
Efficiently Computing Reverse k Furthest Neighbors

Shenlu Wang∗, Muhammad Aamir Cheema†, Xuemin Lin∗, Ying Zhang‡ and Dongxi Liu§

∗School of Computer Science and Engineering, The University of New South Wales, Australia

Email: {swan398,lxue}@cse.unsw.edu.au
†Faculty of Information Technology, Monash University, Australia. Email: aamir.cheema@monash.edu

‡Quantum Computation and Intelligent Systems, University of Technology, Sydney. Email: ying.zhang@uts.edu.au
§Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia. Email: dongxi.liu@csiro.au

Abstract—Given a set of facilities F , a set of users U and a
query facility q, a reverse k furthest neighbors (RkFN) query
retrieves every user u ∈ U for which q is one of its k-
furthest facilities. RkFN query is the natural complement of
reverse k-nearest neighbors (RkNN) query that returns every
user u for which q is one of its k-nearest facilities. While
RkNN query returns the users that are highly influenced by a
query q, RkFN query aims at finding the users that are least
influenced by a query q. RkFN query has many applications in
location-based services, marketing, facility location, clustering,
and recommendation systems etc. While there exist several
algorithms that answer RkFN query for k = 1, we are the first
to propose a solution for arbitrary value of k. Based on several
interesting observations, we present an efficient algorithm to
process the RkFN queries. We also present a rigorous theoretical
analysis to study various important aspects of the problem and
our algorithm. An extensive experimental study is conducted
using both real and synthetic data sets, demonstrating that our
algorithm outperforms the state-of-the-art algorithm even for
k = 1. The accuracy of our theoretical analysis is also verified
by the experiments.

I. INTRODUCTION

Given a set of facilities F , a user u is said to be influenced
by a query facility q if q is one of the k nearest facilities of u.
This is because users usually prefer nearby facilities and are
more likely to be influenced by the advertisements sent from
these facilities. Motivated by this, a reverse k nearest neighbor
(RkNN) query q returns every user u who is most influenced
by q, i.e., q is one of the k closest facilities of u. RkNN query
has been extensively studied [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10] ever since it was introduced in [11]. Also of interest
is to find the users that are least influenced: the reverse k-
furthest neighbors (RkFN) query has also received significant
attention [12], [13], [14], [15], [16]. Given a set of facilities F ,
a set of users U and a query facility q, a RkFN query returns
every user u for which q is one of its k-furthest facilities.

We illustrate RkFN and RkNN queries using the example
in Fig. 1 that shows three facilities (dots) and four users
(triangles). Assuming k = 1, R1FN of q are the users u1 and
u2 because q is the furthest facility for u1 and u2. Note that
although u3 is the furthest user from q, it is not R1FN of q
because q is not its furthest facility. In fact, as q is the closest
facility for u3, u3 is the R1NN of q, and is highly influenced
by q. u4 is also the R1NN of q.

Similar to RkNN query, RkFN query also has numerous
applications in location-based services, marketing, resource
allocation, clustering, recommendation systems, profile-based
management and graphics rendering etc.

Fig. 1. u1 and u2 are RkFN (k = 1) of q

Example 1. BotFighters is a pervasive location-based
mobile game that is designed to be a MMORPG (massively
multiplayer online role-playing game) played in an urban
environment. The mission of the game is to locate and shoot
other players. Since only nearby players can be shot, it is
natural that players are more inclined to look for their nearby
players (to shoot them or to avoid being shot by them). In
other words, the players usually tend to ignore the furthest
players. This can be exploited by a user. Specifically, he may
issue a RkFN query to find the players for whom he is among
the furthest players. Such players are vulnerable targets. Note
that this strategy may also be used in real world battlefields.

Example 2. Painter’s algorithm, a popular rendering ap-
proach, gives priority to furthest objects from the view point.
An object that has many RkFNs (i.e., is among the furthest
objects from many view points) is likely to be accessed first for
rendering. Identifying such objects and keeping them in cache
can significantly improve the rendering speed [17], [18].

Other Examples. RkFN query has been used in reverse
facility location problems [19], [20] where the location of
an obnoxious facility (e.g., a chemical plant) is decided such
that the number of its least influenced users (i.e., its RkFNs)
is maximized. The computation of maximum spanning tree
requires furthest neighbor forest [21], [22] which is a special
graph where each node is connected to its reverse furthest
neighbors. Recently, a recommender algorithm [23], [24] was
proposed that aims at mitigating the popularity bias and in-
crease diversity by using furthest neighborhood that is created
by connecting each user to its RkFNs.

Motivated by the above and other applications [16], RkFN
query has gained significant attention in recent years. However,
all of the existing techniques [12], [13], [14], [15], [16] study
RkFN query only for k = 1 (called RFN queries hereafter).
To the best of our knowledge, we are the first to study this
problem for arbitrary value of k. Although the state-of-the-art
algorithm for RFN query can be extended for k > 1, we show
that based on several novel observations, we can devise an
efficient algorithm that significantly outperforms the state-of-
the-art algorithm for arbitrary value of k, including k = 1.

Our algorithm has three phases. In the first phase, we
access the set of facilities only, and exploit certain problem
characteristics to efficiently identify whether a query is futile
or not. A query is futile if it is guaranteed not to have any
RkFN regardless of users’ locations. The algorithm terminates
if the query is futile. Furthermore, the proposed technique to
identify futile queries is tight, i.e., we prove that a query is
futile if and only if it satisfies the proposed criteria.

If the query is not futile, our algorithm enters into the prun-
ing phase where search space that cannot contain RkFNs is
pruned. This is done by realizing a novel application of k-depth
contour [25] which has been used earlier in Computational
Geometry and Statistics to solve different problems. First, we
prove that only shallow facilities, namely the facilities that lie
on or outside k-depth contour are required to answer the query.
The expected number of shallow facilities is O(k log |F |),
where |F | is the total number of facilities. This significantly
reduces the I/O and CPU cost of our algorithm. Second, we
propose two cheap yet effective pruning strategies. The first
pruning strategy utilizes the vertices of k-depth contour in
contrast to facilities used by previous techniques. The second
pruning strategy adopts a brand new pruning paradigm and
calculates sweeping regions based on ranges of angles in a
polar coordinate system centered at the query.

Finally, in the verification phase, the users that lie in
unpruned area are identified. These candidate users may or
may not be the RkFNs of the query. We introduce the concept
of shadow, where every user that lies in this area is guaranteed
to be a RkFN of the query. The majority of the users are
either pruned during the pruning phase or are confirmed by
shadow. The remaining candidate users are verified one by
one by checking whether q is one of its k-furthest facilities or
not. This can be done easily using only the shallow facilities.

Our contributions are summarized below.

• To the best of our knowledge, we are the first to study
the problem of RkFN query for arbitrary value of k.
Based on several interesting observations and novel
pruning techniques, we devise an efficient algorithm
to process RkFN queries.

• We present a rigorous theoretical analysis to analyse
two different aspects of the problem, namely the
expected area of k-depth contour and the area pruned
by our algorithm. This helps in analysing the expected
number of futile queries, number of facilities required
for computing a RkFN query, number of unpruned
users and I/O cost etc. Also, to the best of our knowl-
edge, we are the first to analyse the expected area of
k-depth contour which is of stand-alone interest.

• We conduct extensive experimental study on both
real and synthetic data sets, and demonstrate that our
algorithm is up to several orders of magnitude faster
than the existing algorithms in terms of both CPU and
I/O cost. We also conduct experiments to evaluate the
accuracy of our theoretical analysis.

The rest of this paper is organized as follows. Section II
present an overview of the related work. Our techniques are
presented in Section III followed by theoretical analysis in

Section IV. An extensive experimental study is provided in
Section V. Section VI concludes the paper.

II. RELATED WORK

RFN Query. Kumar et. al [12] presented an approximate
approach to compute RFNs. It requires pre-calculation of so
called FN-ball of points. Tran et. al [15] address RFN query
on road network based on Network Voronoi Diagram and pre-
computation of network distances. Liu et. al [13] proposed PIV
algorithm that constructs metric indexes and employs triangle
inequality to do pruning. Their follow up work [14] proposed
PIV+, which identifies a safe area that confirms RFN results
without invoking the PIV process. All these techniques require
expensive pre-computation and, therefore, are not suitable for
dynamic data sets or for arbitrary value of k.

The state-of-the-art algorithm for RFN query in 2D Eu-
clidean space is CHFC (Convex Hull Furthest Cell) proposed
by Yao et. al [16]. CHFC computes the convex hull (CH) of
the set of facilities F . They proved that the furthest neighbor
(FN) of a user is a facility that lies on CH. Therefore, q cannot
have any RFN if lies inside CH. For example, in Fig. 2, f9
cannot have any RFN because it lies inside CH. If q lies on
CH, CHFC proceeds to calculate furthest voronoi cell (FVC)
of q, which is a convex polygon in the space such that a point
is RFN of q if and only if it is inside FVC.

Extending CHFC for arbitrary value of k. CHFC can be
extended to answer RkFN queries for arbitrary value of k. We
define k-th convex hull as the convex hull of only the facilities
that lie within (k − 1)-th convex hull for k > 1, where k = 1
corresponds to the usual convex hull. Fig. 2 shows first two
convex hulls, i.e., the outer polygon is the 1st convex hull and
the inner polygon is the 2nd convex hull. It is easy to prove
that a query q cannot have any RkFN if it lies within the k-th
convex hull. For example, f8 cannot have any R2FN because
it lies within the 2nd convex hull. To answer a RkFN query,
CHFC computes k-th convex hull, and it computes result in
the same way of computing FVC if q lies on or outside k-th
convex hull.

Note that CHFC can not identify that f6 and f7 are futile
for k = 2 since they do not lie inside the 2nd convex hull.
In contrast, we use a much stronger condition that is able
to identify f6 and f7 as futile. Furthermore, computing k-th
convex hull is quite expensive, but the condition used by us
can be applied at a much lower cost.

RkNN Query. Most of the existing techniques adopt a
pruning and verification framework. The two most notable
pruning techniques are regions-based pruning [26], [10] and
half-space pruning [2], [27]. The best known algorithm in
terms of I/O cost is influence zone [2] and the-state-of-the-
art algorithm in terms of overall running time is SLICE [10].
A brief survey and empirical comparison of some of the most
popular RkNN algorithms is provided in [28].

k-depth contour k-depth contour (also known as k-hull)
is a well studied topic in the field of Computational Geometry
and Statistics. Several efficient algorithms [29], [30], [31] have
been proposed in the past. However, these algorithms assume
that the data can fit in main-memory. Böhm et. al [32] proposed
I/O optimal algorithms for k = 1. Cheema et. al [25] proposed
an I/O optimal algorithm for arbitrary value of k.

III. TECHNIQUES

Some queries cannot have any RkFN regardless of users’
locations. These are futile queries. Efficiently identifying futile
queries can avoid unnecessary pruning and verification phases,
and hence reduces computational cost significantly. We present
such techniques in Section III-A. If a query is not futile, we use
several pruning strategies to effectively prune the search space
that cannot contain any RkFN. These pruning strategies are
presented in Section III-B. Users lie in the unpruned space may
be RkFNs. They are candidate users. We present techniques
to efficiently verify whether a candidate user is a RkFN or not
in Section III-C.

A. Determine futile query

Given a query q, a facility f , and a point p, if dist(p, f) >
dist(p, q), then p is disqualified from being RFN of q due
to f , and we say f prunes p. When pruned by at least k
facilities, p cannot be RkFN. We divide the space around q in
four quadrants Q1 to Q4 as shown in Fig. 3.

Fig. 2. CHFC Fig. 3. Quadrant test

Lemma 1: A query q cannot have any RkFN if every
quadrant has at least k facilities.

Proof: (Fig. 3) Without loss of generality, we prove that
the quadrant Q3 cannot have any RkFN. Consider a point p in
Q3 and a facility f in Q1. Let px and py be x and y coordinates
of p. For any facility f in Q1, we have |px − fx| > |px − qx|
and |py − fy| > |py − qy|. Hence, dist(p, f) > dist(p, q). If
there are at least k facilities in Q1, q cannot be among the
k-furthest facilities of p.

Let Lq be a line passing through q. It divides the space
in two halves. Let Hq denote one of the two half-spaces. We
define the P-ray (perpendicular ray) of Hq to be the ray that
is perpendicular to Lq and whose only point in Hq is q (see
the dashed ray in Fig. 4(a)).

Lemma 2: Let f be a facility in Hq and p be a point on
the P-ray of Hq. f prunes p (i.e., dist(p, f) > dist(p, q)).

Proof: (Fig. 4(a)) Let x be the point where the line pf
intersects Lq . As either △xqp is a right angle triangle or x lies
on q, we have dist(p, x) ≥ dist(p, q). Hence, dist(p, f) >
dist(p, q).

We define the depth of a half-space Hq as the number of
facilities that lie in Hq and denote it by |Hq|. In Fig. 4(a), Hq

contains facilities q, f1 and f3 and its depth |Hq| = 3.

Lemma 3: A point p on the P-ray of Hq cannot be RkFN
of q if |Hq| > k.

(a) p cannot be R2FN (b) No RkFN in shaded area

Fig. 4. P-ray pruning (k = 2)

(a) Location depth (b) q is 2FN of at least one point

Fig. 5. Location depth and its relationship with RkFN

Proof: Since |Hq| > k, there are at least k facilities prunes
p (Lemma 2). Therefore, p cannot be RkFN of q.

Now assume Lq (i.e., Hq) is rotated anti-clockwise, and
Hq always contains more than k facilities (at least k other
facilities apart from q). During this process, P-ray of Hq also
rotates and sweeps an area. According to Lemma 3, no point
in this area can be RkFN of q. If the P-ray sweeps the whole
space (i.e., rotated 360◦), and Hq always contains more than
k facilities, we know q is futile. Assume k = 2 in Fig. 4(b),
Hq is rotated θ◦ anti-clockwise, and it always contains at least
3 facilities, namely {q, f1, f3}, {q, f1, f2, f3} or {q, f1, f2}.
The shaded area is swept by the P-ray and cannot contain
any R2FN. Now we adapt the concept of location depth in
Computational Geometry to our problem, and define location
depth of q as the minimum number of facilities in Hq when
Hq is rotated 360◦.

Definition 1: Location depth of a query point q (denoted
as |q|) is the minimum depth of any half-space Hq defined
using a line Lq passing through q.

Fig. 5(a) shows nine facilities (q and f1 to f8) and an
arbitrary point p. The location depth of q is |q| = 2 because
the number of facilities in the half-space defined by the dotted
line is 2 (q and f3) which is minimum. Similarly, location
depth of f6 is |f6| = 3 (see the half-space defined by the solid
line that contains f1, f2 and f6). Note that the location depth
of a facility is at least one because each half-space contains
the facility itself. In contrast, the location depth of an arbitrary
point p may be zero. For example, in Fig. 5(a), |p| = 0 (see
the half-space defined by the dashed line).

Lemma 4: A query facility q cannot have any RkFN if
|q| > k.

Proof: Let p be an arbitrary point, and Hq be a half-
space whose P-ray passes through p. Since |q| > k, we have

|Hq| > k. According to Lemma 3, p cannot be RkFN of q.

Next we show the tightness of Lemma 4 by proving that
q cannot be futile if |q| ≤ k.

Lemma 5: If |q| ≤ k, there exists at least one point p which
is RkFN of q.

Proof: Since |q| ≤ k, there is at least one half-space Hq

that contains at most k facilities. Assume k = 2 in Fig. 5(b),
Hq (white area) contains only two facilities, q and f3. It can
be proved that there exists a point p for which q is its furthest
facility among the facilities lying in the shaded area. Since the
number of facilities in Hq is at most k including q, there are
at most (k − 1) facilities that prune p, i.e., p is RkFN of q.

We construct a convex hull (the polygon) using q and all
the facilities that lie outside Hq . It is clear that q is one of the
vertices of the convex hull. We construct the furthest Voronoi
cell of q using the facilities that lie on or inside this convex
hull. Since q is a vertex on the convex hull, the furthest Voronoi
cell of q cannot be empty [33]. This implies that there exists at
least one point p for which q is the furthest neighbors among
the facilities that lie outside Hq .

Lemma 4 and 5 state that a query q is futile if and only if
|q| > k. We remark that although a query q that is not futile
has at least one RkFN point, q may or may not have a RkFN
user. In other words, the set that contains all RkFN users of a
query q may be empty even if q is not futile. Next, we present
our pruning strategies to prune the search space that cannot
contain any RkFN of the query after we have determined that
the query is not futile.

B. Pruning the search space

1) Limitations of adopting half-space pruning:

Half-space pruning [2], [27] is a well known pruning
strategy used for processing RkNN queries. Although it is
possible to apply this technique for RkFN queries, it suffers
from certain limitations.

The perpendicular bisector between a facility f and a query
q divides the space into two halves. Each half is called a
bisection. We use Bf :q to denote the bisection that contains
f and Bq:f to denote the bisection that contains q. For any
point p ∈ Bq:f , we have dist(p, f) > dist(p, q), i.e., f prunes
p and p cannot be RFN of q. In other words, we say that the
bisection Bq:f1 is pruned. Clearly, the intersection of at least
k such bisections is pruned by at least k facilities, and cannot
contain RkFN of q. Fig. 6 shows an example. The point p lies
in the bisection Bq:f1 , and f1 prunes p. Assuming k = 2, the
shaded area can be pruned because it is the intersection of two
bisections, namely Bq:f1 and Bq:f2 .

Based on the above pruning strategy, we can consider every
facility f ∈ F and prune the space that is intersection of
at least k bisections. However, this strategy suffers from two
serious limitations: 1) the number of facilities considered for
pruning may be quite large and considering all bisections is
prohibitively expensive; 2) even if the number of facilities (i.e.,
bisections) used for pruning is not large, the pruning becomes
quite expensive especially when k is not small. The reasons are
similar to those mentioned in [10], e.g., given n bisections, it
is quite expensive to determine the search space that is pruned
by at least k bisections.

2) Discarding un-necessary facilities:

To address the first limitation, we discard un-necessary
facilities, and keep only the minimum required to correctly
compute the results.

Definition 2: A facility f that has |f | ≤ k is called a
shallow facility. In contrast, a facility f ′ is called a deep
facility if |f ′| > k.

Lemma 6: RkFN of a query q can be correctly computed
using only the set of shallow facilities.

Proof: Let S ⊆ F be the set that contains all the shallow
facilities. We prove that for any point p, q is one of p’s k-
furthest facilities in F (i.e., p is RkFN of q) i) if and ii) only
if q is one of p’s k-furthest facilities in S.

i) Let q be one of the k-furthest facilities of p in S. If
q is not one of p’s k-furthest facilities in F , there is at least
one deep facility f which is among p’s k-furthest facilities in
F . Since f is a deep facility, we have |f | > k. According to
Lemma 4, f cannot have any RkFN, i.e., f cannot be among
p’s k-furthest facilities. This contradicts the assumption.

ii) Since S ⊆ F , it is clear that q is one of the k-furthest
facilities of p in F only if it is one of the k furthest facilities
of p in S.

Lemma 6 implies that we only need to consider the
shallow facilities to compute RkFN of a query q. A major
challenge in using Lemma 6 is how to identify the shallow
facilities efficiently. A straightforward solution is to compute
the location depth of each facility. However, this is quite
expensive because it requires accessing the whole data set at
least once for each facility. We observed that the set of shallow
facilities can be efficiently identified with the help of k-depth
contour [29], [31] (also known as k-hull) which has been used
in the past for different problems in Computational Geometry
and Statistics.

Definition 3: k-depth contour is a convex polygon such
that, for every point p, 1) |p| ≥ k if p lies on or inside this
polygon and 2) |p| < k if p lies strictly outside this polygon.

Fig. 6. Half-space pruning Fig. 7. k-depth contour (k = 2)

Fig. 7 shows 9 facilities (q and f1 to f8). 2-depth contour is
the convex polygon. Note that the vertices of k-depth contour
may or may not be the facility objects. The dotted lines define
the shape of the 2-depth contour. Each dotted line defines a
half-space with depth equal to k + 1 such that even a slight
rotation reduces the depth to 2. We remark that k-depth contour
is the same as convex hull only when k = 1.

Lemma 7: A facility f that lies strictly inside the k-depth
contour has |f | > k.

Proof: We show that every half-space Hf defined by a
line Lf passing through f has |Hf | > k. Since f lies strictly
inside the k-depth contour, the line Lf passes through the k-
depth contour. As we show later in Lemma 10, |Hf | > k for
every such half-space. Hence, |f | > k.

According to Lemma 7, to obtain the shallow facilities, we
can compute k-depth contour and identify the facilities that lie
on or outside k-depth contour. In Fig. 7, the facility q lies on
the 2-depth contour and is a shallow facility (|q| = 2). The set
of shallow facilities consists of q and f1 to f5. The facilities
f6, f7 and f8 are not shallow facilities and can be discarded
when computing RkFN (k = 2) of any query.

Lemma 6 and 7 significantly reduce the number of facilities
required for computing RkFN queries. It was shown [25]
that the number of facilities that lie on or outside k-depth
contour is bounded by the cardinality of k-skyband [34].
Let |F | be the total number of facilities. Assuming that the
two location coordinates are independent of each other, the
expected cardinality of k-skyband is O(k log |F |) [2]. Hence,
the expected number of shallow facilities is O(k log |F |).

3) Implementing the ideas presented so far:

We use the state-of-the-art algorithms to compute k-depth
contour [25]. The algorithms utilize the index (e.g., R-tree)
constructed on the set of facilities and efficiently return the
k-depth contour. Since k-depth contour is always a convex
polygon, shallow facilities can be efficiently identified using
R-tree (i.e., open only the nodes intersect with the boundary
of k-depth contour).

During the computation, we maintain a counter ci for the
number of facilities seen in each quadrant Qi. If ci ≥ k for
each of the four quadrants, we terminate the algorithm as the
query is futile (Lemma 1). While the algorithm iteratively
computes the k-depth contour, we terminate the algorithm
whenever it implies that |q| > k and q is futile (Lemma 4).

Next, we present two cheap yet effective pruning strategies.

4) Pruning using k-depth contour:

To address the second limitation (Section III-B1), we show
that instead of using at least k facilities (i.e., bisections) to
prune a point p, we can use the vertices of the k-depth contour,
and that a point p is pruned if one vertex prunes it.

Lemma 8: Let v be a vertex1 of the k-depth contour, no
point in Bq:v can be RkFN of q.

Proof: Consider the example in Fig. 8(a)2. The shaded
area illustrates the bisection Bq:v1 . Let p be a point in Bq:v1 ,
we prove that p cannot be RkFN of q. Let Hv1 be the half-
space that has p on its P-ray. Similar to Lemma 2, every facility
f in Hv1 has dist(p, f) > dist(p, v1). Since p lies in the
bisection Bq:v1 , we have dist(p, v1) > dist(p, q). Hence, for
every facility f in Hv1 we have dist(p, f) > dist(p, q), i.e.,
f prunes p. By the definition of k-depth contour, |v1| ≥ k.
Hence, |Hv1 | ≥ k, there are at least k such facilities that
prunes p, and p cannot be RkFN of q.

1Note that q may lie on a vertex of the k-depth contour as shown in Fig. 8(a).
This lemma does not apply to the vertex on which q lies.

2Although Fig. 8(a) shows an example where q lies on k-depth contour,
Lemma 8 and its proof hold regardless of whether q lies on k-depth contour
or not.

(a) Lemma 8 (b) Lemma 9

Fig. 8. Pruning using k-depth contour

We use the bisection Bq:vi for each vertex vi on the k-
depth contour to iteratively prune the search space. The space
that cannot be pruned is called candidate polygon because a
user that lies in this space is a candidate user. In the example
of Fig. 8(a), the candidate polygon is initialized to the data
space (the square), and is updated to the white area after the
vertex v1 is used for pruning. Then, in Fig. 8(b), the candidate
polygon is further updated to the white area after the vertex
v2 is used for pruning.

We observed that certain vertices of k-depth contour are
not necessary to be considered for pruning. For example, in
Fig. 8(b), the bisection Bq:v4 (dashed line) does not prune any
point in the current candidate polygon. In other words, v4 can
be discarded after v1 and v2 have been used for updating the
candidate polygon. The same can be shown for the vertex v3.

Lemma 9: A vertex v on k-depth contour cannot prune any
point p in the candidate polygon if, for every corner ci of the
current candidate polygon, dist(ci, q) ≥ dist(ci, v).

Proof: (Fig. 8(b)) We prove this by contradiction. Assume
p can be pruned by Bq:v , i.e., dist(p, q) < dist(p, v). Since
candidate region is a polygon, Bq:v prunes a point p inside it
only if it prunes at least one corner ci of the candidate region,
i.e., dist(ci, q) < dist(ci, v). This contradicts the condition:
dist(ci, q) ≥ dist(ci, v) for every corner ci.

Algorithm 1 Candidate Polygon

Input: q: the query point; an R-tree that indexes the vertices
of k-depth contour

Output: CP : candidate polygon
1: initialize CP as the boundary of data space
2: insert root of the R-tree in a queue Q
3: while Q is not empty do
4: dequeue an entry e
5: for each corner ci of CP do
6: if dist(ci, q) < maxdist(ci, e) then
7: mark e as unpruned; break
8: if e is unpruned then
9: if e is an intermediate or leaf node then

10: insert children of e in Q
11: else
12: use Bq:e to update CP
13: return CP

Algorithm 1 presents the details of computing the candidate
polygon using the k-depth contour. For efficiency, we index

the vertices of the k-depth contour in a main-memory R-tree3.
The algorithm iteratively accesses the entries of this R-tree and
ignores the entry if each vertex v in an entry e satisfies the
condition specified in Lemma 9. Specifically, if dist(ci, q) ≥
maxdist(ci, e) for each corner ci of the candidate polygon
then all vertex v in the entry e can be discarded. Otherwise, the
entry e may contain some vertices that are required to update
the current candidate polygon. The rest of the algorithm is
self-explanatory.

5) Pruning using shallow facilities:

According to Lemma 3, P-ray of a half-space Hq cannot
contain any RkFN if |Hq| > k. In other words, a P-ray may
contain RkFN only if |Hq| ≤ k. This property can be used to
prune the search space that cannot contain any RkFN.

Lemma 10: Let Lq be a line passes through the k-depth
contour and the query facility q. The half-space Hq defined by
Lq has |Hq| > k.

Proof: (Fig. 9(a) illustrates an example of k = 2, where
2-depth contour is the polygon shown in thick line.) Let Lq

be a line (dotted line) that passes through k-depth contour
and defines Hq. Let p be a point (shown as a star) that is
inside k-depth contour and lies on Lq. By the definition of
k-depth contour, |p| ≥ k. This implies that (|Hq| = |Hp|) ≥
k. Now, assume |Hp| = k. Since q lies on Hp, an infinitely
small rotation can exclude q from Hp resulting in |Hp| <
k. However, this is not possible because |p| ≥ k as per the
definition of k-depth contour. Hence, we have |Hp| > k, and
|Hq| > k.

According to Lemma 10, we only need to consider the
half-spaces Hq that do not pass through the k-depth contour.
Hence, we draw the two lines that pass through q and are
tangent to the k-depth contour, and we consider only the half-
spaces between these two lines. For example, assume k = 2
in Fig. 9(a), the two tangent lines are qf5 and qf2. Let Hq

be the half-space that is defined by the line passing through q
and f5 and contains f4. We rotate Hq anti-clockwise until Hq

contains qf2. During the rotation, we identify the space for
which |Hq| ≤ k (shaded areas). For instance, the half-space
defined by the broken line in the shaded area contains only
two facilities q and f4.

As we rotate Hq, its P-ray also rotates and sweeps the
search space. The area swept by P-ray while |Hq| ≤ k holds
is called sweeping region. In the example of Fig. 9(b), when
Hq is rotated in the shaded area marked as R1, its P-ray sweeps
the dotted area marked as S1, and when Hq is rotated in the
shaded area marked as R2, its P-ray sweeps the dotted area
marked as S2. S1 and S2 are the sweeping regions. Any point
p that does not lie in S1 or S2 cannot be RkFN of q. In other
words, only the sweeping regions can contain RkFN.

To identify sweeping regions, we first compute the two tan-
gent lines as aforementioned. Then, we pick one of the tangent
lines and count the number of facilities in Hq . We maintain
the counter for |Hq| as we rotate it: |Hq| is incremented when
a facility enters Hq and decremented when a facility leaves
Hq . Let x be a point on the horizontal line passing through q

3Although the expected number of vertices of k-depth contour is small, it
can be much larger, e.g., the convex hull may contain |F | vertices. In this
case, the R-tree can be stored in secondary memory

(a) Pruning by rotating Hq (b) Sweeping regions

Fig. 9. Pruning using shallow facilities

and lies on the right of q, and S be the set of shallow facilities,
we sort all f ∈ S by ∠xqf , and the next facility encountered
during the rotation can be accessed sequentially.

Note that the candidate polygon (Section III-B4) and
sweeping regions are inherently different. Fig. 10 gives an
example of both candidate polygon (shaded area) and sweeping
regions (dotted areas). RkFN of a query can be found only in
the space that cannot be pruned by both pruning strategies
(where dotted areas overlap with shaded area).

Fig. 10. Space pruned Fig. 11. Pruner region

Next, we present techniques to further prune the area in
sweeping regions.

Definition 4: (Fig. 11) Let L and L′ be the bounding lines
of a sweeping region, and Hq (H ′

q) be the half-space such that
L (L′) is its P-ray. The area contained by both Hq and H ′

q (i.e.,

Hq ∩H ′
q) is the pruner region of this sweeping region. The

set of facilities that lie in the pruner region are the pruners
of this sweeping region.

According to Lemma 2, every point p in a sweeping region
is pruned by each of its pruners. In Fig. 11, the pruner region
of sweeping region S1 is the shaded area, and the pruners of
S1 is {f4}. f4 prunes every point p in the sweeping region.

Lemma 11: Let P be the set of pruners of a sweeping
region. If P contains k−1 facilities, a point p in the sweeping
region cannot be RkFN if it is also pruned by a facility f /∈ P .

Proof: The point p is pruned by every facility f ′ ∈ P and
a facility f /∈ P . Since P contains at least k − 1 facilities, p
is pruned by at least k facilities and cannot be RkFN of q.

Fig 12 shows the same example of Fig. 11, the set of
pruners of the sweeping region contains one facility f4. We
draw the perpendicular bisector between f3 and q. Assuming
k = 2, according to Lemma 11, no point p in the bisection
Bq:f3 can be RkFN of q because p is pruned by both f4 and
f3 (i.e., the dotted white area of the sweeping region can be

pruned). Similarly, the bisection Bq:f5 is pruned by f4 and
f5. Hence, in this example, f3 and f5 together can prune the
whole sweeping region.

Fig. 12. Pruning sweeping region Fig. 13. Verification phase

Note that, whenever the data space (i.e., the square in
our example) is pruned, or in other words, unpruned region
can only exist outside the data space, our algorithm can be
terminated as the query cannot contain any RkFN.

C. Verification

Users lie in the unpruned space can be RkFN and is called
candidate users. Each candidate user is verified by checking
whether q is one of its k-furthest facilities or not.

According to Lemma 6, we only need the set of shallow
facilities S to correctly compute the results. We index shallow
facilities in a main-memory R-tree and access only this R-tree
to verify the users. This can be done by issuing boolean k-
region query. Let R be the space outside the circle centered at
u with radius dist(u, q) (Fig. 13 shows part of such a circle),
a boolean k-region query returns true if and only if there are at
least k facilities in R. A user u is RkFN if and only if the query
returns false. Assuming k = 2, the user u in Fig. 13 is not a
RkFN because there are two facilities outside the circle. An
optimization of this is to use boolean m-region query (m < k).
This is an optimization since true is returned sooner, especially
when the difference between m and k is large.

Lemma 12: Let S be the set of shallow facilities, and P be
the set of pruners of a sweeping region. If P contains k −m
(m ≤ k) facilities, a point p in the sweeping region cannot be
RkFN if it is also pruned by m facilities in S\P .

The proof is similar to Lemma 11 and is omitted. During
the rotation of Hq, we store for each sweeping region its pruner
region and the number of its pruners. To verify an user u, we
identify the sweeping region that contains u. Let R be the
region that outside both the corresponding pruner region and
the circle centered at u with radius dist(u, q), we then issue a
boolean m-region query with region R. Assuming k = 2 in the
example of Fig. 13, the pruner region of u is the shaded area
and it contains one facility f4 (i.e., m = 1). In this example,
R is the space outside the circle excluding the shaded area.
As k−m = 1, we issue a boolean 1-region query with region
R, and it returns true as f5 lies in R. Hence, u is not R2FN.

Due to the large number of candidate users, the verification
phase could still be very time consuming. Next, we present
techniques that help us to identify an area such that candidate
users lie in this area are guaranteed to be RkFN and, therefore,
do not require verification.

Lemma 13: (Fig. 14(a)) Let p be RkFN of q, −→qp be the ray
whose endpoint is q and passes through p, and p′ be a point
on −→qp that has dist(p′, q) > dist(p, q). p′ is RkFN of q.

Proof: (Fig. 14(a)) Let Circ(x) denote the circle centered
at x with radius dist(x, q). We draw two circles Circ(p) and
Circ(p′). Since both p and p′ lie on −→qp and dist(p′, q) >
dist(p, q), we know that Circ(p′) contains Circ(p). Since p
is RkFN of q only if there are less than k facilities outside
Circ(p), we know that there are less than k facilities outside
Circ(p′), which implies p′ is RkFN of q.

(a) Lemma 13 (b) Lemma 14

Fig. 14. Improving verification using shadows

Definition 5: Let e be a node entry of the R-tree that
indexes users. Let p be any point in e. The shadow of e
consists of every point p′ that lies on the ray −→qp and has
dist(p′, q) ≥ dist(p, q). A node e is a RkFN node if every
point p in e is RkFN of q.

In Fig. 14(b), the shadow of the entry e is shown shaded.
Assuming that q is the light source and e is an item in its way,
the shaded area is the shadow of e.

Lemma 14: A user u lies in the shadow of a RkFN node
is RkFN.

Proof: Since u lies in the shadow of e, the line uq passes
through a point p in e. According to Lemma 13, since p is
RkFN of q, u is also RkFN of q.

Algorithm 2 Verification

1: insert root of the R-tree in a queue Q
2: while Q is not empty do
3: dequeue an entry e from Q
4: if e is an intermediate or leaf node then
5: if e is partially inside the unpruned space then
6: insert children of e in Q
7: if e is completely inside the unpruned space then
8: if e is covered by shadows or is RkFN node then
9: add users in e to result

10: update the list of shadows using e
11: else
12: insert children of e in Q
13: else /* e is a data object*/
14: if e lies in one of the shadows then
15: add e to result
16: else
17: if verified by boolean m-region query then
18: add e to result
19: return result

Recall that a facility f prunes a point p if dist(p, f) >
dist(p, q). There exists a point in a R-tree node e that is pruned
by a facility f if maxdist(e, f) > mindist(e, q). We count
the number of such facilities. This represents the maximum
number of facilities that can possibly prune a point p in e. If
the number is less than k, then e is a RkFN node. Note that
e can be a RkFN node only if it lies entirely in the unpruned
space. Otherwise, we do not need to do this check. Algorithm 2
presents the details of our verification algorithm.

IV. THEORETICAL ANALYSIS

Assume that the data space is a circle with radius r = 1 and
that facilities and users are uniformly distributed (Note that this
is more challenging for k-depth contour algorithms [25]). Let
|F | (|U |) be the total number of facilities (users). We analyse
the expected area of k-depth contour, and the expected area
that cannot be pruned by our algorithm.

A. Expected area of k-depth contour

To the best of our knowledge, we are the first to analyse
the expected area of k-depth contour. This is of stand-alone
interest and also helps in analysing various important aspects
of our algorithm. For instance, the expected number of shallow
facilities and the probability of a random query to be futile.
Besides, the I/O cost of our pruning phase corresponds to the
cost of computing k-depth contour. Since KnightRider [25]
does not access any node lies completely inside the k-depth
contour, the expected area of k-depth contour also helps in
analysing the I/O cost of our pruning phase.

Let c be the center of the circular data space, and p be any
point in it. Let Lp be a chord passing through p, and Hp be the
corresponding segment that do not contain c. The area of Hp

is inversely proportional to the minimum distance from c to
Lp, and Hp takes the minimum area when Lp is perpendicular
to the line cp. As we assume uniform distribution, |p| is the
number of facilities in Hp when Hp takes the minimum area.
In the example of Fig. 15(a), the area of Hp (shaded segment)
is smaller than the area of Hp′ (white segment).

(a) Area of half-space (b) Location-depth

Fig. 15. Area of k-depth contour

Recall that every point p lies on or inside k-depth contour
has |p| ≥ k. Consider the point p in Fig. 15(b), let Hp be the
minimum segment that has p on its chord (shaded segment).
|p| = k if there are k facilities in Hp. Let θ be the central

angle of Hp, r′ be the distance from c to p. r′ = r cos θ
2 is

the radius of k-depth contour (circle in broken line) because
every point p′ farther to c than p has |p′| < k and every point
p′ closer to c than p has |p′| > k.

First, we compute θ. In Fig. 15(b), let As be the area of
Hp, it is equal to the area of the circular sector minus the
area of the triangular portion, that is As = 1

2r
2θ − 1

2r
2 sin θ.

Since r = 1, we have As = 1
2 (θ − sin θ). We know that the

area of data space is πr2 = π which contains |F | facilities.
Since Hp contains k facilities, we expect As =

kπ
|F | . Hence, we

have 1
2 (θ− sin θ) = kπ

|F | . We approximate θ− sin θ by Eq. (1)

obtained using nonlinear curve fitting4.

θ − sin θ ≈ ea−b/(θ+c) (1)

where a = 3.87031, b = 11.09062 and c = 0.93407. Given k,
we can derive Eq. (2) from 1

2 (θ − sin θ) = kπ
|F | .

θ =
b

a− loge
2kπ
|F |

− c (2)

Now, the area of k-depth contour denoted by Akdc can be
computed using Eq. (3).

Akdc = π(r′)2 = π cos2
θ

2
(3)

B. Expected area of sweeping region

Given a query facility q, we analyse the expected area of
sweeping region (Section III-B5). This is used to estimate
the expected number of candidate users and the I/O cost of
verification phase.

In the example of Fig. 16(a), assume the circle in dashed
line is the k-depth contour. The two lines qt1 and qt2 are
tangent to the k-depth contour. t1 and t2 are their points
of tangency, respectively. The line qb1 (qb2) is the P-ray of
the half-space defined by qt1 (qt2). The sweeping region is
shown shaded. This sweeping region consists of two parts
(Fig. 16(b)): i) triangle portion △qb1b2 and ii) the segment
whose chord is b1b2 (thick dashed line). Let Atri be the area
of △qb1b2, Aseg be the area of the segment, and ASR be the
area of sweeping region, ASR = Atri +Aseg .

We first compute Atri (Fig. 16(b)). Let δ = ∠b2cb1. Let b
be the length of the base b1b2. Consider △b2cb1, we can obtain
b = 2r sin(δ2) = 2 sin(δ2). Let h be the height of △qb1b2, and

d be the distance from c to q. We have h = d+r cos(δ2) = d+
cos(δ2). Hence we can get Atri =

1
2bh = sin(δ2)(d+ cos(δ2)).

We will show how to compute δ later.

We then compute Aseg (Fig. 16(b)). As this can be easily
obtained from Aseg = 1

2r
2δ − 1

2r
2 sin δ = 1

2 (δ − sin δ), the
area of sweeping region ASR = Atri+Aseg can be calculated
by Eq. (4).

ASR = sin(
δ

2
)(d + cos(

δ

2
)) +

1

2
(δ − sin δ) (4)

Now, we compute δ (Fig. 16(b)). Let e be a point on qb2
such that the line ce is perpendicular to qb2. Let µ = ∠qce,
γ = ∠ecb2 and η = µ + γ. Since △qcb2 and △qcb1 are

4We obtain non-linear curve fitting using Origin downloaded from
www.originlab.com

(a) Shaded area is sweeping region (b) Computing sweeping region

Fig. 16. Expected area of the sweeping region

symmetric, we have 2η + δ = 2π. Therefore, we have δ =
2π − 2η = 2π − 2µ− 2γ, and we need to compute µ and γ.

Now, we compute µ (Fig. 16(b)). Let α = ∠t1ct2 and
β = ∠b1qb2. Considering the right angle triangle △qec, we

have µ = π
2 − β

2 . Note that ct1 is parallel to qb1 because they

are both perpendicular to qt1. Similarly, ct2 is parallel to qb2.
Hence, β = α. Considering the right angle triangle △ct1q
or △ct2q, we have cos(α2) = r′

d . Hence, we have α = β =

2 arccos(r
′

d), and µ = π
2 − arccos(r

′

d).

Now, we compute γ (Fig. 16(b)). Let dist(c, e) be the
distance from c to e. Considering the right angle triangle △qec,
we have dist(c, e) = d · sin(β2). Considering the right angle

triangle △ceb2, we have cos(γ) = dist(c,e)
r = dist(c, e) =

d · sin(β2). Therefore, we have γ = arccos(d · sin(β2)). Since

β = 2 arccos(r
′

d), we have γ = arccos(d
√

1− (r′/d)2).

Now, we can compute δ = 2π − 2µ− 2γ using Eq. (5).

δ = π − 2 arccos(d

√

1− (
r′

d
)2) + 2arccos(

r′

d
) (5)

V. EXPERIMENTS

A. Experimental settings

We compare our algorithm (labelled as Our) with the
state-of-the-art algorithm CHFC [16] (extended for k > 1
as described in Section II). Both algorithms are implemented
in C++, compiled by g++ with flag -O3. The experiments are
run on a 32-bit PC with Intel Xeon 2.40GHz dual CPU and
4GB memory running Debian Linux. As stated earlier, our
algorithm adopts existing algorithms [25] to compute the k-
depth contour. Two algorithms were proposed in [25], namely
SkyRider and KnightRider. KnightRider is an I/O optimal
algorithm, while SkyRider consumes slightly more I/Os but
is more efficient in terms of CPU cost. Although any of the
two algorithms can be embedded in our framework, in our
implementation, we prefer better CPU cost and use SkyRider.

The experimental settings are similar to those used in [16].
Specifically, we use both synthetic and real data sets. The real
data set consists of 476, 587 points, and is a combination of 4
data sets5, namely nodes in California road network (CA), San
Francisco road network (SF), road network of North American

5http://www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm

(NA) and points of interest in CA. Longitude and latitude
are normalized to the range [0,100000]. We also removed
duplicated points which reduced the data size to 474, 655.
The synthetic data set consists of 3, 000, 000 points following
uniform distribution.

We vary k from 1 to 50 with default value 10. We vary
|F | and |U | from 100, 000 to 1, 000, 000 on synthetic data set,
and from 50, 000 to 200, 000 on real data set (the facilities
and users are randomly selected points from the respective
data sets). Similar to existing works, we set |F | = |U | in each
experiment unless mentioned otherwise.

Each of the set of facilities and users is indexed by a R*-
tree. Similar to existing works, the construction cost of these
indices is not included in our evaluation. Everything else is
calculated on-the-fly (e.g., k-depth contour, the main-memory
R*-tree containing shallow facilities) and the relevant cost is
included. The page size is set to 4096 bytes. Since the I/O cost
is highly system specific [28], instead of reporting total time
(i.e., sum of CPU time and I/O time), we report the CPU cost
and the number of I/Os separately (which is a better evaluation
approach as suggested in [28]). For each experiments, 1000
points are randomly selected from the facilities data set and
correspond to the queries (unless mentioned otherwise), and
we report the average cost per query.

B. Shallow facilities

Our algorithm requires only the set of shallow facilities
to answer RkFN queries, while CHFC requires access to the
facilities that lie on or outside k-th convex hull (Section II).
We compare the number of shallow facilities with the number
of facilities on or outside k-th convex hull. This is important
because the CPU cost and I/O cost of each algorithm is
significantly affected by the number of such facilities.

0

1e3

2e3

3e3

4e3

 1 5 10 20 30 50

#
 o

f
s
h
a
llo

w
 f
a
c
ili

ti
e
s

CHFC
Our

(a) k

0

200

400

600

800

100 200 300 500 700 1000

#
 o

f
s
h
a
llo

w
 f
a
c
ili

ti
e
s

CHFC
Our

(b) |F | (in 1000)

Fig. 17. Number of shallow facilities

Figure 17 compares the number of shallow facilities with
the number of facilities on or outside of k-th convex hull.
Figure 17(a) shows the effect of k. For k = 1, our algorithm
must access the same number of facilities as CHFC since 1-
depth contour is exactly the same as convex hull. However,
for k > 1, the number of shallow facilities is much smaller
than the number facilities on or outside of k-th convex hull,
e.g., for k = 50, the number of facilities CHFC must access
is approximately 5 times more than that of our algorithm.
Figure 17(b) shows the effect of |F |. In this case, the number
of facilities CHFC must access is approximately 3 times
more than our algorithm for various |F |. Also, note that our
algorithm scales better for increasing k and |F |.

C. Performance evaluation

1) Effect of k: Figure 18 and 19 study the effect of k on real
and synthetic data sets, respectively. Specifically, Figure 18(a)
and 19(a) show the I/O cost and Figure 18(b) and 19(b) show
the CPU time. Although the results on both synthetic and real
data sets demonstrate similar trend, we use linear scale in
Figure 18 to clearly show how each algorithm scales with k,
and log-scale in Figure 19 to better compare the performance
for each value of k. Clearly on both data sets, our algorithm
is several orders of magnitude better than CHFC in terms of
both I/O and CPU cost and scales better.

1e4

2e3

3e4

4e4

 1 5 10 20 30 50

I/
O

CHFC
Our

(a) k

 0

 50

 100

 150

 200

 1 5 10 20 30 50

R
u
n
n
in

g
 t
im

e
 (

m
s
)

CHFC
Our

(b) k

Fig. 18. Real data set

 27

170
289

 3971

 12282

 73423

 1 5 10 20 30 50

I/
O

CHFC
Our

(a) k

 0.06

 1.11
 2.3

 21.5

 823

 1 5 10 20 30 50

R
u
n
n
in

g
 t
im

e
 (

m
s
)

CHFC
Our

(b) k

Fig. 19. Synthetic data set

Although for k = 1 k-th convex hull and k-depth contour
are the same, our algorithm is significantly better than CHFC
on both data sets. This is mainly because our algorithm can
terminate in case of futile query even before the computation of
k-depth contour has been completed in contrast to CHFC that
can terminate only after the convex hull has been computed.

0

1e3

2e3

3e3

4e3

5e3

50 100 150 200

I/
O

CHFC
Our

(a) |F | and |U | (in 1000)

 0

 5

 10

 15

 20

50 100 150 200

R
u
n
n
in

g
 t
im

e
 (

m
s
)

CHFC
Our

(b) |F | and |U | (in 1000)

Fig. 20. Real data set

2) Effect of data size: Figure 20 and 21 study the effect of
data size. Figure 20(a) and 21(a) show the I/O cost whereas
Figure 20(b) and 21(b) show the CPU cost. For the similar
reasons mentioned earlier, linear scale is used in Figure 20
and log scale is used in Figure 21. Our algorithm is several
orders of magnitude better than CHFC in terms of both CPU
and I/O cost. Furthermore, the cost of our algorithm is not

 36

 90

 12282

 35186

100 200 300 500 700 1000

I/
O

CHFC
Our

(a) |F | and |U | (in 1000)

 0.14
 0.3

 73

 274

100 200 300 500 700 1000

R
u
n
n
in

g
 t
im

e
 (

m
s
)

CHFC
Our

(b) |F | and |U | (in 1000)

Fig. 21. Synthetic data set

affected by the data set size in contrast to the cost of CHFC that
increases significantly. This is mainly because the verification
cost of CHFC is linear to |U | , whereas our algorithm is not
significantly affected by |U | due to more sophisticated filtering
and verification strategies adopted.

3) Non-futile queries: In the previous section, we reported
the results where each query corresponds to a randomly
selected facility from the data set. Since the number of shallow
facilities is much smaller as compared to the total number of
facilities, a majority of the queries are futile queries (a query
that is not a shallow facility is a futile query). Is it possible that
our algorithm is better than CHFC for futile queries but worse
for non-futile queries? In this section, we address this question
and select only the queries that are not futile. Specifically, we
randomly generate 1000 points outside k-depth contour and
each point corresponds to one query (which is guaranteed not
to be futile).

1e4

2e4

3e4

4e4

5e4

6e4

7e4

1 5 10 20 30 50

I/
O

CHFC
CHFC

CHFC
CHFC

CHFC
CHFC

Our
Our

Our
Our

Our
Our

Verification
Pruning

1
2

0
9

6
0

7
0

1
0

4
6

0 2
0

7
1

4 3
3

4
0

1

6
5

4
8

7

1
7

1
8

2
7

2
0

3
5

5
8

5
0

2
1

5
5

8
9

6
4

7
5

(a) k

 0

 200

 400

 600

 800

 1000

1 5 10 20 30 50

R
u
n
n
in

g
 t
im

e
 (

m
s
)

CHFC
CHFC

CHFC
CHFC

CHFC
CHFC

Our
Our

Our
Our

Our
Our

Verification
Pruning

3
.9

5

4
1

.6 9
7

.3

2
4

7

4
4

5

9
1

1

2
.7

5

1
0

.4

2
0

.6

4
0

.5

6
8

.9 1
2

5

(b) k

Fig. 22. Non-futile queries (effect of k)

Figure 22 shows the effect of k. Note that the I/O cost of
our algorithm is larger than CHFC for k = 1. This is because
CHFC uses an I/O optimal algorithm to compute convex hull,
whereas in our implementation, we use SkyRider which is not
I/O optimal. Our algorithm can easily adopt an I/O optimal
algorithm (e.g., KnightRider) to reduce the I/O cost. For k > 1,
our algorithm is significantly better than CHFC for non-futile
queries (e.g., for k = 50, the number of I/Os for CHFC is more
than ten times of that of our algorithm). In terms of CPU cost,
our algorithm is faster than CHFC for all values of k including
k = 1. Figure 22 also demonstrates that pruning cost is the
dominant cost for both algorithms.

Figure 23 shows the effect of data set. Clearly, our algorith-
m performs significantly better in terms of both I/O and CPU
cost, e.g., for the largest data set, CHFC consumes around 5
times more I/O and is around 7 times slower.

4) Effectiveness of proposed techniques: Since our algo-
rithm requires pruning and verification only for the non-futile

0

1e4

2e4

3e4

4e4

5e4

100 200 300 500 700 1000

I/
O

CHFC
CHFC

CHFC
CHFC

CHFC
CHFC

Our
O
u
r

Our
Our

Our
Our

Verification
Pruning

1
0

4
6

0

1
6

5
2

3

2
0

1
1

6

3
2

1
1

6 4
3

0
1

6 5
0

9
8

2

3
5

5
8

5
6

2
4

7
2

4
3

9
1

4
7

1
1

4
4

9

1
3

7
0

5

(a) |F | and |U | (in 1000)

 0

 200

 400

 600

100 200 300 500 700 1000

R
u
n
n
in

g
 t
im

e
 (

m
s
)

CHFC
CHFC

CHFC
CHFC

CHFC
CHFC

Our
Our

Our
Our

Our
Our

Verification
Pruning

9
7

1
7

1 2
0

9

3
4

3

4
4

5

6
3

9

2
1 2
8 3
5 5
4 6
8 9
3

(b) |F | and |U | (in 1000)

Fig. 23. Non-futile queries (effect of data set)

queries, we randomly generate 1000 queries that lie outside the
convex hull, and report the average cost per these non-futile
queries.

Effectiveness of pruning strategies. Figure 24 evaluates the
efficiency of our pruning techniques by showing the number
of users pruned by the candidate polygon (Section III-B4)
and the number of users pruned by the sweeping regions
(Section III-B4). To show the effectiveness of the pruning
strategies, we also show the total number of users that are
not RkFNs. Since only the users that are not RkFN can be
pruned by a pruning strategy, this corresponds to the maximum
possible number of users that any pruning technique can prune.

0

20

40

60

80

100

1 5 10 20 30 50

#
 o

f
u
s
e
rs

 (
in

 1
0
0
0
)

Non-RkFN
Candidate Polygon
Sweeping Regions

8
3

8
1

7
.1

7
8

0
0

0
.9

7
7

5
1

7
.9

7
7

4
2

9
.9

7
7

8
1

8
.5

7
7

8
5

6
.2

8
3

8
1

7
.1

7
7

9
0

7
.7

7
7

3
7

4
.7

7
7

1
9

0
.9

7
7

5
6

2
.8

7
7

5
6

0
.7

(a) k

0

200

400

600

800

1000

100 200 300 500 700 1000

#
 o

f
u
s
e
rs

 (
in

 1
0
0
0
)

Non-RkFN
Candidate Polygon
Sweeping Regions

7
7

5
1

7
.9

1
6

0
6

4
4

2
3

9
6

1
2

3
9

5
4

3
5

5
4

8
9

6
8

7
8

1
0

4
1

7
7

3
7

4
.7

1
6

0
4

5
5

2
3

9
3

1
0

3
9

4
9

6
7

5
4

8
5

0
2

7
8

0
6

2
1

(b) |F | and |U | (in 1000)

Fig. 24. Effectiveness of pruning techniques

Figure 24(a) evaluates the effectiveness of pruning tech-
niques for varying values of k with |U | and |F | set to 100, 000.
Figure 24(b) evaluates the effect of varying data set size with
k set to 10. Note that our pruning techniques can prune almost
all users that are not RkFNs, more than 99.5% of which are
pruned by our pruning techniques. Furthermore, both strategies
are quite effective and prune a significant number of users.

0

5

10

15

20

25

1 5 10 20 30 50

#
 o

f
u
s
e
rs

 (
in

 1
0
0
0
)

RkFN Users
Verified by Shadow

1
6

1
8

2
.9 2
1

9
9

9
.1

2
2

4
8

2
.1

2
2

5
7

0
.1

2
2

1
8

1
.5

2
2

1
4

3
.8

5
6

5
5

.9
8

7
2

4
9

.7
9

6
3

6
4

.1
9

4
3

9
1

.8
4

5
1

1
0

.4
4

8
2

6
6

.2
2

(a) k

0

40

80

120

160

200

240

100 200 300 500 700 1000

#
 o

f
u
s
e
rs

 (
in

 1
0
0
0
)

RkFN Users
Verified by Shadow

2
2

4
8

2
.1

3
9

3
5

6
.1

6
0

3
8

8
.5 1
0

4
5

6
5 1
5

1
0

3
2

2
1

8
9

5
9

6
3

6
4

.1
9

8
3

3
5

.4
3

1
1

4
0

9
.9

2
7

3
8

1
.5

2
1

5
1

1
.8

5
1

6
1

6
.3

(b) |F | and |U | (in 1000)

Fig. 25. Effectiveness of shadows

Effectiveness of shadows. Recall that a candidate user u can
be confirmed as RkFN and does not require verification if it
lies in a shadow. We evaluate the effectiveness of the shadows
by showing the number of users that are not required to be
verified. Figure 25 shows that around 25−35% of the users lie

in the shadows and are not required to be verified. This results
in significant saving because the boolean k-region queries are
not required for such users.

D. Theoretical analysis evaluation

This section evaluates the accuracy of our theoretical
analysis. In each experiment, we generate 100, 000 facilities
and 100, 000 users following uniform distribution in a circle
of unit radius.

1) Area of k-depth contour: Recall that, in Section IV-A,
we obtain the value of θ using Equation (1) that approximates
θ−sin(θ) = 2kπ

|F | using non-linear curve fitting. We remark that

the value of θ can also be approximated to desired accuracy
from θ− sin(θ) = 2kπ

|F | by using a binary search, e.g., continue

a binary search on θ until θ − sin(θ) is almost equal to
2kπ
|F | . In our experiments, we use both of these methods to

approximate θ, and in turn compute the expected area of
k-depth contour. The result of the two methods are labeled
Estimation by Approximation and Estimation by Binary Search,
respectively. The so-called actual area of the k-depth contour
(shown as Experimental) is estimated by generating 1 Million
points uniformly at random in the data universe and finding
how many of these points lie inside the k-depth contour. The
area is shown relative to the total area of the data space (e.g.,
x% means the area of k-depth contour is x% of the total
space).

 90

 92

 94

 96

 98

 100

1 5 10 20 30 50

%
 o

f
a
re

a

Experimental
Estimation by Approximation
Estimation by Binary Search

(a) k

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9 10
%

 o
f
a
re

a

Experimental
Estimation by Approximation
Estimation by Binary Search

(b) k (in 1000)

Fig. 26. Area of k-depth contour

Figure 26(a) shows the result for k from 1 to 50. It can be
observed that the estimation by binary search is almost iden-
tical to the experimental result. However, although estimation
by approximation follows the trend, it is not as accurate as
the estimation by binary search. This is because the nonlinear
curve fitting is optimized for the value of θ for the range from
0 to π which is useful when k varies a lot. To confirm this,
in Figure 26(b), we vary k from 1 to 10, 000 and evaluate the
theoretical analysis. As it can be seen, the estimation is quite
close to the experimental value.

We remark that the analysis of k-depth contour is not only
useful for RkFN queries but also of stand-alone interest due to
its applications in computational geometry and statistics [25].

2) Area of sweeping regions: We randomly generate 1, 000
non-futile queries and report the average area of sweeping
regions for different values of k (Figure 27). The experimental
results are quite close to the theoretical results. Recall that the
area outside the sweeping regions can be pruned. Figure 27
shows that the area of sweeping region is quite small (less
than 12% of the total space for k = 50), hence, a large area
can be pruned using the sweeping regions strategy.

 0

 2

 4

 6

 8

 10

 12

1 5 10 20 30 50

%
 o

f
a
re

a
Experimental

Theoretical

Fig. 27. Area of sweeping region (varying k)

VI. CONCLUSIONS

A reverse k-furthest neighbors (RkFN) query returns the
users that are least influenced by the query facility. RkFN
query has numerous applications in location-based services,
marketing, outlier detection, clustering, and profile-based man-
agement etc. To the best of our knowledge, we are the first
to study RkFN query for arbitrary value of k. Based on
several interesting observations and optimisations, we present
an efficient algorithm to process RkNN queries. For evaluation
purpose, we extend the state-of-the-art algorithm for k = 1
to solve RkFN queries for arbitrary value of k. Our extensive
experimental study on real and synthetic data sets demonstrates
that our algorithm outperforms the state-of-the-art algorithm
even for k = 1. We also provide a rigorous theoretical analysis
that is verified by the experimental study.

ACKNOWLEDGMENT

Muhammad Aamir Cheema is supported by ARC
DE130101002 and DP130103405. Xuemin Lin is supported
by NSFC61232006, NSFC61021004, NSFC61321064, ARC
DP120104168, ARC DP140103578 and ARC DP150102728.
Ying Zhang is supported by ARC DE140100679.

REFERENCES

[1] E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle, “Reverse
k-nearest neighbor search in dynamic and general metric databases,” in
EDBT, 2009, pp. 886–897.

[2] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang, “Influence zone:
Efficiently processing reverse k nearest neighbors queries,” in ICDE,
2011, pp. 577–588.

[3] J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang, “Con-
tinuous evaluation of monochromatic and bichromatic reverse nearest
neighbors,” in ICDE, 2007.

[4] K.-I. Lin, M. Nolen, and C. Yang, “Applying bulk insertion techniques
for dynamic reverse nearest neighbor problems,” IDEAS, 2003.

[5] M. Sharifzadeh and C. Shahabi, “Vor-tree: R-trees with voronoi di-
agrams for efficient processing of spatial nearest neighbor queries,”
PVLDB, vol. 3, no. 1, pp. 1231–1242, 2010.

[6] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi, “Discovery of
influence sets in frequently updated databases,” in VLDB, 2001.

[7] Y. Tao, D. Papadias, X. Lian, and X. Xiao, “Multidimensional reverse
k nn search,” VLDB J., vol. 16, no. 3, pp. 293–316, 2007.

[8] W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan, “Finch: Evaluating reverse
k-nearest-neighbor queries on location data,” in VLDB, 2008.

[9] C. Yang and K.-I. Lin, “An index structure for efficient reverse nearest
neighbor queries,” in ICDE, 2001.

[10] S. Yang, M. A. Cheema, X. Lin, and Y. Zhang, “Slice: Reviving regions-
based pruning for reverse k nearest neighbors queries,” in ICDE, 2014,
pp. 760–771.

[11] F. Korn and S. Muthukrishnan, “Influence sets based on reverse nearest
neighbor queries,” in SIGMOD Conference, 2000, pp. 201–212.

[12] Y. Kumar, R. Janardan, and P. Gupta, “Efficient algorithms for reverse
proximity query problems,” in GIS, 2008, p. 39.

[13] J. Liu, H. Chen, K. Furuse, and H. Kitagawa, “An efficient algorithm
for reverse furthest neighbors query with metric index,” in DEXA (2),
2010, pp. 437–451.

[14] J. Liu, H. Chen, K. Furuse, and H. Kitagawa, “An efficient algorithm
for arbitrary reverse furthest neighbor queries,” in Web Technologies

and Applications - 14th Asia-Pacific Web Conference, APWeb 2012,

Kunming, China, April 11-13, 2012. Proceedings, 2012, pp. 60–72.

[15] Q. T. Tran, D. Taniar, and M. Safar, “Reverse k nearest neighbor and
reverse farthest neighbor search on spatial networks,” T. Large-Scale

Data- and Knowledge-Centered Systems, vol. 1, pp. 353–372, 2009.

[16] B. Yao, F. Li, and P. Kumar, “Reverse furthest neighbors in spatial
databases,” in ICDE, 2009, pp. 664–675.

[17] J. Gibson, “Compact gps tracker and customized mapping
system,” Mar. 6 2001, uS Patent 6,198,431. [Online]. Available:
https://www.google.com.au/patents/US6198431

[18] G. Frieder, D. Gordon, and R. A. Reynolds, “Back-to-front display of
voxel-based objects,” IEEE COMP. GRAPHICS APPLIC., vol. 5, no. 1,
pp. 52–60, 1985.

[19] B. B. Bhattacharya and S. C. Nandy, “New variations of the
reverse facility location problem,” in Proceedings of the 22nd
Annual Canadian Conference on Computational Geometry, Winnipeg,

Manitoba, Canada, August 9-11, 2010, 2010, pp. 241–244. [Online].
Available: http://cccg.ca/proceedings/2010/paper64.pdf

[20] S. Cabello, J. M. Dı́az-Báñez, S. Langerman, C. Seara, and
I. Ventura, “Facility location problems in the plane based on
reverse nearest neighbor queries,” European Journal of Operational

Research, vol. 202, no. 1, pp. 99–106, 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.ejor.2009.04.021

[21] P. K. Agarwal, J. Matousek, and S. Suri, “Farthest neighbors,
maximum spanning trees and related problems in higher dimensions,”
Comput. Geom., vol. 1, pp. 189–201, 1991. [Online]. Available:
http://dx.doi.org/10.1016/0925-7721(92)90001-9

[22] C. L. Monma, M. Paterson, S. Suri, and F. F. Yao, “Computing euclidean
maximum spanning trees,” Algorithmica, vol. 5, no. 3, pp. 407–419,
1990. [Online]. Available: http://dx.doi.org/10.1007/BF01840396

[23] A. Said, B. Fields, B. J. Jain, and S. Albayrak, “User-centric evaluation
of a k-furthest neighbor collaborative filtering recommender algorithm,”
in Computer Supported Cooperative Work, CSCW 2013, San Antonio,
TX, USA, February 23-27, 2013, 2013, pp. 1399–1408.

[24] A. Said, B. J. Jain, B. Kille, and S. Albayrak, “Increasing Diversity
Through Furthest Neighbor-Based Recommendation,” in Proceedings of
the WSDM’12 Workshop on Diversity in Document Retrieval (DDR’12),
2012.

[25] M. A. Cheema, Z. Shen, X. Lin, and W. Zhang, “A unified framework
for efficiently processing ranking related queries,” in EDBT, 2014.

[26] I. Stanoi, D. Agrawal, and A. El Abbadi, “Reverse nearest neighbor
queries for dynamic databases,” in ACM SIGMOD Workshop on Re-

search Issues in Data Mining and Knowledge Discovery, 2000, pp.
44–53.

[27] Y. Tao, D. Papadias, and X. Lian, “Reverse knn search in arbitrary
dimensionality,” in VLDB, 2004, pp. 744–755.

[28] S. Yang, M. A. Cheema, X. Lin, and W. Wang, “Reverse k nearest
neighbors query processing: Experiments and analysis,” PVLDB, 2015.

[29] R. Cole, M. Sharir, and C.-K. Yap, “On k-hulls and related problems,”
in STOC, 1984, pp. 154–166.

[30] S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian, “Hardware-
assisted computation of depth contours,” in SODA, 2002.

[31] K. Miller, S. Ramaswami, P. Rousseeuw, J. A. Sellarès, D. L. Souvaine,
I. Streinu, and A. Struyf, “Fast implementation of depth contours using
topological sweep,” in SODA, 2001, pp. 690–699.

[32] C. Böhm and H.-P. Kriegel, “Determining the convex hull in large
multidimensional databases,” in DaWaK, 2001, pp. 294–306.

[33] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations:

Concepts and Applications of Voronoi Diagrams. Wiley, 1999.

[34] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems,” ACM Trans. Database Syst., vol. 30,
no. 1, pp. 41–82, 2005.

