
Shortest Path Queries for Indoor Venues with
Temporal Variations

Tiantian Liu† Zijin Feng‡ Huan Li† Hua Lu† Muhammad Aamir Cheema§ Hong Cheng‡ Jianliang Xu\

†Department of Computer Science, Aalborg University, Denmark
‡Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong

§Faculty of Information Technology, Monash University, Australia
\Department of Computer Science, Hong Kong Baptist University, Hong Kong

†{liutt,lihuan,luhua}@cs.aau.dk, ‡{zjfeng,hcheng}@se.cuhk.edu.hk, §aamir.cheema@monash.edu, \xujl@comp.hkbu.edu.hk

Abstract—Indoor shortest path query (ISPQ) is of fundamental
importance for indoor location-based services (LBS). However,
existing ISPQs ignore indoor temporal variations, e.g., the open
and close times associated with entities like doors and rooms. In
this paper, we define a new type of query called Indoor Temporal-
variation aware Shortest Path Query (ITSPQ). It returns the
valid shortest path based on the up-to-date indoor topology
at the query time. A set of techniques is designed to answer
ITSPQ efficiently. We design a graph structure (IT-Graph)
that captures indoor temporal variations. To process ITSPQ
using IT-Graph, we design two algorithms that check a door’s
accessibility synchronously and asynchronously, respectively. We
experimentally evaluate the proposed techniques using synthetic
data. The results show that our methods are efficient.

I. INTRODUCTION

With recent advancements in indoor positioning technolo-
gies and the increasing availability of digital indoor maps,
indoor location-based services are becoming increasingly pop-
ular. This trend has enabled a wide variety of applications
such as helping people navigate through complex buildings,
tracking staff and equipment in hospitals, and location-based
shopping assistance for customers [3], [5], [7], [8], [11], [13].

Shortest path/distance queries [2], [9], [12], [14] are funda-
mental in many indoor location-based services. However,most
existing techniques assume that the indoor topology does not
change with time. As a matter of fact, doors may be restricted
at certain times of the day, e.g., doors leading to patient
wards in a hospital may only open during visiting hours. Such
temporal variations clearly change the indoor topology, which
entails indoor navigation aware of topological changes. Some
previous works have studied temporal graphs [4], [6], [10],
but those techniques do not consider complex topology and
semantic information in indoor space.

In this paper, we propose to study indoor temporal-variation
aware shortest path query (ITSPQ) which returns a shortest
path from a source ps to a target pt such that navigation
through private partitions1 is not allowed and the doors along
the path are open when the user reaches there. Unfortunately,
the existing techniques cannot handle such queries because:
1) the graphs used to model the indoor space do not consider
temporal variations; and 2) the pre-computed and materialized

1Private partitions are not public for all users, e.g., private offices in an
office building, security zones in airports, and storage areas in a mall.

door-to-door distances become invalid when one or more doors
open or close at certain times.

To address these challenges, we propose an indoor
temporal-variation graph (IT-GRAPH) which captures the in-
door topology, geometric information, and temporal variation
information in a composite structure. The indoor temporal
variations are represented by time intervals. Figure 1 shows
an example indoor space where the doors may be open and
closed at different times, as listed in Table I. In our setting, we
use [open-time, close-time) to denote an active time interval
(ATI) of a door. Thus, [8:00, 16:00) means a door is opened
at 8:00 and closed at 16:00. If a door features multiple ATIs,
we use an array to store them.
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Fig. 1: An Example of Indoor Floor Plan

We formulate our research problem as follows.

Research Problem (Indoor Temporal-Variation Aware Short-
est Path Query (ITSPQ)). Given a start point ps, a target point
pt , and a current timestamp t, an indoor temporal-variation
aware shortest path query ITSPQ(ps, pt , t) returns the valid
shortest path from ps to pt that meets the following rules:

1) Each door di in the path should be open at t+∆t2, where
∆t is the walking time from ps to di and it is computed
based on human’s average walking speed [1] — 5km/h;

2) The path should not go through any private partition
except the private partitions that contain ps and/or pt .

Example 1. Given a query ITSPQ(p3, p4, 9:00), we con-
sider two candidate indoor paths, i.e., (p3,d15,d16, p4) with

2In this paper, we do not consider the waiting tolerance in the routing, i.e.,
someone reaches a door and waits there until the door opens.



TABLE I: Active Time Intervals (ATIs) of Doors

Door, ATIs Door, ATIs

d1, 〈[5:00, 23:00)〉 d2, 〈[8:00, 16:00)〉
d3, 〈[6:00, 23:00)〉 d4, 〈[9:00, 18:00)〉
d5, 〈[6:30, 23:00)〉 d6, 〈[8:00, 16:00)〉
d7, 〈[6:00, 23:30)〉 d8, 〈[9:00, 18:00)〉
d9, 〈[0:00, 6:00), [6:30, 23:00)〉 d10, 〈[8:00, 16:00)〉
d11, 〈[5:00, 23:00)〉 d12, 〈[5:00, 23:00)〉
d13, 〈[5:00, 17:00), [18:00, 23:00)〉 d14, 〈[0:00, 24:00)〉
d15, 〈[8:00, 16:00)〉 d16, 〈[8:00, 17:00)〉
d17, 〈[0:00, 24:00)〉 d18, 〈[0:00, 23:00)〉
d19, 〈[8:00, 16:00)〉 d20, 〈[5:00, 23:00)〉
d21, 〈[8:00, 16:00)〉

length 10m and (p3,d18, p4) with length 12m. Although
(p3,d15,d16, p4) is the shorter one, it goes through a private
partition v15 that breaks rule 2) in the problem definition.
Therefore, the query returns (p3,d18, p4) as a result. In
contrast, another query ITSPQ(p3, p4, 23:30) returns null
because d18 is close at that time and no path can meet both
rules in the problem definition.

II. ITSPQ PROCESSING

A. Indoor Temporal-Variation Graph

To integrate the temporal variations of doors into the indoor
topology, we design an indoor temporal-variation graph
(IT-GRAPH) GIT (V , E, Lv, LE ) where

1) V is the set of vertices such that each vertex v ∈V is an
indoor partition.

2) E is the set of directed edges such that each edge
(vi,v j,dk) ∈ E means one can reach v j from vi through
a door dk. We use πD(E) to denote the set of doors
associated with the edges of E.

3) LV is the set of vertex labels, each being a 3-tuple(IDv, p-
type, DM) where IDv identifies the partition in the vertex,
p-type = {PBP,PRP} indicates if the partition is a public
partition (PBP) or a private partition (PRP), and DM is a
distance matrix [9] that stores the intra-partition distance
between each pair of doors of that partition. DM is set
to null if the partition has only one door.

4) LE is the set of edge labels, each being a 3-tuple (IDd ,
d-type, ATIs) where IDd identifies the door on the edge,
d-type = {PBD,PRD} indicates if the door is a public
(PBD) or private (PRD) door, and ATIs is the door’s ATIs.

The IT-GRAPH corresponding to Figure 1 is depicted in
Figure 2. We use a door table and a partition table to store
LV and LE in IT-GRAPH, respectively. Referring to the tables
in Figure 2, a record (d7, PRD, 〈[6:00, 23:30)〉) means d7 is
a private door open from 6:00 to 23:30, and v16 is a public
partition and the distance between its doors d3 and d17 is 2m.

Following the previous work [9], P2D(vk) maps a partition
vk to the set of doors connected to vk and D2P(di) maps a
door di to the pair of partitions connected by di. Considering
the door directionality, P2DA(vk) gives the set of enterable
doors through which one can enter partition vk, P2D@(vk)
gives the set of leaveable doors through which one can leave
partition vk, D2PA(di) gives the set of partitions that one can

enter through door di, and D2P@(d j) gives those that one can
leave through door d j. Those mappings can be easily obtained
based on the connectivity information in IT-GRAPH. Referring
to Figure 2, we have D2P(d3) = {v3,v16}, D2P@(d3) = v3,
and D2PA(d3) = v16. Also, we have P2D(v3) = P2D@(v3) =
{d1,d2,d3,d5,d6} whereas P2DA(v3) = {d1,d2,d5,d6}.

IDd d-type ATIs

d7 PRD 〈[6:00, 23:30)〉

d3 PBD 〈[6:00, 23:00)〉

… … …

Door Table

IDv p-type DM

v1 PRP [[(d1, d1), 0]]

v16 PBP [[(d3, d17), 2], [(d3, d21),

4], [(d17, d21), 5]]

… … …
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Fig. 2: Example of Indoor Temporal-Variation Graph

B. Algorithms for ITSPQ Processing

The overall framework for processing ITSPQ based on IT-
GRAPH is presented in Algorithm 1. It first initializes a min-
heap H to keep the pairs of a door and the distance from ps to
this door (line 1). The min-heap is prioritized according to the
distance. The framework then goes through each door di in GIT
(line 2), initializes dist[di] that is the current shortest distance
from ps to di (line 3), and enheaps all of them into H (line 4).
Besides, prev[di] keeps the last hop door of the shortest path
from ps to di and is initialized to null for each door di (line 5).
The algorithm also initializes the shortest distance information
for ps and pt , and enheaps them into H (lines 6–7). It then
iterates on H to search for the shortest path from ps to pt
(lines 8–34). First, it deheaps a door (or a point) di with the
minimum distance dist[di] (line 9). If dist[di] is ∞, meaning all
remaining unvisited doors cannot get to pt , “no such routes”
is returned (line 10). If di is equal to pt , the shortest path will
be returned by iteratively concatenating the last hops from
prev[di] (lines 11–17). Otherwise, the framework searches the
next partition v for the current di. Particularly, if di equals ps,
v is ps’s covering partition P(ps). If not, v is obtained as the
enterable partition of di that has not been visited (line 18).
After that, di and v are marked as visited (line 19).

Next, if di is an enterable door of pt ’s covering partition
P(pt) (line 20), it means that the next hop of the shortest path
should be pt . In this case, the framework directly updates
dist[pt ] and prev[pt ] if dist[pt ] is smaller than the current
shortest path distance in dist[pt ] (lines 21–24). Otherwise, the
framework tests each unvisited door d j in v’s leaveable door
set (lines 25–34). In particular, the next partition v′ after d j
is obtained (line 27) and d j is immediately discarded if v′ is
a private partition (line 28). Then, the current path distance
dist j from ps to d j is obtained as the sum of dist[di] and
distance from di to d j through v. Next, the framework calls
a function TV_Check(d j,dist j, t) to validate if d j is open at
the arrival time relative to the query time t (line 30). Two
different strategies, namely Syn_Check() (Algorithm 2) and



Asyn_Check() (Algorithm 4) are used for this function.
Their details are to be given below. Afterwards, the shortest
distance and last hop information of the validated door d j is
updated if the current path distance dist j is smaller than d j’s
best one so far (lines 31–34).

Algorithm 1 ITSPQ_ITGraph(ps, pt , t, GIT )
1: initialize a min-heap H
2: for each door di ∈ πD(GIT .E) do
3: dist[di]← ∞

4: enheap(H, 〈di,dist[di]〉)
5: prev[di]← null
6: dist[ps]← 0; enheap(H, 〈ps,dist[ps]〉)
7: dist[pt ]← ∞; enheap(H, 〈pt ,dist[pt ]〉)
8: while H is not empty do
9: 〈di,dist[di]〉 ← deheap(H)

10: if dist[di] = ∞ then return no such routes
11: if di = pt then
12: path← pt
13: while prev[di] 6= ps do
14: path← prev[di]+ ”,”+path
15: di← prev[di]

16: path← ps + ”,”+path
17: return path
18: if di = ps then v← P(ps) else v← D2PA(di)\ visited partitions
19: mark di and v as visited
20: if di ∈ P2DA(P(pt)) then
21: if dist[di]+ |di, pt |E < dist[pt ] then
22: dist[pt ]← dist[di]+ |di, pt |E
23: enheap(H, 〈pt ,dist[pt ]〉)
24: prev[pt ]← (v,di)

25: else
26: for each unvisited door d j ∈ P2D@(v) do
27: v′← D2PA(d j)\v
28: if v′.d-type is PRP then continue
29: dist j ← dist[di]+DM(v,di,d j)
30: if TV_Check(d j,dist j, t) then continue
31: if dist j < dist[d j] then
32: dist[d j]← dist j
33: enheap(H,

〈
d j,dist[d j]

〉
)

34: prev[d j]← (v,di)

Synchronous Check. The idea is to look up a door d’s ATIs
and compare it to the arrival time when one just leaves for d.
In Algorithm 2, the arrival time tarr is computed as the query
time t plus the travel time (dist/velocity) to go through the
distance dist from ps to d (line 1). The function returns false
if tarr is not in the ATIs, and true otherwise.

Algorithm 2 Syn_Check(d, dist, t)
1: tarr← t +dist/velocity
2: if tarr /∈ d.ATIs then return false else return true

Asynchronous Check. Synchronous check needs to validate
each encountered door by comparing the arrival time with the
door’s ATIs. However, in real-world scenarios, the temporal
variation of doors in IT-GRAPH can only happen at several
particular open or close times. We call such time points
as checkpoints. Moreover, the topology information will not
change between two consecutive checkpoints. An alternative
checking strategy is to directly refer to a time-dependent IT-
GRAPH that only keeps all currently open doors. The informa-
tion of IT-GRAPH only needs to be updated asynchronously

at the next checkpoint. Given the set T of checkpoints, the
graph updating at a current time t is presented in Algorithm 3.
First, it initializes a new graph G′IT using the initial graph G0

IT
that keeps the original indoor topology without considering
temporal variations. Next, it searches the previous checkpoint
cp relative to t (line 2), and obtains the set Dc of doors that
have been closed at cp (line 3). Afterwards, it goes through
each such door di in Dc and modifies the mapping information
for that door and its corresponding partitions (lines 4–7).
Finally, it returns cp and the new graph G′IT .

Algorithm 3 Graph_Update(t, T )
1: G′IT ← G0

IT
2: cp← Find_Previous_Checkpoint(t,T )
3: Dc← Get_Closed_Door(cp)
4: for each door di ∈ Dc do
5: Pc← D2P(di)
6: for each partition v ∈ Pc do
7: P2Dcp(v)← P2D(v)\di
8: replace P2D(v) in G′IT by P2Dcp(v)
9: return (cp, G′IT )

Based on the graph updating in Algorithm 3, we present the
asynchronous check in Algorithm 4. It first gets the current GIT
and its corresponding checkpoint cp (see line 9 in Algorithm 3)
and the arrival time tarr (lines 1–2). Next, if tarr to reach d
is later than the next checkpoint in T , it updates GIT using
G′IT returned by Algorithm 3 (lines 4–6). A false is returned
to keep consistent with the interface of Algorithm 2 (line 7).

Algorithm 4 Asyn_Check(d, dist, t)
1: get the current GIT and its corresponding cp for time t
2: tarr ← t +dist/velocity
3: G′IT ← null
4: if tarr > Find_Next_Checkpoint(cp,T ) then
5: if G′IT is null then (cp∗,G′IT )← Graph_Update(tarr,T )
6: (cp,GIT )← (cp∗,G′IT )
7: return false

Compared to the search with synchronous check, the search
using asynchronous check involves reduced versions of IT-
GRAPH in the outward expansion (lines 18–34 in Algorith-
m 1), thus pruning some closed doors in advance and reducing
the cost of checking temporal variations.

We use ITG/S to denote the search method using syn-
chronous check, and ITG/A the one using asynchronous
check. Figure 3 illustrates the two methods.

Syn_Check()
( Algorithm 2 )

Graph_Update()
( Algorithm 3 )

Asyn_Check()
( Algorithm 4 )

ITSPQ_ITGraph
( Algorithm 1 )

TV_Check() instantiated

Method 1: ITG/S

Method 2: ITG/A

IT-Graph

Fig. 3: Different Methods for ITSPQ Processing

III. EXPERIMENTAL STUDIES

Using synthetic data, we evaluate the search efficiency of
our proposed methods ITG/S and ITG/A. All experiments are
implemented in Java and run on a PC with a 2.30GHz Intel
i5 CPU and 16 GB memory.



1) Settings: Indoor Space. Using a real-world floorplan3,
we generate a multi-floor indoor space where each floor takes
1368m × 1368m. The irregular hallways are decomposed
into smaller, regular partitions4. As a result, we obtain 141
partitions and 224 (virtual) doors. Every two adjacent floors
are connected by four staircases, each having a stairway of
20m long. In the default setting, we use a 5-floor indoor space
with 705 partitions and 1120 doors.
Temporal Variations. We generate the ATIs for each door as
follows. First, we crawl the online shop information of five
shopping malls in Hong Kong, China, and parse the open and
close times of those shops. We select random pairs of open
time and close time to form the checkpoint set T in size of 4,
8, 12, or 16. For each door with temporal variation, we assign
it with up to three ATIs, each corresponding to a pair of open
time and close time selected from T .
Query Instances. We use a parameter δs2t to control the
indoor distance from the start point ps to the target point pt
in a query ITSPQ(ps, pt , t) as follows. First, we randomly
select a point ps from the indoor space. Second, we find a
door d whose indoor distance to ps approximates δs2t. Then,
we expand from d to find a random point pt whose indoor
distance to ps approaches to δs2t. For each setting of δs2t, we
generate five pairs of ps and pt to form the query instances.
In each query instance, time t is fixed to 12:00 to make a fair
comparison. We also study the effect of using different values
of t in query processing. Table II lists the parameter settings
in our experiments, where the default values are in bold.

TABLE II: Parameter Settings for Synthetic Data
Parameters Settings
|T | 4, 8, 12, 16

δs2t (m) 1100, 1300, 1500, 1700, 1900
t 0:00, 2:00, . . . , 12:00, . . . , 22:00

Performance Metrics. We run each query instance ten times,
and measure the average running time and memory cost.

2) Efficiency of Search Methods: We investigate the search
time and memory cost of our proposed methods, i.e., ITG/S
and ITG/A, under different parameter settings.
Effect of |T |. Referring to Figure 4, the search time of each
method is insensitive to |T | when query time t is fixed to
12:00, a time nearly all doors in the space are open. In such
a case, adding more checkpoints to T has little impact on the
graph topology at query time. We add a group of tests with t
fixed to 8:00. At this time, increasing |T | makes more doors
be closed, reducing the cost of graph search. As a result, the
search of each method becomes faster.
Effect of δs2t. When we increase δs2t, each method’s search
time increases slightly, as shown in Figure 5.
Effect of t. We also test the search methods’ performance at
different query times (t) in a day. Referring to Figure 6, the
search time of each method increases when t comes to 10:00,
stays stable when t is between 10:00 and 20:00, and then
decreases when t is over 20:00. In our setting, a large number

3deviantart.com/mjponso/art/Floor-Plan-for-a-Shopping-Mall-86396406
4The decomposition algorithm is given in [14].
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of doors have been closed for the time before 10:00 or after
20:00, and the corresponding IT-GRAPH becomes simpler due
to the reduced temporal variations. On the contrary, the graph
structure becomes more complex when more doors are open
during the period from 10:00 to 20:00. Between 10:00 and
20:00, the memory costs of all methods stay constant because
nearly all doors are open and the indoor topology is relatively
stable. After 20:00, the memory costs of all methods decrease
as the graph structure becomes simpler.
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