
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

K-SPIN: Efficiently Processing Spatial Keyword
Queries on Road Networks

Tenindra Abeywickrama, Muhammad Aamir Cheema, Arijit Khan

Abstract—A significant proportion of all search volume consists of local searches. As a result, search engines must be capable of
finding relevant results combining both spatial proximity and textual relevance with high query throughput. We observe that existing
techniques answering these spatial keyword queries use keyword aggregated indexing, which has several disadvantages on road
networks. We propose K-SPIN, a versatile framework that instead uses keyword separated indexing to delay and avoid expensive
operations. At first glance, this strategy appears to have impractical pre-processing costs. However, by exploiting several useful
observations, we make the indexing cost not only viable but also light-weight. For example, we propose a novel ρ-Approximate Network
Voronoi Diagram (NVD) with one order of magnitude less space cost than exact NVDs. By carefully exploiting features of the K-SPIN
framework, our query algorithms are up to two orders of magnitude more efficient than the state-of-the-art as shown in our
experimental investigation on various queries, parameter settings, and real road network and keyword datasets.

Index Terms—Road networks, points of interest search, spatio-textual queries, network Voronoi diagrams

F

1 INTRODUCTION

F INDING the nearest relevant points of interest (POIs) to a
user’s location is among the most popular queries in map-

based services [1]. These POIs are often associated with rich
textual descriptions in addition to their spatial locations. Consider
the example road network in Figure 1 with unit edge weights and
8 objects (POIs) each associated with a set of keywords. A spatial
keyword query retrieves objects that are close to the query location
(e.g., in terms of travel time over road networks) and are textually
relevant. The following two types of spatial keyword queries have
been studied on road networks.

Boolean kNN Query [2]. Given a set of query keywords, a
Boolean kNN (BkNN) query returns the k objects closest to
the query location among those that satisfy the keyword criteria.
The criteria may be disjunctive (contain any query keyword) or
conjunctive (contain all query keywords). For example, a user may
want to find the closest object that contains either “restaurant” or
“takeaway”. In Figure 1, the answer is o8 because no object closer
to query location q contains either “restaurant” or “takeaway".
Another user may wish to find the closest POI containing both
“Thai” and “restaurant”. In Figure 1, the result would then be o6.

Top-k Spatial Keyword Query [3], [4]. A top-k spatial keyword
query returns k objects with the best scores. The score of an object
is computed using a function combining the object’s network dis-
tance from q and the relevance of the object’s textual description
with the query keywords. Section 2 provides a formal description.

20 billion Google searches with a location component are
performed every quarter (including 13.9 billion from mobile
devices) [5]. This translates to ≈2500 spatial keyword queries per
second on average. Using network distance affords greater accu-
racy and flexibility (e.g., using travel-time rather than the distance

• T. Abeywickrama and M. A. Cheema are with the Faculty of Information
Technology, Monash University, Australia.
E-mail: {tenindra.abeywickrama,aamir.cheema}@monash.edu

• A. Khan is with the School of Computer Science and Engineering, Nanyang
Technological University, Singapore.
E-mail: arijit.khan@ntu.edu.sg

“as-the-crow-flies”). But efficiently indexing road networks and
keyword information to meet such high throughput demands is
a challenging problem. Moreover, the indexing strategy used by
current road network spatial keyword techniques, called keyword
aggregation, leaves substantial room for improvement.

1.1 Motivation

Keyword aggregation is the idea of summarizing keyword occur-
rences over geographical regions. Spatial keyword queries are
then answered by searching the most promising regions first,
while pruning regions that cannot contain results. This technique
is used extensively by spatial keyword query techniques in Eu-
clidean space [6], [7], [8], [9]. Notably, all existing techniques
for road networks also use the idea of keyword aggregation. The
disadvantage of keyword aggregation is the generation of many
false positives. Whenever a candidate is encountered, its distance
from the query must be computed to confirm if it is relevant or
not. Computing distance in Euclidean space is a quick arithmetic
operation, but in road networks computing distance is a complex
graph operation and far more expensive. Consequently the penalty
paid for incurring false positives in road networks is significantly
higher than in Euclidean space. So, while keyword aggregation is
useful for Euclidean space, it is far less effective for road networks.
We illustrate this problem in an example using a state-of-the-art
spatial keyword technique for road networks [4].

Consider again the objects and road network with unit edge
weights shown in Figure 1. The existing techniques first groups
objects, e.g., G-tree [4] may form four groups G1, G2, G3, and
G4 (shown by rectangles with broken lines). Keywords are then
aggregated by creating a pseudo-document for each group that is
the union of keyword occurrences over all the contained objects.
For example, G1’s pseudo-document contains keywords “Italian”,
“restaurant”, “takeaway”, “Thai”, and “grocer” each with one
occurrence in the group. Note that the frequency of each keyword
in the new pseudo-document is the sum of frequencies over all
objects contained in the group. Consider a Boolean 1NN query to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

o5

o1

o2

o7

o4

q

o3

o6

G1 G2

G3

G4

o8

Keyword λ

Italian 0.58

restaurant 0.58

takeaway 0.58

Keyword λ

Chinese 0.71

takeaway 0.71

Keyword λ

Thai 0.71

grocer 0.71

Keyword λ

National 0.71

bank 0.71

Keyword λ

Joe's 0.71

butcher 0.71

Keyword λ

Thai 0.58

restaurant 0.58

takeaway 0.58

Keyword λ

Thai 0.71

restaurant 0.71

Keyword λ

Thai 0.71

restaurant 0.71

Fig. 1: Shaded vertices are objects and q is the query vertex.

find the closest object with keywords “Thai” and “restaurant”. The
group G4 can be pruned as its pseudo-document does not contain
“restaurant”. The other three groups may contain the result. The
algorithm computes minimum network distances to each group
(e.g., the network distance from q to the closest border vertex
in the group). These groups are inserted into a priority queue so
that they can be accessed in ascending order of their minimum
network distances from q (e.g., G1, G2, and then G3). When G1

is accessed, the algorithm prunes both o1 and o2 because neither
object contains both query keywords. The algorithm then accesses
G2 and prunes the objects o3 and o4. But object o5 contains both
query keywords, so the algorithm computes its network distance
from q. The algorithm can terminate if the minimum network
distance of the next entry in the queue is greater than the network
distance from q to o5. However, since the minimum network
distance ofG3 is smaller, the algorithm accessesG3 and computes
the network distances from q to o6 and o7 and determines o6 to be
the closest object satisfying the keyword criteria. So o6 is returned
as the result since the queue is empty.

In the above, costly minimum network distances needed to
be computed to groups even when 1) a group does not contain
any objects satisfying the keyword criteria (e.g., G1) because the
aggregated group appeared to contain such an object; or 2) the
relevant object in the group is actually quite far from the query
and is not a result (e.g., o5 in G2) because it appeared to be
close as the query was close to the aggregated group. Furthermore,
when a group is accessed, the algorithm needs to compute network
distances from q to all objects satisfying the criteria in the group
even if they are not results (e.g., o7 inG3). Similar issues are faced
in top-k queries because network distances must be computed to
groups (and objects within) that have low textual similarity (e.g.,
G1 and its objects) or large network distance (e.g., o5 and o7).
Moreover, while we use a simple example here for easier expo-
sition, keyword aggregation is hierarchical and that exacerbates
these problems. It is important to note that these problems arise
from the hierarchical aggregation of objects and their constituent
keywords. They cannot be solved in straight-forwards ways due to
the permanent loss of discriminating information that results from
aggregation. We confirm this difficulty by attempting to improve
G-tree in Section 7.4. Other techniques [2], [3] use similar ideas
and face similar problems, which we elaborate in Section 8.

1.2 Contributions
We present the Keyword Separated Indexing (K-SPIN) frame-
work. K-SPIN employs the idea of creating a separate index for
each keyword. However, as we detail next, doing this without
incurring prohibitive pre-processing cost is challenging. Here we
describe how K-SPIN overcomes the problems in our motivating
example and our solutions for reducing pre-processing costs.

Technique Index Size
(in GB)

Queries/second
Top-k BkNN

K-SPIN [Our Method] + CH [10] 0.6 + 0.6 865 1021
K-SPIN [Our Method] + PHL [11] 0.6 + 15.8 3942 9869
Spatial Keyword G-tree [4] 2.7 266 178
ROAD [12] 4.5 83 7
FS-FBS [2] Dataset too large to build index

TABLE 1: Comparison of index size and throughput (# of
queries processed per second) on US road network dataset

Efficient Querying: Separate keyword indexes allow us to obtain
an on-demand inverted heap for each keyword filled with candi-
date objects specifically relevant to that keyword. Each candidate
object in the heap is ranked by lower-bound network distance
between it and the query. These heaps can be used to avoid false
positives and reduce unnecessary network distance computations.
We explain our method using the running example in Figure 1.

For the Boolean 1NN query to find the POI containing “Thai”
and “restaurant”, our algorithm creates an on-demand inverted
heap for a single keyword. We obtain a heap for the least frequent
keyword as it contains fewer objects. Using the heap for “Thai”
(e.g., o2, o6, o5, and then o7), the first object o2 is pruned
because it does not satisfy the keyword criteria. When o6 is
accessed, its exact network distance is computed as it contains
both query keywords. If the network distance of o6 is smaller
than the lower-bound distance of the next object (i.e., o5), the
algorithm terminates reporting o6 as the result. The use of a
cheap lower-bound heuristic avoids or delays computing expensive
network distances to candidate objects (e.g., we avoid it for o2, o5,
and o7). Notably, this approach avoids generating false positive
groups (e.g., G1 in keyword aggregated indexing). In Section
5 we describe how heaps need only be populated partially and
maintained in an iterative lazy manner, thus avoiding computing
lower-bounds to all objects that contain the keyword. Other spatial
keyword queries also benefit from inverted heaps. For example, we
propose the idea of a pseudo lower-bound to retrieve more relevant
candidates for top-k queries in Section 4.2.

This translates into significantly better query throughput (# of
queries processed per second) for K-SPIN based techniques in
practice, as summarized in Table 1. FS-FBS cannot be constructed
on this dataset due to prohibitive pre-processing cost; and on
smaller datasets FS-FBS performs worse than our method K-SPIN
(Section 7). We even show that K-SPIN is able to use G-tree’s road
network index more efficiently than G-tree’s own query algorithm,
confirming the reduction in false positives (Section 7.4).

Light-Weight Separated Index: Creating a separate index for
each keyword involves processing the objects and road network
repeatedly. At first glance, doing this on road networks appears
untenable. But every cloud has a silver lining. We make several
smart, yet simple, observations (Section 6), which K-SPIN ex-
ploits to make the pre-processing more than viable, even light-
weight. For example, we observe that the number of objects
associated with a keyword is predictably small for most keywords
in datasets that follow Zipf’s law. Given the nature of K-SPIN, this
observation can be leveraged to significantly reduce construction
time with theoretical and experimental justification. We also intro-
duce a novel data structure, the ρ-Approximate Voronoi Diagram,
to reduce the index size by over an order of magnitude. K-SPIN is
applicable on even continental scale datasets, occupying less than
600MB and built in under 2 hours for the entire US road network
dataset. These come at a small and theoretically bounded penalty
in query performance and we still return exact query results.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Flexibility: As the light-weight keyword indexes are decoupled
from the network distance index, K-SPIN can be combined with
any network distance technique. This enables significant perfor-
mance gains, e.g., the K-SPIN variant using Pruned Highway
Labeling (PHL) [11] in Table 1. Even the variant with the smallest
memory footprint using Contraction Hierarchies (CH) [10] is
much faster than the state-of-the-art in Table 1. Moreover, K-SPIN
can be integrated into any system already processing road network
queries and any future improved network distance technique can
be plugged into the framework. This versatility of K-SPIN is
unique among spatio-textual techniques.

2 PRELIMINARIES

Road Network: We represent a road network as a connected
graph G = (V,E). V is the set of vertices and E is the set of
edges (i.e., road segments) connecting them. Similar to almost all
previous studies (e.g., [2], [4]), we consider undirected edges and
query locations and POIs occurring on vertices to make exposition
simpler. As queries are graph operations, this does not change
the asymptotic behavior. K-SPIN can easily be extended for other
cases, e.g., POIs on edges would still be generated as candidates
in on-demand inverted heaps.

An edge (u, v) ∈ E connects two adjacent vertices with
weight w(u, v) ∈ R>0, representing a metric such as travel time
between u and v. The shortest path P (x, y) with network distance
d(x, y) represents the minimum sum of edge weights connecting
the vertices x and y.

Objects and Textual Information: The road network is also
associated with a set of object vertices O ⊆ V (i.e., POIs). Each
object o ∈ O contains a set of keywords known as the document,
doc(o), of object o. Each keyword t ∈ doc(o) is drawn from
a corpus of keywords W . For simplicity, we shall refer to t ∈
doc(o) as t ∈ o when the context is clear. We note that a keyword
t may occur multiple times in doc(o), the number of occurrences
is denoted as its frequency ft,o. Finally, the inverted list inv(t)
for keyword t is the set of objects whose document contains t.
Next, we formally state our problem definitions.

Boolean kNN Queries: A Boolean k Nearest Neighbor (BkNN)
query takes the form (q, k, ψ, op), where q is the query vertex,
k is the number of results, ψ is a set of query keywords, and op
specifies a logical operand (∧ or ∨) [2]. The result of this query
is the k nearest objects by their network distance to q, which
satisfy the criteria. In the conjunctive case (∧), the result objects
must contain all query keywords; and in the disjunctive case (∨),
they contain at least one keyword from ψ. We remark that our
proposed framework can be used to handle a combination of ∧
and ∨ operators, e.g., find k closest POIs that contain “Thai” and
(“takeaway” or “restaurant”).

Top-k Spatial Keyword Queries: A top-k query is of the form
(q, k, ψ), where q is the query vertex, k is the number of results,
and ψ is a set of query keywords. The result is the set of k objects
with the smallest scores. The score of each object is computed by
combining its network distance from q and its textual relevance.
We employ weighted distance [3], [13] to compute the spatio-
textual score for object o, as below.

ST (q, o) =
d(q, o)

TR(ψ, o)
(1)

Here, d(q, o) is the network distance from q to o and
TR(ψ, o) is the textual relevance. We adopt cosine similarity [14]
for computing TR(ψ, o).

TR(ψ, o) =

∑
t∈ψ(wt,o·wt,ψ)√∑

t∈o(wt,o)
2·
∑
t∈ψ(wt,ψ)2

(2)

In the above equation, wt,o = 1+ ln(ft,o) with ft,o being the
frequency of keyword t in the document of o. Also,wt,ψ = ln(1+
|O|
|inv(t)|), where |O| is the total number of objects and |inv(t)|
is the size of the inverted list of t (i.e., the number of objects
that contain t in their documents). While we do not dwell on
the specifics of the textual relevance computation, wt,o represents
a measure of the term frequency (TF), and wt,ψ represents the
inverse document frequency (IDF).

As derived in past work [14], Equation 2 can be re-written in
terms of impacts, or λt,x =

wt,x√∑
t∈x(wt,x)

2
, as below.

TR(ψ, o) =
∑
t∈ψ

[λt,ψ · λt,o] (3)

It is important to note that the object impact values λt,o do
not depend on the query and can be pre-computed offline. We
emphasize that our indexing algorithms can support other textual
relevance methods, such as language models, BM25, and other
TF×IDF formulations, e.g., in [14]. Similarly, our techniques
are orthogonal to the scoring method and can be applied when
weighted sum [8] is used to combine d(q, o) and TR(ψ, o) in
Equation 1 instead of weighted distance, which we use as the
example in our experiments.

3 K-SPIN: AN OVERVIEW

The modules that compose the K-SPIN framework are shown in
Figure 2. Here we briefly describe each module and how they
interact before delving deeper into the design of specific modules
in subsequent sections.
1. Lower Bounding Module. This module computes a lower-
bound network distance between any two vertices using selected
heuristics. For example, a lower-bound can be obtained using
landmarks as in the ALT [15] index. ALT pre-computes network
distances between some chosen landmark vertices and all vertices
in the graph, then uses the triangular inequality to obtain a lower-
bound network distance between any two vertices. In fact, multiple
heuristics can be considered to allow the module to return the
tightest lower-bound network distance overall. Depending on the
application and indexes available, the module may use more or
fewer lower-bound heuristics. We combine K-SPIN with ALT as
it provides effective lower-bounds on road networks [16].
2. Network Distance Module. This module is employed to com-
pute the exact network distance between any two given vertices.
As stated in Section 1, this module can use any existing technique
to compute the network distance. The system administrator may
choose a technique based on its efficiency and/or index size or may
simply choose the techniques already being used by the system to
answer other queries. In Section 7, we show the effect of choosing
three different network distance techniques namely Contraction
Hierarchies [10], G-tree [17], and Pruned Highway Labeling [11].
This module is the bottleneck as network distance computations
are the most expensive operation performed for an object.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

Heap

Generator

Spatial

Keyword Query

Processor

Inverted Heap t1

InvertedHeap t2

Inverted Heap t|ψ|

Network

Distance

Module

Lower

Bounding

Module

Query

Results

User
Query Vertex

& Keywords

Keyword

Separated

Index

Existing Road

Network

Index

Fig. 2: Keyword Separated Indexing (K-SPIN) Framework

3. Heap Generator. The Heap Generator is responsible for
creating and maintaining the on-demand inverted heaps. An on-
demand inverted heap for a particular keyword t satisfies the
following property at any point in time (i.e., when the heap is
first created and whenever a heap element is extracted).
Property 1. Given the current top object o in inverted heap H for

keyword t and its lower-bound distance LB(q, o) from query
vertex q; any object ot containing t, not yet extracted from H,
has network distance d(q, ot) ≥ LB(q, o).

Property 1 allows our query algorithms to access objects
associated with a particular keyword t in order of their lower-
bound network distances from q. To efficiently create and maintain
an inverted heap, the Heap Generator utilizes a Keyword Separated
Index that indexes inv(t) for each keyword t in corpus W where
inv(t) is the set of all objects associated with t. E.g., for keyword
“Thai” in Figure 1, inv(“Thai”) consists of o2, o5, o6, and o7. The
inverted heap HThai allows access to these objects in ascending
order of their lower-bounds, e.g., (o2, 1), (o6, 2), (o5, 4), and then
(o7, 5). Property 1 allows the heap to be populated lazily, i.e.,
objects are added incrementally such that the property is met.
For example, heap HThai may initially contain only (o2, 1) and
(o7, 5) to satisfy Property 1. When (o2, 1) is extracted, the object
(o6, 2) may be inserted in the heap to ensure it satisfies Property 1.
Our Heap Generator algorithm and Keyword Separated Index data
structure are presented in Sections 5 and 6, respectively.
4. Query Processor. The Query Processor contains algorithms
to answer various spatial keyword queries. Algorithms use on-
demand inverted heaps to retrieve relevant candidate objects. The
challenge lies in deciding which heap to use and how to filter
poor candidates using an effective lower-bound score. Hence the
efficiency of the Query Processor is critical in avoiding the false
positive problems of existing methods described in Section 1. The
Query Processor uses the Network Distance Module to compute
the network distances between the query vertex and the filtered
candidate objects. Our query algorithms are detailed in Section 4.

4 THE QUERY PROCESSOR MODULE

We first describe the algorithm for Boolean kNN queries in Sec-
tion 4.1, demonstrating how inverted heaps are used. Section 4.2
details our top-k algorithm where we introduce the idea of a
pseudo lower-bound utilizing a subtle insight to retrieve more
relevant candidates and thereby terminating quicker.

4.1 Boolean kNN Query Processing
Boolean kNN (BkNN) queries retrieve the k nearest objects to q
whose associated keywords satisfy some criteria with the set of

Algorithm 1 Disjunctive BkNN Query Processor

1: function GETDISJUNCTIVEBKNNS(k, q, ψ)
2: Create on-demand inverted heap Hi for each keyword ti ∈ ψ
3: Initialize minimum priority queue PQ and set Dk ←∞
4: Insert minimum lower-bound distance for each Hi into PQ
5: while !EMPTY(PQ) and MINKEY(PQ) < Dk do
6: Hs ← EXTRACT-MIN(PQ)
7: LB(q, c)← MINKEY(Hs) , c← EXTRACT-MIN(Hs)
8: Call LAZYREHEAP(Hs) to ensure Prop. 1 (see Section 6)
9: INSERT(PQ,[ts,MINKEY(Hs)])

10: if c not already evaluated then
11: Compute network distance d(q, c)
12: if d(q, c) < Dk then
13: INSERT(L, [c, d(q, c)]) and update L and Dk if needed
14: return L

query keywords ψ. In disjunctive queries reported objects contain
at least one keyword in ψ and in conjunctive queries reported
objects contain all keywords in ψ.

4.1.1 Disjunctive Boolean kNN Queries

Algorithm 1 begins by initializing an on-demand inverted heap
Hi for each keyword ti (line 2). Recall that the Heap Generator
ensures each heapHi satisfies Property 1. Thus we access objects
from each heap in order of minimum lower-bound distance from
q. Priority queue PQ is used to choose the heap with the
smallest minimum lower-bound distance. PQ is first initialized
by inserting the lower-bound distance of the top object in each
heap Hi (lines 3 and 4). The top element in PQ is extracted
(line 6) to identify the heap Hs whose top object has the smallest
lower-bound distance. Candidate object c is then extracted from
Hs (line 7) and LAZYREHEAP is called (line 8) to ensure Hs
continues to satisfy Property 1 (detailed in Section 6). c is ignored
if it has been extracted from another heap Hi, otherwise network
distance d(q, c) is computed (line 11). The set of best candidates L
seen so far is updated if c improves on it and Dk is also updated if
needed (line 13). Dk corresponds to the distance of the kth closest
object in L that satisfies the keyword criteria. An element for Hs
is re-inserted into PQ with its new minimum lower-bound after c
is extracted (line 9) to ensure PQ always chooses the heap whose
top element has the smallest lower-bound distance. The algorithm
terminates when PQ is empty or the next candidate object has a
lower-bound distance greater than or equal to Dk (line 5).

Example 1. Consider a disjunctive B1NN query from vertex q in
Figure 1 with query keywords “Thai” and “restaurant”. On-
demand inverted heaps are generated for each keyword, e.g.,
HThai={(o2, 1), (o6, 2)} and Hrest.={(o1, 2), (o6, 2)}.
Each heap’s minimum lower-bound is inserted into the prior-
ity queue, so PQ={(Thai, 1), (rest., 2)}. The top element
Thai from PQ is extracted, identifying HThai. Now the top
candidate object o2 is extracted from inverted heap HThai.
Naturally, o2 satisfies the disjunctive criteria, so its network
distance is computed, added to the result set L and Dk is
set to d(q, o2)=2. LAZYREHEAP is called to ensure HThai
satisfies Property 1, e.g., HThai={(o6, 2), (o7, 4)}. Thai is
reinserted into PQ with the minimum lower-bound inHThai,
so PQ={(Thai, 2), (rest., 2)}. L cannot be improved as
MINKEY(PQ) is equal to Dk and Algorithm 1 terminates.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

H1 H2 H3
Italian restaurant takeway

(o5,2.5)

(o1,2.7)

(o6,2.4)

(o5,2.5)

(o1,2.7)

(o8,1.8)

(o1,2.7)

Fig. 3: Computing Pseudo Lower-Bounds on Inverted Heaps

4.1.2 Conjunctive Boolean kNN Queries
A similar algorithm can be created for conjunctive BkNN queries.
We discuss it briefly due to space constraints (it is included in
our experiments). The basic idea is to only use the inverted heap
for the least frequent keyword as it has the fewest objects. As
candidate objects are retrieved, those without all keywords are
filtered, avoiding costly network distance computations.

4.2 Top-k Query Processing
We propose a novel top-k query algorithm to retrieve the k objects
with the best spatio-textual scores by Eq. (1). Our algorithm
computes the top-k objects by utilizing, for each inverted heap,
a pseudo lower-bound score on only some of the unseen objects in
the heap. The algorithm still computes correct results even though
the pseudo lower-bound score is not a valid lower-bound score
for all unseen objects in the heap. Next, we first describe how to
compute a valid lower-bound score on all unseen objects.
Valid Lower-Bound Score on All Unseen Objects: Consider
a top-k query for three keywords “Italian”, “restaurant”, and
“takeaway”. Let TRmax(ψ, P) be the maximum possible textual
relevance for query keywords ψ with any object in set P . For
simplicity, assume that textual similarity TR(ψ, o) is the number
of query keywords present in the object o, so TRmax(ψ, P) = 3
in this example. Figure 3 shows the three inverted heaps H1,
H2, and H3 created for this query with objects from our running
example in Figure 1. Since we do not know the textual similarity
of unseen objects in any heap Hi, a lower-bound score for all
unseen objects inHi can be computed using the maximum textual
similarity and minimum lower-bound distance in the heap as
STall(ψ,Hi) = MINKEY(Hi)

TRmax(ψ,P) . For example, the best possible

score for any unseen object in H1 is LB(q,o1)
3 = 2.7

3 = 0.9,
H2 is 2.4

3 = 0.8, and H3 is 1.8
3 = 0.6. But, as we explain next, it

is possible to obtain a pseudo lower-bound score tighter than this
without losing any top-k results.
A Key Insight: Heap H3 in Figure 3 has the smallest lower-
bound distance and its top element is object o8. Since the lower-
bound distance LB(q, o8) = 1.8 is smaller than the lower-bound
distance of H1 (i.e., LB(q, o1) = 2.7), this implies that either o8
has been extracted from H1 or o8 does not contain the keyword
“Italian”. For the same reason, o8 has either been extracted
from H2 or does not contain the keyword “restaurant”. In other
words, either o8 has already been processed by the algorithm (i.e.,
extracted from another heap) or o8 only contains the keyword
“takeaway”. Similarly for heap H2, top element o6 has either
been extracted from H1 or at best contains only the keywords
“restaurant” and “takeaway” (o6 may contain “takeaway” because
o6 may still be inH3 as it has a smaller top lower-bound distance).
Pseudo Lower-Bound Score: Using the insight above, we
compute a pseudo lower-bound score that is a lower-bound score

Algorithm 2 Compute Pseudo Lower-Bound Score for Hi
1: function PSEUDOLB(ψ,Hi)
2: TRp(ψ,Hi)← 0
3: for each keyword tj ∈ ψ do
4: if MINKEY(Hi)≥MINKEY(Hj) then
5: TRp(ψ,Hi)← TRp(ψ,Hi) + λtj ,ψ × λtj ,max
6: return STpLB(Hi)← MINKEY(Hi)

TRp(ψ,Hi)

on a subset of the objects in the inverted heap and hence is
tighter than the valid lower-bound score. Let MINKEY(Hj) be
the minimum lower-bound network distance for an element in
heap Hj . If Hj has become empty, MINKEY(Hj) is assumed
to be infinite. The pseudo lower-bound score for a heap Hi is
computed by assuming that every unseen object in Hi contains a
keyword tj only if MINKEY(Hi) ≥ MINKEY(Hj) where tj is
the query keyword associated with heapHj . We next describe the
algorithm to compute pseudo lower-bound scores.

Algorithm 2 computes the pseudo lower-bound score for
inverted heap Hi denoted by STpLB(Hi). First, it computes a
pseudo textual relevance TRp(ψ,Hi) following Eq. 3 by consid-
ering only the keywords that satisfy the condition described above
(lines 4-5). Note that we use the real maximum impact λtj ,max
of tj in any object, which can be cheaply computed offline for all
keywords. The pseudo lower-bound score is computed using the
pseudo textual relevance TRp(ψ,Hi) and then returned (line 6).

Example 2. Consider again the example in Figure 3. The pseudo
lower-bound score ofH2 is computed assuming that all unseen
objects inH2 can only include two keywords “restaurant” and
“takeaway”, i.e., TRp(ψ,H2) = 2 and STpLB(H2) = 2.4

2 =
1.2. Similarly, H3 includes only the keyword “takeaway” and
STpLB(H3) = 1.8

1 = 1.8. H1 includes all three keywords
and STpLB(H1) = 2.7

3 = 0.9. Note that pseudo lower-bound
scores are not valid lower-bound scores, e.g., the spatio-textual
score of o1 in H2 is d(q,o1)

TR(ψ,o1)
= 3

3 = 1 which is smaller than
the pseudo lower-bound STpLB(H2) = 1.2.

Next, we show how the Query Processor can use pseudo lower-
bounds to answer top-k queries instead of valid lower-bounds. We
then prove that it still computes correct results and elaborate on
why the pseudo lower-bound score is useful.

Query Processor: The top-k algorithm (Algorithm 3) is quite
similar to the algorithm for computing disjunctive BkNN queries.
The main difference is that pseudo lower-bound scores of heaps
are used in PQ (see line 4) to access the heap with the best
candidate object. If the extracted candidate object c has not already
been processed, a lower-bound score is cheaply computed using
its actual textual relevance and lower-bound network distance
(line 10), i.e., LB(q,c)

TR(ψ,c) . If this lower-bound score is smaller than
Dk, then its actual score is computed using its exact network
distance d(q, c) (lines 11 and 12). If its actual score is smaller than
Dk, the result list L and Dk are updated accordingly (line 14).
The algorithm terminates when PQ is empty or the top of PQ,
representing the smallest pseudo lower-bound score of any heap,
is greater than or equal to Dk as L can no longer be improved.

Example 3. Consider a top-1 query for our running example in
Figure 1 and Figure 3 with keywords “Italian”, “restaurant”,
and “takeaway”. If the heaps are accessed considering the
actual lower-bounds, o1 (which is the result) will be the last
accessed object. However, our algorithm accesses the heaps

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

based on their pseudo lower-bound scores and H1 has smaller
pseudo lower-bound scores than the other two heaps (as seen in
Example 2). ThusH1 is accessed first. So Algorithm 3 extracts
candidate o1, computes its spatio-textual score d(q,o1)

TR(ψ,o1)
= 1,

re-inserts an element into PQ for H1 with its new MINKEY
(i.e., infinity as H1 is now empty). After updating the result
set with o1, the algorithm then terminates because the next
best pseudo lower-bound score in PQ is STpLB(H2) = 1.2
which is higher than the score of the current top-1 object o1.

Implementation Notes: While the same candidate may be ex-
tracted from multiple heaps (i.e., when associated with multiple
query keywords), these can be ignored by using a hash-table or bit-
array to track evaluated candidates. In any case, this only entails
a small query overhead as the lower-bound computation is cheap
and the heap only contains a small number of objects (due to being
lazily populated) resulting in a small update cost. Also note that
query impacts λt,ψ need only be computed once for the query and
TR(ψ, c) need only be computed once for each candidate.

Benefits of Pseudo Lower-Bound Scores: We propose Lemma 1
to show that a pseudo lower-bound score is never worse than the
valid lower-bound score for all unseen objects.

Lemma 1. For any heap Hi, the pseudo lower-bound is always
greater than or equal to the valid lower-bound for all unseen
objects in Hi, i.e., STpLB(ψ,Hi) ≥ STall(ψ,Hi).

Proof: Since STpLB(ψ,Hi) = MINKEY(Hi)
TRp(ψ,Hi) and

STall(ψ,Hi) = MINKEY(Hi)
TRmax(ψ,P) , it suffices to show that

TRp(ψ,Hi) ≤ TRmax(ψ, P). The maximum possible tex-
tual relevance for any object in set P can be computed by
TRmax(ψ, P) =

∑
t∈ψ λt,ψ × λt,max where λt,max is max-

imum impact of keyword t in any object. By Algorithm 2, we
have TRp(ψ,Hi) =

∑
tj∈ψ λtj ,ψ × λtj ,max[MINKEY(Hi) ≥

MINKEY(Hj)] where tj is the keyword associated with heapHj .
Clearly the maximum value of TRp(ψ,Hi) is TRmax(ψ, P),
occurring when condition [MINKEY(Hi) ≥ MINKEY(Hj)]
evaluates to true for all heaps Hj . Thus TRp(ψ,Hi) ≤
TRmax(ψ, P), thereby completing the proof.

From Lemma 1, it can be seen that the textual rele-
vance used for a pseudo lower-bound depends on the condition
[MINKEY(Hi) ≥ MINKEY(Hj)] over all j. This condition is
likely to result in decreasing textual relevance for each subsequent
heap in descending order of their MINKEY values. This entails
increasing pseudo lower-bounds, which in turn allows Algorithm
3 to avoid accessing heaps and terminate sooner. Conversely, the
pseudo lower-bound assigns higher textual relevance to larger
MINKEY values. This allows Algorithm 3 to access more promis-
ing candidates, e.g., those that are far from q but contain all
keywords and have high textual relevance. Furthermore, K-SPIN
is likely to filter out any bad candidates using their actual textual
relevance without computing expensive network distances. Pseudo
lower-bounds can be applied to any textual model that computes
similarity per query keyword, as many popular methods do,
including language models, TF×IDF, and BM25.

Proof of Correctness: As stated earlier, pseudo lower-bound
scores are not valid lower-bounds, e.g., STpLB(H2) = 1.2 is
higher than the score of o1 (1) which is also present in H2. While
it may seem like this can lead to missing objects, the algorithm
still produces correct results, e.g, because o1 is also present in

Algorithm 3 Top-k Query Processor

1: function GETTOPKOBJECTS(q, k, ψ)
2: Create on-demand inverted heap Hi for each keyword ti ∈ ψ
3: Initialize minimum priority queue PQ and set Dk ←∞
4: Insert pseudo lower-bound score for each Hi into PQ
5: while !EMPTY(PQ) and TOP(PQ) < Dk do
6: n← EXTRACT-MIN(PQ)
7: LB(q, c)← MINKEY(Hn) , c← EXTRACT-MIN(Hn)
8: LAZYREHEAP(Hn)
9: INSERT(PQ,[n,PSEUDOLB(ψ,Hn)])

10: if c not already processed or LB(q,c)
TR(ψ,c)

≤ Dk then
11: Compute network distance d(q, c)
12: ST (q, c)← d(q,c)

TR(ψ,c)
. Compute actual score

13: if ST (q, c) < Dk then
14: INSERT(L, (c, ST (q, c))), update L and Dk if needed
15: return L

H1 and its score cannot be better than STpLB(H1). We propose
Lemma 2 to express this formally.
Lemma 2. When Algorithm 3 terminates, every object o that has

not been seen has ST (q, o) ≥ Dk.

Proof: The algorithm terminates when TOP(PQ) ≥ Dk.
This implies that, for every heap Hi, STpLB(Hi) ≥ Dk when
the algorithm terminates. Let Hmax be the heap with the largest
MINKEY. Next, we show that ST (q, o) ≥ STpLB(Hmax) which
implies that ST (q, o) ≥ Dk for every unseen object o.

Recall that ST (q, o) = d(q,o)
TR(ψ,o) and STpLB(Hmax) =

MINKEY(Hmax)
TRp(ψ,Hmax) . Since Hmax is the heap with the largest
MINKEY, Algorithm 2 (lines 4-5) computes TRp(ψ,Hmax)
assuming it contains all query keywords. Therefore, TR(ψ, o) ≤
TRp(ψ,Hmax). Furthermore, since o has not been seen by
Algorithm 3, LB(q, o) ≥ MINKEY(Hmax) otherwise it would
have been extracted from at least one heap Hi. Thus, d(q, o) ≥
MINKEY(Hmax). Hence, ST (q, o) ≥ STpLB(Hmax).

5 HEAP GENERATOR MODULE

A Heap Generator creates an on-demand inverted heap for query
keyword t. This inverted heap satisfies Property 1, i.e., allows
access to objects containing keyword t in ascending order of their
lower-bound network distances from query location q. A simple
approach to ensure Property 1 is to insert all objects from the
inverted list of t (i.e., inv(t)) in the heap with their lower-bound
distances. However this is not feasible as it would be required for
every query. In this section we describe a Heap Generator based
on the Network Voronoi Diagram (NVD) [18] that instead allows
inverted heaps to be populated lazily. However NVDs possess high
pre-processing costs, which we describe below before proposing a
solution (with low pre-processing cost) in Section 6.

Network Voronoi Diagrams: Given a set of objects inv(t)
containing keyword t, an NVD is a disjoint partitioning of the
road network vertices V for each object in inv(t). A partition for
object oi is the Voronoi node set V ns(oi) ⊆ V which contains
every vertex for which oi is its closest object by network distance.
After computing all Voronoi node sets, the NVD stores the nearest
object oi for every vertex in V .

Figure 4(a) shows the NVD for the set of objects containing
keyword “Thai” from our running example. The shaded containers
indicate the vertices belonging to each Voronoi node set. Note that

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

o5o2

o7q
o6

(a) NVD for “Thai” in Fig. 1

o5o2

o7
q

o6

(b) Adjacency Graph for Fig. 4(a)

Fig. 4: Example Network Voronoi Diagram

the NVD does not depend on the query vertex q. Two Voronoi node
sets V ns(oi) and V ns(oj) are considered adjacent, if there is an
edge (u, v) ∈ E connecting u ∈ V ns(oi) and v ∈ V ns(oj). For
simplicity, we also say that oi and oj are adjacent. So, in Figure
4(a), o2 and o5 are adjacent as there is an graph edge connecting
the shaded containers. Similarly, o2 and o6 are also adjacent.

NVD-Based kNN Algorithms [16], [18]: The 1NN of a query
vertex can be found using an NVD as it stores the nearest object
oi for each vertex, e.g., o2 is the 1NN of q in Figure 4(b) as q is in
its Voronoi node set (shaded container). Kolahdouzan et al. [18]
presented a useful property to find kNNs.

Property 2. k-th nearest object of q must be an object adjacent (in
the NVD) to the first k−1 nearest objects of q.

For example, the 2nd NN of q must be among the objects
adjacent to o2 (i.e., o5 and o6). This is because the shortest path
from q to the 2nd NN must leave V ns(o2) and enter one of the
adjacent Voronoi node sets. Existing techniques [16], [18] exploit
this property to incrementally answer kNN queries.

Heap Generation via NVD: Property 2 can also be used to create
and lazily maintain an on-demand inverted heap for any keyword
t. Specifically, a heap can be initialized by inserting 1NN of q
obtained from the NVD. Then, whenever an object o is extracted,
the adjacent objects of o in the NVD are inserted into the heap
with their lower-bound network distances.

When an NVD is computed, we also create an adjacency graph
representing the relationships between objects that are adjacent to
each other. Each node in the adjacency graph is an object oi and
an edge between two nodes oi and oj is created if oi and oj are
adjacent in the NVD. Figure 4(b) shows an adjacency graph for
the NVD shown in Figure 4(a).

Algorithm 4 describes how to maintain an inverted heap H.
After the heap is initialized with the 1NN as described earlier,
LAZYREHEAP is called whenever an object oc is extracted from
H. Then the adjacent objects of oc that were not previously
inserted are now inserted in H with their lower-bound network
distances using the NVD’s adjacency graph.

Limitations: While NVDs allow efficient creation and mainte-
nance of on-demand inverted heaps, it comes at the expense
of higher pre-processing cost. This is exacerbated by building
an NVD for each keyword t. An NVD takes O(|V |log|V |)
time and O(|V |) space [19] and building one for each keyword
multiplies them by |W |. For example, |V | is 24 million and |W | is
106, 000 for the US road network dataset and, even with existing
optimizations, the resulting index takes 3-days to be build and
occupies 90GB of memory! Updating NVDs when an object is
added/deleted or changed also comes at a sizable cost. Next, we
make several important observations and propose a space-efficient
NVD with significantly reduced pre-processing and update cost.

Algorithm 4 Heap Maintenance Algorithm

1: function LAZYREHEAP(H, q, oc)
2: for each oa adjacent to oc in adjacency graph do
3: if oa has not been inserted into H then
4: Compute lower-bound network distance LB(q, oa)
5: H.INSERT(oa, LB(q, oa))
6: Mark oa as “inserted” into H

5.1 Query Processor Complexity

Based on this heap generator module, we may now derive expres-
sions for query time. We perform our analysis for BkNN queries,
but similar analysis can be performed for top-k queries. For a
BkNN query, let us say the loop in Algorithm 1 runs for κ ≥ k it-
erations. The value of κ depends on the efficiency of the candidate
generation heuristic. The inverted heap H contains at most |O|
objects, thus extracting from a binary heap implementation takes
O(log |O|) time. For an NVD graph with maximum degree ∆,
LAZYREHEAP computes a lower-bound for each adjacent object
and inserts them into heap H at cost O(log |O|). Using the ALT
index to compute a lower-bound takes O(m) time where m is
a small constant (typically 16) and in practice ∆ is also a small
constant both in our experiments and past studies [18]. Lastly,
a single network distance computation is performed per iteration
with time, denoted by O(NDIST), depending on the technique
used. This operation tends to dominate the iteration’s cost, e.g., a
Contraction Hierarchies query takes O(log2 n log2D) time [20].
So the total query time is O(κm∆ log |O| + κNDIST) for a
BkNN query. Top-k queries have an additional small constant
time cost per iteration to compute textual relevance. The smallest
possible value of κ is k for a perfect heuristic and in practice κ is
a small constant multiple of k, at most 3k for BkNN and 5k for
top-k queries over all settings in our experiments.

6 KEYWORD SEPARATED INDEX

Keyword separation has led to the higher pre-processing cost
described above, but a remedy can also be found in keyword
separation. Inspired by several simple but smart observations,
we propose a novel space-efficient NVD. The resulting Keyword
Separated Index is not only viable but also light-weight.

Observation 1: Most keywords have small inverted lists and
this is consistent for any Zipfian dataset. Keywords in real-world
datasets are known to follow Zipf’s law [2]. Let frequency ft be
the size of a keyword t’s inverted list and rt be the rank of t by its
frequency in corpus W . Zipf’s law states ft ∝ 1

rtα
with α ≈ 1.

In simple terms, classic Zipf’s law suggests keyword t with rank
rt occurs 1

rt
as often as the most frequent keyword.

We can predict the frequency of any keyword using the
theoretical basis of Zipf’s law. For example, we can predict that
80% of keywords have a frequency of fmax

0.2|W | or less, where fmax
is the maximum frequency of a keyword and |W | is the number
of keywords. This predicted 80-th percentile frequency is less than
or equal to 5 for all datasets listed in Table 2 and closely matches
the real values. On reflection, this is not surprising as Zipifian
distributions follow a harmonic progression, i.e., are “long-tailed".

K-SPIN can exploit this observation to avoid creating indexes
for a vast majority of keywords while only paying a small penalty
in query performance. If the number of objects in the inverted
list inv(t) of keyword t is at most a small constant ρ, we do
not create an NVD at all. For queries involving such keywords,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

(a) 4-approximate Quadtree (b) Region Quadtree (shown to depth 4)

Fig. 5: ρ-Approximate Network Voronoi Diagram

we simply need to initialize the inverted heap with all objects in
inv(t), which is at worst only ρ objects and in K-SPIN only costs
a cheap lower-bound computation anyway. Using ρ = 5, indexes
for over 80% of keywords are avoided, substantially reducing pre-
processing cost. Moreover, given the long tail Zipfian distributions,
such a ρ will scale slowly for increasing keyword dataset size.

Observation 2a: While the size of an NVD is O(|V |), the
adjacency graph takes O(|inv(t)|) space where |inv(t)| ≤ |V |
is the total number of objects containing keyword t. In general,
the average degree in NVD adjacency graphs is a small constant,
e.g., 6 as shown in [18] over several real-world road networks.
Therefore, the adjacency graph’s size is linear to the number of
objects and is independent of |V |. In short, we only need the small
adjacency graph to maintain the heap and not the NVD which is
the bottleneck for space usage.

Observation 2b: K-SPIN does not actually require an NVD to
provide the exact 1NN of q when initializing an inverted heap. The
heap would still satisfy Property 1 if we initialize it with ρ ≥ 1
candidate objects as long as the 1NN of q is among the ρ objects,
as proven in Theorem 1.

Theorem 1. An inverted heap H initialized as above and main-
tained by Algorithm 4 satisfies Property 1. Specifically, let
oc be the current top object in H with lower-bound network
distance LB(q, oc). Every object ox that is not yet extracted
from H has network distance d(q, ox) ≥ LB(q, oc).

Proof: We prove Theorem 1 for each possible case:
At Initialization: Let o1 be the 1NN of q. At initialization, the
heap contains up to ρ objects including o1. Since o1 is the 1NN,
d(q, o1) ≤ d(q, ox). And since o1 is in the heap, it is obvious that
LB(q, oc) ≤ LB(q, o1) ≤ d(q, o1) ≤ d(q, ox) (note that o1 and
oc could be the same object).
General Case: If ox is in the heap then clearly we have
LB(q, oc) ≤ LB(q, ox) ≤ d(q, ox). If ox is not in the heap, this
means ox is not adjacent to any object that has been extracted from
H (or it would have been inserted it into the heap by Algorithm
4). Therefore, as observed in [18], there exists at least one object
oy in the heap such that d(q, oy) ≤ d(q, ox). Since oc is the top
object in the heap we must have LB(q, oc) ≤ LB(q, oy), which
implies LB(q, oc) ≤ LB(q, oy) ≤ d(q, oy) ≤ d(q, ox).

Observation 3: Separated indexing means that building NVDs
are independent operations. As an added benefit of the K-SPIN
framework, NVD construction can be easily parallelized on all
available cores to further reduce the construction time.

6.1 ρ-Approximate Network Voronoi Diagram

Observations 2a and 2b suggest that an exact NVD is not nec-
essary to initialize or maintain inverted heaps. We propose the
ρ-Approximate NVD, defined below, to take advantage of these
observations while significantly reducing index size. Furthermore,
due to the nature of K-SPIN, it still returns exact query results.

Definition 1. A ρ-Approximate Network Voronoi Diagram allows
retrieving, for every vertex v ∈ V , up to ρ objects such that
one of these ρ objects is the 1NN of v.

Constructing ρ-Approximate NVDs: We first compute an exact
NVD inO(|V | log |V |) time if there more than ρ objects. We then
store a ρ-Approximate NVD in a quadtree as follows. The root
node of the quadtree is a minimum bounding box of all vertices
in the road network. Each node is recursively divided into four
children until all the vertices contained in the node belong to at
most ρ different Voronoi node sets. To simplify the explanation,
assume that each object o ∈ O has a unique color and an NVD
is represented by assigning each vertex v ∈ V the same color as
the color of its nearest object (see Figure 5). The ρ-Approximate
quadtree continues dividing nodes into four children until the
node contains at most ρ different colors. Figure 5(a) shows a 4-
Approximate NVD indexed using a quadtree. After each iteration
only the ρ-Approximate NVD is kept (the exact NVD is not kept).
If there are fewer than ρ objects, the exact NVD does not need to
be computed at all, which is quite beneficial as per Observation 1.

The ρ-Approximate NVD indexed using a quadtree signifi-
cantly reduces space usage compared to an exact NVD indexed
using standard techniques such as a region quadtree. By relaxing
the need to distinguish the boundaries of different Voronoi node
sets, the ρ-Approximate NVD is able to reduce the height of the
required quadtree as shown in Figure 5(a). On the other hand, an
exact NVD’s region quadtree continues dividing nodes into four
children until the node contains exactly one color, i.e., ρ = 1. This
results in a deeper tree and hence significantly higher space usage.
For example, in Figure 5(b) the exact NVD’s region quadtree is
shown only up to a depth of 4 and there are still quite a few nodes
that contain more than 1 color. Voronoi node sets exhibit spatial
coherence [21], forming largely contiguous regions. This property
combined with Observation 2a, the number of adjacent Voronoi
node sets being a small constant, suggest ρ-Approximate NVDs
will be quite effective even for small values of ρ.

Experimental Index Size and Time: Figure 6(a) shows the effect
of ρ from 1 to 11 on pre-processing of the Florida road network
with 1 million vertices. Observation 2a+b result in an index that
is 18 times smaller for ρ = 5 than exact NVDs indexed by region
quadtrees (i.e., ρ = 1) as shown in the bar plots (refer to the
left-hand y-scale). The effect of Observation 1 is seen in the index
time line plot (refer to the right-hand y-scale), with a substantial
reduction in construction time with increasing ρ. Florida is used
as exact indexes (ρ=1) cannot be constructed on larger datasets.

Heap Initialization and Query Penalty Guarantee: The penalty
paid for the approximation is during the heap initialization, when a
point location query is issued on a ρ-Approximate NVD quadtree
to find the cell containing q. Since the cell contains at most ρ
colors, the Heap Generator computes the lower-bound network
distances to at most ρ objects (the 1NN is among them) and
inserts these in the heap. In the worst-case, when lower-bounds
of the ρ− 1 objects are smaller than the lower-bound of the 1NN,
the algorithm needs to compute network distances to these ρ − 1

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

101

102

103

 1 3 5 7 9 11
 0

 25

 50

 75

 100
In

de
x

S
iz

e
(M

B
)

C
on

st
ru

ct
io

n
T

im
e

(s
)

ρ

Size
Time

(a) ρ vs. Pre-Processing

100

101

102

103

 1 5 10 25 50

Q
ue

ry
 T

im
e

(µ
s)

of Results (k)

ρ=1
ρ=3
ρ=5

ρ=7
ρ=9

ρ=11

(b) ρ vs. Top-k Query Time

10-1

100

101

102

103

104 105 106

In
de

x
S

iz
e

(M
B

)

of Keyword Occurences

R-tree
ρ-Quadtree (ρ=5)

(c) R-trees vs. ρ-Quadtrees

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16
 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

E
ffi

ci
en

cy

C
on

st
ru

ct
io

n
T

im
e

(s
)

of Cores

Efficiency
Time

(d) Effect of Parallelization

Fig. 6: ρ-Approximate NVD Performance on Florida Road Network (# of terms=2, k=10)

objects. Thus, the worst-case penalty is ρ − 1 network distance
computations. However in practice, these (at most) ρ − 1 objects
are very likely to be adjacent objects to 1NN of q and thus would
normally be evaluated as candidates anyway. This is verified in
Figure 6(b) as query time does not vary for different ρ.

Space Complexity Theory vs. Practice: Approximate NVDs
can alternatively be stored in R-trees. In this case, the leaf nodes
of the R-tree contain the Minimum-Bounding Rectangle (MBRs)
covering each Voronoi node set. However, R-trees cannot provide
the ρ guarantee on the number of 1NN candidates as more than
ρ MBRs may overlap and contain the query vertex q. On the
other hand, R-trees can provide a worst-case space complexity.
If |inv(t)| is the number of objects indexed by the NVD for
keyword t then there will be |inv(t)| such MBRs, so the total
space complexity for all keywords is O(

∑
t∈W |inv(t)|). In

other words, the space is linear in the total number of keyword
occurrences, which is the space cost of the input keyword dataset.

Figure 6(c) shows the comparison of index size for a number
of real-world road network datasets (Table 2), with the number of
keyword occurrences increasing from left to right. As expected,
the index size of Approximate NVDs stored in R-trees increases
linearly with the number of keyword occurrences. Remarkably,
storing in quadtrees also displays comparable and linearly increas-
ing index size. While it remains to be seen whether quadtrees
also theoretically take space linear in the number of keyword
occurrences (the input), we see that this is true in practice on
real datasets. So R-trees provide a worst-case guarantee on index
size, while ρ-Approximate NVDs stored in quadtrees provide a
guarantee on the number of 1NN candidates. Given the candidate
guarantee, slightly faster construction and flexibility offered by ρ,
we choose quadtrees in our experiments and represent them as
Morton lists [22] which display better locality of reference.

Parallelized NVD Construction: Figure 6(d) exhibits significant
speed-up using multi-core processing, with NVD construction
time reduced by a factor of 12.5 with 16-cores. Efficiency (T1

p∗Tp
where Tp is the time for p cores) barely drops below 80%,
suggesting serial parts of NVD construction are not significant and
corroborating Observation 3. We parallelize NVD construction
over all available cores in subsquent experiments.

6.2 Handling Updates

Our ρ-Approximate NVD index (called APX-NVD hereafter) can
handle various types of object and keyword updates. Both insertion
and deletion of either objects or keywords are ultimately handled
in the same way, i.e., by adding/deleting objects to/from the APX-
NVD of the affected keyword(s). For example, to incorporate a
new object o with keyword set ψ, o is added to the NVD of
each keyword t ∈ ψ. Similarly, adding/deleting a keyword t
to/from an existing object o involves adding/deleting o to/from

o4o1

o3

q

o2

o5

(a) o2, o3, and o4 are affected

o4o1

o3

q

o2

o5

o5

o5

(b) Adjacency Graph after insertion

Fig. 7: Updating APX-NVD after inserting o5

the NVD for t. In this section we present techniques to support
these basic operations efficiently using lazy updates. Generally
adding/deleting an object involves full or part re-computation of
the NVD, which is a relatively expensive operation, e.g., requiring
up to 1 second per NVD on the Florida dataset. We delay this re-
computation by allowing a certain threshold of lazy updates to the
APX-NVD while still supporting exact querying and amortizing
the re-computation cost over multiple updates.

Object Deletion: Deleting object o from an APX-NVD is handled
simply by marking o as deleted. If an extracted object is marked
as deleted, the Heap Generator does not return it to the Query
Processor. Its adjacent objects are still added to the heap as usual.

Object Insertion: Inserting an object o is more complicated and
requires knowing the objects that might be affected by inserting
o. We define affected set A(o) as the objects whose Voronoi node
sets may change when o is added to the NVD.

A previous study [18] reported that the affected set of o
consists of the 1NN and its adjacent objects. However, we observe
that this is not correct. Consider the example of Figure 7(a) where
a new object o5 is added. The shaded containers show the Voronoi
node sets of the objects before o5 is inserted. The 1NN of o5 is the
object o3 and the only adjacent object of o3 is o2. However, the
newly inserted object o5 will become the 1NN of vertex q, which
means the Voronoi node set of o4 is also affected even though it
is not an adjacent object of o3 (the 1NN of the newly inserted
object). In the example, the Voronoi node sets of objects o2, o3,
and o4 are affected by the insertion of o5. We now describe how
to determine a correct affected set of inserted object o.

Let MaxRadius(p) of an object p be the maximum network
distance between p and a vertex v in its Voronoi node set,
i.e., MaxRadius(p) = arg maxv∈V ns(p) d(p, v). Theorem 2
identifies a condition to construct the affected set.

Theorem 2. An object p is not in the affected set A(o) of o if
d(o, p) ≥ 2×MaxRadius(p).

Proof: We prove this by contradiction. Assume there exists
a vertex v ∈ V ns(p) for which o is the new 1NN. Since d(o, p) ≥
2 ×MaxRadius(p) and d(p, v) ≤ MaxRadius(p), we have
d(o, p) ≥ 2 × d(p, v). Subtracting d(p, v) on both sides gives,
d(o, p) − d(p, v) ≥ d(p, v). By triangular inequality, d(o, p) −
d(p, v) ≤ d(v, o). Therefore, d(v, o) ≥ d(p, v) and o cannot be
the 1NN of v which contradicts the assumption.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

100

101

102

103

0% 1% 2% 3% 4% 5%

Q
ue

ry
 T

im
e

(µ
s)

Update Density (%)

Small NVD
Medium NVD

Large NVD

(a) Query Time

10-2

10-1

100

101

102

103

104

1% 2% 3% 4% 5%

R
un

ni
ng

 T
im

e
(m

s)

Update Density (%)

S-NVD Insert
M-NVD Insert
L-NVD Insert

S-NVD Rebuild
M-NVD Rebuild
L-NVD Rebuild

(b) Update Time

Fig. 8: Handling Updates on Florida Road Network

This theorem is used to compute the affected set of o as
follows. First, we find the 1NN p of o and initialize the affected
set A(o) with p. Then, we conduct a breadth-first search (BFS)
on the adjacency graph from p. For any expanded object oe, if it
satisfies the condition in Theorem 2, it is pruned (i.e., the BFS is
not expanded from oe). Otherwise, it is included in the affected
set. Note thatA(o) may contain some objects that are not affected,
but this does not affect correctness.

MaxRadius(p) for every object p can be computed essen-
tially for free during NVD construction. Storing these values incur
a small storage overhead linear to the input O(|inv(t)|) (the size
of the inverted list for the indexed keyword t). Also d(o, p) can
be conveniently computed using the Network Distance Module
already available in the K-SPIN framework.

Once the affected set is computed, we perform lazy insertion
of object o. Rather than inserting o into the quadtree, we insert o
in the adjacency graph. Specifically, we add o to the node of each
object in its affected set. For the example of Figure 7, we add o5
to the nodes of o2, o3, and o4 as shown in Figure 7(b). The nodes
of the adjacency graphs are now assumed to contain one or more
objects, e.g., the Heap Generator initializes the heap by inserting
the 1NN of q and all the objects stored in the node. In the example,
q is located in the Voronoi node set of o4. Since o5 was also added
to the node of o4, the heap is initialized with both o4 and o5.

Figure 8 shows the effect of our proposed techniques to handle
updates. Specifically, we chose three keywords distributed in the
lower, middle and higher thirds of the frequency distributions and
the corresponding APX-NVDs are called large, medium and small,
respectively. For each NVD, we inserted x% of the total objects
in it using lazy updates and studied the effect of lazy updates
on the query processing time in Figure 8(a). As expected the
processing time has increased but the results are still impressive.
In Figure 8(b), we report the average time per insertion as well
as the total time to rebuild the NVD after the lazy updates. The
lazy update cost is only 1ms even when 5% objects are inserted in
the large NVD and the cost to rebuild NVDs is under one second.
Lazy updates allow the system to continue processing of incoming
queries while a new APX-NVD may be built in parallel.

Non-NVD Updates: It is possible that an NVD does not exist
when inserting an object or adding a keyword to an existing object.
This may occur when a keyword is new, or there are fewer than ρ
objects in a keyword’s inverted list. However, we do not need to
construct a new APX-NVD until there are at least ρ objects plus
the additional threshold for lazy updates. For deletion, however, if
an APX-NVD is no longer required because there are fewer than
ρ objects, then NVD updates are unnecessary, and the objects only
need to be removed from the inverted list. Handling updates in the
road networks (e.g., a new edge, or a deleted edge) is much more
complicated and may invalidate NVDs as well as the network
distance module. This is challenging for all existing techniques

Region |V | |E| |O| |doc(V)| |W |
DE 48,812 119,004 2,369 9,539 2,103
ME 187,315 412,352 7,827 38,590 5,289
FL 1,070,376 2,687,902 48,560 265,769 17,628
E 3,598,623 8,708,058 111,085 725,944 33084

US 23,947,347 57,708,624 688,918 3,517,112 106,559

TABLE 2: Road Network Graphs and Keyword Datasets

Parameter Values
Road Networks DE, ME, FL, E, US

No. of Results (k) 1, 5, 10, 25, 50
No. of Terms 1, 2, 3, 4, 5, 6

TABLE 3: Experimental Parameters (Defaults in Bold)

including shortest path algorithms and requires further research.
We remark that such updates occur less frequently.

6.3 Improved Pre-Processing Scalability
The ideas proposed in Sections 6.1 and 6.2 combine in a elegant
way to address the pre-processing woes described in Section 5.
Utilizing ρ-Approximate NVDs instead of exact NVDs reduce the
space requirement by more than an order of magnitude. Exploiting
the Zipfian nature of keywords to eliminate keyword indexes for a
vast majority of them substantially reduces the construction time.
For example, the 90GB index size and 3-day build time for exact
NVDs for the US road network dataset is reduced dramatically
to 584MB and 1.5 hours, respectively. Additionally, updating
approximate NVDs for changes to objects is considerably cheaper.
Finally, these benefits incur only a small bounded penalty in query
performance while still returning exact results.

7 EXPERIMENT RESULTS

7.1 Experimental Setting

Competing Methods: We compare three variants of K-SPIN.
All variants use our ρ-Approximate Network Voronoi Diagram
(Section 6.1) for the Keyword Separated Index and the ALT index
[15] for the Lower Bounding Module. ALT computes lower-bound
network distances between any two vertices using pre-computed
distances to “landmark” vertices and the triangle inequality. The
variants differ in their Network Distance Module. KS-CH employs
Contraction Hierarchies (CH) [10], KS-GT uses G-tree [4] and
KS-PHL utilizes Pruned Highway Labeling (PHL) [11]. Each
index offers a different trade-off between pre-processing cost and
query performance. Generally speaking, PHL offers fast queries at
the expense of high space cost, while CH offers considerably less
space cost but relatively slower queries.

K-SPIN answers both top-k and BkNN queries (Section 4)
and returns exact results. We compare with state-of-the-art top-k
techniques ROAD [3] and G-tree [4], and BkNN technique FS-
FBS [2]. We also adapt G-tree to answer BkNN queries. We
exclude network expansion methods as past results [2] (that we
verified) showed them to be orders of magnitude slower. Note that
G-tree can also answer network distance queries.

We obtained code for G-tree and ROAD from [23]. We modi-
fied it for spatial keywords and implemented the query algorithms.
The code for PHL and FS-FBS was obtained from the authors.
The parameters for the G-tree, FS-FBS and ROAD indexes were
chosen as in past studies [2], [4], [12] for best query performance
with practicable index construction.
Environment: We conduct experiments on a Linux (64-bit)
dedicated Amazon Web Services c4.8xlarge instance with two

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

101

102

103

104

105

 1 5 10 25 50

Q
ue

ry
 T

im
e

(µ
s)

of Results (k)

KS-PHL
KS-CH

ROAD
Gtree

(a) Varying k

101

102

103

104

105

 1 2 3 4 5 6

Q
ue

ry
 T

im
e

(µ
s)

of Keywords

KS-PHL
KS-CH

ROAD
Gtree

(b) Varying # of Keywords

Fig. 9: Top-k Queries (US,# of terms=2, k=10)

100

101

102

103

104

 1 5 10 25 50

Q
ue

ry
 T

im
e

(µ
s)

of Results (k)

KS-PHL
KS-CH

Gtree

(a) Varying k

100

101

102

103

104

 1 2 3 4 5 6

Q
ue

ry
 T

im
e

(µ
s)

of Keywords

KS-PHL
KS-CH

Gtree

(b) Varying # of Keywords

Fig. 10: Disjunctive BkNN (US,# of terms=2,k=10)

101

102

103

104

105

 1 5 10 25 50

Q
ue

ry
 T

im
e

(µ
s)

of Results (k)

KS-PHL
KS-CH

Gtree

(a) Varying k

101

102

103

104

105

 1 2 3 4 5 6

Q
ue

ry
 T

im
e

(µ
s)

of Keywords

KS-PHL
KS-CH

Gtree

(b) Varying # of Keywords

Fig. 11: Conjunctive BkNN (US,# of terms=2,k=10)

101

102

103

104

DE ME FLA E USA

Q
ue

ry
 T

im
e

(µ
s)

Road Network

KS-PHL
KS-CH

ROAD
Gtree

(a) Top-k

100

101

102

103

104

DE ME FLA E USA

Q
ue

ry
 T

im
e

(µ
s)

Road Network

KS-PHL
KS-CH

Gtree
FSFBS

(b) BkNN (Disjunctive)

Fig. 12: Varying Road Network (# of terms=2, k=10)

101

102

103

104

0.00001 0.0001 0.001 0.01

Q
ue

ry
 T

im
e

(µ
s)

Keyword Density

KS-PHL
KS-CH

Gtree

Fig. 13: Varying Frequency
BkNN (US,# of terms=1, k=10)

100

101

102

103

104

105

DE ME FL E US

In
d

e
x
 S

iz
e
 (

M
B

)

Input
KS-PHL

KS-GT
KS-CH

Gtree
ROAD

FSFBS

(a) Index Size

10-1

100

101

102

103

104

105

DE ME FL E US
C

o
n
st

ru
ct

io
n
 T

im
e
 (

s)

KS-PHL
KS-GT

KS-CH
Gtree

ROAD
FSFBS

(b) Construction Time

Fig. 14: Index Pre-Processing Time and Space

Intel Xeon E5-2666v3 2.9GHz 10-core CPUs and 60GB DDR4-
1866 memory. Code was written in C++ and compiled by g++
v5.4 with O3 flag. Query algorithms use a single thread. All
experiments were conducted using memory-resident indexes. This
setting is preferred given the high query throughput demands and
viable given the affordability of RAM. This was very apparent
when a disk-based variant of FS-FBS performed slower than
Dijkstra’s algorithm using only the input graph in memory [2].
Datasets: We used five real-world road network graphs as listed
in Table 2. The DE (Delaware), ME (Maine), FL (Florida), E
(Eastern United States), and US (United States) datasets were
created for the 9th DIMACS Challenge [24] and used widely in
recent studies [4], [23]. We extracted points of interest (POIs) and
their descriptors from OpenStreetMap (OSM) [25]. Each POI was
mapped to the closest road network vertex and keywords were
extracted from its descriptors. Table 2 lists the statistics for the
keyword dataset of each road network, where |O| is the number
of object vertices (POIs), |W | is the number of unique keywords,
and |doc(V)| is the number of keyword occurrences in all objects.
Query Parameters: We investigate the effect of varying (a)
number of results k, (b) number query keywords, (c) dataset
size, and (d) keyword frequency. Table 3 lists the parameter
values with defaults in bold. We create a set of query keyword
vectors by first choosing several popular search terms including
“hotel”, “restaurant”, “supermarket”, “bank”, and “school”. For
each term, we select an object o that contains the keyword. We
select further keywords associated with o to create query keyword
vectors of length 1 to 6. This ensures that combinations of query
keywords are correlated because they exist for a real-world object

and is similar to the process used in a recent spatial keyword
experimental study [8]. We repeat this until we have selected 10
objects for each of the five terms, generating a total 50 vectors for
each length. Each vector is combined with 100 uniformly selected
query vertices for a total of 5,000 queries over which we report the
average query time. The query time for K-SPIN includes creation
and maintenance of the on-demand inverted heaps.

7.2 Query Performance

Top-k Queries: For increasing k (Figure 9(a)) and numbers of
query keywords (Figure 9(b)) on the US dataset, both K-SPIN
methods significantly outperform the next best competitor by at
least several times on all settings. KS-PHL, in particular performs,
up to several orders of magnitude faster, demonstrating the advan-
tages of K-SPIN’s modular nature by allowing the faster network
distance technique, PHL, to be used. While the performance gap
between KS-CH over G-tree is consistent in Figure 9(b), the
performance gap between KS-PHL and other methods decreases
with additional keywords. PHL is a significantly faster network
distance method than CH. As a result, with increasing keywords,
the cost of maintaining additional inverted heaps takes a bigger
proportion of the query time in KS-PHL. But, in real terms, both
KS-PHL and KS-CH are increasing by the same margin despite
appearing otherwise due to the logarithmic scale, thus KS-PHL
will never “catch-up” to KS-CH. Note that all K-SPIN query times
in all experiments include the cost of lazy heap initialization and
maintenance (described in Algorithm 4 and in Section 6).
Boolean kNN Disjunctive Queries: Figure 10 shows the query
performance for disjunctive BkNN queries. KS-PHL again signif-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

icantly outperforms the other techniques irrespective of k or the
number of keywords. Interestingly, KS-CH does not improve over
G-tree as significantly as for top-k queries in some cases, e.g., for
k = 50 in Figure 10(a). The reason for this is two-fold. First,
disjunctive queries are easier to answer, in a sense, than top-k and
conjunctive queries because the criteria only requires an object to
have any one query keyword. Thus, in general, we can expect
result objects to be found closer to the query location, which
means they appear in nearby G-tree nodes that are less costly
to evaluate. This also explains why G-tree improves marginally
with increasing query keywords (objects are easier to match).
Second, G-tree is able to re-use intermediate network distance
computations, hence scales efficiently for increasing k because
many of them can be re-used. However, we note that a similar
strategy has been applied to Dijkstra-based hierarchical methods
in the past [26] by saving and re-using the forward search between
network distance computations which may also be applied to CH.
Nonetheless, we note that KS-CH uses less memory than G-tree
but is still able to match or beat its performance on disjunctive
queries without this improvement. FS-FBS is not shown as it
cannot be built for the large US dataset.

Boolean kNN Conjunctive Queries: Figure 11 depicts perfor-
mance on conjunctive BkNN queries. The advantage of K-SPIN
methods over G-tree is even more pronounced than disjunctive
queries, e.g., with several times to orders of magnitude improve-
ment for varying k in Figure 11(a). Keyword aggregation used
by G-tree is more susceptible to false positives for conjunctive
queries as the hierarchy must be evaluated deeper before false
positives can be identified. K-SPIN on the other hand can quickly
eliminate objects not satisfying the criteria, avoiding computation
of expensive network distances. We also see that increasing
query keywords results in improving query times for K-SPIN
methods in Figure 11(b). With additional keywords, there are
fewer objects that match the conjunctive criteria. Consequently,
the least frequent keyword is more likely to have an even lower
frequency. This gives K-SPIN an advantage as it has to consider
fewer candidates (i.e., only those that contain the least frequent
keyword), explaining the observed improvement.

Varying Road Network: Figures 12(a) and 12(b) depicts the
query time of each technique for top-k queries and disjunctive
BkNN queries, resp., for varying road network size. The number
of vertices in the network increases from left to right. First, KS-
PHL significantly outperforms the other techniques on all datasets
for both types of queries. Second, we generally see that the
performance improvement of K-SPIN techniques over competing
methods increase with dataset size. This shows keyword sepa-
ration scales better with dataset size as the occurrence of false
positives is reduced. This can be explained by the fact that, in a
bigger graph, higher levels of the G-tree and ROAD hierarchies
aggregate more keyword occurrences. This results in degraded
pruning power and hence more false positives and redundant
network distance computations in G-tree and ROAD.

Varying Keyword Frequency: Figure 13 illustrates the effect
of increasing keyword frequency. We express frequency in terms
of keyword object density |inv(t)|/|V |, where |inv(t)| is the
number of objects which contain keyword t and |V | is the total
number of vertices in the road network. Each tic on the x-axis
represents a “bucket" of keywords in the density range greater
than or equal to the current tic but less than the next tic (the last
tic includes keywords of all densities larger than 0.01). We execute

single-keyword BkNN queries to isolate the impact of frequency.
Once again K-SPIN outperforms G-tree, with KS-PHL more than
an order of magnitude faster. KS-CH improvement over G-tree is
smaller as only a single query keyword is involved, allowing G-
tree to avoid the false positive problems seen earlier with the more
realistic multi-keyword disjunctive BkNN and top-k queries.

7.3 Index Performance
Figure 14(a) shows the size of each index. “Input” is the input
graph and keyword dataset. Contraction Hierarchies entails the
smallest footprint out of all indexes at 2.6GB compared to 2.8GB
for G-tree on the largest dataset (US). KS-PHL entails an index
size of 17.9GB compared to 4.5GB for ROAD for the US. The FS-
FBS index could only be constructed for the two smallest datasets.
The 2-hop labeling index used to build the FS-FBS index requires
a node order. As described in the original study [2], we tested
several node orders generated by Contraction Hierarchies [10]
(including reverse order), but could not build an index for FL in
less than 24-hours, not to mention the prohibitive scaling of index
size. Unlike K-SPIN, FS-FBS does not provide an easy way to
replace the road network index used. Apart from FS-FBS, the pre-
processing time of each technique in Figure 14(b) is comparable.
K-SPIN received a useful speed-up from parallelization (Section
6.1), while other techniques cannot be as easily parallelized.

7.4 False Positive Performance
In Section 1, we presented examples of how existing spatial
keyword algorithms that use keyword aggregation, like G-tree,
incur costly additional work due to false positive candidates.
So far we have shown empirical evidence that shows K-SPIN
outperforms its keyword aggregation counterparts, often quite
significantly. To give further credence to our claim that K-SPIN
does indeed reduce the occurrence of false positives, we present a
deep-dive experimental comparison using the G-tree index.

We use the G-tree index as the network distance module in
K-SPIN (referred to as KS-GT). So KS-GT and G-tree’s spatial
keyword query algorithms use the same underlying road network
index (G-tree) to compute network distances. This occurs in
exactly the same manner, e.g., already computed partial network
distances are re-used for later computations, described as materi-
alization by Zhong et al. [4]. As a result, we perform an apples-
to-apples comparison and thus obtain a truer understanding of the
reduction in false positives achieved by K-SPIN. Before presenting
our findings, we first describe how to apply keyword separation
principles to G-tree’s spatial keyword query algorithms using.

7.4.1 Applying Keyword Separation Principles to G-tree
Given the disadvantages of keyword aggregation and advantages
of keyword separation described so far, two pertinent follow-up
question may arise: (1) can principles of keyword separation be
applied to existing spatial keyword algorithms and (2) does apply-
ing such principles mitigate the drawbacks of keyword aggregation
discussed earlier. We answer (2) in the subsequent section (the
short answer being “no”), but first describe how an answer to (1)
can be implemented for the top-k query algorithm proposed by
Zhong et al. [4] using the G-tree index.

G-tree is a tree data structure where each tree node represents
a road network subgraph. Starting with the entire road network
as the root, each child node is a partitioning of the parent node’s
subgraph. G-tree’s top-k algorithm finds candidates by traversing

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

102

103

104

 1 5 10 25 50

Q
ue

ry
 T

im
e

(µ
s)

of Results (k)

KS-GT
Gtree-Opt

Gtree

(a) Varying k

102

103

104

 1 2 3 4 5 6

Q
ue

ry
 T

im
e

(µ
s)

of Keywords

KS-GT
Gtree-Opt

Gtree

(b) Varying # of Keywords

Fig. 15: Top-k Query Time (US,# of terms=2,k=10)

105

106

107

 1 5 10 25 50

of

 M
at

rix
 O

ps

of Results (k)

KS-GT
Gtree-Opt

Gtree

(a) Varying k

105

106

107

 1 2 3 4 5 6

of

 M
at

rix
 O

ps

of Keywords

KS-GT
Gtree-Opt

Gtree

(b) Varying # of Keywords

Fig. 16: Top-k Matrix Operations (US,# of terms=2,k=10)

this subgraph hierarchy up from the leaf node containing the query
and down towards other leaf nodes containing objects. Each tree
node is associated with an occurrence list, which lists all child
nodes with an object. Occurrence lists can then be used to avoid
searching G-tree nodes (i.e., subgraphs) without objects. In the
case of top-k queries, the set of objects consists of all vertices
that contain a keyword. Thus, each tree node’s occurrence list
indicates which child nodes contain an object with any keyword.
Note that this is in addition to the pseudo-document associated
with each tree node, which contains all the keywords present in
the subgraph, as usual for the keyword aggregation approach. By
using an occurrence list, child nodes without objects can be pruned
immediately without consulting their pseudo-documents.

We observe that keyword separation principles can be applied
to occurrence lists. Rather than building one occurrence list for a
tree node, build a separate occurrence list for each keyword in the
tree node’s pseudo-document. Now G-tree’s top-k algorithm can
be modified to prune child nodes that do not contain objects with
any of the query keywords. Note that we use this optimized version
of G-tree spatial keyword algorithms in all previous experiments.

7.4.2 Query Time and Network Distance Cost

Figure 15 displays the query time of KS-GT, optimized G-tree
described above (Gtree-Opt), and G-tree’s original top-k query.
Additionally, we compare methods in terms of matrix operations
in Figure 16. Computing network distance using G-tree involves
determining the tree path between source and destination vertices
in the G-tree hierarchy. Given this path, distances are computed
to each border associated with a tree node on the path by looking
up and summing distance matrix elements (described in detail by
Zhong et al. [4]). We term this look-up and sum as a machine-
independent matrix operation that accurately captures how costly
the network distance was to compute. Most importantly, if fewer
false positives occur there will be fewer matrix operations.

In Figure 15 we see that Gtree-Opt marginally improves
on the original G-tree top-k query algorithm in terms of query
time. However, in Figure 16 we see little to no improvement
in terms matrix operations. This suggests that the query time
improvement is entirely from avoiding pseudo-document look-ups
rather than incurring fewer false positives. Identical numbers of
matrix operations shows that the hierarchy is still being evaluated
to the same depth to overcome the effect of aggregation. These
observations strongly evince that problems arising from keyword
aggregation cannot be easily solved in existing techniques.

In Figure 15, KS-GT consistently outperforms G-tree by up to
an order of magnitude in terms of query time. This is despite KS-
GT query time including extra overheads, e.g., computing lower-
bounds and initializing/maintaining inverted heaps. The even
greater improvement on matrix operations in Figure 16 removes
any doubt. The improvement in matrix operations directly shows

that K-SPIN utilizes the G-tree index more efficiently, i.e., due to
fewer false positives. We cannot apply further keyword separation
to G-tree itself due to the permanent loss of discriminating
information without reversing the keyword aggregation itself. K-
SPIN in fact achieves this, but in a simple and versatile manner.

8 RELATED WORK

Road Network Top-k Queries: Similar to G-tree, ROAD
is a hierarchical partitioning of the road network. ROAD was
originally developed to answer kNN queries (i.e., not involving
keywords) [12]. When applied to top-k spatial keyword queries
[3], ROAD experiences the exact same problematic scenarios that
G-tree does as presented in Section 1.1. The difference between
ROAD and G-tree is largely the way the subgraph hierarchy is
stored and accessed. G-tree offers better cache performance, and
hence query times, compared to ROAD [23].

Road Network Boolean kNN Queries: FS-FBS [2] is a Boolean
kNN query technique improving on earlier approximate tech-
niques [27] by providing exact results. The related LARC [28]
is an adaptation for continuous queries. FS-FBS uses a 2-hop
labeling index and its inverse, a backwards label index. In a 2-
hop labeling index, each vertex has a label, a set of hub vertices to
which distances are known. It is guaranteed that any two vertices
have a common hub that lies on the shortest path between them.
A backwards label for hub h is the list of vertices for which h is
in their label. For frequent keywords, FS-FBS employs keyword
aggregation on backwards labels using a bit-array hash to indicate
presence of keywords. It faces familiar keyword aggregation
problems as the bit-array hash incurs collisions, leading to false
positives and unnecessary distance computations. For infrequent
keywords, FS-FBS simply computes network distances to all
vertices containing the infrequent keyword. First, it is problematic
to differentiate between frequent and infrequent keywords. While
a metric is suggested, it is still necessary to verify the best
performing frequency experimentally [2]. Second, inverted lists
for infrequent keywords, which are more common, cannot be
accessed by FS-FBS in order. Thus it is not possible to terminate
without evaluating the entire list. In contrast, on-demand inverted
heaps offer cheap ordered access and terminate sooner.

Other Queries: Spatial keyword queries have been widely
studied in Euclidean space [6], [7], [8], [9], where Euclidean
distance is the metric for spatial proximity in computing spatio-
textual scores. The downside is that other useful metrics such
as travel time are not supported. k-Nearest Neighbor queries in
road networks [4], [12], [16], [29] also search for nearby points
of interest using road network distance. However, such queries
are executed on pre-determined object sets, requiring POIs to
be sanitized and categorized. They also do not take keywords
or spatio-textual scores into account. While network distances

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

in inverted heaps increase steadily (as objects are further away
from the query), the same cannot be expected of inverted lists
sorted by keyword impact. This, and the fact that only lower-
bound distances are available, means more false positives if using
the Thresholding Algorithm (TA) [30], making it unsuitable for
top-k spatial keyword queries. TA also only supports monotonic
scoring functions, eliminating weighted distance.

9 CONCLUSIONS

Keyword separation is a viable alternative to keyword aggregation,
as evident in the significant improvement in query performance
of K-SPIN over competing methods. This holds true particularly
given the improvement of K-SPIN using G-tree over G-tree’s own
query algorithms. Moreover, this need not come at a prohibitive
pre-processing cost, as shown by the substantial reduction in key-
word index size and time. In fact, utilizing the long-tail of Zipfian
distributions and ρ-Approximate NVDs are useful techniques on
their own. Ultimately, K-SPIN provides an efficient and versatile
framework for spatial keyword query processing, in addition to
provision for dynamic updates and parallelized index building.

ACKNOWLEDGMENTS

We sincerely thank Hanan Samet for his insightful comments.
The research of Muhammad Aamir Cheema is supported by ARC
DP180103411 and FT180100140. Arijit Khan is supported by
MOE Tier-1 RG83/16 and NTU M4081678. Tenindra Abeywick-
rama is supported by an Australian Government RTP Scholarship.

REFERENCES

[1] G. Cong and C. S. Jensen, “Querying Geo-Textual Data: Spatial Keyword
Queries and Beyond,” in SIGMOD, 2016, pp. 2207–2212.

[2] M. Jiang, A. W.-C. Fu, and R. C.-W. Wong, “Exact Top-k Nearest
Keyword Search in Large Networks,” in SIGMOD, 2015, pp. 393–404.

[3] J. B. R.-Junior and K. Nørvåg, “Top-k Spatial Keyword Queries on Road
Networks,” in EDBT, 2012, pp. 168–179.

[4] R. Zhong, G. Li, K. Tan, L. Zhou, and Z. Gong, “G-Tree: An Efficient
and Scalable Index for Spatial Search on Road Networks,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 8, pp. 2175–2189, 2015.

[5] G. Sterling. (2015) http://screenwerk.com/2015/05/11/data-suggest-that-
local-intent-queries-nearly-half-of-all-search-volume/.

[6] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most
relevant spatial web objects,” PVLDB, vol. 2, no. 1, pp. 337–348, 2009.

[7] D. Wu, G. Cong, and C. S. Jensen, “A Framework for Efficient Spatial
Web Object Retrieval,” VLDB J., vol. 21, no. 6, pp. 797–822, 2012.

[8] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial Keyword Query
Processing: An Experimental Evaluation,” in PVLDB, 2013, pp. 217–
228.

[9] D. Zhang, C.-Y. Chan, and K.-L. Tan, “Processing Spatial Keyword
Query As a Top-k Aggregation Query,” in SIGIR, 2014, pp. 355–364.

[10] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks,”
in WEA, 2008, pp. 319–333.

[11] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and Y. Kawata, “Fast Shortest-
path Distance Queries on Road Networks by Pruned Highway Labeling,”
in ALENEX, 2014, pp. 147–154.

[12] K. C. K. Lee, L. W.-Chien, Z. Baihua, and T. Yuan, “ROAD: A New
Spatial Object Search Framework for Road Networks,” IEEE Trans.
Knowl. Data Eng., vol. 24, no. 3, pp. 547–560, 2012.

[13] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong, “Efficient Continuously
Moving Top-k Spatial Keyword Query Processing,” in ICDE, 2011.

[14] J. Zobel and A. Moffat, “Inverted Files for Text Search Engines,” ACM
Comput. Surv., vol. 38, no. 2, 2006.

[15] A. V. Goldberg and C. Harrelson, “Computing the Shortest Path: A*
Search Meets Graph Theory,” in SODA, 2005, pp. 156–165.

[16] T. Abeywickrama and M. A. Cheema, “Efficient Landmark-Based Candi-
date Generation for kNN Queries on Road Networks,” in DASFAA, 2017,
pp. 425–440.

[17] R. Zhong, G. Li, K. Tan, and L. Zhou, “G-tree: An Efficient Index for
KNN Search on Road Networks,” in CIKM, 2013, pp. 39–48.

[18] M. Kolahdouzan and C. Shahabi, “Voronoi-based K Nearest Neighbor
Search for Spatial Network Databases,” in VLDB, 2004, pp. 840–851.

[19] M. Erwig and F. Hagen, “The Graph Voronoi Diagram with Applica-
tions,” Networks, vol. 36, pp. 156–163, 2000.

[20] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck, “Highway
Dimension, Shortest Paths, and Provably Efficient Algorithms,” in SODA,
2010.

[21] J. Sankaranarayanan, H. Alborzi, and H. Samet, “Efficient Query Pro-
cessing on Spatial Networks,” in GIS, 2005.

[22] H. Samet, Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann, 2005.

[23] T. Abeywickrama, M. A. Cheema, and D. Taniar, “K-nearest neighbors
on road networks: A journey in experimentation and in-memory imple-
mentation,” PVLDB, vol. 9, no. 6, pp. 492–503, 2016.

[24] http://www.dis.uniroma1.it/%7Echallenge9/.
[25] http://www.openstreetmap.org.
[26] S. Knopp, P. Sanders, D. Schultes, F. Schulz, and D. Wagner, “Computing

many-to-many shortest paths using highway hierarchies,” in ALENEX,
2007, pp. 36–45.

[27] M. Qiao, L. Qin, H. Cheng, J. X. Yu, and W. Tian, “Top-k nearest
keyword search on large graphs,” PVLDB, vol. 6, no. 10, pp. 901–912,
2013.

[28] B. Zheng, K. Zheng, X. Xiao, H. Su, H. Yin, X. Zhou, and G. Li,
“Keyword-Aware Continuous kNN Query on Road Networks,” in ICDE,
2016, pp. 871–882.

[29] H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable Network
Distance Browsing in Spatial Databases,” in SIGMOD, 2008.

[30] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation Algorithms for
Middleware,” in PODS, 2001.

Tenindra Abeywickrama Tenindra Abeywick-
rama is presently a PhD student in the Faculty
of Information Technology at Monash University,
Australia. He received a B.Eng. (Electrical) and a
B.Sc. (Computer Science) from UNSW Australia
in 2010. Tenindra received the Cheung Kong Re-
search Fellowship in 2018. His current research
focus is on developing indexing and query pro-
cessing techniques for spatial networks.

Muhammad Aamir Cheema is a Senior Lec-
turer at Clayton School of Information Technol-
ogy, Monash University, Australia. He obtained
his PhD from UNSW Australia in 2011. He is
the recipient of 2012 Malcolm Chaikin Prize for
Research Excellence in Engineering, 2013 Dis-
covery Early Career Researcher Award, 2014
Dean’s Award for Excellence in Research by an
Early Career Researcher. His PhD thesis was
nominated for SIGMOD Jim Gray Doctoral Dis-
sertation Award and ACM Doctoral Dissertation

Competition. He has won two CiSRA best research paper awards (in
2009 and 2010), two invited papers in the special issue of IEEE TKDE
on the best papers of ICDE (2010 and 2012), and two best paper awards
at WISE 2013 and ADC 2010, respectively. He served as PC co-chair
for ADC 2015, ADC 2016, 8th ACM SIGSPATIAL Workshop ISA 2016,
WWW International Workshop on Social Computing 2017, proceedings
chair for DASFAA 2015, tutorial co-chair for APWeb 2017 and publicity
co-chair for ACM SIGSPATIAL 2017.

Arijit Khan Arijit Khan is an Assistant Professor
at Nanyang Technological University, Singapore.
He earned his PhD from the University of Cal-
ifornia, Santa Barbara, and did a post-doc in
the Systems group at ETH Zurich. Arijit is the
recipient of the IBM PhD Fellowship in 2012-
13. He co-presented tutorials on graph queries
and systems at ICDE 2012, VLDB 2014, 2015,
2017. His research interests include big-graphs
management and analytics, with a focus on user-
friendly, online querying and pattern mining in

social and information networks, using scalable algorithms and machine
learning techniques.

