
SLICE: Reviving Regions-Based Pruning for

Reverse k Nearest Neighbors Queries

Shiyu Yang†, Muhammad Aamir Cheema‡†, Xuemin Lin†§, Ying Zhang†

†School of Computer Science and Engineering, The University of New South Wales, Australia
‡Clayton School of Information Technology, Monash University, Australia

§Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China

yangs@cse.unsw.edu.au, aamir.cheema@monash.edu, {lxue, yingz}@cse.unsw.edu.au

Abstract—Given a set of facilities and a set of users, a reverse
k nearest neighbors (RkNN) query q returns every user for
which the query facility is one of the k-closest facilities. Due
to its importance, RkNN query has received significant research
attention in the past few years. Almost all of the existing
techniques adopt a pruning-and-verification framework. Regions-
based pruning and half-space pruning are the two most notable
pruning strategies. The half-space based approach prunes a
larger area and is generally believed to be superior. Influenced
by this perception, almost all existing RkNN algorithms utilize
and improve the half-space pruning strategy. We observe the
weaknesses and strengths of both strategies and discover that
the regions-based pruning has certain strengths that have not
been exploited in the past. Motivated by this, we present a
new RkNN algorithm called SLICE that utilizes the strength
of regions-based pruning and overcomes its limitations. Our
extensive experimental study on synthetic and real data sets
demonstrate that SLICE is significantly more efficient than
the existing algorithms. We also provide a detailed theoretical
analysis to analyze various aspects of our algorithm such as I/O
cost, the unpruned area, and the cost of its verification phase
etc. The experimental study validates our theoretical analysis.

I. INTRODUCTION

A reverse k nearest neighbors (RkNN) query finds every

data point p for which the query point q is one of its k-closest

points. The RkNN queries for which k = 1 are denoted as

RNN queries. Consider the example of a shopping market. The

residents for which this market is one of the k-closest markets

are the potential customers of this market. In this paper, the

objects that provide a facility or a service (e.g., markets, fuel

stations) are called facilities and the objects (e.g., residents,

drivers) that use the facilities are called users. In this context,

a RkNN query returns every user u for which the query facility

q is one of its k-closest facilities. Since q is close to such users,

a RkNN query returns the users that are likely to use the query

facility q.

RkNN query has received significant research attention [1],

[2], [3], [4], [5], [6], [7], [8], [9] ever since it was introduced

in [10]. The existing techniques adopt a pruning and verifi-

cation framework. In the pruning phase, the set of facilities

is used to prune the area that cannot contain any RkNN. In

the verification phase, the users that lie in the unpruned space

are retrieved. These users are potential RkNNs of the query

and are called candidates. Each candidate u is then verified

by checking whether q is one of its k closest facilities or not.

This is usually done by issuing a range query centered at u
with radius dist(u, q) and checking whether the range contains

less than k facilities or not. Next, we briefly describe two most

notable pruning strategies and then highlight the weaknesses

and advantages of each strategy.

Regions-based pruning [3]. In this approach, the space

around q is divided into six equally sized regions, each of

angle range 60◦. In Fig. 1(a), q and four facilities a to d are

shown. Six regions (P1 to P6) are also shown. For a partition

Pi, let dk be the distance between q and its k-th nearest facility

in Pi. Assuming k = 2, dk = dist(b, q) for the partition P2

in Fig. 1(a). It has been shown that a user u that lies in Pi

at a distance from q greater than dk can be pruned, i.e., the

shaded area in Fig. 1(a) can be pruned.

Half-space pruning [11], [9]. Let Ba:q denote the perpen-

dicular bisector between a facility a and q (see Fig. 1(b)).

The bisector divides the space into two halves. We use Ha:q

to denote the half-space that contains a and Hq:a to denote

the half-space that contains q. For a point p that lies in Ha:q,

dist(p, a) < dist(p, q). In other words, p cannot be the RNN

of q and we say that the half-space Ha:q prunes the point

p. Clearly, a point that is pruned by at least k half-spaces

cannot be the RkNN of q. Fig. 1(b) shows two bisectors Ba:q

and Bb:q . Assuming k = 2, the shaded area can be pruned

because every point in the shaded area is pruned by the two

half-spaces Ha:q and Hb:q.

(a) Six-regions pruning (b) Half-space pruning

Fig. 1. Illustration of pruning strategies (k = 2)

The advantage of half-space pruning is that it prunes a much

larger area as compared to the area pruned by six-regions

(compare the shaded area in Fig. 1(a) and Fig. 1(b)). The

advantage of the regions-based approach is that the cost of

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

Operation Six-regions InfZone SLICE

Prune a facility O(1) O(m) O(t)
Prune the space O(m log k) O(km2) O(tm log m)
Prune a user O(1) O(log m) O(1)
Verify candidate range query O(log m) O(m)

Expected #cand.
6k|U|
|F |

k|U|
|F |

<
3.1k|U|

|F |

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITIES

checking whether a point p can be pruned or not is O(1).
Specifically, to check whether a point p is pruned by six-

regions pruning, we only need to compare dist(p, q) with dk.

On the other hand, half-space pruning is significantly more

expensive. For instance, checking whether p can be pruned

requires to check whether p lies in at least k half-spaces or

not. The cost is O(m) where m is the number of facilities

considered for pruning.

Table I compares six-regions approach [3] and the state-of-

the-art half-space pruning based approach called InfZone [9],

[12]. InfZone not only improves the pruning cost of a user

from O(m) to O(log m) but also significantly improves

the verification cost. However, note that the pruning cost of

InfZone is still significantly higher than that of six-regions.

The pruning cost of InfZone for a facility is O(m) which

is higher than the pruning cost of a user O(log m). This

is because InfZone utilizes a different pruning criterion for

facilities and prunes only the facilities that are unable to further

prune the unpruned area.

As shown in Table I, the bottleneck of the six-regions

approach is its verification phase. Six-regions approach verifies

a candidate u by issuing a range query centered at u with

radius dist(u, q) (see the dotted circle Fig. 1). This results

in not only additional computational cost but also I/O cost

because the index is to be accessed to verify each candidate.

Table I also demonstrates the expected number of candidates

(i.e., the users that cannot be pruned) where |F | denotes the

total number of facilities and |U | denotes the total number of

users. Hence, the verification phase of six-regions approach

is expected to issue
6k|U|
|F | range queries that dominates the

total cost of the algorithm. Note that the expected number of

candidates for six-regions is 6 times the expected number of

candidates for InfZone. This is due to the poor pruning power

of six-regions approach.

Several techniques have been proposed to address the lim-

itations of half-space pruning (e.g., FINCH [6], InfZone [9]).

Surprisingly, there is no work that tries to utilize the strength

of regions-based pruning (i.e., cheap pruning) and addresses

its limitations (low pruning power and expensive verification).

In this paper, we propose an algorithm called SLICE that

addresses the limitations of regions-based approach and uti-

lizes its strength. Specifically, SLICE uses a more powerful

and flexible pruning approach that prunes a much larger area

as compared to six-regions with almost similar computational

complexity. Furthermore, it significantly improves the verifi-

cation phase by computing sigList for each partition Pi. The

sigList of a partition Pi consists of a set of facilities that is

sufficient to verify every candidate u ∈ Pi. Hence, a candidate

can be verified by accessing sigList instead of issuing a range

query.

Table I compares the cost of SLICE with six-regions and

InfZone. t denotes the number of partitions used by our

approach (typically 6 to 12). We remark that, in the worst

case, m may be as large as |F | where |F | is the total number

of facilities. Note that the pruning cost of our algorithm is

significantly smaller than InfZone and is quite close to six-

regions approach.

To verify a user, SLICE accesses the objects in sigList
which contains O(m) facilities in the worst case. However,

our theoretical analysis demonstrates that the expected size of

sigList is O(k). Hence, the expected cost of the verification

is O(k). As we show later, this also implies that the expected

cost of “prune the space” operation for SLICE is O(tm log k).
Also, note that a majority of the users are pruned by “prune

a user” operation and the number of candidates that require

verification is usually small, e.g., when |U | = |F |, the

expected number of candidates is less than 3.1k. Hence, the

dominating cost of InfZone and SLICE is the pruning phase

for which SLICE is significantly more efficient.

A reader may assume that the verification phase of InfZone

is more efficient than that of SLICE which is not necessarily

true. The verification phase of the two algorithms consist

of two major operations: 1) pruning the user entries; 2)

verifying the unpruned users, i.e., candidates. As shown in

Table I, SLICE is more efficient for the first operation whereas

InfZone is faster for the second operation. Hence, the total

verification cost depends on the ratio of the numbers of the

two operations during the verification phase. Our experimental

study demonstrates that the verificaiton phase of SLICE is

slower than that of InfZone only for larger k. This is because

the number of candidates increases as the value of k increases.

We remark that SLICE aims at reducing the overall com-

putational cost by compromising on a slightly higher I/O cost

than InfZone [9]. Later in Section V, we demonstrate that the

I/O cost of each algorithm is negligible when compared with

its CPU cost and the overall cost of SLICE is much lower than

InfZone. Nevertheless, InfZone must be preferred if the focus

is to minimize the number of I/Os.

Below, we summarize our contributions in this paper.

• Influenced by the perception that regions-based pruning

is always inferior to half-space pruning, almost all ex-

isting techniques use half-space pruning to solve RkNN

queries [11], [6], [9], [13] and its variants (e.g., contin-

uous RkNN queries [14], [8], [15], probabilistic RkNN

queries [16], [17], and incremental RkNN queries [13],

[18] etc). In this paper, we address the limitations of six-

regions approach and demonstrate that the regions-based

pruning is not necessarily inferior to half-space pruning.

We propose an algorithm based on regions-based pruning

that significantly outperforms state-of-the-art algorithm

in terms of running time. This also indicates that the

improved regions-based approach may be useful to solve

other variants of RkNN queries.

2

• We provide a detailed theoretical analysis to analyse

the cost of our algorithm. Specifically, we theoretically

analyse the I/O cost, number of candidates, the area

pruned, and the expected computational complexity of

the verification phase. Our experimental results validate

our theoretical analysis.

• Our experimental study on real and synthetic data sets

demonstrates that SLICE is significantly more efficient

than the existing algorithms for all settings (except when

k = 1). We have also released the source codes, data

sets and scripts to assist the readers in conducting more

experiments or reproducing the experimental results.

The rest of the paper is organized as follows. In Section II,

we formally define the problem and introduce the related work.

Our techniques are presented in Section III. Section IV pro-

vides a detailed theoretical analysis. Experimental evaluation is

presented in Section V followed by conclusion in Section VI.

II. PRELIMINARIES

First, we formally define the problem in Section II-A. Then,

we present the related work in Section II-B.

A. Problem Definition

RkNN queries are classified [10] into bichromatic RkNN

queries and monochromatic RkNN queries.

Bichromatic RkNN Queries. Consider a set of facilities F
and a set of users U . Given a query q ∈ F , a bichromatic

RkNN query returns every user u ∈ U for which q is one of

its k-closest facilities.

Monochromatic RkNN Queries. Given a set of facilities F
and a query q ∈ F , a monochromatic RkNN query returns

every facility f ∈ F for which q is one of its k-closest

facilities.

Consider a set of police stations. For a given police station

q, its monochromatic RkNNs are the police stations for which

q is one of the k nearest police stations. Such police stations

may seek assistance (e.g., extra policemen) from q in case of

an emergency event.

Since most of the applications of RkNN queries are in

location-based services, like existing techniques [9], [6], [3],

the focus of this paper is on two dimensional location data. Our

proposed approach can be applied to answer both bichromatic

and monochromatic RkNN queries. However, for ease of

presentation, we limit our discussion to bichromatic RkNN

queries unless specifically mentioned. Later, in Section III-C3,

we show that our techniques can be easily applied for

monochromatic RkNN queries.

B. Related work

RkNN queries have been extensively studied considering

different settings such as continuous RkNN queries [19], [20],

[8], [14], probabilistic RkNN queries [16], [21], [22], [17],

RkNN queries on graphs [23], [24], [25], metric spaces [23]

and adhoc spaces [26] etc. Since the focus of this paper is on

static queries in Euclidean space, we provide a brief overview

of the techniques to solve RkNN queries in Euclidean space.

Korn et al. [10] were first to study RNN queries. They

answer the RNN query by pre-calculating a circle for each

data object p such that the nearest neighbor of p lies on the

perimeter of the circle. RNN of a query q is every point that

contains q in its circle. Techniques to improve their work were

proposed in [1], [2].

Now, we briefly describe the existing techniques that do not

require pre-computation. These techniques have two phases

namely pruning and verification. In the pruning phase, the

space that cannot contain any RkNN is pruned by using the

set of facilities. In the verification phase, the users that lie

within the unpruned space are retrieved. These are the possible

RkNNs and are called the candidates. Most of the existing

techniques verify a candidate by issuing a range query and

checking if q is one of its k nearest facilities or not.

In the past few years, RkNNs have been extensively studied

under different settings (e.g., see [4], [5], [7], [8], [8], [15]

and references therein). Next, we briefly describe some of

the most related techniques namely six-regions [3], TPL [11],

FINCH [6] and InfZone [9]. We present only the pruning

strategy of these techniques. The verification phase of these

techniques (except of InfZone) is similar. Specifically, for each

candidate u, a range query centered at u and range set as

dist(u, q) is issued and the user is returned as a RkNN if the

range contains less than k facilities. The verification phase of

InfZone will be discussed later.

Six-regions. First technique that does not need any pre-

computation was proposed by Stanoi et al. [3]. They solve

RkNN queries by partitioning the whole space centred at the

query q into six equal regions of 60◦ each (P1 to P6 in Fig. 2).

As stated in Section I, the k-th nearest facility of q in each

region defines the area that can be pruned. In other words,

assume that dk is the distance between q and its k-th nearest

facility in a region Pi. Then any user u that lies in Pi and

lies at a distance greater than dk from q cannot be the RkNN

of q. This is because, for such user u, dist(u, f) < dist(u, q)
for every f where f is one of the k-nearest facilities of q in

the region Pi.

Fig. 2 shows a RkNN (k = 2) query q and four facilities

a to d. In region P2, b is the second nearest facility of q and

the shaded area can be pruned, i.e., only the users that lie in

the white area can be the RkNNs. A user u that lies in the

shaded area cannot be RkNN because it is guaranteed to be

closer to a and b than q.

TPL. Tao et al. [11] propose TPL that prunes the space using

the half-space pruning (as described in Section I). Recall that

a point p that is pruned by at least k half-spaces cannot be the

RkNN. TPL algorithm iteratively accesses the nearest facilities

in the unpruned area. Each accessed facility f is used to prune

the space. The pruning phase completes when there does not

exist any facility in the unpruned space. Fig. 3 shows the

example where the bisectors between q and a, c and d are

drawn (Ba:q, Bc:q and Bd:q, respectively). If k = 2, the shaded

area can be pruned because every point in it lies in at least

two half-spaces. Note that the facility b lies in the pruned area

so its bisector is not used for pruning.

3

Fig. 2. Six-regions [3] Fig. 3. TPL [11]

Let m be the number of facilities for which the bisectors are

considered for pruning. An area that is the intersection of any

combination of k half-spaces can be pruned. The total pruned

area corresponds to the union of pruned regions by all such

possible combinations of k bisectors (a total of m!/k!(m−k)!
combinations). Since the number of combinations is too large,

TPL uses an alternative approach which has less pruning

power but is cheaper. First, TPL sorts the m facilities by their

Hilbert values. Then, only the combinations of k consecutive

facility points are considered to prune the space (total m
combinations). The cost to prune an entry using this strategy

is O(km).

Fig. 4. FINCH [6] Fig. 5. InfZone [9]

FINCH. As discussed above, to prune the entries, TPL uses m
combinations of k bisectors which is expensive. To overcome

this issue, Wu et al. [6] propose an algorithm called FINCH.

Instead of using bisectors to prune the objects, they use a

convex polygon that approximates the unpruned area. Any

object that lies outside the polygon can be pruned. For

example, in Fig. 3, the unpruned area is the white area. FINCH

approximates this unpruned area by a convex polygon (the

white area in Fig. 4 with boundary shown in broken lines).

Any point that lies outside this polygon can be pruned, i.e.,

the shaded area of Fig. 4 can be pruned. Clearly, pruning of

FINCH is more efficient than TPL because containment can

be done in logarithmic time for convex polygons. Hence, a

point can be pruned in O(log m). Unfortunately, the cost of

computing the convex polygon that approximates the unpruned

area is O(m3) where m is the number of facilities used for

pruning.

InfZone. The verification phase of six-regions, TPL and

FINCH is quite expensive because it requires issuing a range

query for each candidate. Cheema et al. [9] propose InfZone

which uses the concept of influence zone to significantly

improve the verification phase. Influence zone is the area

such that a point p is a RkNN of q if and only if p lies

inside this area. It was shown that the influence zone is a

star-shaped polygon [27] and the point containment can be

done in logarithmic time to the number of edges of the star-

shaped polygons, i.e., the cost to prune a point is O(log m).
Note that InfZone does not require the verification of a

candidate because every user u that lies in the influence zone

is guaranteed to be RkNN. In other words, the verification

cost is O(log m).
The influence zone corresponds to the unpruned area when

the bisectors of all the facilities have been considered for

pruning. For instance, in Fig. 5, the bisectors between q and all

facilities are drawn (Ba:q, Bb:q , Bc:q, and Bd:q). The shaded

area can be pruned and the white area is the influence zone.

Recall that FINCH and TPL did not consider Bb:q because

when the bisectors of a, c and d are considered the facility b
lies in the pruned area and is ignored. Cheema et al. [9] present

several properties to reduce the number of facilities that must

be considered in order to correctly compute the influence zone.

The cost of computing the influence zone using m facilities

is O(km2) [12].

III. TECHNIQUES

In Section III-A, we present observations to improve the

area pruned by regions-based pruning. In Section III-B, we

present techniques to be used in the verification phase of our

algorithm. Our algorithm is described in Section III-C.

A. Reviving Regions-Based Pruning

First, we define a few terms and notations (Table II contains

a summary).

DEFINITION 1 : Subtended angle. Given a query point q,

the subtended angle between two points x and y is the angle

∠xqy in the triangle △xqy. It is denoted as angle(x, y). If

x, q and y lie on the same line then angle(x, y) = 0◦ or

angle(x, y) = 180◦ depending on the relative positions of x,

q and y.

In Fig. 6(a), angle(f, p) = α. Note that angle(x, y) ≤
180◦.

(a) Proof of Lemma 1 (b) Illustration of terms

Fig. 6. Pruning space using a facility f in a partition P

DEFINITION 2 : Maximum (minimum) subtended angle.

Given a query point q, maximum subtended angle between

a point x and a partition P is the maximum subtended

4

Notation Definition

q the query point

P a partition

angle(x, y) the subtended angle between x and y

maxAngle(x,P) argmaxp∈Pangle(x,P)
minAngle(x,P) argminp∈Pangle(x,P)

rUf :P or rU The upper arc of facility f for partition P

rLf :P or rL The lower arc of facility f for partition P

rB:P or rB The bounding arc for a partition P

TABLE II
NOTATIONS

angle between x and any point p in the partition P , i.e.,

argmaxp∈P angle(x, p). It is denoted as maxAngle(x, P).
The minimum subtended angle is defined similarly and is

denoted as minAngle(x, P).

In Fig. 6(b), the partition P is shown shaded and

maxAngle(f, P) = θ1 and minAngle(f, P) = θ2. Since

angle(x, y) ≤ 180◦, minAngle(f, P) < maxAngle(f, P) ≤
180◦. Also, note that minAngle(f, P) = 0◦ if f lies inside

the partition P .

Next, we present a lemma that identifies the area that can

be pruned by a facility f . We say a facility f prunes a point

p if dist(f, p) < dist(p, q). Note that a point that is pruned

by at least k facilities cannot be a RkNN of q.

LEMMA 1 : A facility f prunes every point p ∈ P for which

dist(p, q) > dist(f,q)
2 cos(θ) where θ = maxAngle(f, P) and 0◦ ≤

θ < 90◦.

Proof: Fig. 6(b) shows a point p ∈ P for which

dist(p, q) > dist(f,q)
2 cos(θ) . Consider the triangle obtained by

joining f , p and q as shown in Fig 6(a). Let the side lengths

of the triangle be denoted as a, b and c and angle(f, p) be

denoted as α. To prove the lemma, we need to show that

dist(f, p) < dist(p, q), i.e., a < b. The side length a can be

calculated by using the following equation.

a2 = b2 + c2 − 2bc · cos(α)

To prove a < b, we need to show that c2−2bc ·cos(α) < 0.

Since b > (dist(f,q)2 cos(θ) = c
2 cos(θ)), the following inequality holds.

c2− 2bc · cos(α) < c2− 2
c

2 cos(θ)
c · cos(α) = c2(1−

cos(α)

cos(θ)
)

Since α ≤ θ and 0 ≤ θ < 90◦,
cos(α)
cos(θ) ≥ 1. Hence, c2 − 2bc ·

cos(α) < 0.

For the ease of presentation, we define upper arc (the lower

arc will be defined later).

DEFINITION 3 : Upper arc. Upper arc of a facility f
w.r.t. a partition P is the arc centered at q with radius

dist(f, q)/2 cos(θ) where θ = maxAngle(f, P) and 0◦ ≤
θ < 90◦. The radius of the upper arc is denoted as rUf :P (or

simply rU when the facility f and the partition P are clear

by context). If θ ≥ 90◦, rUf :P = ∞.

Fig. 6(b) shows the upper arc of f for the partition P . We

say that a point lies outside (resp. inside) an arc of radius

r if its distance from the center of the arc is greater (resp.

smaller) than r. According to Lemma 1, a facility prunes area

outside the upper arc of f for every partition P for which

maxAngle(f, P) < 90◦. Fig. 7 shows the area pruned (shown

shaded) by a facility f for different partitions. This pruning

approach is superior to six-regions approach in the following

ways.

1. In six-regions approach, a facility f prunes space in

only the partition in which f lies. In contrast, our pro-

posed approach prunes space in every partition P for which

maxAngle(f, P) < 90◦. For instance, in Fig. 7(a), our

proposed approach prunes space in partitions P2 and P3 (the

shaded area) whereas the six-regions approach prunes only the

space in the partition P2.

2. Even for the partition Pi that contains f , our approach

is superior because it prunes at least as much area of Pi

as pruned by six-regions approach. In Fig. 7(a), the area of

P2 pruned by our approach is shown shaded whereas the

area of P2 pruned by six-regions approach is bounded by the

dotted arc. Note that when maxAngle(f, P) = 60◦, the area

pruned by our approach for the partition that contains f is

the same as the area pruned by six-regions approach because

dist(f, q)/2 cos(60◦) = dist(f, q).

(a) Prunes more area (b) Effect of number of partitions

Fig. 7. Comparison with six-regions approach

3. Six-regions approach restricts the division of the space

into strictly six regions each of equal size. In contrast, our

approach allows arbitrary number of partitions where each

partition may have a different size1. In Fig. 7(b), we divide the

space into 12 equally sized partitions and the area pruned by

the facility f is shown shaded. Note that the area pruned by our

approach becomes larger as the number of partitions increases

(compare the shaded area in Fig. 7(a) and Fig. 7(b)). Although

increasing the number of partitions increases the pruned area,

it results in computational overhead because more partitions

are to be processed for each facility. In Section IV, we present

a detailed theoretical analysis to study the effect of the number

of partitions.

DEFINITION 4 : Bounding arc. The k-th smallest upper arc

of a partition P is called its bounding arc. The radius of the

1Although the partitions with different sizes can be used, in this paper, we
use equally sized partitions so that the partition that contains a point p can
be identified in O(1).

5

bounding arc of a partition P is denoted as rB:P (or simply

rB when clear by context). If the partition contains less than

k upper arcs, rB:P = ∞.

Note that a point p that is pruned by at least k facilities

cannot be a RkNN. In other words, the area that is pruned

by at least k upper arcs cannot contain any RkNN. Hence, a

point p ∈ P cannot be a RkNN if it lies outside the bounding

arc, i.e., dist(p, q) > rB:P .

Fig. 8 shows the area pruned by two facilities f1 and f2.

The upper arcs of f1 are shown using solid lines and the upper

arcs of f2 are shown using broken lines. The bounding arc rB
for one of the partitions is also shown (assuming k = 2).

Clearly, the shaded area cannot contain a RkNN (k = 2) and

can be pruned.

B. Improving Verification Phase

As stated earlier, most of the existing techniques issue a

range query to verify a candidate u and check whether the

range contains less than k facilities or not. This requires

accessing the facility R-tree for each such user and incurs un-

necessary I/O and CPU cost. In this section, we present several

observations that help to significantly improve the verification

phase. First, we define significant facilities.

DEFINITION 5 : Significant facility. A facility f is called a

significant facility of a partition P if it prunes at least one

point p ∈ P lying inside the bounding arc of P . We remark

that p is an arbitrary point in P and is not necessarily a data

object.

Fig. 8. The shaded area is pruned Fig. 9. Lower arc

A facility that is not significant for a partition P is called an

insignificant facility for P . During the pruning phase, for each

partition P , we identify the set of its significant facilities called

sigList of P . Note that a user u ∈ P that lies outside the

bounding arc of P is pruned as stated in the previous section.

Every other user u ∈ P can be verified by accessing only

the facilities in sigList of P because sigList contains every

facility f that can possibly prune u. This not only reduces

the I/O cost because accessing the R-tree is not required but

it also improves the computation cost because the sigList is

kept sorted in a specific order to speed up the verification (as

we describe later). We also demonstrate that the expected size

of sigList is O(k). Hence, the verification cost of a candidate

is expected to be O(k).
Lemma 4 and Lemma 5 demonstrate how to identify the

insignificant facilities for a partition P . Before we formally

present the lemmas, we present a few other lemmas that do

not only lead to Lemma 4 and Lemma 5 but also help in other

aspects of the verification phase.

LEMMA 2 : A facility f cannot prune a point p ∈ P for

which dist(p, q) ≤ dist(f,q)
2 cos(θ) where θ = minAngle(f, P) and

0◦ ≤ θ < 90◦.

Proof: Fig. 9 shows a point p ∈ P for which dist(p, q) <
dist(f,q)
2 cos(θ) . Consider the triangle obtained by joining f , p and q.

Let the side lengths of the triangle be denoted as dist(f, p) =
a, dist(p, q) = b and dist(f, q) = c and angle(f, p) be

denoted as α as shown in Fig. 9. To prove that f does not

prune p, we show that dist(f, p) ≥ dist(p, q), i.e., a ≥ b. The

side length a can be computed by the following equation.

a2 = b2 + c2 − 2bc · cos(α)

To prove a ≥ b, we need to show that c2 − 2bc · cos(α) ≥ 0.

Since dist(p, q) (i.e., b) is at most c
2 cos(θ) , c2 − 2bc · cos(α)

is at least c2 − 2c2 cos(α)
2 cos(θ) = c2(1 − cos(α)

cos(θ)). Since α ≥ θ and

0◦ ≤ θ < 90◦,
cos(α)
cos(θ) ≤ 1. Hence, c2−2bc ·cos(α) ≥ 0 which

completes the proof.

LEMMA 3 : A facility f cannot prune any point p ∈ P if

minAngle(f, P) ≥ 90◦.

Proof: Consider the example of Fig. 9 and assume that

minAngle(f, P) ≥ 90◦. Since minAngle(f, P) ≥ 90◦,

α ≥ 90◦. The side opposite to α is the largest side of the

triangle △fpq because α is the largest angle of the triangle.

This implies that dist(f, p) > dist(p, q). Hence, f cannot

prune the point p.

DEFINITION 6 : Lower arc. Lower arc of a facility f
w.r.t. a partition P is the arc centered at q with radius

dist(f, q)/2 cos(θ) where θ = minAngle(f, P). The lower

arc is denoted as rLf :P (or simply rL when the facility f and

the partition P are clear by context).

According to Lemma 2, a facility f cannot prune any

point p ∈ P that lies inside the lower arc. Next, we show

how to identify insignificant facilities. Consider a partition

P as shown in Fig. 10(a) (shown with thick boundaries). Its

bounding arc is also shown with radius rB . Let M and N
be the points where this arc intersects the boundary of the

partition P (see Fig. 10). The next two lemmas show that a

facility that lies outside the shaded area cannot be a significant

facility.

LEMMA 4 : A facility f ∈ P cannot be a significant facility

of P if dist(f, q) > 2rB .

Proof: Since f lies in P , minAngle(f, P) = 0. The

radius of its lower arc is rL = dist(f, q)/2 cos(0) =
dist(f, q)/2. Since dist(f, q) > 2rB , rL > rB . According to

Lemma 2, f cannot prune any point in p ∈ P that lies inside

its lower arc rL. Since rL > rB , f cannot prune any point

that lies inside the bounding arc. Hence, f is not a significant

facility.

6

In Fig. 10(a), f2 is not a significant facility. Next, we show

that f1 is also an insignificant facility.

(a) Facilities outside the shaded area
are insignificant

(b) Proof of Lemma 5

Fig. 10. Identifying insignificant facilities

LEMMA 5 : A facility f /∈ P cannot be a significant facility

if dist(M, f) > rB and dist(N, f) > rB where M and N are

the points where the bounding arc of P intersects the boundary

of P (see Fig. 10(b)).

Proof: Fig. 10(b) shows a facility f for which

dist(M, f) > rB and dist(N, f) > rB (i.e., f lies outside

the circles centered at M and N with radius rB). We prove

that the radius of the lower arc of f is not less than the radius

of the bounding arc of P , i.e., rL ≥ rB . This implies that f
cannot prune any point that lies inside the bounding arc rB
and is an insignificant facility. Let θ = minAngle(f, P). If

θ ≥ 90◦, the facility is not a significant facility because it

cannot prune any point p ∈ P (according to Lemma 3).

If θ < 90◦, the line that joins f and q intersects at

least one of the circles of radius rB centered at M and N
(this is because q lies at the boundary of these two circles).

Without loss of generality, assume that the line fq intersects

the circle centered at N at a point C (as shown in Fig. 10(b)).

Now consider the triangle △NCq. Since NC = Nq = rB ,

∠NCq = ∠NqC = θ. The length of Cq can be obtained by

the following equation.

Cq
2
= r2B + r2B − 2r2B · cos(α) = 2r2B(1 − cos(α))

Since α = 180◦ − 2θ, the following is obtained.

Cq
2
= 2r2B(1− cos(180◦ − θ)) = 2r2B(1 + cos(2θ))

Cq
2
= 4r2B cos2(θ)

Hence, Cq = 2rB cos(θ). Since dist(f, q) > Cq,

dist(f, q) > 2rB cos(θ). Recall that rL = dist(f, q)/2 cos(θ)
which implies that rL > 2rBCos(θ)/2 cos(θ) or rL > rB .

Lemma 4 and Lemma 5 demonstrate that the facilities that

lie outside the shaded area of Fig. 10 are not significant

facilities and are not required to verify any user u ∈ P . In

fact, it can be proved that a facility is significant if and only

if it lies in the shaded area of Fig. 10. We omit the proof due

to space limitations but it can be obtained using the similar

arguments.

C. Algorithm

Our algorithm has two phases: i) pruning; and ii) verifica-

tion. In the pruning phase, the algorithm prunes the search

space using the set of facilities. It also identifies the set

of significant facilities that are used later in the verification

phase. In the verification phase, the set of users that lie in the

unpruned area are identified. These users are then verified as

RkNN if there are at most k − 1 facilities closer to it than q.

1) Pruning Algorithm: Algorithm 1 describes the pruning

phase. The space around q is divided into t equally sized

partitions (t = 12 in our experiments). Later in Section IV,

we provide a detailed theoretical analysis to study the effect of

t. The algorithm utilizes a min-heap h which is initialized by

inserting the root of the R-tree that indexes the set of facilities.

The entries are de-heaped iteratively from the heap. If the de-

heaped entry cannot contain any significant facility for any

partition, we ignore it because it cannot prune space in any

partition (line 5). Whether an entry e may or may not contain

a significant facility can be checked by applying Lemma 4

and 5 for each partition P . Specifically, if e lies completely

outside the shaded area shown in Fig. 10, e cannot contain a

significant facility for the partition P .

Algorithm 1: Pruning

1 Divide the space around q in t equally sized partitions;
2 Insert root of facility R-tree in a min-heap h;
3 while h is not empty do
4 deheap an entry e;
5 if e may contain a significant facility for at least one partition

then // apply Lemma 4 & 5 for each partition P
6 if e is an intermediate node or leaf then
7 insert every child c in h with key mindist(q, c);

8 else // e is a data object

9 pruneSpace(e) //Algorithm 2

If e may contain a significant facility, it is processed as

follows. If e is an intermediate or leaf node, every child c
of e is inserted in the heap with its key set to mindist(q, c)
(line 7). The algorithm accesses the entries in ascending order

of mindist(q, c) because the facilities that are closer to the

query are expected to prune more area. If e is a data object

(i.e., a facility), it is used to prune the space by calling

Algorithm 2. The algorithm terminates when the heap becomes

empty.

Algorithm 2: pruneSpace(f)

1 for each partition P for which minAngle(f,P) < 90◦ do

2 if maxAngle(f,P) ≥ 90◦ then rUf :P = ∞;
3 ;

4 else rUf :P = dist(f,q)
2 cos(maxAngle(f,P))

;

5 ;
6 Set rB:P to the radius of k-th smallest upper arc of P ;
7 if f is a significant facility of P then // use Lemma 4&5

8 insert f in sigList of P in sorted order of

rLf :P = dist(f,q)
2 cos(minAngle(f,P))

;

7

Algorithm 2 describes how the space is pruned using a

facility f . According to Lemma 3, a facility f cannot prune

any point p ∈ P if minAngle(f, P) ≥ 90◦. Therefore, the

algorithm considers only the partitions that have minimum

subtended angle from f less than 90◦ (line 1). For each such

partition P , the algorithm computes rUf :P , the upper arc of f ,

as described in the previous section. Then, the bounding arc

rB:P of the partition P is updated (line 6). Recall that the

bounding arc corresponds to the k-th smallest upper arc of P .

The algorithm uses a heap of size k to maintain k smallest

upper arcs. Hence, updating rB:P takes O(log k).

Finally, the facility is inserted in the sigList if it is a

significant facility of the partition P (by applying Lemma 4

or 5 depending on whether f lies in P or outside it). sigList
is maintained in sorted order of rLf :P (line 8). As we show

in Section IV, the expected size of sigList is O(k). Hence,

the expected cost of line 8 is O(log k). The worst case

size of sigList is O(m) where m is the number of facilities

considered for pruning. Hence, the worst case insertion cost is

O(log m). Since t partitions are considered, the total expected

cost of Algorithm 2 is O(t log k) and the total worst case cost

is O(t log m).

Since m is the total number of times Algorithm 2 is called

(at line 9 of Algorithm 1), the total time the algorithm spends

in pruning the space is O(tm log m) in the worst case (while

the expected cost is O(tm log k)).

2) Verification Algorithm: In the verification phase, the

users that do not lie in the pruned area are shortlisted and are

called candidate users. The verification algorithm iteratively

accesses the nodes of the R-tree that indexes the users. If an

entry e (the intermediate node, leaf node or the user object)

lies completely in the pruned area, it is ignored. Otherwise,

if e is an intermediate or leaf node, its children are accessed

iteratively. If e is a data object and does not lie in the pruned

area, it is called a candidate object and is verified by calling

isRkNN(u) (Algorithm 3).

Algorithm 3: isRkNN(u)

Output : Returns true if u is RkNN. Otherwise, returns false.
1 Let P be the partition in which u lies;
2 counter=0;

3 for each f ∈ sigList of P in ascending order of rLf :P do

4 if dist(u, q) ≤ rLf :P then
5 return true;

6 if dist(u, f) < dist(u, q) then
7 counter ++;
8 if counter ≥ k then
9 return false;

10 return true;

Algorithm 3 verifies a user u as follows. The algorithm

accesses the sigList of the partition P in which the user u
lies. The facilities in sigList are accessed in ascending order

of the radii of their lower arcs (i.e., rLf :P) (line 3). A counter is

initialized to zero. This counter records the number of facilities

that prune u and is incremented whenever the accessed facility

f is found to prune u, i.e., dist(u, f) < dist(u, q) (line 7).

If the counter is at least equal to k, the algorithm returns

false because u is not RkNN of q (line 9). At any stage,

if dist(u, q) ≤ rLf :P for the accessed facility f , the user is

confirmed as RkNN and the algorithm returns true (line 5).

This is because counter is less than k and none of the

remaining facilities can prune u (as implied by Lemma 2).

Also, if the counter remains less than k after processing all

facilities in sigList, the algorithm confirms u as RkNN and

returns true (line 10).

3) Answering Monochromatic Queries: Since a facility f
cannot pruned itself, we cannot prune a facility f if it lies

outside the upper arcs of k facilities. However, we can safely

prune a facility that lies outside k + 1 upper arcs, i.e., the

bounding arc rB corresponds to the radius of (k + 1)-th
smallest upper arc of a partition. Hence, the pruning phase

is called by setting k to k + 1. In the verification phase, the

facilities that lie inside rB are considered the candidates. Each

candidate f is verified by calling Algorithm 3 with a minor

change that the candidate facility f is skipped from sigList
(at line 3) because f cannot prune itself.

IV. THEORETICAL ANALYSIS

We assume that the facilities and the users are uniformly

distributed in a unit space. The number of facilities is |F | and

the number of users is |U |. In this section, we use radian as the

unit of angle. If t is the total number of partitions, the angle

range of each partition is 2π/t. We denote the angle range of

each partition using θ and assume that θ is at most π/3 (the

maximum angle of a partition in our experiments). For larger

θ, the bounds can be obtained following the similar ideas.

A. Radius of bounding arc (rB)

Let P be a partition with angle range θ as shown in

Fig. 11(a) (the shaded area). Let α be an angle such that
θ
2 < α < π

2 . We use Rα to denote a region such that

for any point x ∈ Rα, maxAngle(x, P) ≤ α. Fig. 11(a)

shows Rα with thick boundaries and for any facility f ∈ Rα,

maxAngle(f, P) ≤ α. Let fk be the k-th nearest facility

of q in region Rα. Let dk = dist(fk, q). Assume that

maxAngle(fk, P) = α (see the facility f2 in Fig. 11(a)

assuming k = 2). Note that, under this assumption, rB ≤
dk

2 cos(α) because the upper arc of fk is not among k − 1
smallest upper arcs (i.e., there are at least k − 1 facilities

such that for each such facility f , dist(f, q) ≤ dk and

maxAngle(f, P) ≤ α). We overestimate rB by assuming2

that rB = dk

2 cos(α) .

rB =
dk

2 cos(α)
(1)

2Overestimation is due to our assumption that maxAngle(fk, P) = α.
Note that the best scenario (i.e., minimum rB) is when maxAngle(fk , P)
is minimum (i.e., θ/2). Therefore, even when θ approaches zero, the overes-
timation is by a factor of 1/ cos(α). As described later, α is chosen to be at
most 7π/24. Hence, the overestimation is at most by a factor 1.64.

8

(a) Analysing rB (b) Expected size of sigList

Fig. 11. Theoretical Analysis

Now, we estimate dk. Note that the angle range for the

region Rα is (2α− θ) as shown in Fig. 11(a). Since dk is the

distance of k-th nearest facility, the area of Rα that contains k
facilities is 1

2d
2
k(2α−θ) (i.e., the area covered by the dotted arc

in Fig. 11(a)). Since we assume that |F | facilities are uniformly

distributed in a unit space, k facilities are expected to be found

in a space with area k/|F |. So dk can be estimated by the

following equation.

dk =

√

2k

|F |(2α− θ)
(2)

Hence, rB can be estimated by the following equation.

rB =
dk

2 cos(α)
=

1

cos(α)

√

k

2|F |(2α− θ)
(3)

Note that our analysis depends on the selection of α, i.e., the

region Rα. To eliminate α from Eq. (3) and get a reasonable

approximation of rB , we choose α such that the angle range

of the region Rα is π/4, i.e., (2α − θ) = π/4. We remark

that other reasonable values of the angle range of Rα can be

chosen to obtain similar results.

rB =
dk

2 cos(θ+π/4
2)

=
1

cos(θ+π/4
2)

√

2k

π|F |
(4)

B. Size of sigList

In this section, we estimate the expected size of sigList of

a partition P denoted as |sigList|. Recall that a facility f is

added to sigList of p only if it is not pruned using Lemma 4

and Lemma 5 (i.e., it lies in the shaded area of Fig. 11(b)). Let

the shaded area be called significant area and be denoted as As.

Since we have estimated rB , As can be obtained. Specifically,

As is the sum of the area of P covered by the arc of radius

2rB (the dark shaded area in Fig. 11(b)) and the area of two

half circles centered at M and N with radius rB (the light

shaded area in Fig. 11(b)).

As =
1

2
(2rB)

2θ + πr2B = r2B(2θ + π) (5)

The expected number of facilities in the significant area

is As × |F |. Thus the expected size of sigList (denoted as

|sigList|) can be obtained by the following equation.

|sigList| = r2B(2θ + π)|F | (6)

Replacing the value of rB from Eq. (4) in Eq. (6) gives the

expected size of sigList.

|sigList| =
2k(2θ + π)

π cos2(θ+π/4
2)

(7)

Note that the expected size of sigList does not depend on

the total number of facilities. The minimum value of |sigList|
is 2.34k (when θ approaches zero) and the maximum value of

|sigList| is axround 9k (when θ = π/3).

C. Expected number of candidates

Recall that every user u that lies in the unpruned area is

the candidate. Since we know rB , the unpruned area Au can

be estimated easily, i.e., Au = πr2B . The expected number of

candidates C is Au × |U | where |U | is the total number of

users.

C = πr2B × |U | =
2k × |U |

|F | cos2(θ+π/4
2)

(8)

For the default setting in our experiments (i.e., θ = π/6),

C = 3.1k|U |/|F |. Note that, in the theoretical analysis, we

use an overestimated value of rB . This implies that the actual

number of candidates is expected to be smaller.

D. I/O cost

We analyse the I/O cost of pruning phase and verification

phase separately.

1) I/O cost of pruning phase: Recall that in the pruning

phase we access the nodes of the facility R-tree in ascending

order of their minimum distances from q. Furthermore, we

do not access an entry e (a node or an object) for which

mindist(e, q) > 2rB , i.e., the entry is not (or does not

contain) a significant facility. This implies that our algorithm

accesses only the nodes or objects of the facility R-tree that

lie within the distance range 2rB from the query q. Hence, the

I/O cost of the pruning phase of our algorithm is the same as

the cost of a circular range query [28] centered at q and range

2rB . The I/O cost of a range query having a radius r can be

estimated by the following equation [9].

Range query cost = 1 +

⌊logfS⌋
∑

L=1

π(
√

fL

2S + r)2S

fL
(9)

Here f is the fan-out of the R-tree and S is the number

of objects indexed by the R-tree. The I/O cost of the pruning

phase of our algorithm can be estimated by replacing S in

Eq. (9) with |F | and r with 2rB where rB can be estimated

by Eq. (4).

9

2) I/O cost of verification phase: Recall that in the veri-

fication phase, an entry e is pruned if mindist(q, e) > rB .

Hence, the expected I/O cost of the verification phase is the

same as the I/O cost of a range query with range rB . This

cost can be obtained by replacing S in Eq. (9) with |U | and

r with rB .

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We compare our algorithm with six-regions approach [3]

and InfZone [9] which is the state-of-the-art RkNN algorithm.

All algorithms are implemented3 in C++ and the experiments

are run on a 32-bit PC with Intel Xeon 2.40GHz dual CPU

and 4GB memory running Debian Linux.

The experimental settings are similar to those used in [9]

by our main competitor InfZone. Specifically, we use both

the synthetic and real data sets. The real data set consists of

175, 812 points in North America4 and we randomly divide

these points into two sets of almost equal sizes. One of these

sets corresponds to the facilities and the other to the users.

Each synthetic data set consists of 50000, 100000, 150000 or

200000 points following either Uniform or Normal distribu-

tion. The default synthetic data set contains 100000 points and

follows Normal distribution unless mentioned otherwise. We

vary k from 1 to 25 and the default value of k is 10. For

bichromatic RkNN queries, the number of users is the same

as the number of facilities unless specifically mentioned.

The page size of each R-tree is set to 4096 bytes. For six-

regions approach, a buffer of 10 pages is used which uses

random eviction strategy. We remark that InfZone and SLICE

do not require buffer because each node is accessed only once

by these algorithms. Thus, the buffer favors the six-regions

approach (see Fig. 18 for more details).

B. Evaluating Performance

In this section, we compare the performance of the three al-

gorithms for both the monochromatic and bichromatic RkNN

queries. Six-regions [3] is shown as SIX and InfZone [9] is

shown as INF in the figures. The default number of partitions

for SLICE is 12 which is chosen based on the theoretical

analysis and the preliminary experiments (see Fig. 19(a)).

1) Effect of data size: In Fig. 12 and 13, we study the

effect of data size for monochromatic and bichromatic RkNN

queries, respectively. For bichromatic queries, the number

of users in each data set is the same as the number of

facilities. Fig. 12(a) and 13(a) show the CPU cost of the three

algorithms. As stated in Section I, the dominant cost for six-

regions is the cost of verification phase whereas the major cost

for SLICE and InfZone is due to the pruning phase.

Fig. 12(b) and 13(b) show the number of I/Os for each

algorithm. As expected, the I/O cost of SLICE is slightly larger

than the I/O cost of InfZone because InfZone prunes a larger

area (hence, prunes more entries of the R-tree). The I/O cost

3All codes, data sets and scripts used for generating the figures are available
at http://users.monash.edu.au/%7Eaamirc/reproducibility/slice/

4http://www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm

 0

 1

 2

 3

 4

 5

50000 100000 150000 200000

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

C
P

U
 C

o
s
t

(i
n

 s
e
c
)

Verification
Pruning

(a) Number of facilities

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

50000 100000 150000 200000

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

#
 I
O

Verification
Pruning

(b) Number of facilities

Fig. 12. Monochromatic Queries: Effect of data set size (Normal Distribution)

of six-regions approach is much higher because it calls range

queries to verify the candidates.

Due to space limitations, in the rest of the experiments,

we focus on the CPU cost of the algorithms. The numbers

dislayed above the bars correspond to the number of I/Os

unless mentioned otherwise. Several existing works show the

total cost of the algorithms by penalizing each algorithm for

each I/O (e.g., average I/O cost for SSD disks is less than

0.1ms [29] so each algorithm may be charged 0.1ms per I/O).

We do not follow this approach mainly because the I/O cost is

highly system specific (e.g., type of disk drive used, workload

etc.). Nevertheless, the interested readers can estimate the I/O

cost by charging say 0.1ms for each I/O. We remark that

under our system settings, the I/O cost for each algorithm

is negligible as compared to its CPU cost.

 0

 1

 2

 3

 4

 5

50000 100000 150000 200000

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

C
P

U
 C

o
s
t

(i
n

 s
e
c
)

Verification
Pruning

(a) Number of facilities/users

 0

 5000

 10000

 15000

 20000

 25000

 30000

50000 100000 150000 200000

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

#
 I
O

Verification
Pruning

(b) Number of facilities/users

Fig. 13. Bichromatic Queries: Effect of data set size (Normal Distribution)

2) Effect of k: In Fig. 14 and 15, we study the effect of k for

monochromatic and bichromatic RkNN queries, respectively.

The performance of InfZone rapidly deteriorates as the value

of k increases. Recall that the cost of pruning the space for

InfZone is O(km2). The value of m increases as k increases.

Hence, the pruning phase becomes quite expensive as can

be observed in Fig. 14 and 15. The number of I/Os for our

algorithm is larger than that of InfZone but is much lower as

compared to the number of I/Os for six-regions.

 0

 5

 10

 15

 20

1 5 10 15 20 25

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

C
P

U
 C

o
s
t

(i
n

 s
e
c
)

Verification
Pruning

6
7

1
5

9
8

0
2

1
7

9
0

9

3
2

6
8

6

5
6

8
1

7

8
8

0
6

0

2
9

4
7

3
5

3
2 4
1

0
2

4
5

4
3

4
9

2
6

5
2

7
6

3
6

3
5

4
5

8
4

5
4

0
3

6
0

6
5

6
6

3
7

7
2

2
9

(a) Varying k (Real Data)

 0

 2

 4

 6

 8

 10

 12

1 5 10 15 20 25

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

C
P

U
 C

o
s
t

(i
n

 s
e
c
)

Verification
Pruning

6
7

6
5

1
1

8
6

7 2
5

1
4

7 4
9

9
2

4 8
6

9
6

5 1
3

6
1

2
1

3
0

3
7

3
5

7
0

4
0

4
2 4
4

8
6

4
8

6
2

5
2

1
4

3
1

9
1

3
8

7
5

4
4

9
7

5
0

5
5

5
5

8
0

6
0

6
3

(b) Varying k (Normal Distribution)

Fig. 14. Monochromatic Queries: Effect of k

The CPU cost of SLICE is lower than InfZone except when

k = 1. This is because when k = 1, m is also small and

the pruning cost of InfZone is low. However, note that SLICE

10

scales much better than the other two algorithms and is up to

an order of magnitude more efficient. In Fig. 15(b), we show

the results for Normal distribution using lines (instead of bars)

to clearly demonstrate how the three algorithms scale with the

increase in k.

 0

 5

 10

 15

 20

1 5 10 15 20 25

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

C
P

U
 C

o
s
t

(i
n

 s
e
c
)

Verification
Pruning

8
8

6
8

1
2

1
6

6

1
6

7
3

5

2
3

1
4

4

3
2

5
9

6

4
3

6
5

4

4
9

3
4

5
9

6
2 6
8

1
9 7

4
5

6

7
9

9
0

8
4

7
7

5
4

2
3

6
8

8
6

8
0

3
4

8
8

9
3

9
6

7
5

1
0

4
1

1

(a) Varying k (Real Data)

 0

 2

 4

 6

 8

 10

1 5 10 15 20 25

C
P

U
 C

o
s
t

(i
n

 s
e
c
)

SIX
INF

SLICE

(b) Varying k (Normal Distribution)

Fig. 15. Bichromatic Queries: Effect of k

3) Effect of data distribution: In Fig. 16, we study the effect

of data distribution on each algorithm. The data distribution

of the facilities and the users is shown as (Df ,Du) where

Df and Du correspond to the distribution of facilities and

users, respectively. U, R and N correspond to Uniform, Real

and Normal distribution, respectively. For instance, (U,N)

correspond to the data set where the facilities follow Uniform

distribution and the users follow Normal distribution. Since

Real data set consists of two sets each containing almost

87, 900 points, in this experiment, the synthetic data sets also

contain the same number of points. Fig. 16 demonstrates that

SLICE is significantly faster than the other two algorithms for

all different combinations of data distribution.

 0

 2

 4

 6

 8

 10

(U,U) (R,U) (N,U) (U,R) (R,R) (N,R) (U,N) (R,N) (N,N)

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

C
P

U
 C

o
s
t

(i
n

 s
e
c
)

Verification
Pruning

1
3

5
3

5

1
6

1
6

2

1
0

2
0

9

1
6

7
3

5

2
0

6
4

1

1
3

7
5

3

3
1

8
1

5

2
5

1
4

8

6
0

7
2

6
8

5
9

6
9

2
1

5
0

0
5

6
8

1
9

6
3

6
6

5
7

5
7

6
7

6
5

6
9

3
2

6
4

6
9

8
3

1
6

7
3

6
2

5
4

1
1

8
0

3
4

6
8

1
8

6
1

7
9

8
1

0
6

7
3

7
3

Fig. 16. Effect of Data Distribution

4) Effect of number of users relative to number of facilities:

In this experiment, we fix the number of facilities to 100, 000
and change the number of users to see the effect of change in

the relative size of the two data sets. The data set shown as

x% correspond to the case when the number of users is x% of

the number of facilities, i.e., the number of users is 100000×x
100 .

Fig. 17 shows that the cost of six-regions approach increases

significantly with the increase in the number of users. On the

other hand, the cost of InfZone and SLICE is not significantly

affected. This is because the number of candidates increases

as the number of users increases. Since the verification phase

for the six-regions approach is significantly more expensive,

its cost is severely affected. In contrast, InfZone and SLICE

have much more efficient verification techniques. Therefore,

the cost does not increase substantially.

5) Effect of buffer size: As stated earlier, InfZone and

SLICE do not require buffer because these algorithms access

each node at most once. On the other hand, six-regions

 0

 2

 4

 6

 8

 10

 12

 14

 16

25% 50% 100% 200% 400%

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

C
P

U
 C

o
s
t

(i
n

 s
e
c
)

Verification
Pruning

1
3

9
7

4

1
7

2
0

0

2
4

1
2

1 3
1

5
9

2

4
7

3
0

7

6
2

0
7

6
7

3
6

7
7

5
7

7
6

9
5

8
7

7
5

6
6

6
5

7
2

0
1

8
2

2
1

8
2

0
5

9
3

2
1

Fig. 17. % of users

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

2 5 10 20 40 100

SIX
SLIC

E

 SIX
SLIC

E

SIX
 SLIC

E

 SIX
SLIC

E

 SIX
SLIC

E

 SIX
SLIC

E

#
 I
O

Verification
Pruning

9
2

0
5

1

2
4

1
2

1

1
4

6
3

8

1
4

6
3

8

1
4

6
3

8

8
2

2
1

8
2

2
1

8
2

2
1

8
2

2
1

8
2

2
1

8
2

2
1

Fig. 18. Effect of buffer size

approach issues multiple range queries and its I/O cost is

significantly affected by buffer size. In Fig. 18, we demonstrate

the effect of buffer size on six-regions. The I/O cost of six-

regions decreases significantly with the increase in the buffer

size. However, the cost remains unchanged when buffer size

is 20 or larger. In all cases, the I/O cost of six-regions is much

higher than our algorithm which does not require buffer.

C. Evaluating Theoretical Analysis

The experimental settings and the default values are the

same as used in the previous section except that we use

Uniform data sets to verify the theoretical analysis.

1) I/O Cost: In Fig. 19(a), we change the number of

partitions used by our approach and see the effect on I/O

cost (the number above bars correspond to the CPU cost in

seconds). The I/O cost estimated by the theoretical analysis is

higher because we use an overestimation of rB in the anal-

ysis. Nevertheless, the experimental results follow the trend

exhibited by our theoretical analysis. As expected, the I/O

cost decreases with the increase in the number of partitions.

However, with the increase in number of partition, the CPU

cost also increases. This is because more partitions are to

be processed for each facility used for pruning. We choose

default number of partitions in our experiments to be 12
because the I/O cost does not significantly decrease when the

number of partitions is further increased. On the other hand,

the CPU time increases as the number of partitions increases.

Fig. 19(b) demonstrates that the actual I/O cost follows the

trend predicted by the theoretical analysis for varying k.

 0

 2000

 4000

 6000

 8000

 10000

6 12 18 24 30

#
 I
O

Experimental
Theoretical

0
.3

8

0
.3

4

0
.3

9

0
.4

3

0
.4

8

(a) Number of partitions

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 5 10 15 20 25

#
 I
O

Experimental
Theoretical

(b) k

Fig. 19. Effect of number of partitions and verifying theoretical analysis

2) Size of sigList and verification cost: In Fig. 20, we show

the size of sigList for varying k and varying number of

facilities. Recall that our theoretical analysis indicated that the

expected size of sigList is O(k) and it does not depend on

the number of facilities. Fig. 20(a) confirms that the size of

sigList increases linearly with k. Fig. 20(b) confirms that the

number of facilities does not affect the size of sigList. Hence,

the expected cost to verify a candidate is O(k).
Recall that, in order to verify a user u, the algorithm

accesses sigList in a specific order until u is verified. Fig. 20

11

 0

 10

 20

 30

 40

 50

 60

 70

1 5 10 15 20 25

#
 O

b
je

c
ts

|SigList|

2

1
2

2
4

3
7

4
9

6
1

Objects Accessed

1

5

1
1

1
7

2
3 2

8

(a) Varying k

 0

 5

 10

 15

 20

 25

 30

50000 100000 150000 200000

#
 O

b
je

c
ts

|SigList|

2
4

2
4 2
5

2
4

Objects Accessed

1
1

1
1

1
1

1
1

(b) Number of facilities

Fig. 20. The size of sigList and average number of objects accessed to
verify a candidate

also shows the average number of objects accessed from the

sigList before a user u is verified. Note that the average

number of objects accessed for the verification is close to k.

 0

 20

 40

 60

 80

 100

 120

 140

1 5 10 15 20 25

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

A
v
g

.
#
 o

f
C

a
n

d
id

a
te

s
 SIX

INF
SLICE

Theoretical

(a) k

 0

 50

 100

 150

 200

 250

25% 50% 100% 200% 400%

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

SIX
IN

F
SLIC

E

A
v
g

.
#
 o

f
C

a
n

d
id

a
te

s
 SIX

INF
SLICE

Theoretical

(b) % of users

Fig. 21. Number of candidates and verifying theoretical analysis

3) Number of candidate objects: In Fig. 21, we compare

the number of candidates (i.e., the unpruned users) for each

algorithm. Specifically, we study the effect of k in Fig. 21(a)

and the effect of relative size of user data set to the facility data

set in Fig. 21(b). Fig. 21 also shows the number of candidates

we estimated in Section IV. Note that the number of candidates

for SLICE is quite close to the number candidates for InfZone.

This demonstrates that the area pruned by SLICE is similar to

the area pruned by InfZone. Also, as stated in Section I, six-

regions approach has significantly larger number of candidates.

VI. CONCLUSION

In this paper, we propose an efficient algorithm for reverse k
nearest neighbors queries. The research in the past has mainly

focused on half-space pruning approach which is generally

believed to be superior to regions-based pruning. In this paper,

we demonstrate that the regions-based pruning has certain

advantages and it may be quite effective if its limitations are

addressed appropriately. Based on several interesting obser-

vations, we rectify the weaknesses of regions-based approach

and present an efficient algorithm to compute RkNN queries.

We also provide a detailed theoretical analysis to analyse

the cost of our algorithm. The extensive experimental study

demonstrates that our approach is several times more efficient

than the state-of-the-art technique and scales much better when

k increases.

REFERENCES

[1] C. Yang and K.-I. Lin, “An index structure for efficient reverse nearest
neighbor queries,” in ICDE, 2001.

[2] K.-I. Lin, M. Nolen, and C. Yang, “Applying bulk insertion techniques
for dynamic reverse nearest neighbor problems,” IDEAS, 2003.

[3] I. Stanoi, D. Agrawal, and A. E. Abbadi, “Reverse nearest neighbor
queries for dynamic databases,” in ACM SIGMOD Workshop, 2000.

[4] E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle, “Reverse
k-nearest neighbor search in dynamic and general metric databases,” in
EDBT, 2009, pp. 886–897.

[5] M. Sharifzadeh and C. Shahabi, “Vor-tree: R-trees with voronoi diagrams
for efficient processing of spatial nearest neighbor queries,” PVLDB,
vol. 3, no. 1, pp. 1231–1242, 2010.

[6] W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan, “Finch: Evaluating reverse
k-nearest-neighbor queries on location data,” in VLDB, 2008.

[7] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi, “Discovery of
influence sets in frequently updated databases,” in VLDB, 2001.

[8] J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang, “Con-
tinuous evaluation of monochromatic and bichromatic reverse nearest
neighbors,” in ICDE, 2007.

[9] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang, “Influence zone:
Efficiently processing reverse k nearest neighbors queries,” in ICDE,
2011, pp. 577–588.

[10] F. Korn and S. Muthukrishnan, “Influence sets based on reverse nearest
neighbor queries,” in SIGMOD, 2000.

[11] Y. Tao, D. Papadias, and X. Lian, “Reverse knn search in arbitrary
dimensionality,” in VLDB, 2004.

[12] M. A. Cheema, W. Zhang, X. Lin, and Y. Zhang, “Efficiently processing
snapshot and continuous reverse k nearest neighbors queries,” VLDB J.,
vol. 21, no. 5, pp. 703–728, 2012.

[13] H.-P. Kriegel, P. Kröger, M. Renz, A. Züfle, and A. Katzdobler,
“Incremental reverse nearest neighbor ranking,” in ICDE, 2009.

[14] M. A. Cheema, X. Lin, Y. Zhang, W. Wang, and W. Zhang, “Lazy
updates: An efficient technique to continuously monitoring reverse knn,”
PVLDB, vol. 2, no. 1, pp. 1138–1149, 2009.

[15] M. A. Cheema, W. Zhang, X. Lin, Y. Zhang, and X. Li, “Continuous
reverse k nearest neighbors queries in euclidean space and in spatial
networks,” VLDB J., vol. 21, no. 1, pp. 69–95, 2012.

[16] M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei, “Probabilistic
reverse nearest neighbor queries on uncertain data,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 4, pp. 550–564, 2010.

[17] T. Bernecker, T. Emrich, H.-P. Kriegel, M. Renz, , and S. Z. A. Züfle,
“Efficient probabilistic reverse nearest neighbor query processing on
uncertain data,” in PVLDB, 2011.

[18] T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle, “Incremental
reverse nearest neighbor ranking in vector spaces,” in SSTD, 2009.

[19] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest
neighbor and reverse nearest neighbor queries for moving objects,” in
IDEAS, 2002.

[20] T. Xia and D. Zhang, “Continuous reverse nearest neighbor monitoring,”
in ICDE, 2006, p. 77.

[21] X. Lian and L. Chen, “Efficient processing of probabilistic reverse
nearest neighbor queries over uncertain data,” VLDB J., 2009.

[22] T. Bernecker, T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and
A. Züfle, “A novel probabilistic pruning approach to speed up similarity
queries in uncertain databases,” in ICDE, 2011, pp. 339–350.

[23] Y. Tao, M. L. Yiu, and N. Mamoulis, “Reverse nearest neighbor search
in metric spaces,” TKDE, vol. 18, no. 9, 2006.

[24] M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao, “Reverse nearest
neighbors in large graphs,” IEEE Trans. Knowl. Data Eng., 2006.

[25] M. Safar, D. Ebrahimi, and D. Taniar, “Voronoi-based reverse nearest
neighbor query processing on spatial networks,” Multimedia Syst.,
vol. 15, no. 5, pp. 295–308, 2009.

[26] M. L. Yiu and N. Mamoulis, “Reverse nearest neighbors search in ad
hoc subspaces,” TKDE, vol. 19, no. 3, pp. 412–426, 2007.

[27] F. P. Preparata and M. I. Shamos, Computational Geometry An Intro-

duction. Springer, 1985.
[28] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang, “Multi-

guarded safe zone: An effective technique to monitor moving circular
range queries,” in ICDE, 2010, pp. 189–200.

[29] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener, and
G. Graefe, “Query processing techniques for solid state drives,” in
SIGMOD Conference, 2009, pp. 59–72.

ACKNOWLEDGMENT

Muhammad Aamir Cheema is supported by ARC
DE130101002 and DP130103405. Xuemin Lin is supported
by NSFC61232006, NSFC61021004, ARC DP120104168 and
DP110102937. The research of Ying Zhang is supported by
ARC DP130103245 and DP110104880. This research was
partially conducted while Muhammad Aamir Cheema was
employed by The University of New South Wales.

12

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
