location update from the user.
Since the indoor venues consist of thousands of indoor points, these
re-computations are very expensive. In the experiments, we show
the performance difference between this naive approach and our
solution. As we already stated, some initial computations for an
indoor partition can be reused until the user leaves the particular
partition. Hence, we materialize the minimum remote detours (line
5 in Algorithm 2) and shortest path distances (line 16 in Algorithm 2)
for each door of the current indoor partition. Then, the query result

Figure 4: Example of continuous monitoring

computation for any location update about to happen inside the
current partition can be handled efficiently.

In continuous monitoring, first, the server checks whether the
user is still in the same partition so that the server can reuse the
materialized data to determine the minimum detour. The server
uses the materialized remote detours to compute the minimum
remote detour for the location update. Then the server accesses AW
Voronoi diagrams to figure out the minimum local detour points for
each door of the partition and determines the minimum local detour.
Finally, the server sends the safe zone along with the minimum
detour to reduce the communication cost occur due to frequent
location updates. With the help of the safe zone constructed for
the user, the client device can monitor the query result without
communicating the server.

In the client side, we assume that the client device is capable
of storing all the information that is sent by the server, i.e., the
remote detours, the shortest path distances and the safe zone, and
computing minimum detour for any user movement within the safe
zone. Once the user moves outside the safe zone, it sends a location
update to the server. Then the server computes the query result
for the new location and send the result along with the safe zone.
For example, Figure 4 shows a 4 × 4 grid of a candidate partition
with door d1. The area shaded in grey is the AW Voronoi cell of
the indoor point p1 and white area is the AW Voronoi cell of the
indoor point p2. Let the user is at ps1 position. Thus, the area of the
grid cell 1 is allocated as the safe zone for the user. Assume that
the user moves to ps2 . Since the user is still within the safe zone,
the client device will determine the local minimum detour point as
p1 by evaluating the splitter S1:2 . Moreover, the client device will
perform the remote computation by utilizing materialized data to
determine the minimum detour without communicating with the
server. For the next movement, i.e., ps3 , the client device will send a
location update to the server since the user has leaf the safe zone.

4.5 Local Computation without AWVDs
As indoor venues consist of a considerable number of indoor points,
most of the indoor partitions are highly populated with indoor
points. Hence, a large amount of possible local detours must be
generated to determine the minimum local detour. We develop a
competitive approach called "local" which is an improvement of
the naive approach. Similar to our approach, the local approach
utilizes the materialized data such as the remote detours and the
distances of the shortest paths from each partition door such that
they are utilized in the next location updates happen within the
current partition. Besides, the local approach generates all possible
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local detours to determine the minimum local detour and send only
the result to the user. Thus, the communication overhead remains
the same as the naive approach. The empirical study shows that
our solution performs much better than this approach.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Indoor Space Datasets. We used two indoor space datasets
for our experiments. One of them is the real-world dataset [14] of
the largest shopping centre in Australia. The dataset consists of over
300 indoor partitions that are spread over 4 levels. This dataset was
manually converted into machine-readable indoor venues and the
sizes of indoor partitions (e.g., rooms, hallways) were determined
using OpenStreetMap 2. We denote this dataset by CHAD. The D2D
graph for this indoor space consists of 338 vertices (i.e., doors) and
3847 edges. We synthetically generated five indoor object datasets
that have 1K, 2K, 3K, 4K and 5K indoor points, respectively. Each
indoor point was randomly selected inside a partition of the indoor
space.

The other dataset is a replica of the CHAD dataset (denoted as
CHAD-2). It was obtained by placing a replica of Chadstone Shop-
ping Centre on top of the original building. This dataset consists
of 678 rooms and the D2D graph for this indoor space consists of
676 vertices (i.e., doors) and 7698 edges. We again generated five
indoor object datasets for this indoor space by randomly selecting
5K, 10K, 15K, 20K and 25K indoors points, respectively. Moreover,
we generated 100 queries for each experimental setting. The source
and target indoor points of each query were randomly determined.

5.1.2 Trajectory Datasets. We created synthetic trajectory datasets
for all our experiments. To generate a trajectory, we start from
the query source point and randomly pick an indoor point inside
a candidate partition. By doing this, we make sure that the user
trajectories pass through candidate partitions. Also, these random
points are selected in a way that the trajectory leads towards the
query target point to demonstrate the real-world scenarios. After
determining a random indoor point, we let the user moves towards
that point with a particular speed. We continued this for 500 times-
tamps, by determining a new random point similarly as the user
reaches one. The walking speeds of the users are determined as
follows. We chose 0.5, 1.5 and 2.5 meters per timestamp as the user
speeds in generating the different trajectory datasets. Furthermore,
we denote these speeds by slow, medium and fast respectively in
the later discussions.

5.1.3 Competitors. We compare our algorithm with two competi-
tors. First one is the naive approach which computes the query
result from scratch for each location update. We denote this by
"naive". Our second competitor is the approach mentioned in Sec-
tion 4.5 denoted by "local" which is an improvement of the naive
approach that does only the local computation naively for each
location update.

All algorithms were implemented in C++ and our experiments
were conducted on Ubuntu running on an Intel Core i5 @ 3.30GHz
and 4GB RAM.
2https://www.openstreetmap.org/

Table 2: The parameters used for experiments

Parameter Default Range

# indoor points 3K 1K, 2K, 3K, 4K, 5K
speed medium slow, medium, fast

grid size 8 1, 2, 4, 8, 16, 32
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Figure 5: Varying grid size on the CHAD dataset

5.2 Experimental Results
In all the experiments, we use the default settings (see Table 2)
while varying a single parameter at a time. First, we conduct the
set of experiments on CHAD dataset and then on CHAD-2 dataset
which is the replica of the real-world dataset. Moreover, for each
experiment, we report the average continuous time in milliseconds.

5.2.1 Varying the grid size. As mentioned in Section 4.1.2, we use
the grid indexing structure to index the AW Voronoi diagrams for
efficient local computation in query processing. As Figure 5(a) illus-
trates, our solution performs well (which is less than 0.003 seconds)
when the grid size is 8. Figure 5(b) reports the communication cost
and the number of splitters which are basically the average number
of times that the client device communicates with the server and
the average number of splitters monitored by the system respec-
tively. As Figure 5(b) illustrates, the communication cost can be
significantly reduced by selecting the grid size as 1. The reason
is that the whole space of indoor partition is assigned as the safe
zone. Even though small grid sizes give low communication cost as
large area is assigned as safe zones, the client side computational
cost increases since the number of splitters monitored by the client
device increases accordingly. For example, even though the aver-
age communication cost for grid size 1 is 15, the client device has
to monitor more than 650 splitters in the local computation. We
selected the grid size 8 as the default gird size as it gives the best
performance for our solution. For grid size 8, the communication
overhead is 25 which is 20 times better than the competitors. And
also, the system has to monitor approximately 100 splitters per
detour query.

Moreover, we report the indexing cost of AW Voronoi diagrams
in megabytes. As Figure 6 illustrates, the amount of memory re-
quired to store the AW Voronoi diagrams increases as the grid size
increases because the number of cells increases exponentially. But
the required memory spaces for small grid sizes are feasible. For
the default grid size which is 8, the AW Voronoi diagrams of CHAD
and CHAD-2 datasets need only 117MB and 567MB memory space
respectively.
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5.2.2 Varying the number of indoor points. This set of experiments
is done to evaluate all the algorithms on the CHAD dataset. First,
we investigate the continuous time of the algorithms by varying
the number of points (i.e., indoor objects) in the indoor venue. As
Figure 7(a) shows, the continuous times of all algorithms increase
as the number of indoor points are increased. The reason is both
remote and local detour computation costs increase as the number
possible detours increases. Even though our solution does not con-
sider all possible detours in local computation, still the continuous
time increases accordingly as the number of splitters to be moni-
tored increases. For the default settings, our algorithm is 15 times
better than the local approach while three orders of magnitude
better than the naive approach. As the competitors do not use the
safe zone concept, in terms of the communication overhead we are
always better since they have to communicate the server to get
the results. The continuous time of naive drastically increases as it
does both remote and local computation for each location update.
Clearly, our solution outperforms the competitors under all the
settings.

Figure 7(b) reports the average number of indoor points accessed
by the local approach and the average number of splitters monitored
by our approach. It is obvious that both values increases as the
indoor points in the indoor venue increases. Moreover, the reported
results clearly explain the performance degradation of both our and
local approaches in the experiments shown in Figure 7(a).

5.2.3 Varying the speed. Next, we evaluate the algorithms by vary-
ing the walking speed of the user. As Figure 8(a) shows, the contin-
uous times of all algorithms increase when the speed is increased.
It is obvious for our and local solutions that the continuous time
increases as the user quickly leaves partition due to the higher
walking speed. Note that, for our solution, the user stays inside
a safe zone only for a small amount of time. The reasons for this
performance degradation of the naive solution is that the user is
visiting more candidate partition when the speed is increased. Thus,
local and remote detour computations increases.

Figure 8(b) reports the average number of rooms visited by the
user and the average number of indoor points accessed by the local
algorithm by varying the speed of the user. When the user’s speed
is fast, the user visits 30 rooms while only 5 rooms when speed
is slow. As we mentioned earlier, clearly, the continuous times of
all algorithms increase as the speed increased since the user is
quickly leaving partitions. Also, the number of candidate partitions
visited by the user is increased as more rooms are visited. Hence,
the continuous times of both our and local approaches increases as
the number of indoor points accessed and the number of splitters
monitored increase.
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Figure 7: Varying the number of indoor points
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Figure 8: Varying the speed of the user
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Figure 9: Results on the CHAD-2 dataset
5.2.4 Experiments on a large dataset. The objective of this set of
experiments is to study the scalability of the proposed solution.
Hence, we use the CHAD-2 dataset. Since this dataset has a large
number of indoor points, the number of candidate partitions for
this dataset is higher than the real-world dataset. Figure 9(a) shows
the continuous times of algorithms varying the number of indoor
points. The performances of all the algorithms decrease when the
number of indoor points is increased. Clearly, our approach is three
order of magnitude better than naive solution when the dataset
consists of 25K indoor points. And also 20 times better than the
local approach. Moreover, Figure 9(b) reports continuous times by
varying the user speed on CHAD-2 dataset. Under all the settings,
our approach performs better than competitive approaches. The
performance of all algorithms has decreased compared to the re-
sults on CHAD dataset due to a large number of indoor points
and candidate partitions. Note that, our approach is still able to
answer a query in a reasonable time. These results conclude that
our approach offers scalability and great performance.

5.2.5 Effectiveness of safe zones. Figure 10 reports the escape prob-
ability of our solution varying the users’ speed. The escape probabil-
ity is determined by dividing the number of times user communicate
with the server by the total number of movements. As expected,
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the escape probability increases with the user speed. The reason
is, the users leave safe zones very quickly due to the speed. The
escape probability is 0.1 in CHAD dataset while 0.25 in CHAD-2
dataset when the user is moving fast. The reason behind the high
escape probability of the CHAD-2 dataset is that the number of can-
didate partitions in the CHAD-2 dataset is large. Hence, the users
pass through many candidate partitions in their trajectories. The
results conclude that the proposed solution is effective in real-world
applications since the escape probability is small.

6 CONCLUSION
In this paper, we propose an efficient solution to answer continu-
ous detour queries in the indoor space. First, we introduce a pre-
processing approach for efficient local computation that constructs
safe zones for indoor objects. Then, we propose a best first search
algorithm to efficiently compute a remote detour for a given door
of an indoor partition. Finally, we integrate the outcome of the local
and remote computations and introduce a client-server framework
to answer the continuous detour queries efficiently. The results of
the empirical studies show that our approach outperforms the naive
approach by at least three orders of magnitude while average 15
times faster than the improved naive approach. Also, our approach
reduces the communication cost.
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