
A Unified Approach for Computing Top-k Pairs in
Multidimensional Space

Muhammad Aamir Cheema†, Xuemin Lin†, Haixun Wang‡, Jianmin Wang∗, Wenjie Zhang†

†University of New South Wales, Australia ‡Microsoft Research Asia ∗School of Software, Tsinghua University
{macheema,lxue,zhangw}@cse.unsw.edu.au haixunw@microsoft.com Tsinghua National Laboratory for Information

Science and Technology, China
jimwang@tsinghua.edu.cn

Abstract— Top-k pairs queries have many real applications.
k closest pairs queries, k furthest pairs queries and their
bichromatic variants are some of the examples of the top-k pairs
queries that rank the pairs on distance functions. While these
queries have received significant research attention, there does
not exist a unified approach that can efficiently answer all these
queries. Moreover, there is no existing work that supports top-k
pairs queries based on generic scoring functions. In this paper,
we present a unified approach that supports a broad class of
top-k pairs queries including the queries mentioned above. Our
proposed approach allows the users to define a local scoring
function for each attribute involved in the query and a global
scoring function that computes the final score of each pair by
combining its scores on different attributes. We propose efficient
internal and external memory algorithms and our theoretical
analysis shows that the expected performance of the algorithms
is optimal when two or less attributes are involved. Our approach
does not require any pre-built indexes, is easy to implement and
has low memory requirement. We conduct extensive experiments
to demonstrate the efficiency of our proposed approach.

I. INTRODUCTION

Given a set of objects {o1, · · · , oN
} and a ranking function

that returns the score of a pair of objects (ou, ov), a top-k
pairs query returns k pairs with the best scores. An important
and well studied special case of the top-k pairs query is the
k closest pairs query which returns k pairs with the smallest
distances. The k closest pairs queries have been extensively
studied in the context of computational geometry (see [1] and
references therein).

The database community has also conducted significant
research on the k closest (or most similar) pairs queries, k
furthest (or most dissimilar) pairs queries and their variants [2],
[3], [4], [5]. However, all the existing techniques are developed
to solve some specific problems and there does not exist a
unified approach that answers different variants of the top-k
pairs queries (e.g., different Lp distances). Another interesting
variation for which no efficient solution exists is to find the
pairs of the objects that are similar to each other in one
subspace and dissimilar in another subspace. We are the first
to provide a unified framework that supports a broad class of
top-k pairs queries including the above mentioned queries.

We present a unified approach to efficiently answer the
top-k pairs queries based on generic scoring functions which
are not supported by the existing work. Consider a simple
example of an insurance company. The manager might want

to retrieve two insurance agents who sell very similar amount
of policies (i.e., the total premium of their sold policies is
similar) but receive very different salaries. Suppose that the
relevant information is stored in a table named agent. The
manager may issue the following query to retrieve the top-k
pairs of agents.

Q1: select a.id, b.id from agent a, agent b
where a.id < b.id
order by
|a.sold - b.sold| - |a.salary - b.salary|
limit k

Here |x − y| denotes the absolute difference of x and y.
Note that the order by clause prefers the pair of agents with
larger difference in their salaries and smaller difference in the
amount of the policies they sold1. The condition a.id < b.id
is used to avoid the pair (a, b) being repeated as (b, a).

While the example shows a simple ranking criteria, in the
real applications, the users may define more sophisticated
scoring functions. Our framework allows the users to define
a different scoring function for each attribute involved in
the query. Such scoring functions are called local scoring
functions. The users define a global scoring function that
computes the final score of a pair by combining its scores
on all attributes.

Our framework supports any global scoring function that
is monotonic and any local scoring function that is loose
monotonic. A wide range of functions that are used in many
real applications are monotonic. Although we define mono-
tonic and loose monotonic scoring functions in Section II-
A, we remark here that the loose monotonic functions are
more general than the monotonic functions. In the above
example, the two local scoring functions are |a.sold− b.sold|
and −|a.salary − b.salary|, respectively. The global scoring
function is the sum of the local scores.

Our framework does not fix the number of attributes in-
volved in the query. In other words, the users can issue a
top-k pairs query on any subset of the attributes using a
different loose monotonic scoring function for each attribute.
This enables us to support many interesting queries (e.g.,
similarity in one subspace and dissimilarity in another).

1Without loss of generality, throughout this paper, we assume that the top-k
pairs queries retrieve k pairs with the smallest final scores.

We further generalize the supported top-k pairs queries
by classifying them into chromatic and non-chromatic top-
k pairs queries. The chromatic queries are further classified
into homochromatic and heterochromatic top-k pairs queries.
Suppose that each object in the database has been assigned
a color. A homochromatic top-k pairs query returns the top-
k pairs among the pairs that contain two objects having the
same color. On the other hand, a heterochromatic top-k pairs
query considers only the pairs that contain two objects having
different colors. A top-k pairs query that does not consider the
colors of the objects (i.e., all pairs are considered) is called a
non-chromatic top-k pairs query.

In the query Q1, the user may want to consider only the
pairs of agents who work under different managers. The user
may issue a heterochromatic top-k pairs query by adding the
condition a.manager �= b.manager in the where clause
of the query. Note that the heterochromatic queries are more
general than the bichromatic queries. The bichromatic queries
assume that some of the objects are assigned blue color and
others are assigned red color. Only the pairs that contain one
red object and one blue object are considered. Existing work
on k closest pairs queries [2], [3] solve bichromatic queries
and the extension to heterochromatic queries is either non-
trivial or inefficient.

We further generalize the problem by defining two new
types of queries called skyline pairs query and rank-based
top-k pairs query. These queries are useful for the users who
may not be able to define a suitable global scoring function
(e.g., due to the lack of domain knowledge). For details, we
refer the readers to Section V.

Below, we summarize our contributions.
• We are first to provide a unified and efficient approach for

a broad class of top-k pairs queries. Our framework does
not require any pre-built data structure, has low memory
requirement and is easy to implement.

• We theoretically analyse the performance of the proposed
algorithms and show that the expected performance is
optimal when the number of attributes involved is two or
less2.

• Our extensive experiments demonstrate a significant im-
provement over the existing best known solution for k
closest pairs query. For the more general top-k pairs
queries, we compare our algorithm with a naı̈ve algorithm
and observe up to three orders of magnitude improve-
ment.

• Due to the generality of the framework, it can support
several other interesting queries (e.g., skyline pairs and
rank-based top-k pairs queries). In Section V, we present
efficient solutions for these queries and provide a detailed
theoretical analysis. We also present experiments to eval-
uate the efficiency of these algorithms.

2When d attributes are involved, the expected time complexity is

O(dV
d−1

d k
1
d Log N) and expected IO cost is O(d

B
V

d−1
d k

1
d (Log M

B

N
B

))

where V is the total number of valid pairs, N is the total number of objects,
B is the number of pairs that can be stored in one disk block and M is the
number of pairs that can be stored in the main memory.

The rest of the paper is organized as follows. In Section II,
we formally define the problem and give an overview of the
most relevant work. We present our framework and its advan-
tages in Section III. In Section IV, we present our technique
to create and maintain internal memory and external memory
sources which is the core part of our approach. We present our
query processing algorithms in Section V. Experiment results
are given in Section VI. Section VII concludes the paper.

II. PRELIMINARIES

A. Problem Definition

First, we define monotonic and loose monotonic scoring
functions. A function f is called a monotonic function if it
satisfies f(x1, · · · , xn) ≤ f(y1, · · · , yn) whenever xi ≤ yi

for every 1 ≤ i ≤ n.
Now, we define the loose monotonic functions. Let s(., .)

be a scoring function that takes two values as parameter and
returns a score. A function s(., .) is a loose monotonic function
if for every value xi both of the following are true: i) for a fixed
xi and every xj > xi, s(xi, xj) either monotonically increases
or monotonically decreases as xj increases, and ii) for a fixed
xi and every xk < xi, s(xi, xk) either monotonically increases
or monotonically decreases as xk decreases.

The absolute difference of two values (e.g., |xi − xj |)
is a loose monotonic function. This is because for a fixed
xi and any value xj larger than it, the absolute difference
monotonically increases when xj increases. Similarly, for
any fixed xi and any value xk smaller than it, the absolute
difference monotonically increases as xk decreases. Please
note that the loose monotonic functions are more general
because these require the scores to be monotonic only with
respect to every individual xi and the function may not
be monotonic in general. All monotonic functions are loose
monotonic functions but the converse may not be true for some
functions. For example, the absolute difference of two values is
a loose monotonic function but it is not a monotonic function.
The average of two values is a loose monotonic function as
well as a monotonic function.

For ease of presentation, we classify loose monotonic func-
tions into different categories. A loose monotonic function is
called right increasing (resp. decreasing) function if for every
xj > xi for the fixed xi, s(xi, xj) monotonically increases
(resp. decreases) as xj increases. For example, the absolute
difference is a right increasing function. A loose monotonic
function is called left increasing (resp. decreasing) function if
for every xk < xi for the fixed xi, s(xi, xk) monotonically
increases (resp. decreases) as k decreases. For instance, the
absolute difference is a left increasing function whereas the
average of two values is a left decreasing function.

Let d be the number of attributes specified by the user for a
top-k pairs query. For each attribute i, the user specifies a loose
monotonic scoring function si(., .) that computes the score of
a pair on the attribute i. Such scoring function is called a local
scoring function and the score si(a, b) of a pair (a, b) is called
its local score. The users are allowed to define a different
local scoring function for each attribute. The user defines a

monotonic global scoring function f that takes d local scores
as parameter and returns the final score SCORE(a, b) of a
pair (a, b) as f(s1(a, b), · · · , sd(a, b)).
Score-based top-k pairs query. Given a set of objects O,
a non-chromatic top-k pair query returns a set of pairs P ⊆
O ×O that contains k pairs such that for any pair (a, b) ∈ P
and any pair (a′, b′) /∈ P , SCORE(a, b) ≤ SCORE(a′, b′).
Chromatic queries. Consider that each object in a set of
objects O is assigned a color. A chromatic query is similar
to a non-chromatic query except for an additional constraint;
that is, only the pairs that meet the color requirement are
considered. A homochromatic top-k pairs query considers only
the pairs that have two objects having the same color. In
contrast, a heterochromatic top-k pair query considers only
the pairs that contain objects with different colors.

We define the skyline pairs query and the rank-based top-k
pairs query in Section V-B and Section V-C, respectively.

B. Related Work

1) k Closest Pairs Queries: The k closest pairs query is
a special case of the score-based top-k pairs queries. The
problem of k closest pairs queries has received significant
research attention by the computational geometry community
(see [1] for a nice survey). Below, we give an overview of the
previous work in the context of spatial databases.

Hjaltason et al. [2] are the first to study the problem of
closest pairs in the context of spatial databases. They propose
incremental distance joins where two datasets are joined and
the pairs are output incrementally according to the distances
between them. While the proposed solution has a nice feature
that it returns the pairs incrementally, its priority queue size
may be prohibitively large.

Corral et al. [3] propose several algorithms for k closest
pairs queries. Similar to the previous algorithm [2], they also
index the datasets by R-trees. They use distance bounds to
prune the intermediate node pairs. They observe that the
performance of their algorithm largely depends on the overlap
factor of the two datasets. It is important to note that although
the amount of the memory used by their algorithm is small
as compared to the memory usage of the algorithm proposed
in [2], there is no guarantee on the amount of the main memory
usage (e.g., the size of the heap can be O(V) where V is the
total number of possible pairs).

2) Top-k Query Processing: Top-k queries retrieve the top-
k objects based on a user defined scoring function. The
problem has been extensively studied [6], [7], [8], [9]. Ilyas et
al. [10] give a comprehensive survey of top-k query processing
techniques. We briefly describe some of the top-k processing
algorithms that combine multiple ranked sources and return
the top-k objects. More specifically, each source Si contains
the objects ranked on their scores according to a preference
i. Let xi be the score of an object in a source Si. The
final score of the object is computed by using a monotonic
function f(x1, · · · , xd) where d is the number of sources. The
algorithms report k objects with the smallest final scores.

The top-k algorithms assume that the objects in a source
can be accessed in two ways. A sorted access on a source
reads the next object in the sorted order. A random access
returns the score of any specified object in a given source.
In a random access, the specified object is searched in the
source and its score is returned. It is important to note that
not all the sources can support both types of accesses (e.g., a
search engine provides the sorted access but does not support
a random access).

Now, we briefly introduce three well known algorithms.
Fagin’s Algorithm (FA). FA [11] assumes that the sources
support both sorted and random accesses. Let there be d
sources Si, · · · , Sd. FA works as follows.
1. Do sorted access in parallel on each of the d sources. Go to
step 2 when there are at least k objects that have been returned
by every source.
2. For each object that has been returned by at least one
source, do the random accesses on the other sources to retrieve
its scores on remaining sources and compute its final score.
Return k objects with the smallest final scores.

A major problem with FA is that it uses unbounded buffer
(i.e., the number of objects stored in the main memory may
be arbitrarily large).
Threshold Algorithm (TA). TA (independently proposed
in [11], [9], [12]) also assumes that the sources support both
sorted and random accesses. TA works as follows.
1. Do sorted accesses in parallel on each of the d sources.
For each object o returned from a source Si, do the random
accesses on every other source to obtain its scores in the other
sources. Compute the final score of o using the monotonic
function f . Maintain a heap that contains k objects with the
smallest scores.
2. Let xi be the score of the last object returned from the
source Si through a sorted access. After every sorted access,
update the threshold value as t = f(x1, · · · , xd). Terminate
the algorithm when the heap contains k objects whose scores
are at most equal to t. Report the objects in the heap as top-k
objects.

It has been shown that the number of accesses by TA cannot
be larger than the number of accesses by FA. Furthermore, TA
is optimal in number of accesses when every source supports
both the sorted and random accesses. Moreover, the buffer size
of TA is O(k) because at any time it keeps only the best k
objects in its buffer.
No Random Access (NRA) Algorithm. NRA [11] assumes
that the sources do not support the random accesses. The
algorithm works as follows.
1. Do the sorted accesses in parallel on each of the d sources.
For each returned object o, compute its best possible score
B(o) and its worst possible score W (o) by assuming the best
and worst possible scores on the sources that have not yet
returned it. Maintain a heap that contains k objects with the
smallest worst scores W (o).
2. Let Wk be the largest of the worst scores of k objects in the
heap. At each sorted access, update Wk and the best possible
score B(o) of every seen object o. Terminate the algorithm

when B(o) ≥Wk for every seen object o. Report the objects
in the heap as the top-k objects.

It has been shown that NRA is optimal in the number of
accesses when the random access is not supported by the
sources. However, like FA, it also requires an unbounded
buffer. Moreover, the best possible scores of all seen objects
are to be updated whenever an object is returned by a sorted
access.

Mamoulis et al. [13] present several interesting observations
and propose an algorithm LARA that significantly improves
the performance of NRA. Due to the space limitations, we
omit the details and refer the readers to [13].

III. OUR PROPOSED FRAMEWORK

Let d be the number of local scoring functions involved in
the top-k pairs query. We map our problem to the well studied
problem of top-k query that combines the scores from different
ranked sources (see the previous section). More specifically,
we maintain d sources (please see Fig. 1) such that each source
Si incrementally returns the pair with the best score according
to the ith local scoring function. The existing top-k algorithms
(e.g., FA, TA and NRA) view these sources as the ranked
inputs and can be used to retrieve the top-k pairs by combining
these ranked inputs.

S1
(o1,o2) 3
(o2,o5) 4
(o1,o3) 9
... ...

(o2,o3) 5
(o1,o5) 6
(o1,o2) 6
... ...

(o1,o2) 1
(o3,o4) 2
(o1,o4) 5
... ...

SdS2

Top-k Algorithm

...

Fig. 1. Our framework

Most of the existing work on the top-k queries can be
applied to solve the problem of the top-k pairs queries.
However, these algorithms assume that the sources can report
the elements in a sorted order. Hence, it is important to develop
efficient techniques to create and maintain the sources such
that each source can return the pairs of objects in a sorted
order. A straight forward solution to create a source Si is to
sort all the possible pairs according to their local scores on
the ith attribute. However, this solution requires storing and
sorting O(V) pairs where O(V) is the number of valid pairs
(this number is O(N2) for non-chromatic queries if N is the
number of objects). Clearly, the time and the space complexity
of this straight forward approach may be prohibitive.

In the next section, we present an optimal internal memory
algorithm and an optimal external memory algorithm to create
and maintain such sources. The internal memory algorithm
uses O(N) space and is optimal in time complexity. The
external memory algorithm is I/O optimal.

Below we highlight a few advantages of our framework.
1. No pre-built indexes required. Our proposed algorithm
does not require any pre-built indexes, i.e., there does not exist
any index at the time a query is issued. We remark here that
the indexes like R-tree usually index all the dimensions (i.e.,
attributes) of the objects and the queries that involve a subset

of these dimensions may not be answered efficiently by these
indexes. Moreover, the pruning rules used on these indexes
are based on the distance metrics and may not work for the
generic scoring functions.
2. Known memory requirement. The existing techniques
for k-closest pairs queries [2], [3] use heap to store the
intermediate nodes of the R-trees. The size of the heap may
become as large as O(V) and the system may run out of
memory. In contrast, our external memory algorithm has
a bounded memory requirement (it requires O(k) space in
addition to 2d buffer pages).
3. Efficient. Although our proposed approach supports more
general top-k pairs queries and does not require any pre-
built indexes, our experimental results demonstrate that the
proposed approach is in general more efficient than the existing
solutions of k closest pairs queries. We also conduct theoretical
analysis and show that the expected cost of our proposed
approach is optimal for the queries that involve two or less
attributes.
4. Feasible for implementation in a DBMS. Unlike the
existing techniques that target specific problems, our general
algorithmic framework solves a broad class of top-k pairs
queries (including all the existing variants) and is easy to
implement. Moreover, the proposed technique outperforms ex-
isting algorithms both theoretically and experimentally. Hence,
it is a good choice to be implemented in any DBMS.

IV. MAINTAINING THE SOURCES

A. Internal Memory Source

First, we define some terminologies. Suppose that all the
objects are sorted in ascending order of their attribute values
such that o1 ≤ o2 ≤ · · · ≤ o

N
. For any pair (ou, ov), we refer

to the first object ou in the pair as host and the second object
ov as guest. A pair (ou, ov) means that the object ou is a host
to a guest ov.

For the ease of presentation, we assume that the local
scoring function s(., .) satisfies3 s(ou, ov) = s(ov, ou). To
avoid reporting a pair (ou, ov) again as (ov, ou), we will
consider only the pairs (ou, ov) such that u < v. This implies
that every object ou can host only the objects that are on
the right side of ou in the sorted list o1 ≤ o2 ≤ · · · ≤ o

N
.

For chromatic queries, only the objects that meet the color
requirement and are on the right side of ou will be considered
its guests. Let ov and ov′ be two guests of ou. We say that
ov is a better guest of ou than ov′ if s(ou, ov) < s(ou, ov′).
An object ov is called the best guest of a host ou if for every
other guest ov′ of the host ou, s(ou, ov) ≤ s(ou, ov′). We say
that an object ou has hosted the object ov , if the pair (ou, ov)
has been reported to the main algorithm.

Algorithm 1 presents the details of creating and maintaining
a source. Initially, all the objects are sorted in ascending order
of their attribute values (ties are broken arbitrarily). Then, for

3The scoring functions for which s(ou, ov) �= s(ov , ou) can be easily
handled by joining two sources such that the first source considers only the
pairs (ou, ov) for every u < v and the second source considers only the pairs
(ov, ou) for every u < v.

Algorithm 1 Creating and maintaining a source
1:InitializeSource()
1: sort the objects in ascending order of their values
2: for each object ou do
3: ov ← the best guest of ou

4: insert the pair (ou, ov) into heap with score s(ou, ov)

getNextBestPair()
1: get the top pair (ou, ov) from the heap
2: if next best guest of ou exists then
3: ov′ ← the next best guest of ou

4: insert the pair (ou, ov′) in heap with score s(ou, ov′)
5: return (ou, ov)

each object ou, a pair (ou, ov) is created such that ov is the
best guest of ou. All these pairs are inserted in a heap.

Whenever a request for the next best pair arrives, the source
retrieves the top pair (ou, ov) from the heap and reports it to
the main algorithm. The next best pair (ou, ov′) is inserted
in the heap where ov′ is the next best guest of ou. At any
stage during the execution, the next best guest of ou is the
best guest among the guests of ou which has not been hosted
by ou earlier.

6 12 14 15 20

6 2 1 5

30

10

o1 o2 o3 o4 o5 o6

6 12 14 15 20

6

30

10

o1 o2 o3 o4 o5 o6

6 12 14 15 20

6

30

10

o1 o2 o3 o4 o5 o6

(a)

(b)

(c)

3
5

6

2
6

5

Fig. 2. Illustration of Algorithm 1

EXAMPLE 1 : Consider the example of Fig. 2 which shows
six objects o1 to o6 sorted on their attribute values. The values
inside the circles are the attribute values. Assume that the
scoring function is the absolute difference. A pair (ou, ov)
is shown by a directed edge from the host ou to the guest
ov . Initially, for each object, a pair with its best guest is
created and inserted in the heap. Note that the best guest of an
object is its right adjacent object when the function is absolute
difference. Fig. 2(a) shows the pairs (see the edges) that are
inserted in the heap. The number on an edge corresponds to
the score of the pair. The best pair is (o3, o4) and its score
is 1. When this is retrieved, the algorithm determines that the
next best guest of o3 is o5 and inserts (o3, o5) in the heap
with score 6 (see Fig. 2(b)). Now the top pair of the heap is
(o2, o3) which is returned when the system requests the next
best pair from this source. The next best guest of o2 is o4 so
a new pair (o2, o4) is inserted in the heap with score 3 (see
Fig. 2(c)).

The intuitive justification of the correctness of the algorithm
is that at any stage, we keep the best guests (among those that
it has not hosted yet) for each object in the heap. This implies

that for every pair that does not exist in the heap either there
exists a better pair in the heap or the pair has already been
reported to the main algorithm. The following lemma proves
the correctness of the algorithm.

LEMMA 1 : For any pair (ox, oy) that is not present in the
heap and has not been reported earlier, there exists at least one
pair (ou, ov) in the heap such that s(ou, ov) ≤ s(ox, oy).

Proof: First we prove it for the case when x < y. For
each object ox, we always have one object ov in the heap (if
ox has not already hosted all valid guests) such that ov is its
best guest among the objects that it has not hosted yet. If ox

has hosted all valid guests, this implies that the pair (ox, oy)
has been hosted. Otherwise, there must be at least one pair
(ox, ov) in the heap such that s(ox, ov) ≤ s(ox, oy). This is
because an object ox will not host oy unless it has hosted all
the guests that are better than oy .

Now, assume x > y. Following the similar argument
as above, if the pair (oy, ox) has not been reported then
there exists at least one pair (oy, ov) in the heap such that
s(oy, ov) ≤ s(oy, ox).

In order to achieve the optimal complexity, the algorithm
must find the best guests for all N objects in O(N). Moreover,
the algorithm must find the next best guest of any object ou

in O(1).
Before we show the details of how to do these operations

with required complexity, we introduce the concept of left ad-
jacent and right adjacent objects. A left (resp. right) adjacent
object of ou is the first object ox on the left (resp. right) side
of ou in the sorted list o1 ≤ o2 ≤ · · · ≤ o

N
such that the pair

(ou, ox) satisfies the color requirement.

6 12 14 15 20 30

o1 o2 o3 o4 o5 o6

(a)

(b)

6 12 14 15 20 30

o1 o2 o3 o4 o5 o6

6 12 14 15 20 30

o1 o2 o3 o4 o5 o6

(c)

Fig. 3. Adjacent objects (a) Non-chromatic (b) Heterochromatic (c) Ho-
mochromatic

Fig. 3 shows an example where the objects o1 to o6 are
shown. Some objects are shaded (o2, o4 and o5) and others are
white (o1, o3 and o6). Fig. 3(a), (b) and (c) show the adjacent
objects for non-chromatic queries, heterochromatic queries and
homochromatic queries, respectively. The adjacent objects are
shown with broken lines. An arrow from an object ox to oy

indicates that oy is the adjacent object of ox in that direction.
Later in this section, we show that the left and the right

adjacent objects of all the objects can be determined in O(N).
1) Finding the best guest for each object ou: Below, we

describe the procedure for the right increasing and the right
decreasing functions (see Section II-A for the definitions).

For right increasing functions. Recall that if the scor-
ing function is right increasing then the score s(ou, ov) ≤
s(ou, ov′) if v < v′ (i.e., ov′ is on the right side of ov in the
sorted list). Hence, for any object ou, its best guest is its right
adjacent object. For example, in Fig. 3(c), o3 is the best guest
of o1 if the scoring function is right increasing function (e.g.,
absolute difference).
For right decreasing functions. For any object ou, the best
guest in this case is the right most object ov such that the
pair (ou, ov) meets the color requirement. More specifically,
for non-chromatic queries, the best guest of any object ou is
oN . For example, in Fig. 3(a) the best guest of every object is
o6 if the scoring function is a right decreasing function (e.g.,
s(ou, ov) = −(ou + ov)).

For the heterochromatic queries, if oN has a color different
than ou then o

N
is the best guest of ou. Otherwise the left

adjacent object of o
N

is the best guest of ou because it is
guaranteed to have a color different than ou. In the example
of Fig. 3(b), o6 is the best guest of o2, o4 and o5 whereas o5

is the best guest of o1 and o3.
For the homochromatic queries, we scan the sorted list o1 ≤
· · · ≤ oN once and maintain the right most object of each
color. For each object ou, its best guest is the right most object
of the same color. In the example of Fig. 3(c), o6 is the best
guest for o1 and o3 whereas o5 is the best guest of o2 and o4.

2) Finding next best guest of any object ou: Let ov be the
current best guest of the object ou. The next best guest of ou

can be determined in O(1). Below, we describe how to find
the next best guests for the right increasing functions and the
procedure is similar for the right decreasing functions.

For the non-chromatic queries and the homochromatic
queries, the next best guest ov′ for an object ou is the right
adjacent object of ov . In the example of Fig. 3(c), let o3 be
the current guest of o1. The next best guest of o1 is o6 which
is the right adjacent object of o3.

For the heterochromatic queries, the next best guest of ou

is o
v+1 if o

v+1 has a color different than ou. Otherwise, the
right adjacent object of o

v+1 is guaranteed to have a different
color and hence is the next best guest of ou. Consider the
example of Fig. 3(b) and assume that the current best guest of
the object o2 is o3. When (o2, o3) is reported, the algorithm
checks o4 to see if it is the next best guest of o2. Since o2 and
o4 have the same color, the next best guest of o2 is o6 which
is the right adjacent object of o4.

3) Finding the adjacent objects: Now we illustrate how to
add pointers to the adjacent objects in O(N) time. For the non-
chromatic queries, the procedure is trivial. So, we first discuss
the procedure for determining the right adjacent objects for the
heterochromatic queries. The procedure starts with setting the
right adjacent object of o

N
to NULL. Then, it starts scanning

the sorted list of the objects from right to left. For each object
ou, if o

u+1 has a different color than ou then o
u+1 is set as

the right adjacent object of ou. Otherwise, the right adjacent
object of ou+1 is set as the right adjacent object of ou.

Consider the example of Fig. 3(b). The right adjacent object
of o6 is set to NULL. The right adjacent object of o5 is o6

because they have different colors. The right adjacent object
of o4 is not o5 because they have same color. So, the right
adjacent object of o5 (which is o6) is set as the right adjacent
object of o4. The algorithm continues in this way. The left
adjacent objects can be set similarly by scanning the list from
left to right.

For the homochromatic queries, we assign the right adjacent
objects as follows. While we scan the list from right to left,
we maintain the last seen object of each color. For any object
ou, its right adjacent object is the last seen object of the same
color (NULL if no object has been seen of this color). The
left adjacent objects are set similarly by scanning the list from
left to right.

4) Complexity: The first pair is returned in O(N Log N)
(the objects are sorted and O(N) pairs are inserted in the
heap). We remark that this meets the lower bound of returning
the closest pair in one dimension [14]. Since our general
framework covers the closest pairs, the lower bound of the
algorithm is O(N Log N) hence our algorithm is optimal.

As illustrated earlier, the next best guest of any object ou can
be determined in O(1). For each host ou, the heap contains
at most one pair (ou, ov). Hence, the maximum size of the
heap is O(N) which implies that each heap operation takes
O(Log N). In other words, a source incrementally returns the
next best pair in O(Log N).

B. External Memory Source

The basic idea of the external memory algorithm is the
same as the internal memory algorithm. However, there are
following two main challenges: 1) the heap cannot be stored
in the internal memory and 2) finding the next best guest of an
object requires accessing the sorted list of the objects which is
stored in the external memory (this means that the algorithm
would need to access the external memory every time the next
best guest is to be determined).

We address the first challenge by using the external memory
priority queue proposed by Arge [15]. The basic idea of the
external priority queue (or heap) is to retrieve and insert the
elements in a batch which reduces the amortized I/O cost.
Arge shows that the external priority queue can do an insert
or delete operation in O(1

B LogM
B

N
B) amortized I/O where B

is the number of elements that can be stored in one disk page,
M ≥ 2B is the number of elements that can be stored in
the internal memory and N is the number of elements in the
priority queue. For details, please see [15].

We introduce the notion of dummy pairs to address the
second challenge (i.e., to find the next best guest of an object
without accessing the external memory). A dummy pair with a
host ou and a guest ov is denoted as (ou, ov). The pairs (ou, ov)
we introduced earlier are called the regular pairs hereafter.
Recall that when a regular pair (ou, ov) is retrieved from the
heap, a pair (ou, ov′) is created and inserted in the heap where
ov′ is the next best guest of ou. In contrast, when a dummy
pair (ou, ov) is retrieved from the heap, a dummy pair (ou′ , ov)
is created and inserted in the heap where ou′ is the next best
host of ov . The best host ou is defined in a similar way as

the best guest. More specifically, we say that an object ou is
a better host of ov than ou′ if s(ou, ov) < s(ou′ , ov). Finding
the next best host is similar to finding the next best guest as
described in previous section.

In Fig. 4, for each object, we show a regular pair with its
best guest (curved arrows pointing right) and a dummy pair
with its best host (connector style arrows pointing left). The
scoring function is the sum of the attribute values and the
score of each pair is shown on its edge.

Recall that when a pair (ou, ov) is retrieved from the heap,
the next best guest ov′ is determined by using the adjacent
object information of ov . For our external memory algorithm,
we propose to store the adjacent object information with both
the regular pairs and the dummy pairs. More specifically, with
a regular pair (ou, ov), we attach the information of adjacent
objects of the host ou. In contrast, for a dummy pair (ou, ov)
we attach the information of adjacent objects of the guest ov.
The object that stores the adjacent object information in a pair
is marked with a star. For example, (�ou, ov) denotes that the
adjacent object information of ou is attached with the pair
(ou, ov).
Algorithm 2 Creating and maintaining external memory
source

1:InitializeSource()
1: sort the objects in ascending order of their values
2: for each object oi do
3: attach adjacent object’s information with oi

4: oj ← the best guest of oi

5: ok ← the best host of oi

6: insert the pair (�oi, oj) into heap with score s(oi, oj)
7: insert the dummy pair (ok, �oi) into heap with score

s(ok, oi)

getNextBestPair()
1: get the top pair (�ou, ov) from the heap
2: get the next top pair (which is dummy pair (ou, �ov))/*
Lemma 2 */

3: if next best guest of ou exists then
4: ov′ ← the next best guest of ou

5: insert the pair (�ou, ov′) in heap with score s(ou, ov′)
6: if next best host of ov exists then
7: ou′ ← the next best host of ov

8: insert the dummy pair (ou′ , �ov) into heap with score
s(ou′ , ov)

9: return (�ou, ov)

Algorithm 2 presents the details of creating and maintain-
ing an external memory source.. The main idea behind the
algorithm is that the heap is modified such that whenever
a pair (�ou, ov) is retrieved from the heap, its dummy pair
(ou, �ov) is the next best pair in the heap. These two pairs
are retrieved and are used as follows; The next best guest of
ou is determined by using the adjacent object information of
ov which is stored in the dummy pair (ou, �ov). Similarly, the
next best host of ov can be determined by using the adjacent
object information of ou which is stored in the regular pair

(�ou, ov). It is easy to see that the next best pairs can be
formed without accessing the external memory.

7 7 7 7 20

14 14 14 27

30

50

o1 o2 o3 o4 o5 o6
14

14 14
27

37

Fig. 4. Illustration of dummy pairs

Modifying the heap priority function. It is important to
clarify that if there exists more than one pair with the same
score then the next best pair may not be the dummy pair of
(ou, ov). Consider the example of Fig. 4, where several pairs
have score 14. If the heap accesses the pair (o2, o3), the next
best pair cannot be its dummy pair (o2, o3) because it has not
been inserted in the heap yet. To guarantee that the next best
pair is always the dummy pair of the retrieved pair, we modify
the heap priority function as follows.

If two pairs have the same score, the heap gives priority
based on the IDs of their guest objects. More specifically, if
the scoring function is a right increasing function then the pair
with the smaller ID of the guest object is given preference. If
the scoring function is a right decreasing function then the pair
with the larger ID of the guest object is given preference. The
ID of each object in a source is its position in the list sorted
in ascending order of attribute values. For instance, the ID of
an object ou is u.

If two pairs have the same score and the same guest object
then the heap gives priority based on the IDs of their host
objects. More specifically, if the scoring function is a left
increasing function then the heap prefers the pair with the
larger ID of the host object. If the function is a left decreasing
function then the heap prefers the pair with the smaller ID of
the host object.

If two pairs have the same score, the same guest object and
the same host object then one of them is a regular pair and the
other is its dummy pair. In this case, the heap gives priority
to the regular pair.

Lemma 2 guarantees the correctness of the algorithm. Due
to the space limits, we omit the proof. The interested readers
can see the proof (and a detailed example) in our technical
report [16].

LEMMA 2 : Assume that the heap uses the priority function
as described above. If a pair (ou, ov) is the top pair of the
heap then its dummy pair (ou, ov) is the second top pair.

Please note that once the source is created, it does not
require to access the external memory to create new pairs. The
only external memory I/Os are due to insertion and deletion
from the external memory heap. The cost of returning the first
pair is sorting the objects and inserting O(N) pairs in the
external heap. Hence, the cost is O(N

B LogM
B

N
B) which is I/O

equivalent to O(N Log N) internal memory algorithm and
hence is optimal [17]. The amortized I/O cost for retrieving
next best pair is O(LogM

B

N
B) which is I/O equivalent to the

cost of internal memory source.

V. QUERY PROCESSING ALGORITHM

In this section, we present our query processing algorithms
and provide the complexity analysis. More specifically, we
present the techniques to answer score-based top-k pairs
queries, skyline pairs queries and rank-based top-k pairs
queries in Section V-A, V-B and V-C, respectively.

A. Score-based Top-k Pairs Queries

1) Technique: We apply the threshold algorithm (TA) [11],
[9], [12] to combine the scores of a pair from different sources
and return the top-k pairs. However, please note that TA
assumes that the sources support the random accesses (see
Section II-B). In other words, when a pair is returned from a
source Si, TA needs to obtain its score on every other attribute.
We enable TA to access the scores of a pair on the other
attributes as follows.

For internal memory algorithms, we assume that the objects
are stored in the main memory (this consumes O(dN) memory
space). When a pair (ou, ov) is returned from one of the
sources, we use the object table and retrieve the attribute values
of ou and ov and compute the score of (ou, ov) on every other
attribute.

For the external memory algorithm, doing the random
access requires accessing the object table (which exists in the
external memory). This would be quite expensive because we
need to look up the attribute values of two objects for each
seen pair and this may require two I/Os. One solution is to
apply NRA algorithm [11] because it does not require random
accesses. However, NRA algorithm requires an unbounded
buffer (see Section II-B) and the main memory consumption
may be prohibitively large (it may be O(V) where V is the
total number of valid pairs).

To enable random accesses for TA, we modify each source
Si such that each pair stores d attribute values of both of the
objects. This increases the amortized I/O cost of creating the
external memory source by a factor d because the number of
entries that can be stored in one disk block is reduced. How-
ever, doing this allows us to compute the score of each pair
on every attribute without any additional I/O. Although this
approach may increase the disk usage, the external memory
sources are required only during the query processing and the
data can be deleted after the query has been answered.

2) Complexity Analysis: The number of elements accessed
by TA is always less than or equal to the number of elements
accessed by Fagin’s Algorithm (FA) [11] (see Section II-
B). FA algorithm stops the sorted accesses when exactly k
elements are returned from all d sources. Let V be the number
of elements in each source. The expected number of sorted
accesses by FA is T = O(V (d−1)/dk1/d) under the assumption
that the score of an element in one source is independent of
its score in other sources [18].

As the cost of TA is always less than or equal to FA, the
number of pairs our algorithm is expected to access from
each source is O(T) assuming that the score of a pair in
one source is independent of its score in the other sources.
The total number of accesses from all d sources is O(dT).

As shown earlier, the cost of accessing a pair from a source
is O(Log N), hence the total expected cost 4 for the internal
memory algorithm is given by Eq. (1).

O(dT Log N) = O(d V
d−1

d k
1
d Log N) (1)

For the non-chromatic queries, the total number of valid
pairs O(V) is O(N2). Hence the expected cost of our al-
gorithm to answer a two dimensional closest pair query is
O(N Log N) which is optimal in algebraic decision tree
model [14].

The cost of our external memory algorithm can be ob-
tained similarly. The amortized I/O cost of accessing dT
(T pairs from each source) is O(dT

B (LogM
B

N
B)) where B

is the number of pairs that can be stored in one block and
M ≥ 2B is the number of pairs that can be stored in the
main memory reserved for an external priority queue. For
a two dimensional non-chromatic closest pair queries, the
expected amortized I/O cost is O(N

B (LogM
B

N
B)) which is I/O

equivalent to O(N Log N) internal memory algorithm hence
is optimal [17].

The space usage of the internal memory algorithm is O(dN)
because the main algorithm stores a table containing N objects
with d attributes for each object and each source stores a table
of N objects with one attribute value for each object. The main
memory usage of the external memory algorithm is O(k+dM)
where M is the memory used for each source. The minimum
memory an external source requires is 2B, hence the minimum
main memory requirement is O(k + 2dB).

B. Skyline Pairs Query

A pair (x, y) is said to dominate another pair (a, b) if for
every attribute i, si(x, y) ≤ si(a, b) and for at least one
attribute j, sj(x, y) < sj(a, b). A skyline pairs query returns
every pair that is not dominated by any other pair.

It can be shown that for any monotonic global scoring
function, the best pair is always one of the skyline pairs. In
other words, the skyline pairs query gives shortlisted candidate
pairs such that for every candidate pair there exists a global
scoring function for which it is the best pair. Hence if the users
cannot define a suitable scoring function, they can select a pair
from the skyline pairs that best meets their requirement.

Consider the example of a person who is interested in
buying a broadband internet connection and a home phone
connection. He might want to retrieve the pairs (broadband and
phone) that have low total monthly cost, low total setup fee and
shorter average contract length. Suppose that a database stores
the information of broadband and home phones provided by
different companies. While the score-based top-k pairs queries
can be used to retrieve the top-k pairs, the user may instead
prefer to retrieve all the pairs that are not dominated by any
other pair (i.e., return every pair such that no other pair has

4Note that the cost analysis includes the cost of creating the sources. The
cost of creating d sources is O(d(N Log N)) which is dominated by Eq. (1).
Same holds for the cost analysis of the external memory algorithm. Our
experiment results also include the cost of creating the sources.

lower total monthly cost, lower total setup fee and shorter
average contract length).

1) Technique: For ease of the presentation, we assume
that all the pairs in a source have unique scores. Later, we
will present the approach to handle the case when more than
one pair can have same score. Our algorithm is similar to
Fagin’s Algorithm (FA) (see Section II-B). However, unlike
FA algorithm, we address the problem of unbounded buffer.
Our algorithm works as follows.
1 . Do the sorted accesses on each source Si. For each newly
seen pair p, determine its score on all other attributes. Compare
p with existing skyline pairs and include it in the set of
skyline pairs if it is not dominated by any existing skyline
pair. Otherwise, discard it.
2. Terminate when at least one object has been seen under
the sorted accesses from all the sources. Report the skyline
pairs.

The correctness of the algorithm follows from the fact that
a pair p cannot be dominated by any pair p′ that is accessed
after it. This is because the score of p′ is larger than p in
at least one source. The termination condition is also correct
because if a pair p is seen in every source then every pair p′

that has not been seen in any source is dominated by p.
If more than one pair the have same score in a source Si

then a pair p can be dominated by a pair p′ that is accessed
after it. This is because p′ may have a score equal to p in the
source Si and may have smaller scores in all other sources.
We address this issue as follows. Let xi be the score of a pair
p that has been accessed from a source Si. We discard the
pair p if it is dominated by any of the existing skyline pairs.
Otherwise, we insert it in a list C which contains the candidate
skyline pairs. When a pair p′ is accessed from Si, if its score
is equal to xi it is compared with every pair in C and the pairs
that are dominated by p′ are deleted. Whenever the score of
p′ is larger than xi, all the pairs in C are confirmed as the
skyline pairs and are inserted in the set of skyline pairs.

Let scorei be the score of a pair p in a source Si such
that p has been seen under sorted accesses on all sources. The
algorithm terminates if the score xi of the last pair seen in a
source Si is larger than scorei. This is because every unseen
pair has a score on Si larger than that of p and cannot have
score less than the score of p on every other source. The proof
of correctness is straight forward and is omitted.

A k-skyband [19] query returns every element that is
dominated by at most (k − 1) other elements. A k-dominant
skyline [20] query returns every element that is not dominated
by any other element in k or more dimensions. We remark that
the extension of the algorithm to answer k-skyband pairs query
and k-dominate skyline pairs query is straight forward. Due
to space limits, we omit the details.

2) Analysis: We assume that the pairs have unique scores
in each source. The number of accesses from each source is
equal to the accesses by FA (because the algorithm stops when
at least one object has been returned from all sources). So,
the expected number of accesses from each source is T =
O(V (d−1)/d) (the value of k is one). The expected number of

total accesses on all the sources is O(dT).
For each retrieved pair, we compare it with all the existing

skyline pairs. The average number of skyline pairs is estimated
to be O(Logd−1V) [21]. Since V is at most O(N2), the
expected number of skyline pairs is O(Logd−1N). Hence the
expected cost of the internal memory skyline pairs algorithm
is O(dT Logd−1N). The expected amortized I/O cost is the
same as the cost of score-based top-k (k = 1) pairs query
obtained because the cost was obtained using the number of
accesses by FA.

The lower bound on the cost of the skyline pairs queries
is O(N Log N) which can be obtained by reducing it to the
closest pair query. It is easy to see that the expected cost of
our algorithms meets the lower bound of the skyline pairs
queries if two or less attributes are involved. The expected
main memory usage of the internal memory algorithm is
O(dN + Logd−1N) because in addition to the object table,
it also stores the existing skyline pairs. The expected main
memory requirement of the external memory algorithm is
O(k + 2dB + Logd−1N).

C. Rank-based Top-k Pairs Queries

In order to define a suitable scoring function, the users must
have sufficient domain knowledge. Moreover, it is difficult
to define a global scoring function on the attributes that are
incompatible (e.g., dollars and inches) [22]. In such cases, the
users can issue a rank-based top-k pairs query which is defined
below.

First, we define the rank of a pair (a, b) on an attribute i
denoted by ranki(a, b). Let si be the loose monotonic scoring
function for the attribute i. ranki(a, b) is the number of pairs
(x, y) for which si(x, y) < si(a, b). In other words, if the pairs
are sorted in ascending order of their scores on ith attribute,
ranki(a, b) is the rank of the pair (a, b) in the sorted order.

Given a global scoring function f , the final rank-based score
R SCORE of a pair (a, b) is;

R SCORE(a, b) = f(rank1(a, b), · · · , rankd(a, b)) (2)

Given a set of objects O, a rank-based top-k pairs query
returns a set of pairs P ⊆ O × O that contains k pairs
such that for any pair (a, b) ∈ P and any pair (a′, b′) /∈ P ,
R SCORE(a, b) ≤ R SCORE(a′, b′).

1) Technique: When a pair p is seen on a source Si,
although its score on the other sources can be determined,
it might not be possible to determine its rank on the other
sources. In other words, the random access on a source cannot
determine the rank of a pair in this source. However, if a pair
p is seen under the sorted access then its rank is the number of
pairs that have been returned by this source and have smaller
scores. This can be easily done by maintaining a counter for
each source. The problem of rank-based top-k pairs can be
solved by using NRA [11] because the sorted accesses are
possible but the random accesses are not possible.

As mentioned in Section II-B, there are two major weak-
nesses of NRA. First is that whenever a new element is seen

under the sorted access, the best possible scores of all the
previously seen pairs are to be updated. This problem has
been addressed by LARA algorithm [13] which we briefly
described in Section II-B. The second problem is that NRA
uses an unbounded buffer. We reduce its memory usage by
the following observation. A pair p that is dominated by k
other pairs cannot be the top-k pair. Hence, we only need to
maintain the (k + 1)-skyband pairs. Other pairs can be safely
pruned.

2) Analysis: In the worst case, the growing phase of LARA
(see Section II-B) completes when there are at least k elements
that are seen on all the sources. Hence, the expected number
of pairs accessed from each source is at most equal to the
number of pairs accessed by FA. So, the expected number
of pairs accessed from each source during the growing phase
is T = O(V (d−1)/d · k1/d). In the growing phase, when a
pair p is retrieved, it is compared against all (k + 1)-skyband
pairs to see if it can be pruned. The expected size of (k + 1)-
skyband is O(k Logd−1N) [23]. So, the expected cost of the
growing phase is O(dkTLogd−1N) because in total dT pairs
are accessed and each pair is compared with every pair in the
(k + 1)-skyband.

Now, we estimate the number of elements accessed by
the shrinking phase of LARA (which cannot be more than
the number of elements accessed by NRA). We assume that
the global function is sum of the local scores. Moreover,
we assume that the scores in every source are unique. As
stated earlier, when O(T) elements are accessed from each
source, the algorithm is expected to see k elements that have
been returned by all the sources. The worst possible score
of these k elements is Wk = dT (the rank of the pair is
T in each source). If dT elements are accessed from each
source, then the algorithm can stop. This is because the
final score of every object that is not seen in at least one
source cannot be smaller than Wk = dT . Hence, the number
of accesses by NRA on each source is at most dT where
T = O(V (d−1)/d · k1/d). The total number of accesses on all
d sources is O(d2T). The cost of each access in the shrinking
phase is O(Logk + 2d) [13]. Hence the expected total cost of
the shrinking phase is O(d2T (Log N + Log k + 2d)).

The total cost of the internal memory rank-based top-k
pairs query is the sum of the cost of the growing phase
and the cost of the shrinking phase as computed above. The
expected amortized I/O cost of the external memory algorithm
is O(d2T

B LogM
B

N
B) because d2T pairs are expected to be

accessed from the sources.
The expected main memory requirement for the internal

memory algorithm is O(dN +k Logd−1 N) because the pairs
in (k+1)-skyband are also kept in the memory. The expected
main memory requirement of the external memory algorithm
is O(2dB + k Logd−1 N).

VI. EXPERIMENTS

We conducted extensive experiments on both real and
synthetic datasets. Due to the space limitation, we present
only the most representative results. There does not exist any

previous work for the skyline pairs queries and the rank-based
top-k pairs queries. However, several algorithms exist for the
k closest pairs query which is a special case of the score-based
top-k pairs queries. Moreover, naı̈ve algorithms for the skyline
pairs queries and the rank-based top-k pairs queries perform
extremely bad (in many cases they either ran out of memory
or did not finish within two days). For these reasons, we focus
on evaluating our score-based top-k pairs queries algorithm.
At the end of this section, we show the performance of the
other two algorithms.

We show that our algorithm for the score-based top-k
pairs queries outperforms the existing best known algorithm
(KCPQ) [3] for the k-closest pairs queries. For the queries that
use more generic functions, we compare our algorithm with
a naı̈ve algorithm because there does not exist any other work
to handle such queries.

A. k-Closest Pairs Queries

We compare our algorithm with the best known k-closest
pairs algorithm called KCPQ [3]. In accordance with [3], the
page size for both of the algorithms is set to 1K . The k
closest pairs query joins two data sets each containing 100, 000
objects and returns the k closest pairs. k is set to 10 in all
experiments unless mentioned otherwise.

It has been noted that the overlap between the datasets is
one of the main factors [3] that affect the performance of the
existing algorithms. Fig. 5 shows the effect of the overlap
on KCPQ and our algorithm. In Fig. 5(a), we run both of
the algorithms in the internal memory and observe that our
algorithm is 2 to 3 times faster when the overlap is at least
40%. For the smaller overlaps, the performance of KCPQ
is better because most of the intermediate nodes of the R-
trees are quickly pruned. However, its performance is still not
significantly better than our algorithm. Note that our algorithm
is not sensitive to the data overlap.

 1

 2

 3

 0 20 40 60 80 100

T
im

e
(s

ec
on

ds
)

Overlap (in %)

KCPQ
Our

(a) Internal Memory

20

40

60

80

 0 20 40 60 80 100

IO

 (
 in

 th
ou

sa
nd

s
)

Overlap (in %)

KCPQ
10%
25%
50%

100%

(b) External Memory
Fig. 5. Effect of overlapping

Fig. 5(b) shows the performance of both of the algorithms in
the external memory. The heap of KCPQ algorithm contains
the intermediate nodes of the R-trees. Consequently, it uses
larger amount of main memory. The buffer size for our
algorithm is set according to the main memory usage of
KCPQ. More specifically, we run our algorithm with the buffer
size set to 100%, 50%, 25% and 10% of the memory used by
KCPQ. Fig. 5(b) demonstrates that when the overlap is 40%
or more, our algorithm performs better even when the memory
used by our algorithm is 10% of the memory used by KCPQ.

We also conducted several experiments on different data
distributions. More specifically, we generated the datasets
following uniform, normal, correlated and anti-correlated dis-

 1
 2
 3
 4
 5
 6
 7

Uniform Normal Correlated Anti-Corr

T
im

e
(s

ec
on

ds
)

Data distribution

KCPQ
Our

(a) Internal Memory

50

100

150

200

Uniform Normal Correlated Anti-Corr

IO

 (
in

 th
ou

sa
nd

s)

Data distribution

KCPQ
Our

(b) External Memory
Fig. 6. Different data distributions

tributions. For each distribution, we generated two datasets
with 50% overlap between them. Fig. 6 demonstrates that our
algorithm is not affected by the data distribution and performs
significantly better than KCPQ.

We compared the two algorithms for several other param-
eters and datasets and observed that although our algorithm
supports more general scoring functions and does not require
pre-built indexes, it outperforms KCPQ for all settings except
when the overlap is too small.

B. Generic Scoring Functions

For the general scoring functions, we compare our algo-
rithms with a naı̈ve algorithm. The naı̈ve algorithm uses nested
loop to join a dataset with itself (block nested loop for external
memory processing). The disk page size is set to 4K . The
buffer size for each of our external memory source is set to 2
pages (this is the minimum required by the external priority
queue [15]).

1) Real Data: The real dataset5 consists of location data
consisting of 304, 895 location points belonging to 87 zip
codes of USA. The zip codes roughly map to different towns
(or suburbs). Each point in the dataset corresponds to a
residential block. We extracted the coordinates of the streets
and the number of addresses along each street. We treat the
center of each street as a residential block and the number of
addresses along the street as the population of the block. For
each block, we randomly generate a value which denotes the
average rent of the houses in the residential block. All of the
attributes are normalized to a unit space. The global scoring
function we used is the sum of the local scores.

Preference Heterochromatic Homochromatic
1&2: Distance close far
3: Population high high
4: Rent low low

TABLE I

THE QUERIES USED ON REAL DATA

We use several heterochromatic and homochromatic queries
each involving two to four attributes. Table I shows some of the
queries we use on the real data. First two preferences involve
two attributes (i.e., the two location coordinates of each block).
A heterochromatic query on these two attributes retrieve the
closest pairs of blocks such that each block is located in a
different suburb. For a query involving d preferences, we use
the first d preferences for that query listed in the table. For
example a homochromatic query on three attributes retrieves

5http://www.census.gov/geo/www/tiger/

the pairs of blocks (located in the same suburb) that are far
from each other and have high total population. k is set to 10
for all queries.

 0.3

 1.2

 1200

[1,2] [1-3] [1-4]

T
im

e
(s

ec
on

ds
)

Preferences

NAIVE
HETERO

HOMO

(a) Internal Memory

 0.05
 0.08

 0.6

 1.8

[1,2] [1-3] [1-4]

IO
 (

in
 M

ill
io

n)

Preferences

NAIVE
HETERO

HOMO

(b) External Memory
Fig. 7. Real data

Fig. 7 shows that the naı̈ve algorithm is three orders of
magnitude slower than our internal memory algorithm and
uses an order of magnitude more IOs. The query time for our
algorithm is low which demonstrates the applicability of our
approach in the real world applications. Similar results were
observed when the queries were run for other parameters.

2) Synthetic Data: The default synthetic dataset contains
the points following a uniform distribution. Each object is
randomly assigned a color. The number of colors vary from
50 to 250. The local scoring functions used by the algorithms
are the sum and the absolute difference. The global scoring
function is a weighted aggregate (we allow negative weights).
For each dimension, a local scoring function is randomly
chosen (sum or absolute difference) and is assigned a random
weight.

Parameter Range
Number of objects (×1000) 100, 200, 300, 400, 500
Number of colors 50, 100, 150, 200, 250
Number of attributes 2, 3, 4, 5, 6
k 1, 10, 25, 50, 100

TABLE II

EXPERIMENT PARAMETERS

We present the results for the homochromatic top-k queries.
The results for the non-chromatic and the heterochromatic
queries follow similar trends. Table II shows the default
parameters in bold.

Fig. 8 and Fig. 9 study the effect of increasing the number
of objects and the number of attributes, respectively. While
the performance of both of the algorithms6 degrades, our
algorithm scales very well.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

100 200 300 400 500

T
im

e
(s

ec
on

ds
)

Number of objects (in thousands)

NAIVE
Our

(a) Internal Memory

 0

 1

 2

 3

 4

 5

100 200 300 400 500

IO

 (
in

 M
ill

io
n)

)

Number of objects (in thousands)

NAIVE
Our

(b) External Memory
Fig. 8. Effect of number of objects

Fig. 10 studies the effect of k. The performance of our
algorithm is better for smaller k. The naı̈ve algorithm is not

6To compare the scalability of the two algorithms, we show the results in
linear scale. The readers interested in seeing the same results in logscale can
see our technical report [16].

 0
 100
 200
 300
 400
 500
 600
 700
 800

 2 3 4 5 6

T
im

e
(s

ec
on

ds
)

Number of attributes

NAIVE
Our

(a) Internal Memory

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 2 3 4 5 6

IO

 (
in

 M
ill

io
ns

)

Number of attributes

NAIVE
Our

(b) External Memory
Fig. 9. Effect of number of attributes

 0

 100

 200

 300

 400

 500

 600

 700

 1 10 25 50 100

T
im

e
(s

ec
on

ds
)

k

NAIVE
Our

(a) Internal Memory

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1 10 25 50 100

IO

 (
in

 M
ill

io
ns

)

k

NAIVE
Our

(b) External Memory
Fig. 10. Effect of k

affected by k because it considers all the pairs regardless of
the value of k.

Fig. 11 studies the effect of number of colors. Our algorithm
performs slightly better when the number of colors is large.
This is mainly because the number of valid pairs decreases
when the number of colors is large. However, the effect is not
very significant because the number of pairs that are accessed
from each source is not significantly affected.

 2.5
 4

 650

 50 100 150 200 250

T
im

e
(s

ec
on

ds
)

Number of colors

NAIVE
Our

(a) Internal Memory

 0.1
 0.15

 1.8

 50 100 150 200 250

IO

 (
in

 M
ill

io
ns

)

Number of colors

NAIVE
Our

(b) External Memory
Fig. 11. Effect of number of colors

Finally, we present the results for the skyline pairs queries
and the rank-based top-k pairs queries. As stated earlier,
the naı̈ve algorithms perform extremely bad. Therefore, we
compare the performance of our proposed algorithms (for the
score-based queries, the rank-based queries and the skyline
queries) to give the readers an insight about the cost of each
type of query.

 0.01

 0.1

 1

 10

 100

 1000

 2 3 4 5 6

T
im

e
(s

ec
on

ds
)

Number of attributes

Rank-based
Skyline

Score-based

(a) Internal Memory

 0.1

 1

 10

 100

 2 3 4 5 6

IO

 (
in

 M
ill

io
n)

Number of attributes

Rank-based
Skyline

Score-based

(b) External Memory
Fig. 12. Comparison of different top pairs queries

Fig. 12 shows the cost of the three algorithms when different
number of attributes are involved in the query. The score-based
top-k queries are the easiest to solve among the three and the
rank-based top-k pairs queries are the hardest. The cost of
each of the algorithms increases with the number of attributes
used in the query.

VII. CONCLUSION

We present a unified approach to answer a broad class
of top-k pairs query including the k closest pairs queries,
the k furthest pairs queries and their variants. The expected
performance of the proposed algorithms is optimal when the
queries involve two or less attributes. Extensive experiments
demonstrate the efficiency of our proposed algorithms.
Acknowledgments: The second author was supported by
the ARC Discovery Grants (DP110102937, DP0987557,
DP0881035), Google Research Award and NICTA. The fourth
author’s research was supported by NSFC (Project 61073005).

REFERENCES

[1] M. Smid, “Closest-point problems in computational geometry,” in Hand-
book on Computational Geometry, published by Elsevier Science, 1997.

[2] G. R. Hjaltason and H. Samet, “Incremental distance join algorithms for
spatial databases,” in SIGMOD, 1998.

[3] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos,
“Closest pair queries in spatial databases,” in SIGMOD, 2000.

[4] C. Yang and K.-I. Lin, “An index structure for improving nearest closest
pairs and related join queries in spatial databases,” in IDEAS, 2002.

[5] J. Shan, D. Zhang, and B. Salzberg, “On spatial-range closest-pair
query,” in SSTD, 2003, pp. 252–269.

[6] K. C.-C. Chang and S. won Hwang, “Minimal probing: supporting
expensive predicates for top-k queries,” in SIGMOD Conference, 2002,
pp. 346–357.

[7] K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitoring of
top-k queries over sliding windows,” in SIGMOD Conference, 2006.

[8] R. Fagin, “Combining fuzzy information from multiple systems,” in
PODS, 1996, pp. 216–226.

[9] S. Nepal and M. V. Ramakrishna, “Query processing issues in image
(multimedia) databases,” in ICDE, 1999.

[10] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top- query
processing techniques in relational database systems,” ACM Comput.
Surv., vol. 40, no. 4, 2008.

[11] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” J. Comput. Syst. Sci., vol. 66, no. 4, pp. 614–656, 2003.

[12] U. Güntzer, W.-T. Balke, and W. Kießling, “Optimizing multi-feature
queries for image databases,” in VLDB, 2000.

[13] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung, “Efficient
top- aggregation of ranked inputs,” ACM Trans. Database Syst., vol. 32,
no. 3, p. 19, 2007.

[14] M. Ben-Or, “Lower bounds for algebraic computation trees (preliminary
report),” in STOC, 1983.

[15] L. Arge, “The buffer tree: A technique for designing batched external
data structures,” Algorithmica, 2003.

[16] M. A. Cheema, X. Lin, H. Wang, J. Wang, and
W. Zhang, “A unified framework for computing best
pairs queries,” in UNSW Technical Report, 2010.
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/1005.pdf.

[17] J. S. Vitter, “External memory algorithms and data structures: Dealing
with massive data,” ACM Computing Surveys, vol. 33, p. 2001, 2001.

[18] R. Fagin, “Combining fuzzy information from multiple systems,” J.
Comput. Syst. Sci., vol. 58, no. 1, pp. 83–99, 1999.

[19] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems,” ACM Trans. Database Syst., vol. 30,
no. 1, pp. 41–82, 2005.

[20] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,
“Finding k-dominant skylines in high dimensional space,” in SIGMOD,
2006.

[21] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson, “On
the average number of maxima in a set of vectors and applications,” J.
ACM, 1978.

[22] R. Fagin, R. Kumar, and D. Sivakumar, “Efficient similarity search and
classification via rank aggregation,” in SIGMOD, 2003.

[23] W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. X. Yu, “Probabilistic
skyline operator over sliding windows,” in ICDE, 2009, pp. 1060–1071.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

