
Reverse k Nearest Neighbors Query Processing:
Experiments and Analysis

Shiyu Yang†, Muhammad Aamir Cheema‡, Xuemin Lin†, Wei Wang†

†School of Computer Science and Engineering, The University of New South Wales, Australia
‡Faculty of Information Technology, Monash University, Australia

yangs@cse.unsw.edu.au, aamir.cheema@monash.edu, lxue@cse.unsw.edu.au, weiw@cse.unsw.edu.au

ABSTRACT

Given a set of users, a set of facilities and a query facility q, a re-

verse k nearest neighbors (RkNN) query returns every user u for

which the query is one of its k closest facilities. RkNN queries have

been extensively studied under a variety of settings and many so-

phisticated algorithms have been proposed to answer these queries.

However, the existing experimental studies suffer from a few limi-

tations. For example, some studies estimate the I/O cost by charg-

ing a fixed penalty per I/O and we show that this may be mislead-

ing. Also, the existing studies either use an extremely small buffer

or no buffer at all which puts some algorithms at serious disadvan-

tage. We show that the performance of these algorithms is signif-

icantly improved even when a small buffer (containing 100 pages)

is used. Finally, in each of the existing studies, the proposed al-

gorithm is mainly compared only with its predecessor assuming

that it was the best algorithm at the time which is not necessar-

ily true as shown in our experimental study. Motivated by these

limitations, we present a comprehensive experimental study that

addresses these limitations and compares some of the most notable

algorithms under a wide variety of settings. Furthermore, we also

present a carefully developed filtering strategy that significantly im-

proves TPL which is one of the most popular RkNN algorithms.

Specifically, the optimized version is up to 20 times faster than the

original version and reduces its I/O cost up to two times.

1. INTRODUCTION
A reverse k nearest neighbors (RkNN) query finds every data

point for which the query point q is one of its k nearest neigh-

bors [6]. Since q is close to such data points, q is said to have

high influence on these points. Consider the example of a shopping

market. The residents for which this is one of the k closest markets

are its potential customers. In this paper, the objects that provide

a facility or service (e.g., shopping market, fuel stations) are called

facilities and the objects (e.g., residents, drivers) that use the fa-

cility are called users. In this context, RkNN of a query q returns

every user u for which q is one of its k closest facilities.

Note that there is a reverse relationship between a k nearest

neighbor (kNN) query and a RkNN query. While a kNN query

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 5
Copyright 2015 VLDB Endowment 21508097/15/01.

helps a user looking for near by facilities, a RkNN query assists

the owner of a facility in identifying the users who are potentially

interested in her facility. This information might be quite useful for

the owner, for instance, these users are likely to be influenced by

the advertisements or deals sent to them. The popularity of RkNN

queries has also inspired several other reverse spatial queries such

as reverse skyline queries [11, 14], reverse top-k queries [8, 24, 32]

and reverse furthest neighbors queries [29].

Due to its importance, RkNN query has been extensively stud-

ied [2, 4–7, 10, 17–20, 25, 28] ever since it was introduced in [13].

Some of the most notable algorithms are six-regions [18], TPL [20,

21], FINCH [25], InfZone [6, 9] and SLICE [28]. This paper is the

first work to present a comprehensive experimental study compar-

ing all these algorithms.

1.1 Motivation
Each of the existing experimental studies reported in the past

suffers from at least one of the following serious limitations.

1. The results reported in some of the existing experimental

studies (e.g., [20,25]) compare the algorithms on overall cost where

the overall cost includes both CPU cost and I/O cost. The I/O cost

is estimated by charging a fixed penalty per disk I/O, e.g., in [20],

the I/O cost is estimated by charging 10ms for each I/O. We argue

against using a fixed penalty for each I/O mainly because I/O cost is

highly system specific [1] (e.g., type of disk drive used, workload,

I/O request re-ordering used by system etc.). For instance, the I/O

cost for SSD disks is much lower (e.g., 0.1ms [23]) than the I/O

cost for hard disk drives (e.g., tens of milliseconds [16]). For the

same reason, the experiments that measure and report the so-called

actual I/O cost should also be interpreted with caution considering

that I/O cost is significantly affected by various factors many of

which are system dependent or not easily controllable.

 0

 100

 200

 300

 400

 500

SIX TPL FINCH INF SLICE

T
o

ta
l

C
o

s
t

(m
s

)

CPU Time
I/O Time

3
7

5
.0

4
6

2
0

4
.4

8
1

1
8

7
.1

6
8

1
4

4
.3

2
8

1
5

4
.5

8
3

(a) Charging 10ms per I/O

 0

 5

 10

 15

 20

 25

 30

SIX TPL FINCH INF SLICE

T
o

ta
l

C
o

s
t

(m
s

)

CPU Time
I/O Time

1
1

.3
7

9

2
1

.2
1

2

7
.7

4
0

3
.9

6
6

2
.4

8
9

(b) Charging 0.1ms per I/O

Figure 1: Charging a fixed penalty per I/O may be misleading

In Figure 1, we compare the performance of the five most no-

table algorithms: six-regions (displayed as SIX), TPL, FINCH, In-

fZone (displayed as INF) and SLICE. We issue one thousand RkNN

queries (k = 10) on a data set that consists of 100, 000 facilities

and 100, 000 users following normal distribution. Figure 1 shows

the average total cost (CPU + I/O cost). In Figure 1(a), a penalty of

10ms is applied for each I/O whereas, in Figure 1(b), the penalty

is 0.1ms per I/O. Note that the results reported in Figure 1(a) and

Figure 1(b) are severely affected by the choice of penalty and are

contradictory. For instance, Figure 1(a) shows that the I/O cost is

the dominant cost for each algorithm whereas Figure 1(b) demon-

strates that the CPU cost is the major cost. Also, Figure 1(a) shows

that TPL is better than SIX whereas Figure 1(b) shows that SIX is

better than TPL.

2. Some of the algorithms (such as TPL, InfZone and SLICE)

access each node of the underlying index (i.e., R*-tree) at most

once. On the other hand, six-regions and FINCH require multi-

ple accesses to some nodes of the R*-tree. Hence, the I/O cost

of these two algorithms is affected by the size of buffer. We note

that RkNN queries are not I/O extensive and the number of unique

nodes accessed by the algorithms to answer a RkNN query is small

(e.g., less than 100 in our experiments). This implies that a buffer

containing only 100 pages can significantly reduce the I/O cost of

six-regions and FINCH. Given the large main memory available

in modern systems, allocating a buffer containing 100 pages (con-

suming 400KB memory) should not be a hindrance. However, all

of the existing experimental studies either use a very small buffer

(10 pages only) or no buffer at all. This adversely affects the per-

formance of six-regions and FINCH especially if a larger penalty

is charged per I/O.

3. In each of the existing experimental studies, the proposed

algorithm is only compared with its predecessor assuming that the

predecessor was the state-of-the-art algorithm at that time. The

two limitations mentioned above aggravate this because, as argued

above, the predecessor may not necessarily be the best algorithm

at the time. For instance, FINCH and InfZone were not compared

with SIX assuming that it is outperformed by TPL. However, we

observe that SIX is faster than TPL in terms of CPU cost for most

of the experimental settings. Hence, there is a need to conduct a

comprehensive experimental evaluation that compares all notable

algorithms on a range of data sets under a wide variety of settings.

1.2 Major Contributions
Comprehensive experimental study. To the best of our knowl-

edge, we are the first to present a comprehensive experimental study

comparing the most notable RkNN algorithms. Instead of charging

a fixed penalty for each I/O, we compare the algorithms using two

different metrics: i) number of I/Os and ii) CPU time. This choice

has several advantages as described below.

Firstly, it avoids the possible distortion of the results caused by

charging a fixed penalty per I/O. At the same time, it allows the

interested readers to estimate the total cost (by charging a fixed

penalty) if they really want to do so. Secondly, it makes it easy

for the users to choose algorithms of their choice depending on

whether they prefer algorithm with lower I/O cost, lower CPU cost

or a trade-off between the two. For instance, modern computers

have sufficiently large main memory to store the data sets contain-

ing several million data points. The systems that can afford to keep

the data sets in main memory may prefer the algorithm with the

lowest CPU cost ignoring the I/O cost altogether. On the other

hand, a user may prefer the algorithm with lower I/O cost if she

does not want the data sets to occupy main memory and has a hard

disk drive with high I/O cost.

We also present an imaginary algorithm that assumes the exis-

tence of an oracle and achieves the lower bound I/O cost for the

case when data sets are indexed by R*-trees. We compare the I/O

cost of the existing algorithms with the lower bound I/O cost which

helps in identifying the room for further improvement.

Improved version of TPL. TPL is arguably the most popular al-

gorithm to answer RkNN queries and several follow up algorithms

are inspired by the basic idea used in TPL. Our experimental study

demonstrates that TPL is outperformed by most of the algorithms

both in terms of CPU cost and I/O cost. This is mainly because

the filtering strategy used by TPL is quite expensive. We pro-

pose an improved version of TPL (called TPL++) that replaces the

original filtering technique with a carefully developed cheaper yet

more powerful filtering strategy and significantly improves its per-

formance. Specifically, TPL++ is up to 20 times better than TPL in

terms of CPU cost and up to 2 times better in terms of number of

I/Os. Our experimental study demonstrates that TPL++ is one of

the best algorithms especially in terms of number of I/Os.

The rest of the paper is organized as follows. In Section 2,

we present the problem definition, scope of the paper, algorithmic

framework and terminology used throughout the paper. The algo-

rithms that are compared in this paper are described in Section 3.

A comprehensive experimental study is reported in Section 4. Sec-

tion 5 concludes the paper.

2. PRELIMINARIES

2.1 Problem Definition
RkNN queries are classified [28] into bichromatic RkNN queries

and monochromatic RkNN queries.

Bichromatic RkNN Queries. Consider a set of facilities F and a

set of users U . Given a query facility q (not necessarily in F), a

bichromatic RkNN query returns every user u ∈ U for which q is

one of its k-closest facilities among the facilities in {q ∪ F}.

Monochromatic RkNN Queries. Given a set of facilities F and

a query facility q (not necessarily in F), a monochromatic RkNN

query returns every facility f ∈ F for which q is one of its k-closest

facilities among the facilities in {q ∪ F − f}.

2.2 Scope
RkNN queries have been extensively studied under different set-

tings such as static RkNN queries [6, 18, 25], continuous RkNN

queries [3, 7], probabilistic RkNN queries [4, 5], RkNN queries

on graphs [22, 31], metric spaces [22] and adhoc spaces [30] etc.

However, in this paper, we focus on answering RkNN queries in

Euclidean space. Since most of the applications of RkNN queries

are in location-based services, almost all of the existing techniques

(e.g., six regions [18], FINCH [25], InfZone [6], and SLICE [28]

etc.) focus on two dimensional location data. Therefore, we focus

on comparing the performance of the algorithms on two-dimensional

data sets. Also, the bichromatic version of RkNN queries have

more applications in real world scenarios. Therefore, the main fo-

cus of our experimental study is on bichromatic queries. Neverthe-

less, we also present some results for monochromatic queries and

remark that the trends are similar.

Although most of the existing algorithms can be applied on any

branch and bound data structure, all of these algorithms assume that

the data sets are indexed by R-tree or its variants such as R*-tree.

Following this, we also assume that both the facility and user data

sets are indexed by two R*-trees. The R*-tree that indexes the set

of facilities (resp. users) is called facility (resp. user) R*-tree.

2.3 Framework and Terminology
We say that a facility f prunes a point p if dist(p, f)< dist(p, q).

Note that a point p that is pruned by at least k facilities cannot be

the RkNN of q because q cannot be one of its k closest facilities.

We say that a point p is filtered if p can be pruned by at least k
facilities. Given an entry e (e.g., a node of R*-tree), we say that a

facility f prunes an entry e if f prunes every point p in e. Similarly,

we say that an entry e is filtered if e is pruned by at least k facilities.

Each algorithm described in this paper has two phases namely

filtering and verification.

1. Filtering. In the filtering phase, each algorithm uses the set of

facilities to filter the search space that cannot contain any RkNN

of the query. Since using all of the facilities may be prohibitively

expensive, the algorithms choose some of the facilities for filtering

the space. These facilities are called filtering facilities and the set

containing these facilities is called the filtering set (denoted as Sfil).

2. Verification. In the verification phase, the users that cannot

be filtered using Sfil are retrieved. These are the possible RkNNs

and are called the candidate users. Each of these candidates is then

verified by confirming whether it is a RkNN or not.

3. ALGORITHMS

3.1 Sixregions

3.1.1 Filtering

Stanoi et al. [18] propose a six-region based approach that parti-

tions the whole space centred at the query q into six equal regions

of 60◦ each (P1 to P6 in Figure 2). The k-th nearest facility of q in

each region defines the area that can be filtered. In other words, as-

sume that dki is the distance between q and its k-th nearest facility

in a region Pi. Then any user u that lies in Pi and lies at a distance

greater than dki from q cannot be the RkNN of q.

(a) Filtering (b) Verification

Figure 2: Illustration of six-regions (k = 2)

Figure 2 shows a RkNN (k = 2) query q and four facilities a to

d. In region P2, d is the second nearest facility of q and the shaded

area can be filtered, i.e., only the users that lie in the white area

can be the RkNNs. A user u that lies in the shaded area cannot be

RkNN because it is guaranteed to be closer to both b and d than

q. For instance, this can be proved for the facility d and the user u
using the triangle △qdu (see Figure 2(a)). Since ∠dqu ≤ 60◦ and

∠qdu ≥ 60◦, dist(u, d) ≤ dist(u, q).

3.1.2 Verification

As stated earlier, a user u that lies in a partition Pi cannot be

RkNN if dist(u, q) > dki . In the verification phase, the candidate

users are retrieved by visiting user R*-tree and filtering every entry

e for which mindist(e, q) > dki . Each candidate user is then ver-

ified by issuing a boolean range query1 centered at u with radius

dist(u, q). A boolean range query returns true if and only if there

are at least k facilities that lie within the circle centered at u with

1The original algorithm proposed to use kNN queries for verifica-
tion. However, since it is well known that boolean range queries
are more efficient [9, 25], we use these to verify the candidates.

radius dist(u, q). Note that a user u is a RkNN if and only if the

boolean range query returns false.

Consider the example of Figure 2(b). The user u is a R2NN of

q because the circle centered at u with radius dist(u, q) (the dot-

ted circle) contains only one facility. Since the algorithm issues a

boolean range query for each candidate user u, it requires travers-

ing the facility R*-tree once for each candidate user.

3.2 TPL

3.2.1 Filtering

Tao et al. [20, 21] propose TPL which is arguably the most pop-

ular algorithm for RkNN queries. They were the first to use the

concept of half-space pruning for RkNN queries and inspired many

follow up works (e.g., [4–6, 25]). Given a facility f and a query q,

a perpendicular bisector Bf :q between f and q divides the space

into two halves. Let Hf :q denote the half-space that contains f and

Hq:f denote the half-space that contains q. Every point p that lies

in Hf :q satisfies dist(p, f) < dist(p, q). In other words, f prunes

every point p that lies in Hf :q.

Consider the example of Figure 3(a) where a query q and four

facilities a to d are shown. The point p can be pruned by the facility

a because p lies in Ha:q and, therefore, dist(p, a) < dist(p, q).
Note that a point p that is pruned by at least k half-spaces cannot

be the RkNN and can be filtered. Assuming k = 2, the point p can

be filtered because it is pruned by both Ha:q and Hc:q.

Starting from the root node, the filtering algorithm of TPL iter-

atively accesses the entries of the facility R*-tree from a heap in

ascending order of their minimum distances from q. The accessed

facilities are used for filtering the search space. If an accessed en-

try e can be filtered (i.e., e is pruned by at least k facilities), it is

ignored. Otherwise, if e is an intermediate or leaf node, its chil-

dren are inserted in the heap. On the other hand, if e is a facility

and cannot be filtered, it is inserted in the filtering set Sfil and its

half-space is used to filter the search space. The filtering algorithm

terminates when the heap becomes empty.

In Figure 3(a), assume that the filtering algorithm iteratively ac-

cesses the facilities in the order b, c, a and d. When the facilities

b, c and a are accessed (i.e., Sfil = {b, c, a}), the filtered area is

defined by the half-spaces Hb:q , Hc:q and Ha:q. If k = 2, the

shaded area can be filtered because every point in it lies in at least

two half-spaces. Note that when d is accessed, it can be filtered

using the filtering set. Hence, d is not inserted in Sfil .

An important operation in TPL is to determine whether an en-

try (a node of R*-tree or a data point) can be filtered using a set

of filtering facilities Sfil or not. An exhaustive filtering strategy is

the following. Let Sfil be the filtering set containing m ≥ k facil-

ities and {ρ1, · · · ρk} be any subset of Sfil containing k facilities.

The subset filters the space ∩k
i=1Hρi:q because each point p in this

space is pruned by each of the k facilities in this subset. The ex-

haustive filtering strategy is to consider each such subset and check

if the entry can be filtered using these subsets or not. However, the

total number of such subsets is
(

m

k

)

and considering all these sub-

sets may be prohibitively expensive . Hence, TPL compromises on

the filtering power and uses the following less expensive filtering

strategy (called relaxed filtering strategy hereafter).

First, TPL sorts the facilities in Sfil on their Hilbert values. Let

the sorted Sfil be {f1, · · · , fm}. The relaxed filtering considers m
subsets {f1, · · · fk}, {f2, · · · , fk+1}, · · · , {fm, · · · , fk−1}. Note

that the total filtering cost is O(km) because m subsets each con-

taining k facilities are to be considered.

Consider the example of Figure 3(a) and assume that Sfil =
{a, b, c}. The relaxed filtering considers the subsets {a, b}, {b, c}

(a) Exhaustive filtering (b) Relaxed Filtering

Figure 3: Illustration of TPL filtering (k = 2)

and {c, a} and filters the same area as the exhaustive filtering (i.e.,

the shaded area). This is because the number of maximum possi-

ble subsets is equal to m in this case, i.e.,
(

m

k

)

=
(

3

2

)

= 3 = m.

Next, we show that adding a new facility in Sfil may reduce the

filtered area and the points that could be filtered before adding this

facility may not be filtered anymore Assume that the facility e is

inserted and the sorted Sfil is {a, b, c, e}. The relaxed filtering al-

gorithm uses {a, b}, {b, c}, {c, e} and {e, a} to filter the search

space. Figure 3(b) shows the shaded area that can be filtered using

these subsets. Note that the filtered area has become smaller and

the point p cannot be filtered anymore.

To filter an entry e (a node or data point), TPL uses an algorithm

called kTrim. For a subset of Sfil containing k consecutive facili-

ties, the algorithm trims the part of the entry that can be filtered by

this subset. kTrim uses each of the m subsets and iteratively trims

the entry. At any stage, if the whole entry is trimmed, the node or

data point can be filtered and the algorithm stops

3.2.2 Verification

TPL iteratively accesses the entries of the user R*-tree and filters

them using Sfil . The users that cannot be filtered are inserted in

the candidate set. Unlike six-regions, TPL does not issue boolean

range queries to verify the candidates. Instead, TPL uses a smart

strategy that requires each node of the R*-tree to be visited at most

once. Specifically, the nodes and points of the facility R*-tree that

are encountered during the filtering phase are kept in a set P . The

verification algorithm runs in rounds. In each round, one of the

nodes in P is opened and its children are inserted in P . The node

is selected based on how many candidates it can potentially verify.

During each round, the nodes and points in P are used to identify

the candidates that can be verified using P , i.e., can be confirmed as

RkNN or guaranteed not to be RkNN. Such candidates are verified

and removed from the candidate set. The algorithm stops when the

candidate set becomes empty.

3.3 TPL++
In this section, we present an optimized version of TPL (called

TPL++) that is based on two optimizations. We remark that the

proposed optimizations work for arbitrary dimensionality and are

expected to improve TPL even for higher dimensionality.

Optimization 1. The first optimization is an improved filtering

strategy that takes O(m), in contrast toO(km) required by kTrim,

and filters more entries than kTrim. Let {f1, · · · , fj} be a subset

of the filtering set Sfil containing j ≥ 1 facilities. Note that ev-

ery point p that lies in ∪j
i=1Hfi:q is pruned by at least one facility

in this subset. Consider the example of Figure 4 where the subset

{a, b} prunes Ha:q ∪Hb:q (the shaded area in Figure 4). The entry

e (the rectangle) can be pruned because each point in this rectangle

is either pruned by the facility a or by the facility b.

Figure 4: Optimized Filtering

The basic idea of the algorithm is that an entry can be filtered if

it is pruned by at least k such subsets where these subsets may be

of different sizes but all these subsets must be disjoint (i.e., each

facility appears in at most one subset). In the example of Figure 4,

the entry e can be filtered because it is pruned by two subsets {a, b}
and {c}.

Algorithm 1: isFiltered(Sfil , e)

Input : Sfil : the filtering set, e: the entry to be filtered
Output : Return true if the entry can be filtered, otherwise return false

1 counter← 0;

2 etmp ← e;
3 for each facility f ∈ Sfil do

4 if e lies completely in Hf :q then
5 counter ++;

6 else

7 etmp = Trim(etmp,Hf :q) // algorithm in [12];

8 if etmp = ∅ then // if the whole etmp is pruned

9 counter ++;

10 etmp ← e

11 if counter = k then

12 return true;

13 return false;

Algorithm 1 presents the details of our optimized filtering strat-

egy. The basic idea is to use a counter that records the number of

subsets (seen so far) that prune the entry. The facilities in Sfil are

iteratively accessed and the entry e is tried to prune using the facil-

ities seen so far. Whenever e is pruned, the counter is incremented.

The entry can be filtered if the counter is at least k.

Note that some facilities may completely prune the entry e and

some may prune only a part of the entry. etmp is used to store

the part of the entry e that cannot be pruned by the current sub-

set of facilities and is initialized as e (line 2 and line 10). An ac-

cessed facility f is used to trim the part of etmp that can be pruned

by the facility f . Specifically, similar to TPL, the clipping algo-

rithm [12] is used which uses the half-space Hf :q and returns the

part of etmp that cannot be pruned by f (line 7). The facilities are

accessed iteratively and etmp is iteratively trimmed. If etmp be-

comes empty, it implies that the entry e is pruned by a subset of the

facilities. Hence, the counter is incremented and etmp is initialized

to e (lines 8 to 10).

Note that a facility f that completely prunes an entry e is handled

differently (line 4). Specifically, instead of trimming etmp using

such a facility, the counter is incremented by one. This is because

{f} itself is a subset that can prune e and it is suboptimal to include

f in a subset that can prune e. Consider the example of Figure 4 and

assume that the objects in Sfil are ordered as {a, c, b}. Algorithm 1

can filter e because it is pruned by {a, b} and {c}. If the facility

c is not handled differently (i.e., lines 4 to 6 are removed), then e
cannot be filtered because only the subset {a, c} prunes it.

Remark. Filtering power of Algorithm 1 is lower than the exhaus-

tive algorithm and it may not be able to filter every R*-tree node

that can be filtered by the exhaustive filtering. However, it can be

guaranteed that every data point (i.e., a facility or a user) that can be

filtered by exhaustive filtering can also be filtered by Algorithm 1.

LEMMA 1 : Every data point p that can be filtered by the exhaus-

tive filtering can also be filtered by Algorithm 1.

PROOF. If a point p is filtered by the exhaustive algorithm, then

there must exist a subset {ρ1, · · · , ρk} such that p lies in ∩k
i=1Hρi:q .

In other words, each of Hρi:q contains the point p. Note that Al-

gorithm 1 will increase the counter for each of such facility ρi (at

line 4). Since there are at least k such facilities, Algorithm 1 can

also filter p.

 0

 2

 4

 6

 8

 10

 12

 14

2 5 10 15 20 25

n
u

m
b

e
r

o
f

n
o

d
e

s

k

TPL

0
.8

3
1

1
.2

1
3

1
.1

0
4

0
.9

2
2

0
.8

8
1

0
.8

3
3

TPL++

1
.3

4
1

4
.4

0
2

6
.6

6
8 8

.8
3
1 1
0
.8

1
9

1
2
.0

3
7

(a) Number of nodes

 0

 50

 100

 150

 200

 250

2 5 10 15 20 25

n
u

m
b

e
r

o
f

p
o

in
ts

k

TPL

0 0 0 0 0 0

TPL++

5
.0

6
7

2
9
.7

0
0 7

0
.6

1
9 1
1
1
.6

0
4

1
5
0
.4

6
1 1
9
1
.5

7
9

(b) Number of data points

Figure 5: Comparison of filtering power (TPL vs TPL++)

In Figure 5, we compare the relative filtering power of relaxed

filtering used by TPL and Algorithm 1 used by TPL++. We did not

consider the exhaustive filtering because the cost is prohibitively

expensive, e.g., for k = 10 and 30 facilities in Sfil , the total number

of possible subsets is more than 30 million. We use TPL to answer

1, 000 RkNN queries on the data sets that contain 100, 000 facili-

ties and 100, 000 users (following normal distribution) and report

average result per query. Whenever TPL checks whether an entry

can be filtered or not (using relaxed filtering), we also test whether

Algorithm 1 could filter the entry or not. This ensures that the same

filtering set Sfil is used by both of the strategies.

Figure 5 shows the average number of entries (nodes in Fig-

ure 5(a) and points in Figure 5(b)) pruned by one filtering strategy

but not by the other, e.g., the bar corresponding to TPL demon-

strates the number of nodes that are filtered by relaxed filtering but

not by Algorithm 1. Note that although Algorithm 1 is less ex-

pensive, it has more filtering power as shown in Figure 5(a) and

Figure 5(b). Also, the difference in the filtering power increases

as k increases. The results for k = 1 are not shown because both

filtering strategies become the same for k = 1.

Optimization 2. Note that the size of Sfil directly affects the cost

of filtering as well as the filtering power of the algorithm. As stated

earlier, TPL only inserts a facility in Sfil if it cannot be filtered

using the existing set Sfil , e.g., in Figure 3(b), the facility d is not

inserted in Sfil .

Since we propose a cheaper filtering strategy, we propose to in-

clude more facilities in Sfil . Specifically, similar to TPL, if an ac-

cessed entry e is an intermediate or leaf node and can be filtered, we

ignore it. However, if an accessed entry e is a facility, we insert it in

Sfil regardless of whether it can be filtered or not. Note that this in-

creases the size of Sfil for TPL++ and, in effect, increases the filter-

ing cost. However, it results in a much better filtering power which

results in requiring fewer calls to the filtering algorithm. Also, in

contrast to TPL, we do not need to check whether the facility can

be filtered or not which further reduces the number of times filter-

ing algorithm is called. As a consequence, the I/O cost as well as

the CPU cost of the algorithm is reduced.

 0

 10

 20

 30

 40

 50

2 5 10 15 20 25

TPL
O
PT1

O
PT2

TPL++

TPL
O
PT1

O
PT2

TPL++

TPL
O
PT1

O
PT2

TPL++

TPL
O
PT1

O
PT2

TPL++

TPL
O
PT1

O
PT2

TPL++

TPL
O
PT1

O
PT2

TPL++

#
 I

O

k

Verification
Filtering

1
4

.8
0

0

1
9

.6
2

7

2
4

.2
7

3

2
7

.3
1

9

3
0

.3
1

3

3
2

.5
2

2

1
5

.5
5

9 2
2

.2
0

5

2
8

.1
7

9

3
2

.1
6

6

3
5

.0
3

7

3
7

.6
9

2

1
1

.3
3

9

1
3

.1
4

4

1
5

.4
4

2

1
7

.2
7

2

1
8

.9
7

9

2
0

.5
6

3

1
1

.1
9

0

1
2

.4
9

0

1
3

.9
3

8

1
5

.1
2

5

1
6

.2
1

9

1
7

.1
7

5

(a) Varying k

 0

 50

 100

 150

 200

 250

 300

2 5 10 15 20 25

TPL
O
PT1

O
PT2

TPL++

TPL
O
PT1

O
PT2

TPL++

TPL
O
PT1

O
PT2

TPL++

TPL
O
PT1

O
PT2

TPL++

TPL
O
PT1

O
PT2

TPL++

TPL
O
PT1

O
PT2

TPL++

C
P

U
 C

o
s

t
(m

s
)

k

Verification
Filtering

1
.5

5
9

5
.6

6
5

2
3

.2
7

8

5
9

.0
0

0 1
1

8
.5

4
5

2
0

4
.3

2
1

0
.9

0
8

2
.4

5
5

5
.5

2
4

9
.1

2
4

1
2

.9
7

1

1
7

.4
1

7

5
.3

5
8

1
6

.0
1

3

4
6

.9
9

7 9
4

.7
8

7

1
6

3
.1

0
8

2
5

2
.8

6
8

1
.4

3
1

2
.2

5
4

3
.6

3
2

5
.0

8
1

6
.6

2
4

8
.2

9
8

(b) Varying k

Figure 6: Effect of optimizations: 100K facilities and 100K

users following Normal distribution

Figure 6 shows the effect of the two proposed optimizations.

Specifically, OPT1 is the algorithm that only uses optimization 1

(optimized filtering), OPT2 is the version where only the second

optimization is applied. TPL++ is the algorithm when both of the

optimizations are applied. Figure 6(a) shows the I/O cost of each

algorithm. Note that the I/O cost of OPT2 is smaller than the I/O

cost of TPL although both algorithms use the same filtering strat-

egy. This is because OPT2 has a larger filtering set Sfil and hence

can filter more entries. The I/O cost of OPT1 is larger than TPL.

This is because the optimized filtering used by OPT1 filters more

facilities which results in a smaller filtering set Sfil . Since Sfil is

smaller for OPT1, the total number of entries pruned by OPT1 are

smaller. Note that TPL++ has the lowest I/O cost.

Figure 6(b) shows the CPU cost of each algorithm. OPT1 is more

efficient than TPL because it employs a cheaper filtering strategy.

Although OPT2 uses the same filtering strategy as TPL, it is sig-

nificantly more expensive. This is because Sfil is much larger for

OPT2 and the filtering cost of OPT2 and TPL increases rapidly

with increase in Sfil . In general, TPL++ is the most efficient al-

gorithm mainly because it employs a cheaper filtering strategy and

uses a larger Sfil which results in more entries being filtered. For

k = 2, OPT1 is better than TPL++. This is because a larger Sfil

used by TPL++ implies a more effective but, at the same time, a

more expensive filtering. This results in an overall relatively poor

performance (as compared to OPT1) for smaller value of k.

3.4 FINCH

3.4.1 Filtering

Wu et al. [25] propose an algorithm called FINCH that aims at

improving upon TPL by using a cheaper filtering strategy. Specif-

ically, instead of using the subsets to filter the entries, they use a

convex polygon that encloses the unfiltered area. Any entry that

lies outside the polygon can be filtered.

Consider the example of Figure 3(a) where the white area is the

unfiltered area. FINCH approximates this area by a convex polygon

(see the white area in Figure 7 with boundary shown in broken

lines). Any entry that lies outside this polygon can be filtered, i.e.,

the shaded area of Figure 7 can be filtered.

The cost of computing the convex polygon is high. Specifically,

whenever a new facility is added to Sfil , it takes O(m2) to compute

the convex polygon where m is the number of facilities in the filter-

ing set Sfil . However, filtering of FINCH is more efficient than TPL

because containment of a point can be done in logarithmic time for

convex polygons. Hence, a point can be filtered in O(log m). Fil-

tering a node takes O(m) because it may require computing the

intersection of the rectangle with the convex polygon.

3.4.2 Verification

The users that lie inside the convex polygon are identified and are

inserted in the candidate set. Similar to the six-regions approach,

each candidate user is verified using the boolean range query.

Figure 7: FINCH (k = 2) Figure 8: InfZone (k = 2)

3.5 InfZone

3.5.1 Filtering

Cheema et al. [6, 9] propose InfZone which uses the concept of

influence zone to significantly improve the verification phase. In-

fluence zone is the area such that a point p is a RkNN of q if and

only if p lies inside this area. Once influence zone is computed,

RkNN query can be answered by locating the users lying inside it.

A naı̈ve approach to construct the influence zone is to draw the

half-spaces of all the facilities. The area that is filtered by less

than k facilities corresponds to the influence zone. For instance,

in Figure 8, the half-spaces between q and all facilities are drawn

(Ha:q, Hb:q , Hc:q , and Hd:q). The shaded area can be filtered and

the white area is the influence zone. Recall that FINCH and TPL

did not consider Hd:q because, when d is accessed, it is found to

lie in the filtered area and is ignored.

The authors present several properties to reduce the number of

facilities that must be considered in order to correctly compute the

influence zone. The algorithm initializes the influence zone to be

the whole data space (which is a rectangle). Whenever a facility

f is accessed, its half-space Hf :q is used to update the influence

zone, e.g., by removing the part that is pruned by at least k fa-

cilities. The key observation is that an entry e (a node or a fa-

cility) is not required to correctly compute the influence zone if

mindist(e, v) > dist(v, q) for every vertex v of the current influ-

ence zone. Hence, the algorithm only considers the entries that do

not satisfy this condition. Note that checking whether the facility

entry is required or not takes O(m) because it was shown that the

number of vertices of the influence zone is O(m).
Updating the influence zone when a new facility is inserted in

Sfil takes O(m2) where m is the total number of facilities in Sfil .

In an extended version [9], this cost was improved to O(km).

3.5.2 Verification

By definition of the influence zone, a point p is a RkNN if and

only if p is inside the influence zone. Hence, the entries of user

R*-tree are accessed iteratively and the entries that do not overlap

with the influence zone are ignored. The users that lie inside the

influence zone are reported as RkNN.

It was shown that the influence zone is a star-shaped polygon [15]

and the point containment can be done in logarithmic time to the

number of edges of the star-shaped polygons, i.e., the cost to verify

a user is O(log m). To filter a user node (i.e., a rectangle), the

intersection between the rectangle and influence zone is required

which takes O(m). To speed up checking whether an entry (a node

or point) overlaps the influence zone or not, InfZone is approxi-

mated by two circles: one completely contains the influence zone

and the other is completely contained by it. The overlap of each

entry is first checked against these circles to see if the overlap with

the influence zone is required or not.

3.6 SLICE

3.6.1 Filtering

Inspired by the cheap (although less effective) filtering strategy

used by six-regions, Yang et al. [28] proposed an algorithm called

SLICE which improves the filtering power of six-regions approach

while utilizing its strength of being a cheaper filtering strategy.

SLICE divides the space around q into multiple equally sized re-

gions. Their experimental study demonstrated that the best perfor-

mance is achieved when the space is divided into 12 equally sized

regions. Figure 9(a) shows an example where the space is divided

into 12 equally sized regions. Consider the half-space Hf :q and the

partition P . The shaded area in partition P can be pruned by Hf :q

and the dotted area in the partition P cannot be pruned by Hf :q.

The shaded area is defined by an arc centered at q with radius rU

(as shown in Figure 9(a)). This arc is called upper arc of f w.r.t.

P and is denoted as rUf :P (or rU if clear by context). The arc that

defines the dotted area is called the lower arc of f w.r.t. P and is

denoted as rLf :P (or rL if clear by context).

(a) Upper and lower arcs (b) Filtering

Figure 9: Illustration of filtering by SLICE (k = 2)

It is easy to see that a point p in the partition P can be pruned by

the facility f if p lies outside its upper arc, i.e., dist(p, q) > rUf :P .

For instance, a point p that lies in the shaded area of Figure 9(a)

can be pruned. Also, note that a point p ∈ P cannot be pruned by

f if p lies inside its lower arc, i.e., dist(p, q) < rLf :P . For instance,

f cannot prune a point that lies in the dotted area in Figure 9(a).

During the filtering phase, SLICE maintains k-smallest upper

arcs for each partition Pi. The k-th smallest upper arc in a par-

tition P is called its bounding arc and its radius is denoted as rBP .

Note that any point p that lies in P and dist(p, q) > rBP can be

pruned by at least k facilities and can be filtered. Figure 9(b) shows

the filtering phase of SLICE using three facilities a, b and c (assum-

ing k = 2). Figure 9(b) also shows bounding arcs for some of the

partitions and the shaded area can be filtered. Note that, for a point

p in a partition P , checking whether p can be filtered or not takes

O(1). To filter a node entry e that overlaps with multiple partitions,

mindist(q, e) is compared with the bounding arc of each overlap-

ping partition. Hence, the cost is O(t) in the worst case where t is

the total number of partitions.

3.6.2 Verification

In the verification phase, every user u that lies within the bound-

ing arc of its partition is retrieved and inserted in the candidate set.

Next, we describe how to verify the candidate users.

As stated earlier, a facility f cannot prune the user u if u lies

inside the lower arc of f w.r.t. P , i.e., dist(u, q) < rLf :P . In

other words, a facility f can prune a candidate user in P only if its

lower arc is smaller than the bounding arc of this partition. Such

a facility is called the significant facility for the partition P . In the

Filtering Phase Six-regions TPL TPL++ FINCH InfZone SLICE

Filter a facility node O(1) O(km) O(m) O(m) O(m) O(t)
Filter a facility point O(1) O(km) O(m) O(logm) O(m) O(t)
Adding a new facility in Sfil O(log k) O(logm) O(logm) O(m2) O(m2) O(t logm)

Verification Phase

Filter a user node O(1) O(km) O(m) O(m) O(m) O(t)
Filter a user point O(1) O(km) O(m) O(logm) O(logm) O(1)
Verify a candidate boolean concurrent concurrent boolean O(logm) O(m)

range query range query range query range query expected cost O(k)

Expected number of candidates
6k|U|
|F |

k|U|
|F |

to
6k|U|
|F |

k|U|
|F |

to
3.1k|U|

|F |
k|U|
|F |

to
6k|U|
|F |

k|U|
|F |

<
3.1k|U|

|F |

Table 1: Comparison of computational complexities. m: number of facilities in Sfil , t: number of partitions for SLICE, |F |: total

number of facilities in the data set, |U |: total number of users in the data set

filtering phase, for each partition P , SLICE creates a significant list

that contains all significant facilities of the partition P . To facilitate

efficient verification, the facilities in the significant list are sorted

in ascending order of the radii of their lower arcs.

To check whether a user u is a RkNN or not, the algorithm it-

eratively accesses the facilities in the significant list. A counter is

maintained that counts the number of facilities that prune the user

u. If the accessed facility f prunes the user u, the counter is incre-

mented. If the counter becomes equal to k, the user u is filtered. At

any stage, if the radius of the lower arc of the accessed facility f
is larger than dist(u, q), the algorithm terminates. This is because

all unseen facilities in the significant list also have lower arcs larger

than dist(u, q) and hence cannot prune u.

It was shown that the expected size of significant list is O(m).
Hence, verifying a candidate user takes O(m). It was also shown

that the expected cost of verifying a user is O(k), i.e., the algo-

rithm is expected to verify a user by checking first k facilities in the

significant list.

3.7 Summary of computational costs
Table 1 summarizes the complexities of different operations for

each of the algorithms. Note that different algorithms use different

Sfil , therefore, the value of m is different for each algorithm. We

observe that the value of m does not generally depend on the data

set size and increases linearly with k. We remark that although

Table 1 presents a reasonable picture of the cost of different phases

of the algorithms, it is not conclusive and should be seen only as a

guide. This is because the cost of each algorithm depends not only

on the size of its Sfil but also on the number of times each operation

is called. Next, we summarize the complexities that have not been

discussed in detail earlier.

Whenever a new facility is added in Sfil , FINCH and InfZone

need to update the convex polygon and the influence zone, respec-

tively. This takes O(m2) [6, 25]. It was shown that it is possible

to update the influence zone in O(km) [9]. However, we remark

that this result is more of theoretical interest and does not necessar-

ily improve the performance because m is in practice equal to Ck
where C is a small constant. Six-regions need to maintain the k-th

nearest facility in each region whenever a new facility is encoun-

tered and this takes O(log k). TPL and TPL++ add the facility in

Sfil in the sorted order of its Hilbert value and it takes O(logm).
SLICE needs to maintain the set of significant facilities in sorted

order for each of the t partitions and this requires O(t logm) for

each new facility f .

The verification cost of InfZone and SLICE is the smallest whereas

six-regions and FINCH have the most expensive verification. TPL

and TPL++ aim to reduce the I/O cost of the verification phase and

use a smart strategy to verify a set of candidates. The cost is some-

what similar to issuing a set of concurrent boolean range queries.

The table also summarizes the expected number of candidates

for each algorithm assuming that the users and facilities data sets

follow uniform distribution. It was shown in [6] that the expected

number of candidates for InfZone is k|U |/|F | where |U | and |F |
are the total number of users and facilities |F |, respectively. It is

easy to show that the expected number of candidates for six-regions

is 6k|U |/|F |, e.g., in each of the six regions, a k-th nearest facility

defines the filtered space and, assuming |U | = |F |, the number of

users inside the unfiltered space is also k for each region. Hence,

the expected number of candidates is 6k when |U | = |F |.
It was shown in [20] that TPL filters more space than six-regions.

Hence, the expected number of candidates is smaller than 6k|U |/|F |.
Furthermore, InfZone has the minimal number of candidates be-

cause every candidate is guaranteed to be a RkNN (by definition of

the influence zone). Hence, the expected number of candidates for

TPL is larger than that of InfZone. The expected number of candi-

dates for SLICE is less than 3.1k|U |/|F | as shown in [28]. Finally,

since SLICE filters the space by approximating the space pruned by

half-spaces, its filtering power is expected to be lower than TPL++.

Hence, TPL++ is expected to have less than 3.1k|U |/|F | candi-

dates. In our experiments, we find that the number of candidates

for TPL++ is very close to that of InfZone.

4. EXPERIMENTS

4.1 Experimental Setup
Algorithms and implementation. We implemented all of the al-

gorithms ourselves and the algorithms use common subroutines to

do similar tasks. All algorithms are implemented in C++ and com-

piled to 32-bit binaries by GCC 4.7.2 with -O2 flag. All the exper-

iments are run on Intel Xeon 2.66 GHz quad core CPU, 4GB main

memory running Debian Linux and using ST3450857SS hard disk

(450GB 15K RPM SAS 6Gbps).

For each algorithm, we also implemented some simple yet ef-

fective optimizations that were not mentioned in the original paper.

Furthermore, after finishing our implementation, we obtained the

codes from the authors to make sure that our implementation does

not have any glitches that may negatively affect the algorithm. The

detailed pseudocodes, the source code, data sets, and the scripts to

run experiments and draw figures are available online2. Below are

two notable examples for the optimizations we implemented.

FINCH needs to frequently check whether an entry (a node or

point) overlaps with the convex polygon. While computing con-

vex polygon, we compute a minimum bounding rectangle of the

2
www.aamircheema.com/reproducibility/rknn

polygon as well as a minimum bounding circle (centered at q) of

the polygon. An entry is guaranteed not to overlap the polygon if

it does not overlap its minimum bounding rectangle or minimum

bounding circle.

Recall that kTrim algorithm used in TPL trims the input entry

by removing the part of the entry that can be filtered (the returned

entry is called output entry). We found that the implementation by

the authors repeatedly calls kTrim by passing the output entry as

the input until either the whole entry is trimmed or the output entry

is the same as the input entry. The repeated calls of kTrim may

eventually filter the entry because at each call of kTrim the size of

entry is reduced. We also implemented this optimization for TPL

because this improves the I/O cost as well as the CPU cost of the

algorithm for all experiments.

Data sets. We use three real data sets that consist of points of

interest in North America, Los Angeles and California, respec-

tively. The North America [27] data set (denoted as NA) consists

of 175, 812 points. The Los Angeles and California data sets (de-

noted as LA and CA, respectively) are obtained from U.S. census

database [26] and are converted from line data sets into point data

sets by evenly generating a set of points on each line. LA data set

contains 2.6 million points and CA data set contains around 25.8
million points. The existing experimental studies also used these

data sets in their experiments: the NA data set was used in the pa-

pers proposing TPL, InfZone and SLICE; the LA data set was used

by FINCH and TPL; and the CA data set was used by FINCH. Fig-

ure 10 shows the distribution of the data points in the three real data

sets (using 10, 000 randomly selected points for each data set).

(a) North America (b) Los Angeles (c) California

Figure 10: Real data sets

We also generate synthetic data sets following different data dis-

tributions. Due to the similarity in the trends, in this paper, we only

report the results for data sets following normal distribution. We

conduct experiments on a variety of data sizes ranging from small

data sets to large data sets. Specifically, the small synthetic data set

contains 2000 points whereas the medium and the large data sets

contain 200, 000 and 20, 000, 000 points, respectively.

Each of the real and synthetic data sets is randomly divided into

two disjoint sets of points of almost equal sizes. One of the sets

corresponds to the set of facilities and the other to the set of users.

Each data set is indexed by an R*-tree with the page size of 4, 096
bytes. Average number of children in each node is around 68. We

also conducted experiments using different page sizes but observed

similar trends.

Similar to existing work, we vary the value of k from 1 to 25 and

the default value of k is 10. We also present results for larger values

of k (e.g., up to 200). For each data set, one thousand facilities are

randomly selected from the facilities data set and these facilities are

chosen as the query points. The results reported in the figures cor-

respond to the average cost per query. Each query is treated as a

fresh run, e.g., the nodes accessed by previous queries are assumed

not to be present in the buffer and the computation from the pre-

vious queries is not re-used. This choice is made mainly because

none of the existing techniques focuses on re-using the informa-

tion from previous queries and our focus is to evaluate the cost of a

single RkNN query.

4.2 Effect of buffers
As stated earlier, six-regions and FINCH issue boolean range

queries to verify the candidate users. This requires traversing the

facility R*-tree once for each boolean range query which may re-

sult in a large number of I/Os. In this section, we study the effect

of number of buffers on the performance of the algorithms where

each buffer corresponds to one page (4, 096 bytes). Specifically, we

change the number of buffers from 1 to 1000. We conduct exper-

iments on CA data set (the largest data set) for k = 25 and report

the results in Figure 11.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 10 100 1000

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

#
 I

O

number of buffers

Verification
Filtering

2
7
8
4

.1
5
2

2
1
2
5
.9

0
4

6
2
.6

0
5

6
2
.6

0
5

6
1
.0

0
4

6
1
.0

0
4

6
1
.0

0
4

6
1
.0

0
4

4
4
.3

7
6

4
4
.3

7
6

4
4
.3

7
6

4
4
.3

7
67
8
8
.5

6
1

5
9
8
.2

8
0

4
7
.7

3
4

4
7
.7

3
4

4
5
.1

6
2

4
5
.1

6
2

4
5
.1

6
2

4
5
.1

6
2

5
5
.1

7
9

5
5
.1

7
9

5
5
.1

7
9

5
5
.1

7
9

Figure 11: Effect of buffer size (CA data set)

Note that the cost of SIX and FINCH remains unchanged when

the number of buffers is 100 or more. This is due to the fact that

RkNN queries are not I/O extensive in the sense that each RkNN

query requires accessing less than 100 unique nodes of the R*-

tree. Note that the other algorithms (TPL, TPL++, InfZone and

SLICE) access each node of the R*-tree at most once. Hence, their

performance is not affected by the change in buffer size.

As stated earlier, the existing experimental studies either used a

buffer containing 10 pages or no buffer at all. Given the increased

main memory in modern systems, we believe that it is unfair to

these algorithms to use such a small buffer. For the rest of the

experiments, we choose 100 buffers (400KB) for each algorithm.

4.3 Comparison with lower bound I/O cost
First, we compare the I/O cost of each algorithm with an imagi-

nary algorithm (called LB algorithm) that assumes the existence of

an oracle and achieves lower bound I/O cost, e.g., every algorithm

that uses the data sets indexed by R*-trees must access every node

that is accessed by the LB algorithm. First, we briefly describe

the minimal number of nodes accessed on user R*-tree and facility

R*-tree.

Minimal number of accessed nodes on user R*-tree. By the def-

inition of the influence zone, a user u is a RkNN of q if and only if

u lies in the influence zone. This implies that every algorithm that

correctly computes the results must access every node of the user

R*-tree that overlaps with the influence zone. This is because if

such a node e is not accessed, the algorithm may miss a user u ∈ e
that lies in the influence zone and is a RkNN.

Minimal number of accessed nodes on facility R*-tree. Let u be

a RkNN of the query. Let |e| denote the total number of facilities

stored in the sub-tree rooted at e. Every node e of the facility R*-

tree for which mindist(u, e) < dist(u, q) and |e| > k must be

accessed in order to compute the correct results. This is because if

e is not accessed, it is possible that there are at least k facilities in e
(or its children) for which dist(u, f) < dist(u, q). In other words,

u cannot be guaranteed as a RkNN if e is not accessed.

The LB algorithm. The LB algorithm works as follows. We as-

sume an oracle that computes the influence zone and RkNNs with-

out incurring any I/O cost. In filtering phase, LB algorithm accesses

every node e of the facility R*-tree for which mindist(u, e) <
dist(u, q) for any RkNN user u. In the verification phase, LB al-

gorithm accesses every node e of the user R*-tree that overlaps with

the influence zone.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1000 10000 100000 1000000

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

LB SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

LB SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

LB SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

LB

#
 I

O

number of users

User R*-tree

2
.1

1
2

3
.8

1
3 9

.6
6
0

3
1
.4

0
3

2
.1

5
3

3
.8

7
4 9

.5
9
4

2
9
.0

1
6

2
.0

4
3

3
.3

8
4

7
.1

2
3

1
6
.6

9
2

2
.0

5
1

3
.4

4
9

7
.5

5
6

1
9
.5

1
7

2
.0

2
7

3
.3

3
4

6
.8

5
5

1
5
.8

5
5

2
.0

3
9

3
.3

8
4

7
.1

9
6

1
7
.7

7
4

2
.0

2
7

3
.3

3
4

6
.8

5
5

1
5
.8

5
5

(a) User R*-tree

 0

 2

 4

 6

 8

 10

 12

 14

 16

1000 10000 100000 1000000

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

LB SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

LB SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

LB SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

LB

#
 I

O

number of users

Facility R*-tree

1
0
.1

3
3

1
0
.4

3
2

1
1
.4

3
3

1
1
.9

7
6

1
0
.9

0
0

1
0
.9

0
0

1
0
.9

0
5

1
0
.9

2
5

8
.4

9
5

8
.4

9
6

8
.5

4
6

8
.7

4
7

8
.2

9
8

8
.4

2
7

9
.0

3
0

9
.4

8
1

9
.0

5
1

9
.0

5
1

9
.0

5
1

9
.0

5
1

9
.9

3
8

9
.9

3
8

9
.9

3
8

9
.9

3
8

0
.5

0
9

3
.9

7
1

7
.7

6
9

8
.6

1
5

(b) Facility R*-tree

Figure 12: Comparison with lower-bound I/O: Effect of vary-

ing |U | (|F | = 100, 000)

Due to the space limitation, we report only the most interesting

result. Specifically, in Figure 12, we use synthetic data sets and fix

the number of facilities to 100, 000 and vary the number of users.

I/O cost on user R*-tree. Figure 12(a) shows that the number

of user R*-tree nodes accessed by InfZone meets the lower bound

because, like LB, InfZone also accesses a node if and only if it

overlaps with the influence zone. The I/O cost of TPL and SIX

are the highest due to poor filtering power. The gap between Inf-

Zone/LB and the other algorithms increases as the number of users

increases. The reason is as follows. Since the number of facili-

ties does not change, the area filtered by each algorithm remains

unchanged. However, as the size of users data set increases, the

number of small user R*-tree nodes (in terms of area) increases

significantly which results in a larger difference between the num-

ber of nodes filtered by the influence zone and the other algorithms.

I/O cost on facility R*-tree. Figure 12(b) shows the number of fa-

cility R*-tree nodes accessed by each algorithm. None of the algo-

rithms meet LB cost. Among the competitors, TPL++ and FINCH

access minimum number of nodes. SIX and TPL access more

nodes because of their low filtering power. InfZone and SLICE ac-

cess more nodes because these algorithms aim at accessing all the

facilities that may be required in the verification phase. For the

same reason, the number of facility R*-tree nodes accessed by Inf-

Zone and SLICE remain the same regardless of the size of users data

set. On the other hand, the I/O cost of other algorithms changes as

the number of users increases. This is because these algorithms

access facility R*-tree to verify the candidates and the number of

candidates increases with the number of users.

Note that the gap between LB and the other algorithms is larger

for smaller number of users. This is mainly because filtering phase

of each algorithm is totally independent of the verification phase,

i.e., the users data set is not considered in the filtering phase and this

may result in un-necessary I/O cost on facility R*-tree. Consider

 0

 5

 10

 15

 20

 25

1 5 10 15 20 25

#
 I

O

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(a) North America

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 5 10 15 20 25

#
 I

O

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(b) Los Angeles

 0

 10

 20

 30

 40

 50

 60

1 5 10 15 20 25

#
 I

O

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(c) California

 0

 2

 4

 6

 8

 10

 12

 14

1 5 10 15 20 25

#
 I

O

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(d) Synthetic small (2K)

 0

 5

 10

 15

 20

 25

1 5 10 15 20 25

#
 I

O

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(e) Synthetic medium (200K)

 0

 10

 20

 30

 40

 50

 60

1 5 10 15 20 25

#
 I

O

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(f) Synthetic Large (20M)

Figure 13: Effect of k on I/O cost

an extreme example where the users data set is empty. In such case,

the filtering phase is not required at all. However, each algorithm

runs the filtering phase normally (aiming to filter as much space as

possible) which results in un-necessary I/O cost. This experiment

indicates that an interesting future work is to develop an algorithm

that filters the space by considering the locations of facilities as

well as users which may result in a lower overall I/O cost.

4.4 Effect of k

4.4.1 I/O cost

Figure 13 evaluates the I/O cost of the algorithms for varying

k on real and synthetic data sets. TPL++ has the lowest I/O cost

among all of the algorithms whereas SIX has the highest I/O cost.

For larger data sets (e.g., Figure 13(c) and Figure 13(f)), the I/O

cost of TPL++ and InfZone is almost the same. FINCH is the third

best algorithm in terms of I/O cost followed by SLICE. Note that

the effect of k for smaller data sets (e.g., Figure 13(d)) is more

significant. This is mainly because the density of facilities is lower

for smaller data sets which results in a more significant increase in

the unfiltered area as the value of k increases.

4.4.2 CPU time

Figure 14 studies the effect of k on CPU cost of each algorithm.

SLICE outperforms all other algorithms and scales quite well with

the increase in k. This is due to the cheap filtering and verifica-

tion strategies used by SLICE. InfZone is the second best algorithm

for smaller values of k and TPL++ is the second best algorithm for

larger values of k. Note that InfZone performs better (as compared

to the other algorithms except SLICE) for larger data sets (e.g., syn-

thetic large and California). This is mainly because InfZone and

SLICE scale better as the data set size increases as we illustrate

later in Figure 15.

The verification cost of TPL, TPL++, FINCH and SIX increases

significantly with k (as can be seen in Figure 14(e)). This is because

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 5 10 15 20 25

C
P

U
 C

o
s

t
(m

s
)

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(a) North America

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 5 10 15 20 25

C
P

U
 C

o
s

t
(m

s
)

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(b) Los Angeles

 0

 20

 40

 60

 80

 100

 120

1 5 10 15 20 25

C
P

U
 C

o
s

t
(m

s
)

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(c) California

 0

 10

 20

 30

 40

 50

1 5 10 15 20 25

C
P

U
 C

o
s

t
(m

s
)

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(d) Synthetic medium (200K)

 0

 100

 200

 300

 400

 500

1 5 10 15 20 25

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

C
P

U
 C

o
s
t

(
m

s
)

k

Verification
Filtering

3
.5

0
1

1
3
.2

2
6

2
6
.3

6
2

3
9
.8

7
5

5
4
.3

6
0

6
9
.1

9
6

3
.4

0
1

1
3
.7

1
7

4
9
.7

5
2

1
1
8
.3

3
5

2
3
0
.2

8
5

3
8
9
.9

0
6

6
.1

4
2

1
0
.0

5
8

1
4
.3

4
6

1
8
.9

4
8

2
3
.6

1
1

2
8
.6

8
6

2
.1

6
3

7
.4

7
9

1
5
.9

8
0

2
5
.5

8
9

3
7
.7

9
9

5
0
.2

8
2

1
.5

3
5

2
.1

1
5

3
.4

4
8

5
.8

2
7

9
.6

0
3

1
5
.3

1
6

1
.3

1
7

1
.6

6
6

1
.9

9
6

2
.3

0
9

2
.6

7
9

2
.9

0
5

(e) Synthetic Large (20M)

Figure 14: Effect of k on CPU time

these algorithms use range queries (or concurrent range queries)

to verify the candidate users which is expensive. The number of

candidates increases with the increase in k which results in larger

verification cost. On the other hand, InfZone and SLICE use more

efficient verification strategies and therefore the increase in verifi-

cation cost for these algorithms is not significant.

The filtering cost of TPL, TPL++, FINCH and InfZone rapidly

increases as the value of k increases. The effect of k on the filter-

ing cost of TPL is more adverse than the other algorithms mainly

because the filtering cost is much larger (e.g., O(km) as compared

to O(m)). The filtering cost of InfZone and FINCH is also signif-

icantly increased mainly because the construction of the influence

zone and convex polygon depends on m which increases with the

increase in k. Note that the filtering cost of SIX and SLICE does

not significantly increase which is due to the cheap filtering rules

used by these algorithms.

Note that TPL++ is slower than TPL for k = 1 in contrast to the

results presented in Section 3.3. This is because of the optimization

used in the implementation of TPL as explained in Section 4.1, i.e.,

kTrim is repeatedly called as long as the trimmed entry is smaller

than the input entry. This improves the CPU and I/O cost of TPL.

4.5 Effect of data set size
In this section, we study the effect of the change in data set size

on each algorithm. Similar to existing experimental studies [6,28],

we note that a moderate change in the data set size (e.g., a few

times) does not have significant effect on the cost. We omit the

results due to space limitations.

In Figure 15, we study the effect of enormous change on the data

set size. Specifically, we vary the data set size from 2000 points to

20, 000, 000 points and study the effect on I/O cost (Figure 15(a))

and CPU cost (Figure 15(b)). The I/O cost of each algorithm in-

creases mainly because of the increase in the total number of nodes.

We remark that although the total number of users increases

 0

 10

 20

 30

 40

 50

 60

 70

2000 200000 20000000

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

#
 I

O

data set size

Verification
Filtering

1
0
.1

7
7

1
8
.9

3
5

4
6
.9

2
5

9
.3

9
9

1
8
.2

0
8

4
6
.7

2
8

6
.7

4
5

1
3
.6

9
5

3
9
.2

0
5

7
.3

4
5

1
4
.6

1
0

4
0
.3

6
2

7
.0

5
5

1
3
.9

7
6

3
9
.2

0
3

7
.9

7
8

1
5
.1

1
5

4
1
.0

5
3

(a) Effect on I/O cost

 0

 10

 20

 30

 40

 50

 60

2000 200000 20000000

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

C
P

U
 C

o
s

t
(m

s
)

data set size

Verification
Filtering

3
.0

0
1

7
.9

9
8

2
6
.3

6
2

8
.8

7
0 1

9
.7

3
5

4
9
.7

5
2

1
.3

5
2

3
.6

1
8 1

4
.3

4
6

3
.1

5
0

5
.8

1
6 1
5
.9

8
0

1
.9

1
5

2
.1

3
3

3
.4

4
8

0
.7

6
4

0
.9

5
3

1
.9

9
6

(b) Effect on CPU cost

Figure 15: Effect of data set size (enormous change)

with the data size, the number of candidates does not necessarily

increase. This is because the number (and density) of facilities

also increases which results in a larger filtered area. Figure 15(b)

shows that the verification cost of TPL, TPL++, FINCH and SIX

increases. This is because the cost of issuing range queries on larger

data sets increases significantly. On the other hand, the verification

phase of InfZone and SLICE is cheaper because the verification

cost mainly depends on m (number of filtering facilities) and m
does not increase with the change in data set size.

The filtering cost of TPL increases significantly mainly because

the number of entries checked for filtering increases significantly.

Since the cost of checking whether an entry can be filtered or not is

lower for the other algorithms, the filtering cost of these algorithms

does not increase as significantly as that of TPL.

4.6 Effect of relative data size
In this section, we study the performance of different algorithms

by varying |U |/|F | where |U | and |F | are the total number of

users and facilities, respectively. Specifically, in Figure 16, we fix

the number of facilities to 100, 000 and vary the number of users

whereas, in Figure 17, the number of users is fixed to 100, 000 and

the number of facilities is changed.

 0

 10

 20

 30

 40

 50

 60

1000 10000 100000 1000000

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

#
 I

O

number of users

Verification
Filtering

1
2
.2

4
5

1
4
.2

4
5

2
1
.0

9
3

4
3
.3

7
9

1
3
.0

5
3

1
4
.7

7
4

2
0
.4

9
9

3
9
.9

4
1

1
0
.5

3
8

1
1
.8

8
0

1
5
.6

6
9 2
5
.4

3
9

1
0
.3

4
9

1
1
.8

7
6

1
6
.5

8
6 2

8
.9

9
8

1
1
.0

7
8

1
2
.3

8
5

1
5
.9

0
6

2
4
.9

0
6

1
1
.9

7
7

1
3
.3

2
2

1
7
.1

3
4 2
7
.7

1
2

(a) Effect on I/O cost

 0

 20

 40

 60

 80

 100

1000 10000 100000 1000000

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

C
P

U
 C

o
s

t
(m

s
)

number of users

Verification
Filtering

0
.9

6
3

1
.6

8
8

8
.9

5
2

8
0
.2

8
0

1
3
.0

5
5

1
4
.8

1
0

2
1
.8

9
1

5
2
.9

8
2

2
.1

9
8

2
.5

1
4

4
.2

6
4

1
3
.6

5
1

2
.6

1
0

2
.9

4
5

6
.2

7
7

3
8
.8

8
6

1
.9

3
7

1
.9

7
7

2
.2

2
0

2
.9

6
3

0
.9

2
9

0
.9

4
8

1
.0

1
9

1
.3

0
0

(b) Effect on CPU cost

Figure 16: Varying the number of users (|F | = 100, 000)

Figure 16 studies the effect on the I/O cost and CPU cost of the

algorithms. Since the number of facilities does not change, the fil-

tering cost of each algorithm remains unchanged. The verification

cost increases with the increase in the size of users data set because

the number of unpruned nodes (and the number of candidates) in-

creases. Figure 16(b) shows that InfZone and SLICE scale better

than the other algorithms in terms of CPU cost. This is due to the

cheaper verification used by these algorithms.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1000 10000 100000 1000000

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

#
 I

O

number of facilities

Verification
Filtering

1
2
9

.3
7
1

3
3
.3

8
8

2
1
.0

9
3

2
0
.4

0
8

9
5
.8

6
7

3
0
.0

0
1

2
0
.4

9
9

2
1
.1

6
6

3
9
.6

4
6

1
7
.4

2
1

1
5
.6

6
9

1
7
.7

2
35

6
.8

8
0

2
0
.7

7
1

1
6
.5

8
6

1
7
.6

8
3

3
8
.6

8
4

1
7
.0

8
0

1
5
.9

0
6

1
8
.1

1
44
9
.8

4
2

1
9
.5

4
2

1
7
.1

3
4

1
9
.1

6
3

(a) Effect on I/O cost

 0

 50

 100

 150

 200

 250

 300

 350

1000 10000 100000 1000000

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

C
P

U
 C

o
s

t
(m

s
)

number of facilities

Verification
Filtering

2
4
6
.6

6
7

4
2
.7

7
9

8
.9

5
2

2
.3

7
8

1
7
3
.6

1
5

3
9
.5

0
3

2
1
.8

9
1

2
1
.2

2
7

3
8
.7

1
4

7
.4

5
2

4
.2

6
4

4
.1

5
8

1
0
6
.5

6
1

2
0
.3

7
9

6
.2

7
7

3
.3

8
6

9
.4

6
4

2
.7

4
3

2
.2

2
0

2
.3

0
3

2
.8

4
7

1
.0

7
6

1
.0

1
9

1
.1

7
9

(b) Effect on CPU cost

Figure 17: Varying the number of facilities (|U | = 100, 000)

In Figure 17, we fix the number of users to 100, 000 and study

the effect of changing the number of facilities. As the number of fa-

cilities increases, the filtering cost of each algorithm increases. This

is because the facility R*-tree is larger and the number of nodes

that cannot be filtered increases. The verification cost of each algo-

rithm decreases with the increase in the number of facilities. This

is because the filtered area becomes larger when the density of the

facilities data set is increased. This results in a fewer number of

unfiltered nodes and candidate users. InfZone and SLICE are less

sensitive to the change in number of facilities because the verifica-

tion cost of these two algorithm is significantly lower than the other

algorithms.

Figure 16 and Figure 17 show that the performance gain of Inf-

Zone as compared to other algorithms is high when |U |/|F | is large

and low when |U |/|F | is small. This is because the main strength

of InfZone is its cheap verification phase. If |U |/|F | is small, the

effect of its strength is smaller and vice versa.

4.7 Monochromatic queries
Each of the algorithms can be easily applied to answer monochro-

matic RkNN queries. The major difference is that the candidates

are the facilities found in Sfil after the filtering phase. These facil-

ities are then verified as explained earlier in Section 3. For details,

please see the original papers. Since TPL++ does not apply filter-

ing to the facilities, its Sfil (i.e., the number of candidates) is larger.

First, each of the candidate facilities is filtered using other facil-

ities in Sfil . Then, the remaining facilities are verified using the

concurrent range queries.

Figure 18 evaluates the algorithms for monochromatic RkNN

queries on LA data set. Note that the filtering cost is the major

I/O cost for each algorithm. This is because the algorithms do not

need to access any node of the facility R*-tree to retrieve the candi-

date set. The I/O cost in the verification phase is the cost of range

queries for TPL, TPL++, FINCH and SIX whereas the verification

I/O cost of InfZone and SLICE is zero because these two algo-

rithms access all facilities required for the verification during the

filtering phase. The I/O cost of SLICE is similar to SIX and worse

than all other algorithms. This is because SLICE tries to access all

the facilities that are to be used in the verification phase. This re-

sults in accessing un-necessary nodes of the R*-tree. InfZone also

aims at accessing all the facilities required during the verification

but its I/O cost is lower than SLICE because it uses more powerful

 0

 5

 10

 15

 20

 25

 30

1 5 10 15 20 25

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

#
 I
O

k

Verification
Filtering

1
1
.7

7
3

1
4
.1

1
1

1
6
.4

0
6

1
8
.4

7
7

2
0
.3

6
0

2
2
.0

8
6

1
1
.2

4
4

1
3
.1

3
6

1
5
.3

6
0

1
7
.3

2
1

1
8
.9

2
2

2
0
.6

5
9

9
.5

8
8

1
1
.0

4
9

1
2
.1

7
3

1
3
.1

2
2

1
3
.9

3
0

1
4
.6

9
6

1
0
.8

8
9

1
1
.7

5
5

1
2
.9

0
7

1
4
.0

4
4

1
5
.1

3
2

1
6
.2

0
1

1
0
.7

9
8

1
2
.1

0
0

1
3
.3

1
8

1
4
.4

1
8

1
5
.3

9
0

1
6
.2

4
1

1
1
.6

9
5

1
3
.4

1
6

1
6
.2

4
2

1
9
.2

5
9

2
0
.5

8
2

2
1
.8

9
5

(a) I/O Cost

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 5 10 15 20 25

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

SIX
TPL

TPL++

FIN
C
H

IN
F

SLIC
E

C
P

U
 C

o
s
t

(m
s
)

k

Verification
Filtering

2
.6

2
7

7
.5

2
0

1
4
.1

9
9

2
1
.2

4
7

2
8
.8

7
8

3
6
.8

4
2

1
.2

1
2

4
.3

7
2

1
5
.7

5
4 3
8
.2

5
6

7
5
.4

0
8

1
3
0
.6

8
3

0
.8

9
3

2
.0

9
6

3
.6

1
2

5
.4

8
5

7
.1

4
9

9
.1

8
0

1
.4

3
0

4
.2

3
8

9
.1

6
5

1
5
.6

5
7

2
3
.8

9
1

3
3
.9

3
2

0
.6

6
1

1
.4

8
3

3
.7

0
0

7
.9

5
0

1
5
.1

8
2

2
6
.6

7
8

0
.8

7
5

1
.2

4
2

1
.9

4
5

2
.9

3
0

3
.3

2
7

3
.7

7
3

(b) CPU Cost

Figure 18: Monochromatic Queries (LA data set)

 10

 100

10 50 100 200

#
 I

O

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(a) Effect on I/O cost

 0.1

 1

 10

 100

 1000

 10000

 100000

10 50 100 200

C
P

U
 C

o
s

t
(m

s
)

k

SIX

TPL

TPL++

FINCH

INF

SLICE

(b) Effect on CPU time

Figure 19: Effect of large k (CA data set)

filtering strategy.

Figure 18(b) shows the CPU cost for each algorithm. The re-

sults are similar to those for bichromatic RkNN queries. Specifi-

cally, SLICE outperforms other algorithms and scales better with

k. TPL++ is the second best algorithm for larger values of k and

InfZone is the second best algorithm for smaller values of k.

4.8 Effect of larger k
Figure 19 studies the effect of relatively larger k (up to 200) on

each algorithm. Figure 19(a) shows that the I/O cost of the algo-

rithms shows similar trend as for smaller values of k, e.g., TPL++

and InfZone are the best algorithms whereas SIX and TPL are the

most expensive algorithms in terms of I/O cost. Figure 19(b) shows

that SLICE scales much better than the other algorithms in terms of

CPU cost. Please note log-scale is used in the figures. InfZone and

TPL scale the worst among all algorithms. This is because TPL re-

quires O(km) to filter each entry where m significantly increases

with k. The cost of influence zone increases mainly because up-

dating the influence zone for each new facility in Sfil takes O(m2)
and m increases with k. FINCH also requires O(m2) but it scales

better than InfZone because the value for m for FINCH is smaller

than that of InfZone and the difference increases with k.

5. CONCLUSION
To summarize our findings, Table 2 provides rankings of the al-

gorithms under different experimental settings. Although the ta-

ble is self-explanatory, we provide a few comments. In terms of

I/O cost, TPL++ and InfZone are the best algorithms. Specifically,

TPL++ generally performs better than InfZone when the facilities

data set is larger or equal to the users data set. On the other hand,

Criteria 1st 2nd 3rd 4th 5th 6th

I/O Cost (no buffer) {TPL++, InfZone} SLICE TPL FINCH SIX

I/O Cost (small buffer) {TPL++, InfZone} FINCH SLICE {TPL, SIX}
CPU Cost (k ≤ 10) SLICE InfZone TPL++ FINCH {SIX, TPL}
CPU Cost (10 < k ≤ 25) SLICE {InfZone, TPL++} FINCH SIX TPL

CPU Cost (25 < k ≤ 200) SLICE TPL++ SIX FINCH InfZone TPL

Ease of implementation {SIX, SLICE} {TPL, TPL++} {FINCH, InfZone}

Table 2: Ranking of the algorithms under different criteria

InfZone performs better when the users data set is larger. In terms

of CPU cost, SLICE is the best algorithm for all values of k. Inf-

Zone is the second best algorithm for smaller values of k whereas

TPL++ is the second best algorithm for larger values of k.

We also rank the algorithms considering the ease of implementa-

tion. Note that this ranking is based on our personal experience and

is subjective. SIX and SLICE are the easiest to implement because

the half-space based filtering is generally more complicated to im-

plement. FINCH and InfZone are more difficult to implement than

TPL and TPL++ mainly because these algorithms require updating

the polygons as well as the counters of intersection points of the

half-spaces.

We also compared the I/O cost of the algorithms with the lower

bound I/O cost. Our experimental study demonstrates that the num-

ber of I/Os on users R*-tree is quite close (or equal) to the lower

bound for some of the algorithms. However, the number of I/Os on

facilities R*-tree can be further improved especially for the data

sets where the number of users is significantly smaller than the

number of facilities, e.g., by devising filtering strategies that also

consider the locations of users. We remark that the lower bound

holds only for the case when data sets are indexed by R*-tree. The

lower bound may be significantly smaller for specialized indexes.

Acknowledgment. We are sincerely thankful to the inventors of

TPL [20] and FINCH [25] for sending us their source codes that

helped us to confirm that our implementation of these algorithms

does not have any glitches. Muhammad Aamir Cheema is sup-

ported by ARC DE130101002 and DP130103405. The research of

Xuemin Lin is supported by NSFC61232006, NSFC61021004 and

ARC (DP120104168, DP140103578, DP150102728). Wei Wang

is supported by ARC DP130103401 and DP130103405.

6. REFERENCES

[1] Factors affecting direct attached storage device performance in the
application layer. HP Technical Brief, 2012.

[2] E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle. Reverse
k-nearest neighbor search in dynamic and general metric databases.
In EDBT, pages 886–897, 2009.

[3] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest
neighbor and reverse nearest neighbor queries for moving objects. In
IDEAS, pages 44–53, 2002.

[4] T. Bernecker, T. Emrich, H.-P. Kriegel, M. Renz, , and S. Z. A.
Züfle. Efficient probabilistic reverse nearest neighbor query
processing on uncertain data. PVLDB, 4(10):669–680, 2011.

[5] M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei. Probabilistic
reverse nearest neighbor queries on uncertain data. IEEE Trans.

Knowl. Data Eng., 22(4):550–564, 2010.

[6] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang. Influence zone:
Efficiently processing reverse k nearest neighbors queries. In ICDE,
pages 577–588, 2011.

[7] M. A. Cheema, X. Lin, Y. Zhang, W. Wang, and W. Zhang. Lazy
updates: An efficient technique to continuously monitoring reverse
knn. PVLDB, 2(1):1138–1149, 2009.

[8] M. A. Cheema, Z. Shen, X. Lin, and W. Zhang. A unified framework
for efficiently processing ranking related queries. In Proc. 17th

International Conference on Extending Database Technology
(EDBT), Athens, Greece, March 24-28, 2014., pages 427–438, 2014.

[9] M. A. Cheema, W. Zhang, X. Lin, and Y. Zhang. Efficiently
processing snapshot and continuous reverse k nearest neighbors
queries. VLDB J., 21(5):703–728, 2012.

[10] M. A. Cheema, W. Zhang, X. Lin, Y. Zhang, and X. Li. Continuous
reverse k nearest neighbors queries in euclidean space and in spatial
networks. VLDB J., 21(1):69–95, 2012.

[11] E. Dellis and B. Seeger. Efficient computation of reverse skyline
queries. PVLDB, pages 291–302, 2007.

[12] J. Goldstein, R. Ramakrishnan, U. Shaft, and J.-B. Yu. Processing
queries by linear constraints. In PODS, pages 257–267, 1997.

[13] F. Korn and S. Muthukrishnan. Influence sets based on reverse
nearest neighbor queries. In SIGMOD, pages 201–212, 2000.

[14] Y. Park, J.-K. Min, and K. Shim. Parallel computation of skyline and
reverse skyline queries using mapreduce. PVLDB, 6(14):2002–2013,
2013.

[15] F. P. Preparata and M. I. Shamos. Computational Geometry An

Introduction. Springer, 1985.

[16] C. Ruemmler and J. Wilkes. Unix disk access patterns. In USENIX
Winter, pages 405–420, 1993.

[17] M. Sharifzadeh and C. Shahabi. Vor-tree: R-trees with voronoi
diagrams for efficient processing of spatial nearest neighbor queries.
PVLDB, 3(1):1231–1242, 2010.

[18] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse nearest neighbor
queries for dynamic databases. In ACM SIGMOD Workshop, pages
44–53, 2000.

[19] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi. Discovery
of influence sets in frequently updated databases. PVLDB, pages
99–108, 2001.

[20] Y. Tao, D. Papadias, and X. Lian. Reverse knn search in arbitrary
dimensionality. PVLDB, pages 744–755, 2004.

[21] Y. Tao, D. Papadias, X. Lian, and X. Xiao. Multidimensional reverse
k nn search. VLDB J., 16(3):293–316, 2007.

[22] Y. Tao, M. L. Yiu, and N. Mamoulis. Reverse nearest neighbor
search in metric spaces. IEEE Trans. Knowl. Data Eng.,
18(9):1239–1252, 2006.

[23] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener, and
G. Graefe. Query processing techniques for solid state drives. In
SIGMOD, pages 59–72, 2009.

[24] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg. Reverse
top-k queries. In ICDE, pages 365–376, 2010.

[25] W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan. Finch: Evaluating
reverse k-nearest-neighbor queries on location data. PVLDB,
1(1):1056–1067, 2008.

[26] www.census.gov/geo/maps-data/data/tiger line.html.

[27] www.cs.fsu.edu/%7Elifeifei/SpatialDataset.htm.

[28] S. Yang, M. A. Cheema, X. Lin, and Y. Zhang. Slice: Reviving
regions-based pruning for reverse k nearest neighbors queries. In
ICDE, pages 760–771, 2014.

[29] B. Yao, F. Li, and P. Kumar. Reverse furthest neighbors in spatial
databases. In ICDE, pages 664–675, 2009.

[30] M. L. Yiu and N. Mamoulis. Reverse nearest neighbors search in ad
hoc subspaces. IEEE Trans. Knowl. Data Eng., 19(3):412–426,
2007.

[31] M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao. Reverse nearest
neighbors in large graphs. IEEE Trans. Knowl. Data Eng., pages
540–553, 2006.

[32] A. W. Yu, N. Mamoulis, and H. Su. Reverse top-k search using
random walk with restart. PVLDB, 7(5):401–412, 2014.

