
Indoor Spatial Queries: Modeling, Indexing, and Processing

Tiantian Liu† Huan Li† Hua Lu‡ Muhammad Aamir Cheema§ Lidan Shou¶

†Department of Computer Science, Aalborg University, Denmark
‡Department of People and Technology, Roskilde University, Denmark

§Faculty of Information Technology, Monash University, Australia
¶College of Computer Science, Zhejiang University, China

{liutt,lihuan}@cs.aau.dk, luhua@ruc.dk, aamir.cheema@monash.edu, should@zju.edu.cn

ABSTRACT
To support indoor spatial queries and indoor location-based ser-
vices (LBS), multiple techniques including model/indexes and
search algorithms have been proposed. In this work, we con-
duct an extensive experimental study on existing proposals for
indoor spatial queries. We survey five model/indexes, compare
their algorithmic characteristics, and analyze their space and time
complexities. We also design an in-depth benchmark with real
and synthetic datasets, evaluation tasks and performance metrics.
Enabled by the benchmark, we obtain and report the performance
results of all model/indexes under investigation. By analyzing the
results, we summarize the pros and cons of all techniques and
suggest the best choice for typical scenarios.

1 INTRODUCTION
Indoor location-based services (LBS) are becoming increasingly
popular [6, 9]. Relevant applications, such as POI search [22, 28]
and routing [11, 13, 14], are often built on top of typical spatial
queries like range query, k nearest neighbor query, shortest path
query, and shortest distance query. Therefore, the efficiency of
processing such typical indoor spatial queries plays a key role in
the success of indoor LBS.

To facilitate query processing for indoor LBS, space models,
indexes and algorithms have been proposed. They all deal with
indoor entities, e.g., rooms, doors, walls and floors. These enti-
ties form distinct topology that determines indoor distances and
impacts indoor movement. As a result, the distances in indoor
spatial queries must be measured appropriately, e.g., without in-
volving straight line segments through walls. Also, indoor routing
in shortest path/distance queries must consider connectivity and
reachability between indoor locations.

To support indoor distance computation, existing models and in-
dexes [27, 31, 37, 38] employ different approaches to integrate the
geometry and topology information of an indoor space. Though
all these approaches can be used to process the aforementioned
indoor spatial queries, a comprehensive experimental study on all
these proposals is still missing. Consequently, indoor LBS appli-
cation developers inevitably encounter difficulties in choosing the
appropriate technique for a given indoor space scenario.

To bridge this gap for LBS application development and dis-
close insights for further research on indoor data management, we
conduct a comprehensive experimental study in this work. Our
study focuses on five existing model/indexes that support typi-
cal indoor spatial queries on static indoor objects (e.g., POIs) or
indoor shortest paths/distances. We compare the five proposals
theoretically and empirically. Our contributions are as follows.

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the 24th
International Conference on Extending Database Technology (EDBT), March 23-26,
2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

• We survey the five proposals by scrutinizing their structures,
algorithmic characteristics, and space and time complexities.

• We design an in-depth benchmark with datasets, evaluation
tasks, and performance metrics. The datasets consist of real and
synthetic data characterized by distinctive indoor topology.

• Within the benchmark, we conduct extensive experiments to
evaluate the performance of the five proposals in terms of con-
struction cost and query efficiency.

• By analyzing the results, we disclose the pros and cons of
the proposals, analyze the impact of different conditions, and
recommend the best choice for typical application scenarios.
All code, data and test cases are open-sourced [1]. To the best of

our knowledge, this work is the first that comparatively analyzes
and evaluates the existing techniques under a unified framework.

The paper is organized as follows. Section 2 introduces indoor
spatial queries and related work. Sections 3 and 4 present the
indoor space model/indexes and query processing, respectively.
Section 5 details the experimentation benchmark. Section 6 reports
and analyzes the evaluation results. Section 7 concludes the paper.

2 INDOOR SPATIAL QUERIES
Table 1 lists the frequently used notations.

Table 1: Notations
Symbol Meaning
I An indoor space
p, q ∈ I Indoor points
o ∈ O A static indoor object
d ∈ D A door
v ∈ V An indoor partition
|p, q |I Indoor distance from p to q
⟨p, di , . . . , dj , q ⟩ An indoor path
L(ϕ) Length of a path ϕ

2.1 Indoor Space Concepts
Indoor space features distinct entities such as walls, doors, and
rooms, which altogether form complex indoor topology that en-
ables and constrains movements. Naturally, an indoor space is
divided by walls and doors into indoor partitions like rooms,
hallways or staircases. Two indoor partitions can be connected by
a door or an open segment between them. Referring to the exam-
ple floorplan in Figure 1, partitions 30 and 40 (denoted as v30 and
v40, respectively) are connected by an open segment d3, In this
paper, we refer to both doors and open segments as doors. We do
not consider the width of a door and represent a door by its center
point. In other words, each door can be generally regarded as an
indoor point. Furthermore, a door can be unidirectional such as a
security checkpoint at the airport. The door directionality makes
the indoor distance between two points asymmetric. Referring to
Figure 1, the shortest indoor path from p to p′ and that from p′ to
p are different due to the unidirectionality of d12.

Topology renders the indoor distance more complex than Eu-
clidean distance. In Figure 1, the indoor distance |p,o1 |I from p to

o1 is not subject to the straight line segment between them; it is
the total length of the polyline p → d11 → o1.

11

12

13
14

40

20
21 23

22

33

30

32

31

50d11

d12

d13
d14

d15

d0

d1 d3

d4

d2

d21

d24

d22

d23

0

d31

d32

d33

o1

o2

o3

o4

q
1.1

1.2

1.9

2.0
1.8

2.7 3.0
0.5

p

d4

d11
Doors

Room

Staircase

Hallway

Unidirectional

p’ 10

Figure 1: Example Floorplan

Lu et al. [27] proposes mappings to capture the relationships
between indoor partitions and doors. In particular, D2P⊐(di) gives
the set of partitions that one can enter through doordi and D2P⊏(dj)
gives those that one can leave through door dj . Besides, D2P(di)
gives a set of a partition pair (vj ,vk) such that one can go through
door di from partition vj to vk . Moreover, P2D⊐(vk) gives the
set of enterable doors through which one can enter partition vk ,
and P2D⊏(vk) gives the set of leaveable doors through which
one can leave partition vk . When doors are bidirectional, we use
P2D(vk)= P2D⊐(vk) ∪ P2D⊏(vk) to denote the set of doors asso-
ciated to partition vk .

Example 1. In Figure 1, given the unidirectional door d12,
we have D2P⊐(d12)= {v10}, D2P⊏(d12)= {v12}, and D2P(d12)=
{(v12,v10)}. Moreover, we have P2D⊐(v12)= {d15}, P2D⊏(v12) =
{d12}, and P2D(v12)= {d15,d12}.

2.2 Indoor Spatial Query Types
We focus on static indoor objects such as POIs and facilities. Our
study covers four fundamental indoor spatial query types.

Definition 1 (Range Query (RQ)). Given an indoor point p ∈

I, a set O of indoor objects, and a distance value r , a range query
RQ(p, r) returns all indoor objects from O whose indoor distance
from p is within r . Formally, RQ(p, r)= {o | |p,o |I ≤ r ,o ∈ O}.

Definition 2 (k Nearest Neighbor Query (kNNQ)). Given
an indoor point p ∈ I, a set O of indoor objects, and an integer
value k, a k nearest neighbor query kNNQ(p) returns a set O ′ of
k indoor objects whose indoor distances from p are the smallest,
i.e., |O ′ | = k and ∀oi ∈ O ′,oj ∈ O \O ′, |p,oi |I ≤ |p,oj |I .

In Figure 1 where O = {o1, . . . ,o4}, a query RQ(p, 1.9m) re-
turns {o2,o3} since the distances from p to o1 and o4 both exceed
1.9m.1 Furthermore, a query 3NNQ(p) returns {o2,o3,o4}, since
o1’s distance from p is the longest among all.

Definition 3 (Shortest Path Query (SPQ)). Given a source
point p ∈ I, a target point q ∈ I, a shortest path query SPQ(p,q)
returns the shortest path ϕ = ⟨p,di , . . . ,dj ,q⟩ from p to q such
that 1) di , . . . ,dj are door sequences and each two consecutive
doors are associated to the same partition, 2) p is in the partition
having di as a leavable door, 3) q is in the partition having dj as
an enterable door, and 4) ∀ϕ ′ from p to q, L(ϕ)≤ L(ϕ ′).2

Definition 4 (Shortest Distance Query (SDQ)). Given a source
point p ∈ I, a target point q ∈ I, a shortest distance query
SDQ(p,q) returns the shortest indoor distance from p to q, i.e.,
the length of SPQ(p,q).
1Meter is the distance unit in all examples in this paper.
2L(ϕ)= Σk=jk=0 |dk , dk+1 |I where d0 = p and dj+1 = q.

As indicated by the red dashed polyline in Figure 1, a query
SPQ(p,q) returns ϕ = ⟨p,d1,d3,q⟩ as the shortest path from p to
q, and the result of SDQ(p,q) is 2.7m + 3.0m + 0.5m = 6.2m.

2.3 Related Work
Indoor Space Modeling. Many indoor space models [7, 15, 20,
35, 36] focus on symbolic modeling of topological relationships
between indoor partitions. Lacking of indoor distances, they can-
not support the aforementioned distance-aware queries.
Indoor Moving Objects. Alamri et al. [4] propose an index tree
for indoor moving objects based on connectivity between indoor
cellular units. Kim et al. [19] propose to index indoor moving
objects based on grid cells. Lin et al. [24] design an indoor mov-
ing object index to speed up complex semantic queries in multi-
floor spaces. In the context of RFID indoor tracking, Yang et al.
study continuous range monitoring queries [39] and probabilis-
tic k nearest neighbor queries [40]. To improve the query result,
Yu et al. [41] propose a particle filter-based method to infer the
undetected locations of indoor moving objects. Assuming a prob-
abilistic sample based location data format, Xie et al. [37, 38]
process kNN query and range query for indoor moving objects.
Considering uncertain object movements between observed time
and query time, Li et al. [22] study searching the current top-k in-
door dense regions. These works consider indoor moving objects
with uncertain positions at a particular time. Unlike all these works
on indoor moving objects, this study concerns spatial queries on
static indoor objects, e.g., printers or ATMs.
Indoor Trajectories. Jensen et al. [15] study historical trajecto-
ries of RFID-tracked indoor objects. Delafontaine et al. [12] find
sequential visiting patterns within historical Bluetooth tracking
data. Given a past time or a time interval, Lu et al. define spatio-
temporal joins [29] to find moving object pairs in the same indoor
partition, and top-k queries [28] to find the most frequently visited
indoor POIs. Ahmed et al. [2, 3] define threshold density query
to find dense indoor semantic locations in a historical time inter-
val. Assuming probabilistic sample based location records, Li et
al. [23] find the top-k most popular indoor semantic regions with
the highest object flow values. Jin et al. [17] study the similarity
search over indoor trajectories, considering both spatial and se-
mantic properties. By analyzing spatial constraints of indoor POIs,
Jiang et al. [16] study the restoration of indoor trajectories. Li et
al. [21] propose a coupled conditional Markov model to enrich
indoor uncertain trajectories with mobility events and stay regions.
Unlike these works, the queries studied in this paper focus on
static objects or indoor paths.
Indoor Path Planning. Goetz and Zipf [14] study user-adaptive
length-optimal indoor routing based on a weighted routing graph.
Salgado et al. [30] study indoor keyword-aware skyline route
query, considering the number of covered keywords and route
distances. Feng et al. [13] study indoor keyword-aware routing
queries to find shortest paths covering user-specified semantic
keywords. Costa et al. [11] propose the context-aware indoor-
outdoor path recommendation that minimizes the outdoor expo-
sure and path distance. To enable navigation through movable
obstacles, Sun et al. [33] study semantic assisted path planning
over a gridded map of an indoor environment. Wang et al. [34]
propose an obstacle-avoiding path planning algorithm to automate
indoor robots. These techniques consider additional query seman-
tics, and thus are different from the fundamental, pure shortest
path/distance queries studied in this paper.

3 MODEL AND INDEXES
The aforementioned indoor spatial queries all involve indoor dis-
tances. To facilitate such queries, indoor distances must be consid-
ered in modeling and indexing indoor space.

3.1 Indoor Distance-Aware Model
Indoor distance-aware model [27] (IDMODEL) is a graph Gdist
(V , Ea, L, fdv, fd2d). The first three elements capture indoor topol-
ogy in an accessibility base graph Gaccs(V , Ea, L), where V is
the set of vertexes each referring to an indoor partition, Ea =
{(vi ,vj ,dk) | dk ∈ D,vi ∈ D2P⊐(dk) ∧ vj ∈ D2P⊏(dk)} is a set
of labeled, directed edges, and L is the set of edge labels each
corresponding to a door in D. The additional two are mapping
functions defined as follows.

fdv(di ,vj) =

{
maxp∈vj | |di ,p | |vj , if vj ∈ D2P⊐(di);
∞, otherwise.

Here, | |p,q | |vj is the indoor distance from a point p to a point
q within the partition vj . Note that | |p,q | |vj is not necessarily a
Euclidean distance because even within the same partition there
may be obstacles in the line of sight between p and q. Specifically,
door-to-partition distance mapping fdv(di ,vj) returns the longest
distance one can reach within partition vj from door di , if vj is an
enterable partition of di . Otherwise, it returns ∞.

fd2d(vj ,di ,dj) =



| |di ,dj | |vj , if di ∈ P2D⊐(vj)
and dj ∈ P2D⊏(vj);

0, if di = dj
and di ,dj ∈ P2D(vj);

∞, otherwise.

The door-to-door distance mapping fd2d(vj ,di ,dj) maps a par-
tition vj and two doors di and dj to a distance value. If both doors
are associated to vj , it returns the distance from di to dj within vj ,
i.e., | |di ,dj | |vj . If di and dj are identical and associated to vj , we
stipulate fd2d(vj ,di ,dj) = 0. Otherwise, fd2d(vj ,di ,dj) returns ∞,
indicating that one cannot go from di to dj via vj only.

Figure 2 illustrates the IDMODEL for the example shown
in Figure 1. The outdoor space is captured in a special graph
vertex v0. Two hashmaps implement the mappings fdv(di ,vj)
and fd2d(vj ,di ,dj). With directed edges, IDMODEL can support
doors’ directionality and temporal variation when needed.

Key Value

(d0, v40) 3.5m

(d0, v30) 6.1m

…

Key Value

(v40, d0, d1) 1m

(v40, d0, d5) 1.2m

…

Door-to-partition distance map

Door-to-door distance map

12
0 50

40 30

20

33

32

31

21

22

23

10

11

13

14

d11
d11d12d15

d13

d1

d1

d0

d0 d5

d5
d3

d3

d33 d33

d31

d32

d32
d31

d13

d14 d14
d2

d2

d21d21

d24

d24 d22
d22

d23

d23

Figure 2: An Example of IDMODEL

With the two mappings fdv(di ,vj) and fd2d(vk ,di ,dj), a graph
traversal algorithm [27] on IDMODEL is designed to compute
the shortest door-to-door distance d2d(ds ,dt) from a source door
ds to a target door dt . The basic idea is to keep expanding to
unvisited doors based on the current shortest path until reaching
the target door. Further, the shortest indoor distance from any point
p to any point q can be computed by finding the minimum value
of the distance summation | |p,dp | |vp + d2d(dp ,dq) + | |dq ,q | |vq ,

where vp and vq are the partitions that host p and q, respectively,
dp ∈ P2D⊏(vp), and dq ∈ P2D⊐(vq).

However, IDMODEL does not support fast determination of the
host partition of a query/source point. It boils down to sequential
scanning of all partitions if no additional index, e.g., R-tree, is
used for the partitions. Also, to manage indoor static objects,
IDMODEL needs additional object buckets each for a partition.

3.2 Indoor Distance-Aware Index
IDMODEL only captures the door-to-door and door-to-partition
distances within a local partition, which entails extra search to
compute the indoor distance for two points in different partitions.

To cut such costs, indoor distance-aware index [27] (IDINDEX)
stores extra information on top of IDMODEL, namely, precom-
puted global door-to-door distances and their ordering in two ma-
trices. The door-to-door distance matrix Md2d is an N-by-N ma-
trix where N = |D | is the total number of doors and Md2d[di ,dj]
gives the precomputed shortest indoor distance from di to dj . The
distance index matrix Midx is also an N-by-N matrix such that
Midx[di ,k] gives the identifier of a door whose indoor distance
from di is the k-th shortest among all the N doors.

The IDINDEX matrices for the top-left part in Figure 1 is
illustrated in Figure 3. Here, we have Md2d[d1,d15] = 4.6m. The
first row of Md2d shows that d15 has the longest indoor distance
from d1. Accordingly, we have Midx[d1, 6] = d15 in Midx.

©­­­­«
d1 d11 d12 d13 d14 d15

d1 0 1.7 2.7 3.6 2.8 4.6
d11 1.7 0 1.9 3.6 2.8 4.6
d12 2.7 1.9 0 2.6 1.8 1.6
d13 3.2 3.4 2 0 2 1
d14 2.8 2.8 1.8 1 0 2
d15 4.3 3.5 1.6 1 2 0

ª®®®®¬
(a) Distance Matrix Md2d

©­­­­«
1 2 3 4 5 6

d1 d1 d11 d12 d14 d13 d15
d11 d11 d1 d12 d14 d13 d15
d12 d12 d15 d14 d11 d13 d1
d13 d13 d15 d12 d14 d1 d11
d14 d14 d13 d12 d15 d1 d11
d15 d15 d13 d12 d14 d11 d1

ª®®®®¬
(b) Distance Index Matrix Midx

Figure 3: An Example of IDINDEX

As the shortest indoor distances to all doors are precomputed
and sorted for each door in IDINDEX, it is faster to compute the
shortest indoor distance between any two points p and q in the
indoor space. To support the shortest path query, in addition to the
shortest distance value between any two points, IDINDEX also
keeps the first-hop door of the corresponding shortest path. In
this way, the complete shortest path between two points can be
constructed by recursively concatenating the first-hop doors.

3.3 Composite Indoor Index
Composite indoor index [37] (CINDEX) is a layered structure for
indexing indoor partitions and moving objects. It consists of three
layers: geometric layer, topological layer, and object layer. In this
study, we adapt the object layer to index static indoor objects. A
partial example CINDEX for Figure 1 is given in Figure 4.

The geometric layer uses an R*-tree [8] to index all indoor par-
titions, with an additional skeleton tier to maintain the distances
between staircases at different floors. To ease the geometrical
computations, it decomposes each irregular partition3 into regu-
lar ones using a decomposition algorithm [37]. Referring to the
bottom-right of Figure 4, the hallway v10 is divided into two reg-
ular indoor partitions v10a and v10b by a door d16. Afterwards,
each regular partition is represented by a Minimum Bounding Rec-
tangle (MBR). The MBRs are indexed by the R*-tree. As shown
in the top-left of Figure 4, a non-leaf node R1 is composed of six
partitions in the leaf level, i.e., v10a , v10b , and v11-v14.

3A partition is irregular if it is non-convex or imbalanced (long in one dimension but
short in the other).

The topological layer stores the connectivity information among
indoor partitions, and it is integrated to the tree by inter-partition
links. In particular, a leaf node vi in the R*-tree is linked with
a pointer record (dk , ↑vj) to indicate that one can move from a
partition vi to another partition vj through door dk . As shown in
the top-right of Figure 4, the two pointer records for v13 mean that
v13 is adjacent to v10b and v12 via d13 and d15, respectively.

The object layer maintains a number of object buckets each
for an indoor partition at the leaf node level of the R*-tree. Each
indoor object o is kept in the bucket of the partition in which o is
located. In addition, an object hashtable o-table : O → ∗V maps
each object to its host partition’s pointer. Unlike [37, 38], the
object buckets store static objects in this study. As shown in the
bottom-left of Figure 4, the leaf node v10a is linked to its object
bucket with two static objects o2 and o4. Also, two corresponding
records are kept in the object hashtable (o-table).

R2 R3 R4

R0

R1

v11 v12 v13 v14 v10a v10b

R1
R2

R3

R4 R0

v11

v12

v13 v14

v10a

v10b

(d11, ↑v10a)

(d12, ↑v10a)

(d13, ↑v10b), (d15, ↑v12)

(d14, ↑v10b)

(d13,↑v13), (d14,↑v14), (d16,↑v10a)

geometric

layer
topological

layer

object layer

v13

v14

v12

v11

↑v11o1

o2

↑v10ao4

o-table
*pidoid

o1

o3

v10b

↑v10a

↑v10bo3

o2 o4,

v10a

……

d16

Figure 4: CINDEX Example (Adapted from [37])

The R*-tree
in CINDEX or-
ganizes parti-
tions hierarchi-
cally, and thus
enables search
space pruning
for distance rel-
evant compu-
tations. As a
result, CINDEX

does not cache
the precomputed door-to-door distances as IDINDEX does. More-
over, as the topological layer maintains the links between parti-
tions and doors, which form an implicit graph structure, CINDEX

does not need an explicit graph model to keep connectivity in-
formation. The topological layer’s dynamic link updating makes
CINDEX adaptive to possible temporal variations of doors.

3.4 IP-Tree and VIP-Tree
Indoor partitioning tree [31] (IP-TREE) is a tree-based indoor
partition index with a number of matrices each materializing the
door-to-door distances within a local range. In particular, each leaf
node of IP-TREE covers a number of topologically adjacent indoor
partitions. The adjacent leaf nodes are combined to form a non-
leaf node, and adjacent non-leaf nodes are combined hierarchically
until a root node is formed. Each node N has a distance matrix
and a number of access doors. An access door is a border door
that connects N to its external space. AD(N) denotes N ’s access
door set. The distance matrix for a leaf node stores the shortest
distance (as well as the first-hop door on the shortest path) between
every door of the leaf node to every access door of the leaf node.
The distance matrix for a non-leaf node only stores the shortest
distances and first-hop door between each pair of access doors of
its child nodes. To compute the indoor distance from a point p to a
point q, IP-TREE locates the lowest common ancestor of the leaf
nodes Leaf(p) and Leaf(q), finds the access doors constituting
the shortest path in that ancestor, and connects the materialized
indoor distances involving p, the found access doors, and q.

Figure 5 shows an example of IP-TREE corresponding to Fig-
ure 1. The topologically adjacent partitions v10-v14 form a leaf
node N1. Another leaf node N2 is composed of partitions v40 and
v50. As N1 and N2 are connected by a border door d1, d1 is put
into AD(N1) and AD(N2). For the leaf node N1, the distance ma-
trix stores the distances from each of its doors to the access door

d1 of N1. For instance, the distance from N1’s only door d15 to
access door d1 contained by N1 is 4.3m. Moreover, as the shortest
path from d15 to d1 is ⟨d15,d12,d1⟩, the first-hop door of the path
is kept as d12 in the matrix. Differently, for the non-leaf node N0,
the distance matrix only keeps the distances between each pair of
access doors. In the running example, each pair of access doors
are directly connected. Therefore, no first-hop door is recorded.
The storage space of each distance matrix will double when the
door directionality needs to be considered, i.e., both the distances
d2d(di ,dj) and d2d(dj ,di) are kept in each node.

As a variant of IP-TREE, vivid IP-Tree (VIP-TREE) [31] fur-
ther accelerates the distance computation by materializing more
precomputed information. Specifically, each leaf node N addition-
ally maintains the shortest distance between each door contained
by N and each access door in N ’s all ancestor nodes, along with
the corresponding first-hop door information.

IP-TREE and VIP-TREE materialize a small number of dis-
tances only related to access doors that are critical in the overall
topology of an indoor space. This design eases the on-the-fly
distance related computations in spatial query processing.

N0

d0

d0 d1 d2 d3
d0 0 1.4 2 3.9

d1 1.4 0 3 4

d2 3.9 4 4.4 0

d3 2 3 0 4.4

d1 d11 d12 d13 d14 d15
d1 0 1.7 2.7 3.2 2.8 4.3,

d12

Distance Matrix for N0 (a non-leaf node)

Distance Matrix for N1 (a leaf node)

N2

d0 ,d1 ,d2 ,d3

v40, v50

N1

d1

v10-v14

N3

d3

v30-v33

N4

d2

v20-v23

access
doors

Figure 5: An Example of IP-TREE

4 QUERY PROCESSING
All the aforementioned model/indexes can be used to process
indoor spatial queries. Although query processing differs for dif-
ferent query types, all algorithms share a general paradigm as
follows. First, an algorithm finds the initial indoor partition for a
query. The initialization decides the indoor partition in which
the query (or source) point p is located for a given RQ(p, r)
(kNNQ(p), SPQ(p,q), or SDQ(p,q)). Subsequently, an algorithm
expands from the initial partition, searching adjacent partitions
via doors. Finally, the expansion stops when the search range
is beyond the query range r for a RQ(p, r), or kNNs have been
found for a kNNQ(p), or the target point q is met for a SPQ(p,q)
or SDQ(p,q). Algorithms based on different model/indexes dif-
fer in their initializations and expansions. Below, we present a
comprehensive analytical comparison of all model/indexes.

4.1 Algorithmic Comparison
Table 2 summarizes the comparison.
Distance Precomputation. IDMODEL and CINDEX do not pre-
compute any indoor distances, whereas IDINDEX and IP-TREE/VIP-
TREE maintain some door-to-door distances before query pro-
cessing. In particular, IDINDEX precomputes the shortest indoor
distances between every pair of doors, but IP-TREE/VIP-TREE

only keeps a small number of distances in each tree node.
Model/Index Structure. IDMODEL is a labeled graph with dis-
tance mapping functions, whereas IDINDEX materializes two ma-
trices for global door-to-door distances. Employing a tree-based
structure, CINDEX keeps topological information incrementally
by maintaining inter-partition links, whereas IP-TREE/VIP-TREE

augments each tree node with a local distance matrix. More im-
portantly, CINDEX forms the non-leaf tree nodes according to the

Table 2: Feature Comparison
Models Precompute Structure Initialization Expansion RQ kNNQ SPQ SDQ

IDMODEL No
Graph+
Mappings Sequential scan Dijkstra △ △ ✓ ✓

IDINDEX Yes Matrix Sequential scan Loop ✓ ✓ △ △

CINDEX No Tree+Links R*-Tree pruning Dijkstra ✓ ✓ △ △

IP-TREE Yes Tree+Matrix Sequential scan LCA ✓ ✓ ✓ ✓
VIP-TREE Yes Tree+Matrix Sequential scan LCA ✓ ✓ ✓ ✓

Table 3: Extensibility Analysis
IDMODEL IDINDEX CINDEX IP/VIP-TREE

Temporal
Variation ✓ X ✓ X

Moving
Objects ✓ ✓ ✓ ✓

Uncertain
Locations X X ✓ X

Keywords ✓ ✓ ✓ ✓

Table 4: Complexity Analysis

Space RQ kNNQ SDQ SPQ

IDMODEL O(V + D + 2Vd + Vd2) O(oV log D) O(oV log D) O(V log D) O(V log D + w)
IDINDEX O(2D2) O(od log D) O(od log D) O(d2) O(d2 + w)
CINDEX O(V + Vd + O) O(oV log D) O(oV log D) O(V log D) O(V log D + w)
IP-TREE O(ρ2f2L + ρD) O((ρ logf L)2(Vo/L + ρ)) O((ρ logf L)2(Vo/L + ρ)) O(ρ2 logf L) O((ρ2 + w) logf L)
VIP-TREE O(ρ2f2L + ρD logf L) O(ρ2 logf L(Vo/L + ρ)) O(ρ2 logf L(Vo/L + ρ)) O(ρ2) O(ρ2 + w)

geometrical proximity of partitions, whereas IP-TREE/VIP-TREE

do so based on the topological proximity of partitions.
Query Types. All model/indexes can support all the four query
types. However, IDMODEL [27] does not provide RQ and kNNQ
algorithms. Therefore, we implement the two algorithms and refer
readers to the appendix in [26]. Also, there are no off-the-shelf
SPQ/SDQ algorithms for IDINDEX and CINDEX. Nevertheless,
the global door-to-door distances and the corresponding last-hop
door information in IDMODEL can be used to expand path search-
ing in SPQ/SDQ algorithms for IDINDEX. For CINDEX, the
inter-partition links can be used for path expansion.
Initialization. To decide the initial indoor partition for a query,
IDMODEL and IDINDEX sequentially scan all partitions. Enabled
by the R*-tree indexing partitions, CINDEX can quickly find the
host partition of any indoor point. In contrast, IP-TREE and VIP-
TREE are based on pure topological relationships among partitions,
and thus they also sequentially scan all partitions.
Expansion. As a graph-based model, IDMODEL expands to the
next unvisited door in the spirit of Dijkstra’s algorithm [18]. CIN-
DEX does so as well since the next-hop doors are captured in the
inter-partition links on the topological layer. Instead of expand-
ing via directly connected doors, IP-TREE/VIP-TREE finds the
lowest common ancestor (LCA) node of p and q and locates the in-
termediate access doors on the shortest path straightforwardly. It is
noteworthy that IDINDEX alone cannot support topological door
expansion. Instead, IDINDEX relies on an underlying IDMODEL

to loop through relevant indoor partitions’ doors.

4.2 Complexity Analysis
Let V, D, O be the total number of indoor partitions, doors, and
indoor objects, respectively. Let d and o be the average door
number and average object number per partition, respectively. Let
w be the average number of door nodes on a shortest path. For
IP-TREE/VIP-TREE, we use f to denote the fan-out of the tree
node, ρ the average access door number per node, and L the total
number of leaf nodes. Table 2 summarizes the space complexity
of all model/indexes and their time complexity for queries.
Space Complexity. IDMODEL (V , Ea, L, fdv, fd2d)’s space com-
plexity is O(V + Vd + D + Vd + Vd2) = O(Vd2). IDINDEX’s space
complexity is O(2D2) = O(D2) as it consists of two door matrices.
CINDEX’s space complexity is O(V + Vd + O) = O(Vd + O) where
V, Vd, and O correspond to partition R*-tree, inter-partition links,
and object hashtable, respectively. IP-TREE’s space cost mainly
consists of the distance matrices for leaf nodes and those for non-
leaf nodes. The former’s complexity is O(ρD) and the latter’s is
O((ρf)2L) where ρf corresponds to the number of access doors
from a child node and L reflects the number of non-leaf nodes. In
contrast, VIP-TREE’s space cost on the distance matrices for leaf

nodes is O(ρD logf L), where logf L corresponds to the ancestor
number of each leaf node.
Time Complexity for RQ and kNNQ. RQ and kNNQ have sim-
ilar time complexity as they both prune objects based on shortest
distances. IDMODEL’s search expands via qualified doors by
graph traversal in O(V log D) and iterates on the objects in each
visited partition in O(o). Also based on graph traversal, the search
on CINDEX obtains a subgraph in O(V log D) and visits all objects
in each partition of the subgraph in O(o). IDINDEX’s search ex-
pands to the nearest partitions based on the sorted result in Midx,
and loops through each object in the expanded partition. So its
time complexity is O(od log D). The searches via IP-TREE and
VIP-TREE work similarly. They prune a tree node based on its
distance from the query point in O(logf L ·ρ ·c), where c is the unit
SDQ cost. Then, they qualify each object in the remaining nodes
in O(logf L · V/L · o · c). Given the SDQ complexity O(ρ2 logf L)
for IP-TREE and O(ρ2) for VIP-TREE (to be detailed below),
their RQ and kNNQ complexities are O((ρ logf L)2(Vo/L + ρ))
and O(ρ2 logf L(Vo/L + ρ)), respectively.
Time Complexity for SDQ and SPQ. For the graph traversal
algorithms of IDMODEL and CINDEX, the SDQ complexity is
O(V log D) and SPQ complexity is O(V log D + w) with additional
cost to backtrack the shortest path in w hops. For IDINDEX, the
only cost of SDQ is to loop through two door sets corresponding
to p and q by a complexity of O(d2). The extra cost of SPQ to
concatenate shortest path is of O(w). For IP-TREE, SDQ needs
to search the lowest common ancestor and then find a pair of
access doors from that ancestor node, resulting in a complexity
of O(ρ2 logf L). In contrast, VIP-TREE materializes the distances
from a leaf node to each access door in the ancestors. Its SDQ
complexity is O(ρ2). The additional cost to construct shortest path
in SPQ is O(w logf L) for IP-TREE and O(w) for VIP-TREE.

4.3 Extensibility Analysis
Table 3 summarizes the extensibility of all model/indexes.
Temporal Variation. Indoor topology may feature temporal vari-
ations, e.g., doors have open and close hours. To support indoor
spatial queries in such cases, temporal variations like open and
close time of doors can be maintained as a table attached to the
accessibility base graph of IDMODEL or the topological layer of
CINDEX [25]. However, frequent temporal variations are hard to
handle for IDINDEX and IP-TREE/VIP-TREE as they need to
precompute door-to-door distances globally or locally.
Moving Objects. CINDEX [37, 38] is designed for managing
indoor moving objects. It supports distance-aware queries like
kNNQ and RQ, and also distance-aware joins like semi-range
join and semi-neighborhood join. All other model/indexes can
also index moving objects by maintaining dynamic object buckets

attached to indoor partitions in a way similar to how we handle
the static objects. Nevertheless, the buckets need to be updated
appropriately for indoor moving objects.
Uncertain Locations. In some settings, indoor points or objects
are represented as uncertain regions. To process indoor spatial
queries over uncertain locations, a model/index should support
geometric operations on partitions. As a result, only CINDEX with
partition R*-tree excels at handling uncertain locations [37, 38].
Keywords. A spatial keyword query [10] returns objects or paths
that are spatially and textually relevant to the user-specified loca-
tion(s) and keyword(s). Such queries can be supported if we ex-
tend the model/indexes by additionally maintaining mappings be-
tween partitions/objects and keywords. Especially, top-k keyword-
aware shortest path queries have been supported based on ID-
MODEL [13], and boolean kNN spatial keyword queries have
been supported based on VIP-TREE [32].

5 BENCHMARK
In this section, we detail the benchmark for evaluating the indoor
spatial query techniques (model/indexes and algorithms). All code,
data, and test cases are available online [1].

5.1 Datasets
We use four very different indoor space datasets, each featuring a
distinctive indoor topology. The floorplans are briefly represented
and illustrated in Figure 6. The data statistics are given in Table 5.

(a) SYN

(b) MZB

(d) CPH (c) HSM

Figure 6: Floorplan of Datasets.

Synthetic Building (SYN) is a n-floor building. Its each floor
is from a real-world floorplan 4 of 1368m × 1368m with 141
partitions and 216 doors. Its each two adjacent floors are connected
by four 20m long stairways. By default, we set n = 5 and get the
default dataset SYN5. To study the effect of topological changes,
from SYN5 we derived SYN5− with fewer doors and SYN5+ with
more doors. Note that varying the door number will significantly
change the connectivity and accessibility of the partitions, leading
to a major topological change. We also form SYN50 in which the
hallways are not decomposed 5.

Menzies Building (MZB) 6 is a landmark building at Clayton
campus of Monash University. Each floor takes approximately
125m × 35m and connects to adjacent floors by two or four stair-
ways each being 5m long. In total, there are 1344 partitions (includ-
ing 34 staircases and 85 hallways) and 1375 doors. By changing
the hallway decomposition, we form MZB0 in which the hall-
ways are not decomposed and MZB∆ in which the hallways are
decomposed into more partitions than default.

Hangzhou Shopping Mall (HSM) is a 7-floor mall in Hangzhou,
China, occupying 2700m × 2000m. Ten stairways connect each
two adjacent floors. Each floor contains 150 partitions and 299
doors on average. In total, there are 1050 partitions (including 70
staircases and 133 hallways) and 2093 doors.

4https://deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
5We precompute the door-to-door distance matrix for each hallway when it is not
decomposed. The hallways are of irregular and concave shapes, and thus the door-to-
door distance in a hallway can not use the Euclidean distance.
6https://www.monash.edu/virtual-tours/menzies-building

Copenhagen Airport (CPH) refers to the ground floor of Copen-
hagen Airport 7, taking around 2000m × 600m with 147 partitions
(including 25 hallways) and 211 doors.
Overall Analysis of Different Datasets. The statistics of the
datasets are given in Table 5. We use #dv to denote the num-
ber of doors in a partition, and conduct quartile statistics [5] on
#dv. In Table 5, Q1(#dv), Q2(#dv), and Q3(#dv) denote the first,
second, third quartiles of #dv, respectively, and max(#dv) denotes
the maximum value of #dv. In addition, we also plot the distribu-
tions of #dv over all partitions in each dataset in Figure 7.

Table 5: Statistics of Datasets

Datasets SYN MZB HZM CPH SYN5− SYN5+ SYN50 MZB0 MZB∆

Floors n 17 7 1 5 5 5 17 17
Doors 216n 1375 2093 211 840 1280 880 1308 1480
Partitions 141n 1344 1050 147 705 705 505 1276 1449
Hallways 41n 85 483 72 205 205 5 17 190
C-Pars 8n 52 133 20 20 40 5 19 157
Length(m) 1368 125 2700 2000 1368 1368 1368 125 125
Width(m) 1368 35 2000 600 1368 1368 1368 35 35

Q1(#dv) 2 1 2 1 1 2 1 1 1
Q2(#dv) 2 1 4 2 1 3 2 1 1
Q3(#dv) 4 1 5 4 3 4 3 1 1
max(#dv) 10 56 17 12 10 10 132 82 47

Based on the space scale information and door distribution
information from Table 5 and Figure 7, we summarize the charac-
teristics of each dataset as follows.
• SYN: The overall space is square and regular. The number of

doors and partitions in each floor is medium (216 doors and 141
partitions per floor). The door density within each partition is
small (with Q2 equals only 2).

• MZB: The overall space is long and narrow with large scale
crucial partitions (C-Pars for short). The number of doors and
partitions in each floor is relatively small (80.4 doors and 76.8
partitions on average), whereas the overall size of doors and
partitions is large due to the floor number. The planning of
doors is rather skewed in that most partitions have only 1 or 2
doors while there are some C-Pars that accommodate 56 doors
(as shown in Figure 7(b)).

• HSM: The overall space is long and relatively narrow. The
number of doors and partitions in each floor is medium and the
overall size of doors and partitions is large. The planning of
doors is regular and door density in each partition is medium
(Q2 and Q3 are equal to 4 and 5, respectively).

• CPH: The space is long, narrow yet open, resulting in a small
number of doors and partitions. The door distribution is regular
and door density in each partition is small (Q2 equals 2).

5.2 Object/Query Workload Generation
For each dataset, we randomly generated a set O of valid points
as static objects, each object in O falling in an indoor partition.
To test the effect of different object numbers, we vary |O | as 500,
1000, 1500, 2000 and 2500.

The augment generation for each query type is detailed below.
RQ(p, r). We vary the range value r according to the predefined

values in Table 6 (default values in bold). For each r , we generate
ten RQ instances with a random p in the indoor space.

kNNQ(p). Similar to RQ generation, we generate ten random
kNNQ instances for each k value given in Table 6.

As SPQ and SDQ can be integrated into one search procedure,
we use SPDQ(p,q) to denote the integrated query that returns
the shortest path from p to q along with the corresponding short-
est distance value. In the following sections, we evaluate search
performance of SPDQ only.

7https://www.cph.dk/en/practical

1 2 3 4 5 6 7 8 9 1 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0 (a) S Y N 5

#P
art

itio
n

d v

 # P a r t i t i o n

1 6 1 1 1 6 2 1 2 6 3 1 3 6 4 1 4 6 5 1 5 61 0 0

1 0 1

1 0 2

1 0 3
(b) M Z B

#P
art

itio
n

d v

 # P a r t i t i o n

1 3 5 7 9 1 1 1 3 1 5 1 70
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

(c) H S M

#P
art

itio
n

d v

 # P a r t i t i o n

1 2 3 4 5 6 7 8 9 1 0 1 1 1 20
1 0
2 0
3 0
4 0
5 0 (d) C P H

#P
art

itio
n

d v

 # P a r t i t i o n

Figure 7: Distribution of #dv (number of doors in a partition) on (a) SYN5, (b) MZB, (c) HSM, and (d) CPH.

Table 6: Evaluation Settings (Default Parameters in Bold)

Symbol & Meaning Task Metrics Queries Dataset Parameter Setting

n floor number A a1, a2 - SYN 3, 5, 7, 9B1 b1, b2, b3 (only for SPDQ) RQ, kNNQ, SPDQ

|O | object number B2 b1, b2 RQ, kNNQ all 500, 1000, 1500, 2000, 2500

r range value B3 b1, b2 RQ SYN5, HZM, CPH 200, 400, 600, 800, 1000
MZB 20, 40, 60, 80, 100

k - B4 b1, b2 kNNQ all 1, 5, 10, 50, 100

s2t source-target
distance B5 b1, b2, b3 SPDQ SYN5, HZM, CPH 1100, 1300, 1500, 1700, 1900

MZB 30, 60, 90, 120, 150

- topological change B6 b1, b2, b3 (only for SPDQ) RQ, kNNQ, SPDQ SYN SYN5−, SYN5, SYN5+

- decomposition method B7 b1, b2, b3 (only for SPDQ) RQ, kNNQ, SPDQ SYN SYN50, SYN5
MZB MZB0, MZB, MZB∆

SPDQ(p,q). We use a parameter s2t to control the shortest
distance from the source p and target q. Its parameter values are
listed in Table 6. For each s2t, we generate ten different (p,q) pairs
to form SPDQ instances as follows. First, we randomly select an
indoor point p and find a door d whose indoor distance from p
approximates s2t. Next, we expand from d to find a random point
q whose indoor distance from p approximates s2t.

5.3 Model/Index Settings
IDMODEL. For each partition vi , we implemented the door-to-
door distance mapping fd2d(vi , ·, ·) as a 2D array, and door-to-
partition distance mapping fdv(·,vi) as an 1D array. Besides, the
partition mappings P2D⊐(vi) and P2D⊏(vi) (cf. Section 2.1) were
implemented as lists associated to vi . Moreover, the door map-
pings D2P(di), D2P⊐(di), and D2P⊏(di) were implemented as lists
associated to the door di .

IDINDEX. The distance matrix and distance index matrix were
implemented as 2D arrays.

CINDEX. Since the partitions in the datasets rarely intersect,
we used an R-tree instead of R*-tree to index partitions while
preserving roughly the same spatial search performance. We set
the tree fan-out to 20 as suggested in a previous work [37]. Each
partition’s inter-partition links were maintained in an inner list.

IP-TREE and VIP-TREE. We set the minimum fanout to 2
for non-leaf tree nodes, as suggested in [31]. As each leaf node
maintains the shortest distance for each pair of doors in it, the
computation will be complicated if a leaf node contains too many
C-Pars that each has many doors. Following work [31], we desig-
nate that each leaf node can only contain one crucial partition and
regard a partition as crucial partition if its door number exceeds
a threshold γ . Through tuning, we got optimal γ as 6, 4, 7, and 5
for SYN, MZB, HZM, and CPH, respectively.

5.4 Performance Evaluation Procedure
Concerning model construction and query processing, the follow-
ing tasks are implemented to evaluate each model/index. For each
task, a parameter is varied with others fixed to default. Table 6
lists all the evaluation settings. The code of following evaluation
procedures and their query instances are also available online [1].

A Model Construction. For each model/index, we evaluate its
(a1) model/index size and (a2) construction time. In this task,
we vary the number of floors in synthetic datasets.

B Query Processing. We evaluate the search efficiency of a given
query type. The metrics are (b1) running time, (b2) memory
use, and (b3) number of visited doors (NVD) for SPDQ.

B1 Effect of Floor Number n. Using SYN with floor number
n varied from 3 to 9, we test the search efficiency for each
indoor spatial query algorithm.

B2 Effect of Object Number |O |. To test RQ and kNNQ, we
vary |O | from 500 to 2500 in all datasets.

B3 Effect of Range Distance r . We vary and test the augment r
of RQ. In particular, we vary r from 200m to 1000m in SYN5,
HZM and CPH, and from 20m to 100m in MZB.

B4 Effect of k. We vary and test kNNQ’s augment k from 1 to
100 in all datasets.

B5 Effect of Source-Target Distance s2t. To test SPDQ, we
vary s2t from 1100m to 1900m in SYN5, HZM, and CPH, and
from 30m to 150m in MZB.

B6 Effect of Topological Change. We vary indoor topology by
changing the door number from 840 to 1280 in SYN5 and
obtain SYN5− and SYN5+.

B7 Effect of Hallway’s Decomposition Method. We use SYN5
and MZB with the derived datasets, SYN50, MZB0 and MZB∆.

6 RESULTS ANALYSIS
This section reports and analyzes the experimental results. All
experiments are implemented in Java and run on a MAC with a
2.30GHz Intel i5 CPU and 16 GB memory.

6.1 Model/Index Construction
We vary the floor number n on SYN and obtain four variants
SYN3, SYN5, SYN7, and SYN9. We construct the five model/indexes
(cf. Section 3) and report their size and construction time in Fig-
ures 8 and 9. The cost of maintaining static objects is excluded as
it is the same for all model/indexes.
• According to the results on SYN3 to SYN9 in Figure 8, each

model/index’s size increases steadily with a larger floor number.

When there are more doors and partitions, more storage space
is needed to handle the indoor space.

• Among all, IDMODEL construction requires the least costs
on storage (Figure 8) and time (Figure 9). This is because
IDMODEL is extended based on a simple graph model and
maintains only a small amount of geometric information lo-
cally. For large-scale and complex-topology spaces (e.g., SYN9,
MZB, and HZM), IDMODEL has clearer advantages over the
tree-based indexes (i.e., IP-TREE and VIP-TREE).

• As expected, IDINDEX always takes much time and storage to
construct due to its global door-to-door distance precomputation.
When there are many doors, it is difficult to fit the corresponding
matrices in memory. In comparison, IP-TREE and VIP-TREE

precompute less information and therefore their consumptions
on time and storage are medium.

• In addition to maintaining the topology, CINDEX needs to con-
struct a partition R-tree. Therefore, it incurs extra time and
space overheads compared to IDMODEL.

S Y N 3 S Y N 5 S Y N 7 S Y N 9 M Z B H Z M C P H1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Mo
del

 Si
ze

(M
B.) I D M o d e l

 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Figure 8: Model Size

S Y N 3 S Y N 5 S Y N 7 S Y N 9 M Z B H Z M C P H1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7
1 0 8
1 0 9

1 0 1 0

Co
nst

ruc
tion

 Ti
me

 (n
s.) I D M o d e l

 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Figure 9: Construction Time

6.2 Query Processing
All results are averaged over 10 queries (cf. Section 5.2).
B1 Effect of Floor Number n (using SYN)
RQ and kNNQ: The query time and memory use for RQ are
reported in Figures 10 and 11, respectively, and those for kNNQ
are reported in Figures 12 and 13, respectively.
• For both query types, IDINDEX always runs fastest as shown

in Figures 10 and 12, unaffected by the varying floor number
n. The price behind this is to maintain the memory-resident
distance matrices, which increases rapidly with n. Referring to
Figures 11 and 13, when n grows to 9, IDINDEX requires up to
1600MB of memory on both queries.

• On each SYN dataset, IP-TREE and VIP-TREE need more time
to complete the two queries. Through analysis, we found that the
two indexes need to prune tree nodes when searching for qual-
ified objects. In the absence of global door-to-door distances,
they need a lot of on-the-fly calculations to get the shortest dis-
tance from a query point to a tree node. Being consistent with
the complexity analysis in Table 4, VIP-TREE outperforms
IP-TREE for both queries. However, due to the good scalability
of the tree structure, both indexes’ running time is relatively
stable as shown in Figures 10 and 12.

• IDMODEL and CINDEX perform similarly, and their execution
time increases with a larger n (Figures 10 and 12). When n
increases, IDMODEL has a slight advantage as CINDEX costs
more time in space pruning. In terms of memory overhead, the
two indexes are almost the same.

3 5 7 90

4 0 k

8 0 k

1 2 0 k

Ru
nni

ng
Tim

e (u
s.)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Figure 10: RQ Time vs. n

3 5 7 9
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0

Me
mo

ry (
MB

.)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Figure 11: RQ Memory vs. n

3 5 7 90

8 k

1 6 k

2 4 k

3 2 k

Ru
nni

ng
Tim

e (u
s.)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Figure 12: kNNQ Time vs. n

3 5 7 9
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0

Me
mo

ry (
MB

.)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Figure 13: kNNQ Memory vs. n

SPDQ: The running time, memory use, and number of visited
doors (NVD) are reported in Figures 14, 15, and 16, respectively.
• IDINDEX’s running time and NVD are insensitive to the increas-

ing floor number n. However, its memory use grows moderately
as n increases. In the case of SPQ and SDQ, we recommend
using IDINDEX when the door size is relatively small.

• In contrast to IDINDEX, the memory of IDMODEL and CIN-
DEX is relatively stable (Figure 15), and their query performance
deteriorates as the space scale increases (Figure 14).

• IP-TREE and VIP-TREE achieve clearly good performance on
SPDQ, in both running time and memory use. Unlike IDINDEX

that precomputes global door-to-door distances or IDMODEL

and CINDEX that compute distances on the fly, IP-TREE and
VIP-TREE cache relevant distance information only for those
access doors on shortest paths. Thus, without degrading query
performance, they only incur slightly more memory overhead
than IDMODEL and CINDEX (Figures 14 and 15).

B2 Effect of Object Number |O |

RQ: With different sizes of O , the running time and memory use
are reported in Figures 17 and 18, respectively.
• Algorithms based on different model/indexes are almost in-

sensitive to |O | in running time, implying that each can prune
irrelevant objects effectively and stop searching early. A larger
|O | results in higher object density. This tends to increase the
query processing time in general, as the query algorithms need
to process larger object buckets. However, this impact is negli-
gible according to the results in Figure 17. This implies that all
model/indexes are good at pruning indoor partitions and thus
object buckets when processing RQ.

• Referring to Figure 17, IDINDEX runs faster than others by
several orders of magnitude in all datasets, thanks to its precom-
puted global door-to-door distances. However, it also requires
memory an order of magnitude higher to store the distance ma-
trix (Figure 18). A special case occurs on CPH (Figure 18(d))
that IP-TREE and VIP-TREE consume more memory than oth-
ers. First, the door number of CPH is quite small such that the
matrices of IDINDEX are not large. Second, as there are fewer
access doors, IP-TREE/VIP-TREE involves heavy on-the-fly
computations on distances between doors and non-leaf nodes
and thus needs more memory for the intermediate results.

• On each dataset, IDMODEL and CINDEX incur almost the same
execution time (see Figure 17), as they both use graph traversal
to search for objects. Under complex indoor topology, CINDEX

using R-tree does not have much advantage in spatial pruning.
• IP-TREE and VIP-TREE perform differently on different datasets.

They outperform IDMODEL and CINDEX on MZB but are

worse on the others (see Figure 17). Recall that MZB features
some C-Pars having up to 56 doors. In such a case, the effi-
ciency of graph traversal is much lower than searching on the
tree structure. On the contrary, when the number of candidate
doors for the next hop is relatively small, the graph-based search
algorithms are advantaged in range queries. Therefore, we rec-
ommend using IP-TREE/VIP-TREE to perform RQ in spaces
with very large main corridors.

• Referring to Figure 17, VIP-TREE is generally faster than IP-
TREE because of more cached distances. IP-TREE needs to
compute more intermediate results on the fly. However, memory
use is close between the two (see Figure 18).

kNNQ: Figures 19 and 20 report |O |’s impact on the time and
memory costs, respectively. In general, each model/index’s perfor-
mance on kNNQ exhibits similar trend as that on RQ.
• Referring to Figure 19, the time cost of each algorithm on each

dataset remains stable, showing that large object workloads
(and high object density) have little effect on all models.

• On datasets with relatively large numbers of doors and partitions
(i.e., SYN5, MZB, and HSM), IDINDEX runs faster by orders
of magnitude. However, its memory use is clearly larger.

• On one-floor CPH with small numbers of doors and partitions,
IP-TREE and VIP-TREE incur more running time as well as
higher memory use (Figures 19(d) and 20(d)). However, they
run faster on MZB (Figure 19(b)) in which many access doors
exist due to many C-Pars (see Table 5).

• IDMODEL and CINDEX perform comparably as shown in Fig-
ures 19 and 20. Without a specially designed partition R-tree,
IDMODEL achieves quite good object pruning due to the effi-
cient distance mapping maintained in its edges and vertexes.

B3 Effect of Range Distance r
RQ: The time and memory costs with respect to varied r are
reported in Figures 21 and 22, respectively.
• On SYN5, MZB, and HSM with complex indoor topology,

IDINDEX’s running time reported in Figure 21 increases slowly
with a growing r . In contrast, on the simple-topology CPH, the
advantage of IDINDEX over others is not marked.

• IDMODEL and CINDEX perform well on all datasets, except
on MZB (Figure 21(b)) that has a large number of C-Pars. This
again reflects the disadvantages of the graph-based traversal
algorithms when dealing with this particular topology type. Nev-
ertheless, through efficient node search and on-the-fly distance
computation, these two model/indexes always have the smallest
memory overhead.

• When increasing r , the running time of IP-TREE and VIP-
TREE in Figure 21 increase steadily on all datasets. A larger r
needs to consider a tree node farther from the node where the
query point is located, and thus introduces more computations
on the distance from a door to some non-leaf nodes. As the
distance to the access door of each ancestor node is materialized
at the leaf node, VIP-TREE runs faster than IP-TREE.

B4 Effect of k
kNNQ: The time and memory costs with respect to different k
values are reported in Figures 23 and 24, respectively.
• Similar to increasing r value in RQ, increasing k leads to more

search time by each model/index according to the results re-
ported in Figure 23. Among them, IDINDEX’s running time
increases slowest. In addition, IP-TREE/VIP-TREE show ex-
ponential growth on SYN, HSM, and CPH. This is because the
two indexes need to access the topologically far-away partitions
and compute the distances to them on the fly when k is large.

• Considering both time and memory costs, IDMODEL and CIN-
DEX achieve a good balance when searching for nearest neigh-
bor objects (see Figures 23 and 24).

B5 Effect of Source-Target Distance s2t
SPDQ: The time cost, memory use, and NVD for different s2t
values are reported in Figures 25, 26, and 27, respectively.
• IDINDEX runs the fastest and is not affected by s2t as reported

in Figure 25. As only a small number of doors are required
to process after the source point and before the target point,
its NVD is always small (Figure 27). Nevertheless, its global
distance matrix takes up a lot of memory (Figure 26).

• IDMODEL and CINDEX use the same graph search process.
Note that because the Euclidean distance is no larger than the in-
door distance, using R-tree to prune space by Euclidean distance
does not really reduce the number of doors to visit. Therefore,
the two models’ NVDs in Figure 27 are almost the same. Also,
as s2t increases, the candidate space becomes larger and the
running time of the two becomes longer (see Figure 25).

• On MZB and HSM (Figure 25(b) and (c)), VIP-TREE achieves
query performance comparable to IDINDEX that precomputes
door-to-door distances. Both MZB and HSM are large-scale
and have over 1000 doors. In the routing process based on VIP-
TREE, the precomputed distances in non-leaf nodes greatly
accelerate the expansion to the target point. Therefore, VIP-
TREE is particularly suitable for the shortest path search in
indoor spaces with complex structures.

Table 7: Results of RQ with Topological Change

Model Time (us.) Memory (MB.)
SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+

IDMODEL 11111 12770 19893 2 4 4
IDINDEX 308 417 910 289 520 809
CINDEX 13697 14877 19285 4 3 4
IP-TREE 29004 136600 574069 85 95 194
VIP-TREE 18008 58369 195583 75 171 220

Table 8: Results of kNNQ with Topological Change

Model Time (us.) Memory (MB.)
SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+

IDMODEL 5939 8180 10051 2 3 3
IDINDEX 165 146 181 469 573 1053
CINDEX 6865 8476 12998 4 4 4
IP-TREE 17341 36626 107798 74 89 139
VIP-TREE 14535 30145 75439 78 145 146

Table 9: Results of SPDQ with Topological Change

Model Time (us.) Memory (MB.) NVD
SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+ SYN5− SYN5 SYN5+

IDMODEL 23009 33213 35522 58 59 91 6946 10074 11426
IDINDEX 40 65 79 182 416 748 6 8 9
CINDEX 20219 31635 40408 51 63 99 6946 10074 11426
IP-TREE 3717 6398 7252 43 44 74 236 843 1455
VIP-TREE 2349 2369 2493 55 43 105 52 61 90

B6 Effect of Topological Change
RQ and kNNQ: The time cost and memory use with respect to
topology characteristics are reported in Tables 7 and 8 respectively.
• IDINDEX runs fastest, but it needs large memory to store the

door-to-door distance matrix. With increasing number of doors,
its time cost and memory use increase steadily.

• IDMODEL and CINDEX use the smallest memory when pro-
cessing RQ and kNNQ. Regarding the time cost, they perform
medium. When the topology becomes more complex, the mem-
ory use keeps stable and the time cost increases slightly.

• IP-TREE and VIP-TREE cost more time to process RQ and
kNNQ. Moreover, when the topology becomes more complex,
the time cost rises rapidly. E.g., RQ’s time cost using IP-TREE

grows nearly 20 times from SYN5− to SYN5+.
SPDQ: The time cost, memory use and NVD with respect to
different topology characteristics are reported in Table 9.

3 5 7 90
2 0 k
4 0 k
6 0 k
8 0 k

Ru
nni

ng
Tim

e (
us.

)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Figure 14: SPDQ Time vs. n

3 5 7 90

6 0 0

1 2 0 0

1 8 0 0

Me
mo

ry (
MB

.)

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Figure 15: SPDQ Memory vs. n

3 5 7 90

6 k

1 2 k

1 8 k

NV
D

n

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Figure 16: NVD in SPDQ vs. n

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 2

1 0 3

1 0 4

1 0 5
(a) S Y N 5

Ru
nni

ng
Tim

e (u
s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 1

1 0 2

1 0 3

1 0 4

1 0 5 (b) M Z B

Ru
nni

ng
Tim

e (u
s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7 (c) H S M

Ru
nni

ng
Tim

e (u
s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00
5 k

1 0 k
1 5 k
2 0 k
2 5 k (d) C P H

Ru
nni

ng
Tim

e (u
s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Figure 17: RQ Time vs. |O |

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00

2 0 0

4 0 0

6 0 0

8 0 0 (a) S Y N 5

Me
mo

ry (
MB

.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00

3 0 0

6 0 0

9 0 0

1 2 0 0

1 5 0 0 (b) M Z B

Me
mo

ry (
MB

.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0 (c) H S M

Me
mo

ry (
MB

.)
| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0 (d) C P H

Me
mo

ry (
MB

.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Figure 18: RQ Memory vs. |O |

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 2

1 0 3

1 0 4

1 0 5
(a) S Y N 5

Ru
nni

ng
Tim

e (u
s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 2

1 0 3

1 0 4

1 0 5 (b) M Z B

Ru
nni

ng
Tim

e (u
s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 01 0 2

1 0 3

1 0 4

1 0 5

1 0 6 (c) H S M

Ru
nni

ng
Tim

e (u
s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00

3 k

6 k

9 k

1 2 k (d) C P H

Ru
nni

ng
Tim

e (u
s.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

Figure 19: kNNQ Time vs. |O |

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00

2 0 0

4 0 0

6 0 0

8 0 0 (a) S Y N 5

Me
mo

ry (
MB

.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
0

3 0 0

6 0 0

9 0 0

1 2 0 0
(b) M Z B

Me
mo

ry (
MB

.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0 (c) H S M

Me
mo

ry (
MB

.)

| O |

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 00
1 0
2 0
3 0
4 0
5 0 (d) C P H

Me
mo

ry (
MB

.)

| O |

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Figure 20: kNNQ Memory vs. |O |

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

6 0 k

1 2 0 k

1 8 0 k

2 4 0 k (a) S Y N 5

Ru
nni

ng
Tim

e (u
s.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 4 0 6 0 8 0 1 0 00

1 0 k

2 0 k

3 0 k

4 0 k (b) M Z B

Ru
nni

ng
Tim

e (u
s.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

1 E 6

2 E 6

3 E 6 (c) H S M

Ru
nni

ng
Tim

e (u
s.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00
5 k

1 0 k
1 5 k
2 0 k
2 5 k
3 0 k
3 5 k
4 0 k
4 5 k (d) C P H

Ru
nni

ng
Tim

e (u
s.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Figure 21: RQ Time vs. r

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00

2 0 0

4 0 0

6 0 0

8 0 0 (a) S Y N 5

Me
mo

ry (
MB

.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 4 0 6 0 8 0 1 0 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0 (b) M Z B

Me
mo

ry (
MB

.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0 (c) H S M

Me
mo

ry (
MB

.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00
1 0
2 0
3 0
4 0
5 0
6 0

(d) C P H

Me
mo

ry (
MB

.)

r (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Figure 22: RQ Memory vs. r

1 5 1 0 5 0 1 0 00

3 0 k

6 0 k

9 0 k

1 2 0 k (a) S Y N 5

Ru
nni

ng
Tim

e (u
s.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 00
5 k

1 0 k
1 5 k
2 0 k
2 5 k (b) M Z B

Ru
nni

ng
Tim

e (u
s.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 00

2 0 0 k

4 0 0 k

6 0 0 k

8 0 0 k

1 M (c) H S M

Ru
nni

ng
Tim

e (u
s.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 00
2 k
4 k
6 k
8 k

1 0 k
1 2 k
1 4 k (d) C P H

Ru
nni

ng
Tim

e (u
s.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Figure 23: kNNQ Time vs. k

1 5 1 0 5 0 1 0 0
0

3 0 0

6 0 0

9 0 0 (a) S Y N 5

Me
mo

ry (
MB

.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 01 0 0

1 0 1

1 0 2

1 0 3

(b) M Z B

Me
mo

ry (
MB

.)

k

 I D M o d e l I D I n d e x
 C I n d e x I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0
(c) H S M

Me
mo

ry (
MB

.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 5 1 0 5 0 1 0 00
1 0
2 0
3 0
4 0
5 0
6 0 (d) C P H

Me
mo

ry (
MB

.)

k

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Figure 24: kNNQ Memory vs. k

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00
5 k

1 0 k
1 5 k
2 0 k
2 5 k
3 0 k
3 5 k
4 0 k (a) S Y N 5

Ru
nni

ng
Tim

e (u
s.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

3 0 6 0 9 0 1 2 0 1 5 0
0

5 k
1 0 k
1 5 k
2 0 k
2 5 k
3 0 k
3 5 k
4 0 k
4 5 k
5 0 k
5 5 k
6 0 k (b) M Z B

Ru
nni

ng
Tim

e (u
s.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 0
0

2 0 k
4 0 k
6 0 k
8 0 k

1 0 0 k
1 2 0 k
1 4 0 k (c) H S M

Ru
nni

ng
Tim

e (u
s.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00
1 k
2 k
3 k
4 k
5 k
6 k
7 k
8 k (d) C P H

Ru
nni

ng
Tim

e (u
s.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Figure 25: SPDQ Time vs. s2t

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 0
0

2 0 0

4 0 0

6 0 0 (a) S Y N 5

Me
mo

ry (
MB

.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

3 0 6 0 9 0 1 2 0 1 5 00

4 0 0

8 0 0

1 2 0 0 (b) M Z B

Me
mo

ry (
MB

.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0
(c) H S M

Me
mo

ry (
MB

.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00
5

1 0
1 5
2 0
2 5 (d) C P H

Me
mo

ry (
MB

.)

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Figure 26: SPDQ Memory vs. s2t

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 0
0

3 k

6 k

9 k

1 2 k (a) S Y N 5

NV
D

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

3 0 6 0 9 0 1 2 0 1 5 01 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5 (b) M Z B

NV
D

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 00
5 k

1 0 k
1 5 k
2 0 k
2 5 k (c) H S M

NV
D

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

1 1 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 0
0

4 0 0

8 0 0

1 2 0 0

1 6 0 0

2 0 0 0

2 4 0 0 (d) C P H

NV
D

s 2 t (m)

 I D M o d e l
 I D I n d e x
 C I n d e x
 I P - T r e e
 V I P - T r e e

Figure 27: NVD in SPDQ vs. s2t

• Like in the other cases, IDINDEX performs best in terms of the
time cost but costs most memory compared with others. When
the topology becomes complex, IDINDEX’s time cost increases
relatively slightly, while the memory use grows fast.

• IP-TREE/VIP-TREE perform best with relatively less time cost
and smaller memory use. For time cost, VIP-TREE always
outperforms IP-TREE because of the extra precomputation, but
it needs more memory. With the doors increasing, their time
and memory costs rise slightly.

• IDMODEL and CINDEX performs worst in both time and mem-
ory costs because they have to visit many doors in search.

Table 10: Results of RQ with Decomposition Method

Model Time (us.) Memory (MB.)
SYN50 SYN5 MZB0 MZB MZB∆ SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 9695 14999 24065 23527 18917 13 3 12 7 5
IDINDEX 460 704 471 439 349 414 437 815 841 1855
CINDEX 11283 15859 21840 21351 20267 12 4 11 8 5
IP-TREE 8923 123076 7957 17215 26110 88 92 61 58 76
VIP-TREE 6808 57988 4476 11079 19181 111 150 62 59 78

Table 11: Results of kNNQ with Decomposition Method

Model Time (us.) Memory (MB.)
SYN50 SYN5 MZB0 MZB MZB∆ SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 4773 9240 14318 14224 12828 9 3 12 6 4
IDINDEX 143 160 180 185 197 461 457 679 796 974
CINDEX 4907 9294 13115 13328 13225 16 4 11 8 6
IP-TREE 7272 33693 3904 7315 10369 112 114 36 36 52
VIP-TREE 6877 24522 3556 5207 7502 117 139 43 55 59

B7 Effect of Decomposition Methods for Hallways
RQ, kNNQ and SPDQ: For RQ and kNNQ, their time cost and
memory use with respect to different decomposition methods are
reported in Tables 10 and 11. For SPDQ, its time cost, memory
use and NVD are reported in Table 12.

• IDINDEX runs fastest when processing RQ and kNNQ but
uses most memory. When hallways are decomposed into more
partitions, IDINDEX’s time cost keeps nearly stable but its
memory cost increases. This is because there are more doors
connecting increased numbers of partitions, which leads to more
door-to-door pairs stored in the distance matrix.

• IDMODEL and CINDEX use the least memory but runs slowest.
With more partitions, both time cost and memory use decrease
because hallways are decomposed into more partitions each
having less doors to process.

• IP-TREE and VIP-TREE perform best considering both time
cost and memory use. However, when hallways are decom-
posed into more partitions, the two methods need more time
and memory to process RQ and kNNQ. Regarding the perfor-
mance in RQ, IP-TREE and VIP-TREE cost more time than
IDMODEL. There are more nodes in IP-TREE and VIP-TREE

when hallways are decomposed into more partitions, which
entails more on-the-fly computations to prune tree nodes when
processing RQ and kNNQ. Moreover, the time cost of IP-TREE

and VIP-TREE rises faster when processing RQ and kNNQ
than processing SPDQ. That is because there is some extra cost
to prune nodes when processing RQ and kNNQ. As the nodes
increase, this extra cost increases fast.

6.3 Summary of Findings
We summarize all five model/indexes’ performance in Table 13
where more stars imply a better performance (lower cost). ID-
MODEL incurs minimum time and space costs in construction. It

Table 12: Results of SPDQ with Decomposition Method

Model Time (us.) Memory (MB.) NVD
SYN50 SYN5 MZB0 MZB MZB∆ SYN50 SYN5 MZB0 MZB MZB∆ SYN50 SYN5 MZB0 MZB MZB∆

IDMODEL 31242 31855 36220 33503 32396 44 63 54 73 92 82574 10074 24877 12718 4243
IDINDEX 138 75 71 69 73 388 396 1096 1273 1489 58 8 22 9 8
CINDEX 32823 26900 35307 33238 31806 43 65 52 97 110 82574 10074 24877 12718 4243
IP-TREE 1610 7523 1252 1893 3257 59 44 31 39 44 416 843 97 87 139
VIP-TREE 856 2379 1091 1126 1474 64 42 54 39 55 136 61 37 24 26

works well for RQ and kNNQ, and its performance for SPQ/SDQ
even improves when hallways are decomposed into more parti-
tions. IDINDEX runs fastest for all types of indoor spatial queries
while requiring significantly large time to construct offline and
high memory consumptions during search. CINDEX performs only
comparably to IDMODEL when processing the queries. IP-TREE

and VIP-TREE are optimized for SPQ/SDQ tasks—they stand
out when there are many C-Pars connected by so-called access
doors; they decline when decomposition reduces C-Pars.

In short, IDINDEX is preferred for small-scale spaces. VIP-
TREE is recommended if routing is the task or the space accom-
modates many C-Pars. Otherwise, IDMODEL is recommended
for non-routing queries due to its low construction cost and good
balance between storage and query time costs.

Table 13: Summary of Findings

Model Construction Cost RQ/kNNQ Search SPQ/SDQ Search
Model Size Time Memory Time Memory Time

IDMODEL ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆
IDINDEX ⋆ ⋆ ⋆ ⋆⋆⋆⋆⋆ ⋆ ⋆⋆⋆⋆⋆
CINDEX ⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆
IP-TREE ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆ ⋆⋆⋆⋆ ⋆⋆⋆
VIP-TREE ⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆

7 CONCLUSION AND FUTURE WORK
This work reports on an extensive experimental evaluation of five
indoor space model/indexes that support four typical indoor spatial
queries. Our evaluation concerns the costs in model/index con-
struction and query processing using a model/index. By analyzing
the results, we summarize the pros and cons of all techniques and
suggest the best choice for typical scenarios.

For future work, changes to existing methods may improve their
performance. First, heuristics like A∗ and IDA∗ algorithms can
replace the Dijkstra-based expansion in IDMODEL and CINDEX

to speed up SPDQ processing. Second, intra-partition indexes like
grids can be combined with CINDEX and IP-TREE/VIP-TREE to
achieve local object pruning in processing RQ and kNNQ. Third,
strategies to select crucial doors/partitions can be developed to
reduce the storage of door-to-door distances in CINDEX and IP-
TREE/VIP-TREE while preserving their search efficiency.

Acknowledgement. This work was supported by IRFD (No. 8022-
00366B), ARC (No. FT180100140 and DP180103411), the Key
R&D Program (Zhejiang, China) (No. 2021C009) and NSFC (No.
62050099).

REFERENCES
[1] https://github.com/indoorLBS/ISQEA.
[2] Tanvir Ahmed, Torben Bach Pedersen, and Hua Lu. 2014. Finding dense

locations in indoor tracking data. In MDM. 189–194.
[3] Tanvir Ahmed, Torben Bach Pedersen, and Hua Lu. 2017. Finding dense

locations in symbolic indoor tracking data: modeling, indexing, and processing.
GeoInformatica 21, 1, 119–150.

[4] S. Alamri, D. Taniar, and M. Safar. 2012. Indexing Moving Objects in Indoor
Cellular Space. In NBiS. 38–44.

[5] Douglas G Altman and J Martin Bland. 1994. Statistics notes: quartiles,
quintiles, centiles, and other quantiles. BMJ 309, 6960, 996–996.

[6] Anahid Basiri, Elena Simona Lohan, Terry Moore, and et al. 2017. Indoor loca-
tion based services challenges, requirements and usability of current solutions.
Computer Science Review 24, 1–12.

[7] Thomas Becker, Claus Nagel, and Thomas H Kolbe. 2009. A multilayered
space-event model for navigation in indoor spaces. In 3D geo-information
sciences. 61–77.

[8] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-tree: an efficient and robust access method for points and
rectangles. 322–331.

[9] Muhammad Aamir Cheema. 2018. Indoor location-based services: challenges
and opportunities. SIGSPATIAL Special 10, 2, 10–17.

[10] Lisi Chen, Gao Cong, Christian S Jensen, and Dingming Wu. 2013. Spatial
keyword query processing: an experimental evaluation. PVLDB 6, 3, 217–228.

[11] Constantinos Costa, Xiaoyu Ge, and Panos Chrysanthis. 2019. CAPRIO:
Context-Aware Path Recommendation Exploiting Indoor and Outdoor Informa-
tion. In MDM. 431–436.

[12] Matthias Delafontaine, Mathias Versichele, Tijs Neutens, and Nico Van de
Weghe. 2012. Analysing spatiotemporal sequences in Bluetooth tracking data.
Applied Geography 34, 659–668.

[13] Zijin Feng, Tiantian Liu, Huan Li, Hua Lu, Lidan Shou, and Jianliang Xu. 2020.
Indoor Top-k Keyword-aware Routing Query. In ICDE. 1213–1224.

[14] Marcus Goetz and Alexander Zipf. 2011. Formal definition of a user-adaptive
and length-optimal routing graph for complex indoor environments. Geo-
Spatial Information Science 14, 2, 119–128.

[15] Christian S Jensen, Hua Lu, and Bin Yang. 2009. Indexing the trajectories of
moving objects in symbolic indoor space. In SSTD. 208–227.

[16] Xinlong Jiang, Yunbing Xing, Yiqiang Chen, Yang Gu, and Junfa Liu. 2019.
Indoor Trajectory Restoration Method Based on PoI Relation Constraints. In
SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI. 439–446.

[17] Peiquan Jin, Tong Cui, Qian Wang, and Christian S Jensen. 2016. Effective
similarity search on indoor moving-object trajectories. In DASFAA. 181–197.

[18] Donald B Johnson. 1973. A note on Dijkstra’s shortest path algorithm. J. ACM
20, 3 (1973), 385–388.

[19] YongHee Kim, HaRim Jung, JaeHee Jang, and Ung-Mo Kim. 2016. An efficient
grid index for moving objects in indoor environments. In IMCOM. 1–4.

[20] Jiyeong Lee. 2004. A spatial access-oriented implementation of a 3-D GIS
topological data model for urban entities. GeoInformatica 8, 3, 237–264.

[21] Huan Li, Hua Lu, Muhammad Aamir Cheema, Lidan Shou, and Gang Chen.
2020. Indoor mobility semantics annotation using coupled conditional Markov
networks. In ICDE. 1441–1452.

[22] Huan Li, Hua Lu, Lidan Shou, Gang Chen, and Ke Chen. 2018. In search of
indoor dense regions: An approach using indoor positioning data. IEEE Trans.
Knowl. Data Eng. 30, 8, 1481–1495.

[23] Huan Li, Hua Lu, Lidan Shou, Gang Chen, and Ke Chen. 2019. Finding most
popular indoor semantic locations using uncertain mobility data. IEEE Trans.
Knowl. Data Eng. 31, 11, 2108–2123.

[24] Hui Lin, Ling Peng, Si Chen, Tianyue Liu, and Tianhe Chi. 2016. Indexing for
moving objects in multi-floor indoor spaces that supports complex semantic
queries. ISPRS International Journal of Geo-Information 5, 10, 176.

[25] Tiantian Liu, Zijin Feng, Huan Li, Hua Lu, Muhammad Aamir Cheema, Hong
Cheng, and Jianliang Xu. 2020. Shortest Path Queries for Indoor Venues with
Temporal Variations. In ICDE. 2014–2017.

[26] Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir Cheema, and Lidan Shou.
2020. An Experimental Analysis of Indoor Spatial Queries: Modeling, Indexing,
and Processing. arXiv:2010.03910

[27] Hua Lu, Xin Cao, and Christian S Jensen. 2012. A foundation for efficient
indoor distance-aware query processing. In ICDE. 438–449.

[28] Hua Lu, Chenjuan Guo, Bin Yang, and Christian S Jensen. 2016. Finding
Frequently Visited Indoor POIs Using Symbolic Indoor Tracking Data. In
EDBT. 449–460.

[29] Hua Lu, Bin Yang, and Christian S Jensen. 2011. Spatio-temporal joins on
symbolic indoor tracking data. In ICDE. 816–827.

[30] Chaluka Salgado. 2018. Keyword-aware skyline routes search in indoor venues.
In SIGSPATIAL-ISA. 25–31.

[31] Zhou Shao, Muhammad Aamir Cheema, David Taniar, and Hua Lu. 2016.
Vip-tree: an effective index for indoor spatial queries. PVLDB 10, 4, 325–336.

[32] Zhou Shao, Muhammad Aamir Cheema, David Taniar, Hua Lu, and Shiyu
Yang. 2020. Efficiently Processing Spatial and Keyword Queries in Indoor
Venues. IEEE Trans. Knowl. Data Eng..

[33] Nico Sun, Erfu Yang, Jonathan Corney, and Yi Chen. 2019. Semantic path
planning for indoor navigation and household tasks. In TAROS. 191–201.

[34] Zhifeng Wang, Heng Xie, Zeqin Lin, Tao Wen, Chenglong Guo, and Haichu
Chen. 2020. The Robot Path Planning Algorithm In Indoor Environment. In
IECON. 5350–5355.

[35] Emily Whiting, Jonathan Battat, and Seth Teller. 2007. Topology of urban
environments. In CAADFutures. 114–128.

[36] Michael Worboys. 2011. Modeling indoor space. In SIGSPATIAL Workshop on
Indoor Spatial Awareness. 1–6.

[37] Xike Xie, Hua Lu, and Torben Bach Pedersen. 2013. Efficient distance-aware
query evaluation on indoor moving objects. In ICDE. 434–445.

[38] Xike Xie, Hua Lu, and Torben Bach Pedersen. 2014. Distance-aware join for
indoor moving objects. IEEE Trans. Knowl. Data Eng. 27, 2, 428–442.

[39] Bin Yang, Hua Lu, and Christian S Jensen. 2009. Scalable continuous range
monitoring of moving objects in symbolic indoor space. In CIKM. 671–680.

[40] Bin Yang, Hua Lu, and Christian S Jensen. 2010. Probabilistic threshold k
nearest neighbor queries over moving objects in symbolic indoor space. In
EDBT. 335–346.

[41] Jiao Yu, Wei-Shinn Ku, Min-Te Sun, and Hua Lu. 2013. An RFID and particle
filter-based indoor spatial query evaluation system. In EDBT. 263–274.

http://arxiv.org/abs/2010.03910

