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ABSTRACT
In many domains such as computational geometry and
database management, an object may be described by mul-
tiple instances (points). Then the distance (or similarity)
between two objects is captured by the pair-wise distances
among their instances. In the past, numerous nearest neigh-
bor (NN) functions have been proposed to define the dis-
tance between objects with multiple instances and to iden-
tify the NN object. Nevertheless, considering that a user
may not have a specific NN function in mind, it is desirable
to provide her with a set of NN candidates. Ideally, the set
of NN candidates must include every object that is NN for at
least one of the NN functions and must exclude every non-
promising object. However, no one has studied the problem
of NN candidates computation from this perspective. Al-
though some of the existing works aim at returning a set of
candidate objects, they do not focus on the NN functions
while computing the candidate objects. As a result, they ei-
ther fail to include an NN object w.r.t. some NN functions
or include a large number of unnecessary objects that have
no potential to be the NN regardless of the NN functions.

Motivated by this, we classify the existing NN func-
tions for objects with multiple instances into three fami-
lies by characterizing their key features. Then, we advocate
three spatial dominance operators to compute NN candi-
dates where each operator is optimal w.r.t. different cover-
age of NN functions. Efficient algorithms are proposed for
the dominance check and corresponding NN candidates com-
putation. Extensive empirical study on real and synthetic
datasets shows that our proposed operators can significantly
reduce the number of NN candidates. The comprehensive
performance evaluation demonstrates the efficiency of our
computation techniques.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION
Nearest neighbor (NN) search identifies the closest (or

most similar) object to a given query object. It is a clas-
sical problem with applications in many domains such as
computational geometry, multi-media database, information
retrieval and machine learning, to name a few. In many real-
world applications, an object may be described by a set of
points (i.e., instances). Each point is associated with a value
(e.g., weight and probability). For example, in multi-media
database, an object (e.g., an image) may be mapped onto a
set of feature vectors (i.e., points) [19, 28, 35]. The perfor-
mance of an NBA player can be evaluated by his historical
game records [26, 25, 42, 37]. Suppose the number of points,
assistants and rebounds are kept for each game record, a
player can be described by a set of points in a three dimen-
sional space. Due to the limitations of measuring equipment,
the location of an object (e.g., a person or a mobile device)
may be uncertain [40] and hence be represented by a set
of possible locations. Each location is associated with an
occurrence probability.

In traditional NN search problem, each object (and query)
is modeled as a single point in a multi-dimensional space.
The distance between the object and the query is computed
using the given distance metric (e.g., Euclidean distance)
and the object with the smallest distance value is returned.
However, it is non-trivial to extend the NN semantics for
objects with multiple instances because the similarity be-
tween two objects is described by their distance distribution
(i.e., pair-wise distances). Consequently, a large body of NN
functions are proposed in the literature. In this paper, we
propose three models to characterize the intrinsic nature of
these NN functions (details are introduced in Section 3).
• (N1) All pairs based NN functions (e.g., min, max, ex-

pected, and quantile distances [17, 37]).
• (N2) Possible world based NN functions (e.g., NN prob-

ability [21, 7], expected rank [40], and parameterized
rank [23]).

• (N3) Selected pairs based NN functions (e.g., Hausdorff
distance [27], Earth Mover’s distance [10, 28, 35] and Net-
flow distance [27]).
These three types of NN functions cover the popular

NN functions for both discrete uncertain/probabilistic ob-
jects (e.g.,[12, 4, 22, 3]) and traditional multi-valued/multi-
instance objects (e.g.,[37, 42, 20, 34]). These two object
models have different semantics [37]. Specifically, a discrete
uncertain object is a discrete random variable where each
instance is associated with a probability value. The uncer-
tain object model enforces the exclusive property when the
possible world based NN functions (N2) are used because
two instances of an uncertain object (e.g., two possible loca-



tions of an object) cannot occur in the same possible world.
Uncertain object model has also been used by some NN func-
tions in N1 (e.g., expected distance [12]) and N3 (e.g., Earth
Mover’s distance [28, 35]). A multi-valued object consists of
a set of points (instances), and each instance carries a weight
to reflect its significance. Note that the instances of a multi-
valued object will co-exist and hence the multi-valued object
model is not suitable to the possible world semantics (i.e.,
NN functions in N2). Functions in N1 (e.g., expected dis-
tance and quantile distance [37]) andN3 (e.g., Earth Mover’s
distance [10]) are used for multi-valued objects.

While the scope of this paper covers both discrete uncer-
tain objects and multi-valued objects, we observe that the
stochastic order [29] and its variants are effective tools to
derive the candidates for various NN functions. To this end,
despite of the different semantics, we may treat a multi-
valued object as a random variable if the weights of its in-
stances can be normalized. In particular, we say the multi-
valued objects can be normalized w.r.t. an NN function f if
their NN ranks remain the same after the instance weights
normalization. It can be immediately verified that the multi-
valued objects can be normalized for NN functions investi-
gated in this paper, if the total weight mass of each object
is the same, which is common in practice. In this way, we
can generate correct NN candidates w.r.t. corresponding
NN functions. Thereafter, we may use a discrete uncertain
object (i.e., a discrete random variable) to denote an object
with multiple instances.

Nearest Neighbor Candidates (NNC) Search. In
practice, users often do not have a specific NN function in
mind. One solution is that the system explains different
NN functions before a user performs NN search, so she can
choose one or a few desirable NN functions. Considering
that it might be difficult for an inexperienced user to choose
some complicated NN functions as well as the settings of the
parameters, as a valuable complement, system may provide
the user a small set of “good” NN candidates. Then she
can browse the NN candidates and make her decision, e.g.,
by using visualization tools. Such an approach is also use-
ful when an inexperienced or “greedy” user wants to make
personal trade-off among the results of many different NN
functions, which rank objects from various perspectives. To
the best of our knowledge, there are two existing approaches
which can provide nearest neighbor candidates (NNC).
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Figure 1: Example of NN-core

In [36], NN candidates (namely NN-core) are derived
based on the pair-wise competition among the objects where
an object U is said to supersede another object V if U is more
likely to be closer to the query than V . Then, NN-core is
the minimal set of objects such that each object in NN-core
supersedes every object not in the NN-core. Figure 1 illus-
trates an example of the NN-core of three objects {A,B,C}
where the query object has a single instance q and each of
the objects consists of two instances with probability 0.6 and
0.4, respectively. In this example, A is closer to q than B
with probability 0.6, and hence A supersedes B (denoted by
A → B in Figure 1). Similarly, we have A supersedes C and
B supersedes C, and hence the NN-core is {A}.

Q


C


A


q


c


a

Q


B


A


b


q

a


(
a
)
 (
b
)
F
-
S
D
(
A
,
B
,
Q
)
 F
-
S
D
(
A
,
C
,
Q
)


Figure 2: Examples of F-SD

The full spatial dominance (F-SD) operator has been
used recently to prune non-promising NN candidates where
each object is approximated by a rectangle [16] or a hyper-
sphere [25]. Given two objects U and V , and a query Q,
we say U fully spatially dominates V w.r.t. Q, denoted by
F-SD(U ,V ,Q), if and only if for every instance q ∈ Q, U is
closer to q than V ; that is, δ(u, q) ≤ δ(v, q) for every u ∈ U
and every v ∈ V where δ(x, y) denotes the distance between
two points (instances) x and y. Then, NN candidates are
the objects which are not fully spatially dominated by any
other object. Figure 2 shows examples of F-SD where in-
stances of each object are bounded by a circle. Then we
have F-SD(A,B,Q) in Figure 2(a) as δ(a, q) < δ(b, q) for
every q ∈ Q, a ∈ A, and b ∈ B. Figure 2(b) shows that
F-SD(A,C,Q) does not hold, denoted by ¬F-SD(A,C,Q),
since we have δ(c, q) < δ(a, q) for the given q ∈ Q, a ∈ A,
and c ∈ C.

Motivation and Challenges. As discussed earlier, there
are many possible NN functions that can be used to retrieve
the NN objects. Intuitively, the computation of NN candi-
dates should consider these functions and, ideally, the NN
candidates must include every object that can be the NN
object for at least one NN function and must not contain
any object that can never be the NN object regardless of
which function is used. Unfortunately, none of the exist-
ing works investigates the problem from this perspective.
Specifically, NN-core [36] is too aggressive in the sense that
NN object may be missed from NN-core for some popular
NN functions. For instance, in Figure 1, C is the NN object
if function max is used while B becomes the NN object if
the expected distance is considered. Unlike NN-core that is
too aggressive, F-SD is overly pessimistic and may return a
large number of objects which can never be the NN of Q.

Motivated by the above facts, we devise spatial dominance
(SD) operators that compute NN candidates by carefully
considering various NN functions. Let f(X) denote the dis-
tance between X and Q computed using an NN function f .
We say that a spatial dominance operator SD is optimal
w.r.t. a family N of NN functions if it satisfies the following
two properties.

• Correctness. SD(U ,V ,Q) implies that f(U) ≤ f(V ) for
every f ∈ N , i.e., V is not closer to Q than U for every
function f ∈ N . In this paper, we say that SD covers the
functions in N if it is correct w.r.t. N .

• Completeness. ¬SD(U ,V ,Q) implies that there exists a
function f ∈ N such that f(V ) < f(U), i.e., V is closer
to Q than U w.r.t. f .

The correctness property of the SD guarantees that it is
safe to exclude the object V from NN candidates w.r.t. N .
The completeness property indicates that SD is the tightest
dominance operator w.r.t. N in the sense that U cannot
exclude V from NN candidates if and only if there exists a
function f ∈ N for which V is ranked better than U .

Given a family of NN functions, a straightforward way
to compute NN candidates is to retrieve NN objects for all
possible NN functions. However, this is infeasible not only



due to the unnecessary computations involved but also be-
cause the number of NN functions is infinite, e.g., φ-quantile
distance depends on the input parameter φ that may take
every value between 0 to 1 [37].

Next, we give an informal but intuitive explanation of
three optimal spatial dominance (SD) operators to obtain
NN candidates, which are optimal w.r.t. different coverage
of the NN functions.

Stochastic SD (S-SD, opt. w.r.t. N1). A function f ∈
N1 is an aggregate function on the distance distributions of
the two objects, i.e., all pair-wise distances. We apply the
widely employed usual stochastic order [29] to model the S-
SD operator which is optimal w.r.t. N1. Given two random
variables X and Y , we say X is smaller than (or dominates)
Y in usual stochastic order, denoted by X �st Y , if Pr(X ≤
λ) ≥ Pr(Y ≤ λ) for every λ ∈ R. Note that smaller value
is preferred in this paper. Thus, we have S-SD(U ,V ,Q) if
UQ �st VQ where UQ (VQ) denotes the distance distribution
of U (V ) w.r.t. Q. Intuitively, S-SD(U ,V ,Q) implies that,
for every λ, the probability that the distance between U and
Q is at most λ is not smaller than that of V .

Figure 3(a) shows an example where each object (query)
has two instances with the same probability (0.5), and Fig-
ure 3(b) depicts the distance distributions of three objects
regarding the query. In each distance distribution (e.g., AQ),
each pair of instances between the query and the object (e.g.,
q1a1) carries probability 0.25, and they are sorted based on
their distance values. Clearly, we have S-SD(A,B,Q), S-
SD(A,C,Q), and ¬S-SD(B, C, Q).
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Figure 3: Examples of S-SD and SS-SD

Strict Stochastic SD (SS-SD, opt. w.r.t. N1,2). NN

functions in N2 apply the possible world semantics. Gen-
erally, each possible world contains one instance from each
object and the query. Then, the rank of an object in a
possible world can be calculated following the traditional
NN semantics. The final score can be derived for each
object based on their performance in all possible worlds.

Since each possible world contains exactly one instance
from each object and the query, two instance pairs q1a1 and
q2c1 in Figure 3(b) will never be evaluated in the same pos-
sible world because q1 and q2 cannot appear in the same
possible world. This may lead to the case in which an ob-
ject C is an NN object while C is stochastically dominated
by another object A w.r.t. Q. In Figure 3, we have S-
SD(A,C,Q). However, note that C is always closer to q2
than A and B (i.e., C beats A and B in half of all 16 pos-
sible worlds) and hence the NN probability of the object
C is 0.5, which is larger than that of A and B (0.375 and
0.125 respectively). Therefore, C is the NN object if the NN
probability based NN function is used, which indicates that
S-SD does not cover the possible world based NN functions
(i.e., N2). This motivates us to propose Strict Stochastic
SD (SS-SD) operator that covers all functions in N1 ∪ N2

(denoted as N1,2).

SS-SD enforces the stochastic order for each individual
query instance q ∈ Q; that is, SS-SD(U ,V ,Q) holds if and
only if Uq �st Vq for every q ∈ Q where Uq (Vq) is the
distance distribution of U (V ) w.r.t. q. In Section 4.2, we
show that SS-SD is optimal w.r.t. N1,2. In the example of
Figure 3, we have SS-SD(A,B,Q), and ¬SS-SD(A,C,Q).
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Figure 4: Examples of P-SD

Peer SD (P-SD, opt. w.r.t. N1,2,3). A function in N3

selects a subset of pair-wise distances for computation.
Earth Movers Distance (EMD) [10] is an example of such
functions. In Figure 4, we assume each object (query)
has two instances with probability 0.5, and a distance
distribution can be regarded as a fully connected bipar-
tite graph where the label of an edge represents the dis-
tance between two vertexes (instances). In this example,
EMD(A,Q) corresponds to the minimal weighted sum of
any two disjoint edges in the bipartite graph of A and
Q, where the weight of each edge is 0.5. For instance,
two shaded edges in EMD(A,Q) (i.e., 〈a1, q1〉 and 〈a2, q2〉)
represent the subset of pairs chosen for the computation.
Thus, we have EMD(A,Q)= 0.5 × 1 + 0.5 × 7 = 4 and
EMD(B,Q) = 0.5 × 1 + 0.5 × 6.5 = 3.75. Although both
S-SD(A,B,Q) and SS-SD(A,B,Q) hold in Figure 4, we have
EMD(A,Q)>EMD(B,Q). This implies that both S-SD and
SS-SD do not cover N3.

To accommodate the functions in N3, we propose the peer
spatial dominance (P-SD) operator. We say P-SD(U ,V ,Q)
holds if there exists a one-to-one mapping between two ob-
jects U and V such that, for every u ∈ U , u is not further
than v w.r.t. all query instances, denoted by u �Q v, where
v is the peer instance of u (i.e., u is mapped to v). As shown
in Figure 4, there is a mapping: a1 → c2 and a2 → c1 such
that a1 �Q c2 and a2 �Q c1. Thus, P-SD(A,C,Q) holds.
Meanwhile, we have ¬P-SD(A,B,Q). Section 4.2 shows that
P-SD is optimal w.r.t. N1,2,3.

Comparison of SD operators. Section 4.1 shows that
the four spatial dominance operators are closely related in
the sense that we have F-SD ⊂ P-SD ⊂ SS-SD ⊂ S-SD.
Here, SD1 ⊂ SD2 denotes that SD1 is covered by SD2;
that is, SD1 has stronger dominance condition which may
result in more NN candidates as well as larger coverage of
NN functions. Figure 5 illustrates the NN candidates and
their coverage on different dominance operators, which sug-
gests that: (i) F-SD includes redundant objects (i.e., is not
complete) regarding the NN function families studied in this
paper since P-SD has the same coverage but smaller candi-
date size, and (ii) users may make a trade-off between the
NN candidate size and coverage among P-SD, SS-SD, and
S-SD. Particularly, as shown in Section 4, the P-SD can
be applied to current popular NN ranking mechanisms on
objects with multiple instances (N1,2,3). If users are only
interested in NN functions in N1,2, SS-SD can be used to
reduce the number of candidate objects. The candidate size
can be further reduced if only the simple NN functions in N1



are considered, where S-SD will be applied. Moreover, Sec-
tion 4.1 shows that P-SD, SS-SD, and S-SD are equivalent
to each other when the query has only one instance.
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Figure 5: NN Candidates w.r.t. Different SDs

NN Candidates (NNC) Computation. Given a spatial

dominance operator SD, the NN candidates are the objects
which are not dominated by any other objects. Regarding S-
SD operator, NNC in the example of Figure 3 is {A} whereas
NNC is {A,C} if SS-SD is employed. Similarly, NNC is {A}
and {A,B} if SS-SD and P-SD are employed in Figure 4,
respectively.

In addition to the semantics and theoretical properties
of the spatial dominance operators, it is imperative to de-
velop efficient dominance check algorithms as well as the
NN candidate computation algorithms. In particular, we
show that the dominance check of S-SD and SS-SD can be
finished with one single scan of the pair-wise distances if
they are already sorted. Moreover, efficient statistic-based
and cover-based filtering techniques are proposed to enhance
the performance. Regarding the dominance check of P-SD,
the problem can be reduced to the well known max-flow
problem [11]. Besides the effective pruning and verification
rules, we further improve the performance by utilizing some
interesting geometric properties. We also propose a general
framework for the computation of NN candidates regarding
four spatial dominance operators.

Contributions. Our principle contributions in this paper
can be summarized as follows.

• This is the first work to systematically investigate the
problem of NN candidate search for objects with multiple
instances with careful consideration of NN functions.

• Three families of NN functions are formalized, including
all pairs based NN functions (N1), possible world based
NN functions (N2), and selected pairs based NN func-
tions (N3). We show that they cover popular NN ranking
mechanisms.

• We advocate three spatial dominance (SD) operators,
namely stochastic SD (S-SD), strict stochastic SD (SS-
SD), and peer SD (P-SD). We show that S-SD, SS-SD
and P-SD are optimal dominance operators w.r.t. N1,
N1,2, and N1,2,3, respectively.

• Efficient dominance testing algorithms are proposed for
three spatial dominance operators. Novel pruning and
validation rules are developed to significantly speed up
the computation. Then a general framework is proposed
to efficiently calculate the NN candidates.

• Comprehensive experiments demonstrate the effectiveness
and efficiency of our NN candidate search techniques.

Roadmap. The rest of the paper is organized as follows.
Section 2 introduces the problem studied in this paper. Sec-
tion 3 provides three general models to summarize the ex-
isting NN functions. Section 4 studies important properties
of the spatial dominance operators proposed in this paper.
Efficient dominance check algorithms as well as NN candi-
date computation algorithms are proposed in Section 5. The
experimental results are reported in Section 6. We conclude
the paper in Section 7. In the appendix of the paper, we

introduce the details of some NN functions (Section A), de-
tails of the proof (Section B), additional experiments and
analysis (Section C) and related works (Section D).

2. BACKGROUND
In this section, we provide formal definitions of the spatial

dominance operators as well as some important notations.
Table 1 summarizes the notations frequently used through-
out the paper.

Notation Meaning

U, V,A,B objects with multiple instances
u, v, a, b instances (points)
Q(q) query object (instance)

|U |(|Q|) number of instances in U (Q)
p(u) probability of an instance u

Υ(U) ranking score of U
MU,V a match between U and V

MU,V all possible matches between U and V

u �Q v u is not further than v w.r.t. every q ∈ Q

UQ distance distribution of U w.r.t. Q
Uq distance distribution of U w.r.t. q

X, Y univariate random variables
X �st Y X is smaller than Y in stochastic order
X �M Y X is smaller than Y in match order
W , W a possible world, all possible worlds
Wq possible worlds in which q occurs
SD spatial dominance (SD) operator

SD1 ⊂ SD2 SD1 is covered by SD2

SD(U ,V ,Q) U spatially dominates V regarding Q
¬SD(U ,V ,Q) SD(U ,V ,Q) does not hold

Table 1: The summary of notations.

2.1 Problem Definition
A point (instance) p is in a d-dimensional space and the

i-th dimensional coordinate value of p is denoted by p[i].
δ(u, v) denotes the distance between two instances u and
v. Although we assume that δ(u, v) represents Euclidean
distance between u and v, our techniques can be trivially
extended to other metric distances. We use δmin(x,S) to
denote the minimal distance between a point x and a set S
of points, i.e., δmin(x, S) = miny∈S δ(x, y).

Modeling object with multiple instances. In this pa-
per, we model an object with multiple instances as a dis-
crete random variable (i.e., discrete uncertain object).
Particularly, an object U consists of a set {u1, u2, . . . , um}
of instances (points), and a discrete probability mass func-
tion assigns each instance ui a probability value, denoted
by p(ui). In this paper, we assume

∑m
i=1 p(ui) = 1, and ob-

jects are independent to each other. Moreover, we assume
the weights of the multi-valued objects can be normalized

to probabilities where p(ui) = w(ui)∑
m
j=1

w(uj)
and w(uj) is the

weight of the instance uj so that a multi-valued object is also
treated as a discrete random variable. We remark that the
transformation from multi-valued objects to discrete uncer-
tain objects is only for the dominance check purpose (i.e.,
NN candidates computation), and will not introduce any
new NN semantics (i.e., new NN functions). We use the
term object to refer to the object with multiple instances
whenever clear by context.

Distance distribution. Given an object U and a query Q,
the distance distribution between U and Q, denoted by UQ,
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Figure 6: Examples for S-SD and SS-SD

is a discrete random variable consisting of all pair-wise dis-
tances. Specifically, UQ consists of every instance pair (q, u)
for every q ∈ Q and every u ∈ U , where each instance pair
(q, u) is assigned two values: δ(q, u) denotes the distance
and p(q)× p(u) denotes the probability of the instance pair.
For a query instance q ∈ Q, the distance distribution be-
tween U and q, denoted by Uq, consists of only the instance
pairs where q is involved; that is, Uq contains every (q, u)
for all u ∈ U where each pair (q, u) is associated with δ(q, u)
denoting the distance and p(u) denoting the probability of
the instance pair.

Example 1. In Figure 6(b), both the query Q and the
object A have two instances with the same probability
0.5. Then the distance distribution AQ is {(δ(q1, a1),0.25),
(δ(q1, a2), 0.25),(δ(q2 , a1), 0.25),(δ(q2, a2), 0.25)} = {(5,
0.25),(8, 0.25),(10, 0.25),(23, 0.25)}. Meanwhile, the dis-
tance distribution between the query instance q1 and the ob-
ject A, Aq1 , is {(δ(q1, a1),0.5),(δ(q1, a2),0.5)} ={(5,0.5),(8,
0.5)}.

Our first two spatial dominance operators are proposed
based on the stochastic order [29] which has been widely
used in various domains to compare the “goodness” of two
random variables (distributions).

Definition 1. Stochastic Order. Given two indepen-
dent random variables X and Y , we say X is smaller
than Y in usual stochastic order, denoted by X �st Y , if
Pr(X ≤ λ) ≥ Pr(Y ≤ λ) for every λ ∈ R.

Then we immediately have the definitions of two stochas-
tic order based dominance operators.

Definition 2. Stochastic SD(S-SD). Given two ob-
jects U and V , and the query Q, we have S-SD(U ,V ,Q) if
and only if UQ �st VQ and UQ 6= VQ.

Definition 3. Strict Stochastic SD (SS-SD). Given
two objects U and V , and the query Q, we have SS-
SD(U ,V ,Q) if and only if Uq �st Vq for every q ∈ Q and
UQ 6= VQ.

Note that the condition UQ 6= VQ is used to avoid the
scenario that two objects dominate each other.

Example 2. We assume all instances of the same object
(query) has the same probability value. In Figure 6(a), each
of objects A and B have one instance and the query Q has
two instances q1 and q2. Since AQ={(3, 0.5), (17,0.5)} and
BQ = {(5,0.5), (25,0.5)} we have S-SD(A,B,Q). Neverthe-
less, since Aq1 = {(17, 1.0)} and Bq1 = {(5, 1.0)}, we have
¬SS-SD(A,B,Q). In Figure 6(b), since Aq1 = {(5,0.5), (8,
0.5)}, Aq2 = {(10,0.5), (23, 0.5)}, Bq1 = {(10,0.5), (25,
0.5)}, Bq2 = {(10,0.5), (25, 0.5)}, we have Aq1 �st Bq1

and Aq2 �st Bq2 , and hence SS-SD(A,B,Q) holds.

Before we formally define the third dominance operator,
Peer SD (P-SD), we first extend the semantics of one-to-
one mapping for the general case where different objects

may have different number of instances and instance prob-
abilities. We formally define a match between two discrete
random variables (e.g., objects and distance distributions),
which can actually be regarded as a one-to-one mapping by
splitting some instances.

Definition 4. Match (MU,V ). Given two discrete ran-
dom variables U and V , a match between U and V , de-
noted by MU,V , consists of a set of tuples {t〈u, v, p〉} where
t.u ∈ U , t.v ∈ V and t.p is the probability associated
with t. Moreover, we have

∑
t∈MU,V ∧t.u=u t.p = p(u) and∑

t∈MU,V ∧t.v=v t.p = p(v).

In this paper, we use MU,V to denote all possible matches
between U and V . Figure 7 shows two objects A={(a1, 0.5),
(a2, 0.3), (a3, 0.2)} and B={(b1, 0.5), (b2, 0.5)}. Each shad-
owed edge corresponds to one tuple in the match with
probability labeled, e.g., Figure 7(a) and Figure 7(b) show
two matches {〈a1, b1, 0.5〉, 〈a2, b2, 0.3〉, 〈a3, b2, 0.2〉} and
{〈a1, b1, 0.2〉, 〈a1, b2, 0.3〉, 〈a2, b1, 0.3〉, 〈a3, b2, 0.2〉}, respec-
tively. According to Definition 4, the assignment in Fig-
ure 7(c) is not a match.
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Figure 7: Example of Matches

We say that a point u is closer to the query Q than v,
denoted by u �Q v, if we have δ(u, q) ≤ δ(v, q) for every
q ∈ Q. Following is a formal definition of P-SD.

Definition 5. Peer SD (P-SD). Given two objects U
and V , and query Q, we have P-SD(U ,V ,Q) if and only
if there is a match MU,V such that t.u �Q t.v for every
t ∈ MU,V , and UQ 6= VQ.

Example 3. In Figure 8, given the match between A
and B MA,B= { (a1, b1, 0.5), (a2, b2, 0.5)}, we have
a1 �Q b1 and a2 �Q b2 since δ(a1, q1) = 5 < 10 = δ(b1, q1),
δ(a1, q2) = 15 < 20 = δ(b1, q2), δ(a2, q1) = 20 < 25 =
δ(b2, q1), δ(a2, q2) = 10 < 15 = δ(b2, q2). Consequently,
P-SD(A,B,Q) holds.

Next, we formally define NN candidates and the cover
relationship among spatial dominance operators.

Definition 6. NN Candidates (NNC). Given a set O
of objects, a query Q and a spatial dominance operator SD,
the nearest neighbor candidates, denoted by NNC(O,Q,SD),
consist of every object that is not dominated by any other
object w.r.t. SD.

Definition 7. Cover. Given two spatial dominance op-
erators SD1 and SD2, we say SD2 covers SD1, denoted by
SD1 ⊂ SD2, if SD1(U ,V ,Q) implies SD2(U ,V ,Q) but the
converse does not hold.

Note that SD1 ⊂ SD2 implies that the dominance con-
dition of SD1 is stronger than that of SD2, and hence
NNC(O,Q,SD2)⊆ NNC(O,Q,SD1). In Section 4.1, we show
that F-SD ⊂ P-SD ⊂ SS-SD ⊂ S-SD. Based on the rela-
tions among four dominance operators and the definition
of NNC, as shown in Figure 5, we have NNC(O,Q,S-SD)



⊆ NNC(O,Q,SS-SD) ⊆ NNC(O,Q,P-SD) ⊆ NNC(Q,O,F-
SD). As shown in Section 4.1, P-SD, SS-SD and S-SD are
equivalent to each other when the query has only one in-
stance.
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Figure 8: Examples for P-SD

3. MODELING NN FUNCTIONS
In this section, we first discuss the stable property of ag-

gregate functions. Then we propose three general models for
three representative families of NN ranking functions (de-
noted by N1, N2 and N3), which well capture the existing
NN ranking mechanisms.

3.1 Stable Aggregate Function
Similar to [12], we argue that the aggregate functions used

by NN ranking mechanism should satisfy the stable property.

Definition 8. Stable Aggregate Function. Let g de-
note an aggregate function on a random variable, we say g is
a stable aggregate function if and only if for any two random
variables X and Y , X �st Y implies that g(X) ≤ g(Y ).

We also introduce the match order which is essentially
another interpretation of usual stochastic order. We remark
that both orders are frequently used in our theoretical anal-
ysis since they interpret the dominance relationship from
different perspectives.

Definition 9. Match Order. Given two independent
random variables X and Y , we say X is smaller than Y in
match order, denoted by X �M Y , if there is a match MX,Y

between X and Y with t.x ≤ t.y for every t ∈ MX,Y .

Following theorem indicates that the two orders are equiv-
alent to each other.

Theorem 1. The match order is equivalent to the usual
stochastic order.

Proof. See Appendix B.1

According to Definition 9, given two random variables X
and X∗ with X∗ �M X (i.e., X∗ �st X), X∗ can be re-
garded as an enhancement of X by, roughly speaking, push-
ing some of the probability mass of X to the left (assuming
left represents smaller values). It is rather intuitive that
we should have g(X∗) ≤ g(X) for any reasonable aggregate
function used in NN search.

3.2 All pairs based NN (N1)
Model. A simple and intuitive way to identify the nearest
neighbor is to apply an aggregation function on the distance
distribution (i.e., all pair-wise distances) of each object. The
NN function family N1 is defined as follows,

N1 := {f | f(U) = g(UQ), g ∈ G} (1)

where G represents the family of stable aggregate functions.

Instantiations. In the literature, the aggregate functions
such as min, max, mean (a.k.a., expected), and quantile
distances (e.g., [29, 37]) have been widely employed to iden-
tify the NN objects. It is immediate that both min and max
are stable aggregate functions. Given X �M Y , there is a
match MX,Y with t.x ≤ t.y for every t ∈ MX,Y . Since we

have mean(X) =
∑

t∈MX,Y
t.x × t.p, it is immediate that

mean function is a stable. Below, we can show that quantile
function also has the stable property.

Definition 10. φ-quantile (quanφ). Given a random
variable X, and we assume its instances are sorted in non-
decreasing order. The φ-quantile (0 < φ ≤ 1) of X, denoted
by quanφ(X), is the value of xi where i is the first instance
such that

∑
1≤j≤i p(xj) ≥ φ.

According to the above definition, φ-quantile is a sta-
ble aggregate function since we have Pr(X ≤ quanφ(Y ))
≥ Pr(Y ≤ quanφ(Y )) for any φ (0 < φ ≤ 1) if X �st Y .

Besides the above premier NN functions, we may easily
come up with various stable NN functions based on their
combinations or some linear weighted functions on distance
distribution. Note that the expected distance is an example
of the linear weighted function.

3.3 Possible world based NN (N2)
In recent years, a large body of work have addressed the

problem of NN search on uncertain objects following the
possible world semantics.

Possible world semantics. Given a set O ∪Q of objects
and the query, a possible world W is a set of instances with
one instance from each object in O ∪ Q. Let W denote
the set of all possible worlds. Then,

∑
W∈W Pr(W ) = 1

where Pr(W ) is the occurrence probability of the possible
world W . Moreover, we use δ(U,W ) to denote the distance
between U and Q in the possible world W . By r(U,W ) we
mean U is ranked at r(U,W )-th position according to its
distance to the query point in W .

Model. In each possible world W , a score s(U,W ) is as-
signed to each object U which is either determined by
r(U,W ) or by δ(U,W ). Particularly, we assume that
s(U,W ) ≤ s(V,W ) if δ(U,W ) < δ(V,W ) because we are
in favor of the object closer to the query in each possible
world W . The score distribution of U is denoted by UW

= {s(U,W ), P r(W )} for all W ∈ W. Then the set of possi-
ble world based NN functions, denoted by N2, is defined as
follows.

N2 := {f | f(U) = g(UW), g ∈ G} (2)

Instantiations. Jian et al. [23] show that the existing pop-
ular ranking methods for uncertain data can be unified by
the parameterized ranking model. We use Υ(U) to denote
the NN score of an object U ,

Υ(U) =
∑

i

ω(i)× Pr(r(U) = i) (3)

where Pr(r(U) = i) denotes the probability that U is ranked
as the i-th closest object and ω(i) is the weight of the posi-
tion i. In practice, we have ω(i) ≤ ω(j) for any two ranking
positions i and j with i < j because the higher position
is usually at least as desirable as those behind it and thus
should be given a smaller weight. As shown in [23], other
popular ranking methods can be unified by setting the value
of ω(i) appropriately. In the context of NN search, we have
ω(i) = −1 and ω(i) = i in U -top-k rank model [32] and
expected rank model [12], respectively. For global top k
model [39], ω(i) = −1 for i ≤ k, and ω(i) = 0 otherwise.
Note that the NN probability function is its special case with
k = 1.

Now we show that NN functions based on parameter-
ized ranking model belong to N2. By setting s(U,W ) =



ω(r(U,W )) and g as the mean function on UW , we have
f(U) =

∑
W∈W s(U,W )×Pr(W ) =

∑
i ω(i)×Pr(r(U) = i)

= Υ(U). Clearly, there are infinite number of possible NN
functions in N2 due to various settings of ω values.

We remark that the multi-valued object model should not
be applied to the possible world semantics due to the co-
exists of the instances from the same object.

3.4 Selected pairs based NN (N3)
Model. A function f ∈ N3 computes the score of an object
U based on a subset of distance distribution UQ which is
denoted by σU (UQ)= {t〈δ(u, q), p〉} where t.u ∈ U , t.q ∈ Q
and t.p is the probability value associated with the pair tuple
t. Remark that t.p here is not necessarily p(t.u) × p(t.q)
and may take a different value depending on the function
f ∈ N3. σV (UQ) is the counterpart of V w.r.t. U , which
will be explained later. Then we have f(U) = g(σU (UQ))
where g is a stable aggregate function.

The key property of the selected pairs based NN function
f is that it must be counterpart computable. First, we intro-
duce the concept of counterpart and then explain counter-
part computable. Given σV (VQ) and a matchMU,V , σV (UQ)
contains a subset of pairs from UQ that are selected using
σV (VQ) and MU,V . Informally, if vi matches to uj in MU,V

and (vi, qk) is a pair in σV (VQ), then the pair (uj , qk) will
be inserted in σV (UQ). Formally, the tuples in σV (UQ) are
selected as follows: for each tuple m 〈δ(v, q), p〉 ∈ σV (VQ),
we find every tuple t ∈ MU,V for which t.v = m.v. Then,
for each such t, we create a tuple m′〈 δ(t.u,m.q), t.p×m.p

p(v)
〉

and insert m′ in σV (UQ).

Example 4. Figure 4(b) illustrates a simple example of
counterpart of A w.r.t. C, i.e., σC(AQ). We have σC(CQ)
= {〈δ(c1, q1),0.5〉, 〈δ(c2, q2),0.5〉}. Regarding the match
MA,C ={〈a1, c2,0.5〉, 〈a2, c1,0.5〉} in Figure 4(a), σC(AQ)
corresponds to shadowed edges in UP(A,Q) where
σC(AQ) ={〈δ(a2, q1),0.5〉, 〈δ(a1, q2),0.5〉}.

We say that a function is counterpart computable if, for ev-
ery match MU,V between U and V , g(σV (UQ)) ≥ g(σU(UQ),
i.e., the score of an object U (i.e., f(U) = g(σU(UQ))
is no larger than the score of the counterpart of U w.r.t.
V . In the example of Figure 4, σA(AQ) ={〈δ(a1, q1), 0.5〉,
〈δ(a2, q2), 0.5〉 }. It can be verified that g(σC(AQ)) >
g(σA(AQ)), i.e., EMD is counterpart computable.

Following is a formal definition of NN functions in N3.

N3 := {f | f(U) = g(σU (UQ)), g ∈ G} (4)

where f is a counterpart computable function.

Instantiations. We show that four popular NN ranking
functions belong to N3 (the detailed definitions are given
in Appendix A) . In Hausdorff distance and Sum of Min-
imal distance [27], an instance u ∈ U will pick its closest
instance in Q to form an instance-pair. Let q′ denote the
instance picked for u in the counterpart of U , clearly we
have δmin(u,Q) ≤ δ(u, q′). Same observation holds for the
instances q ∈ Q. Consequently, both distances are counter-
part computable. As their aggregate functions are stable,
Hausdorff distance and Sum of Minimal distance belong to
N3.

Under our problem settings where each object has a prob-
ability mass 1, the definitions of Earth Mover’s distance [10]
and Netflow distance [27] are equivalent to each other. Tak-
ing the Earth Mover’s distance EMD(U ,Q) as an example,
a feasible solution corresponds to a match between U and

Q with cost
∑

t∈MU,Q
δ(t.u, t.q) × t.p. Given the pair-wise

distances chosen in EMD(V ,Q) (i.e.,σV (VQ)) and a match
MV,U , it is easy to see that the counterpart in UQ, i.e.,
σV (UQ), corresponds to a feasible solution with cost not
less than EMD(U ,Q), because EMD(U ,Q) represents the
minimal cost of all feasible solutions. Consequently, Earth
Mover’s distance and Netflow distance are both counterpart
computable.

4. PROPERTIES OF SD OPERATORS
In this section, we investigate important properties of the

four spatial dominance operators and their relationships.

4.1 Comparison of SD Operators
This subsection investigates the “cover” relationships

among four spatial dominance operators.

Theorem 2. F-SD ⊂ P-SD ⊂ SS-SD ⊂ S-SD.

Proof. See Appendix B.2.

Theorem 2 is not only of theoretical interest but it also
enables effective pruning and validation rules to speed up
the dominance check, as shown in Section 5. Particularly,
given SD1 ⊂ SD2, we can safely claim SD2(U ,V ,Q) holds
(i.e., validation) if SD1(U ,V ,Q) is verified. Similarly, we
have ¬SD1(U ,V ,Q) if ¬SD2(U ,V ,Q) (i.e.,pruning).

The following theorem suggests that P-SD, SS-SD and
S-SD are equivalent to each other for the special case when
the query has only one instance, which is not uncommon in
practice. However, F-SD still has stronger dominance check
condition even for this special case.

Theorem 3. When |Q| = 1, we have F-SD ⊂ P-SD =
SS-SD = S-SD.

Proof. See Appendix B.3.

In [16], efficient filtering technique is proposed to check
F-SD against the minimal bounding rectangles (MBR) of
the objects in O(d) time, where d is the dimensionality. The
following theorem suggests that we can directly apply the
technique in [16] for validation purpose. The correctness is
immediate based on the definition of F-SD and Theorem 2.

Theorem 4. F-SD(Umbr,Vmbr,Qmbr) implies that we
have F-SD(U ,V ,Q), P-SD(U ,V ,Q), SS-SD(U ,V ,Q), and
S-SD(U ,V ,Q).

Clearly, filtering technique in [25] may also be applied if
objects are approximated by hyperspheres.

4.2 Optimality Property
In this subsection, we show that three spatial dominance

operators proposed in this paper are optimal w.r.t. N1, N1,2

and N1,2,3 respectively.

Theorem 5. S-SD is optimal w.r.t. N1, and S-SD does
not cover N2,3.

Proof. See Appendix B.4.

Theorem 6. SS-SD is optimal w.r.t. N1,2, and SS-SD
does not cover N3.

Proof. See Appendix B.5.

Theorem 7. P-SD is optimal w.r.t. N1,2,3.



Proof. See Appendix B.6.

The following theorem indicates that although both P-SD
and F-SD cover functions in N1,2,3, F-SD is not as tight as
P-SD since it does not have the completeness property. This
results in redundant NN candidate objects w.r.t. functions
in N1,2,3.

Theorem 8. F-SD is correct w.r.t. N1,2,3, but does not
satisfy the completeness property w.r.t. N1,2,3.

Proof. See Appendix B.7

4.3 Transitivity Property
Given three objects {U ,V ,Z} and the query Q, we say

that a dominance operator SD has the transitivity prop-
erty if SD(U ,V ,Q) and SD(V ,Z,Q) imply SD(U ,Z,Q). The
following theorem shows that all four spatial dominance op-
erators have the transitivity property, which is critical in the
computation of NN candidates in Section 5.

Theorem 9. S-SD, SS-SD, P-SD and F-SD have the
transitivity property.

Proof. See Appendix B.8

5. NN CANDIDATES COMPUTATION
In this Section, we develop efficient spatial dominance

based NN candidate computation algorithms.

5.1 Spatial Dominance Check
In this subsection, we present dominance check algorithms

for three spatial dominance operators, S-SD, SS-SD and P-
SD as well as effective filtering techniques.

5.1.1 S-SD and SS-SD
The dominance check algorithms for S-SD and SS-SD

are very efficient if pair-wise distances are sorted in non-
decreasing order. By recording the differentiation of the
accumulated instance probabilities of two objects, denoted
by F (x) = Pr(UQ ≤ x) − Pr(VQ ≤ x), we terminate the
search and claim ¬S-SD(U ,V ,Q) if there exists an x such
that F (x) < 0, otherwise we have S-SD(U ,V ,Q). Similarly,
we maintain |Q| indicators for the distance distributions of
the query instances, and claim ¬SS-SD (U ,V ,Q) if any of
them becomes negative. Suppose instances of each object
are organized by an R-tree, we may easily extend the above
algorithms to conduct dominance check in a level-by-level
fashion.

Time Complexity of the dominance check is O(m ×
|Q| log(m× |Q|)) for both S-SD and SS-SD where m (|Q|)
is the average number of instances in the object (query).
Following theorem implies that our dominance check algo-
rithms for S-SD and SS-SD are optimal in the worst case
where the distance distribution has m× |Q| instances.

Theorem 10. Given two random variables X and Y with
n instances each, any algorithm to determine whether X �st

Y must have complexity of at least Ω(n log(n)) if the algo-
rithm is based only on comparisons between elements from
X and Y .

Proof. See Appendix B.9

Below we introduce efficient and effective pruning and val-
idation techniques, which avoid exploring all pair-wise dis-
tances.

Pruning. Theorem below indicates that we may claim that
the dominance relation does not hold (i.e., pruning) based
on some simple statistic values of two distance distributions.

Theorem 11. Given two random variables X and Y ,
X �st Y implies that min(X) ≤ min(Y ), mean(X) ≤
mean(Y ) and max(X) ≤ max(Y ).

Proof. Since three functions (min, max and mean) are
stable functions as shown in Section 3.2. The correctness of
is immediate according to Definition 8.

Then we have the following statistic-based pruning rule.

Statistic-based Pruning . Ifmin(UQ) >min(VQ), mean(UQ)

> mean(VQ), or max(UQ) > max(VQ), we have ¬S-
SD(U ,V ,Q).

Similar pruning rule goes to SS-SD with the same ratio-
nale where statistics are kept for every query instance.

On the other hand, as shown in Definition 7, we have
¬SD1 implies ¬SD2 if SD2 covers SD1. The following prun-
ing rule is immediate based on Theorem 5.

Cover-based Pruning . We have ¬SS-SD(U , V , Q) if ¬S-

SD(U , V , Q).

Validation. According to Theorem 4, we may utilize the
efficient filtering technique in [16] to validate the dominance
based on the minimal bounding rectangles of the objects and
the query.

Cover-based Validation. We have S-SD(U , V , Q) and SS-
SD(U , V , Q) if F-SD(Umbr, Vmbr, Qmbr) holds.

5.1.2 P-SD
Given two objects U and V , a straightforward way to de-

termine P-SD(U ,V ,Q) need to consider all possible matches
between U and V which is cost-prohibitive because we may
have to verify up to m! possible matches. In this paper,
we first show that P-SD check can be reduced to the max-
flow problem [11], then a set of techniques are proposed to
enhance the performance.

Let N (E) denote a set of vertices (edges) and C records
the capacities of the edges, G=<N ,E,C> is a network with
s , t ∈ N being source and sink respectively. A feasible flow
f of the network G maps each edge e ∈ E a non-negative
value f(e) following the capacity constraint and conserva-
tion of flows constraint [11]. The value |f | of the flow is
defined as |f | =

∑
〈s,x〉∈E f(〈s, x〉). Then the network for

two objects U and V w.r.t. a query Q, denoted by GU,V ,
can be constructed as follows.

• Vertices s and t for source and sink respectively.
• Each instance u ∈ U contributes a vertex u and an edge

<s,u> with c(s, u) = p(u).
• Each instance v ∈ V contributes a vertex v and an edge

<u, t> with c(v, t) = p(v).
• For any two instances u ∈ U and v ∈ V , there is an edge

〈u, v〉 with c(u, v) = ∞ if u �Q v.

The following theorem indicates that we can apply the
max-flow algorithm to check Peer spatial dominance.

Theorem 12. Let GU,V be the network constructed based
on two objects U , V and the query Q, we have P-SD(U ,V ,Q)
if and only if |f∗| = 1 where f∗ is a max-flow of GU,V .

Proof. See Appendix B.10

Example 5. Figure 9 illustrates an example of P-SD
check, which is reduced to max-flow problem. In Figure 9(a),
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Figure 9: Example of P-SD Check

the object U (V ) consists of 3 (2) instances and the proba-
bility of each instance is labeled. Since we have u1 �Q v1,
u1 �Q v2, u2 �Q v1, u2 �Q v2, and u3 �Q v2, the cor-
responding network GU,V is depicted in Figure 9(b) where
the capacities of the edges are labeled. Note that the edges
unlabeled have capacity ∞. There is a match MU,V =
{〈u1, v1, 0.5〉, 〈u2, v2, 0.2〉, 〈u3, v2, 0.3〉}, which justifies that
P-SD(U ,V ,Q). The corresponding flow will go through the
shaded edges in Figure 9(b).

Time Complexity. It takes O(d|Q|) time to check if an
instance u ∈ U can be assigned to v ∈ V . So the net-
work construction time is O(d|Q|m2) where m is the average
number of instances per object. Let |E| denote the number
of edges in the network, the max-flow computation takes
O(m|E| log(|E|)) time [11].

Pruning. Since P-SD is covered by S-SD and SS-SD, we
have the following cover-based pruning rule.

Cover-based Pruning . We have ¬F-SD(U ,V ,Q) if ¬S-
SD(U ,V ,Q) or ¬SS-SD(U ,V ,Q).

Validation. According to Theorem 4, we have the following
cover-based validation rule.

Cover-based Validation. We have P-SD(U ,V ,Q) if F-
SD(Umbr,Vmbr ,Qmbr) holds.

Utilizing Geometrical Properties. As observed in some
recent work (e.g., [30, 15]) u �Q v implies that all query in-
stances fall on the left side (i.e., the same side with u ) of the
half-space divided by the bisector between u and v. In Fig-
ure 9(a), we have u2 �Q v1 since all query instances reside
on the left side of the bisector line Lu2,v1 . Consequently, we
only need to consider query points on the convex hull of the
query, denoted by CH(Q). In the example of Figure 9(a),
only 4 query points need to be involved in the dominance
check. Moreover, it is immediate that P-SD(U ,V ,Q) does
not hold for any object U if an instance of V falls in the
convex hull of the query Q.

Suppose there are k query points in CH(Q), then each
instance u can be mapped to a point u′ in a k-dimensional
space with u[i] = δ(u, qi). For each instance v ∈ V , we may
issue a rectangular range query with lower corner (0, . . . , 0)
and upper corner v′, and we have u � v if u′ is contained by
the range search. By taking advantage of the efficient range
search in spatial indexing techniques (e.g., R-Tree), we can
efficiently improve the network construction time.

Level-by-level Pruning/Validation. Instead of directly
testing P-SD(U ,V ,Q) against the instances of U and V , we
may conduct the testing in a top down manner such that
the computation may terminate at a high level, and hence
significantly reduce the computational costs.

Let U i denote a set of instances of U with minimal bound-
ing rectangle U i

mbr, and p(U i) represents the total proba-
bility mass of the instances in U i. We assume U consists
of k disjoint sets U1, . . ., Uk. Similarly we have V = {

V 1, . . ., V k }. By regarding each set U i (V i) as a virtual
instance, we may conduct dominance check on these vir-
tual instances for validation purpose. In particular, since
F-SD(U i

mbr , V
j
mbr, Qmbr) implies that for every q ∈ Q, we

have u �Q v for every u ∈ U i and v ∈ V j . There is an

edge from U i to V j if F-SD(U i
mbr, V

j
mbr, Qmbr) holds. Let

G−
U,V denote the corresponding network, we have |f−| ≤ |f |

where |f−| and |f | are max-flow of G−
U,V and GU,V , re-

spectively. Consequently, we can claim P-SD(U ,V ,Q) if
|f−| = 1. Regarding the pruning, an edge is assigned from

U i to V j if ¬F-SD(V j
mbr,U

i
mbr ,Qmbr). This is because ¬F-

SD(V j
mbr,U

i
mbr ,Qmbr) indicates that we have chance to find

u ∈ U i and v ∈ V j such that u �Q v. Let G+
U,V denote the

corresponding network, we have |f+| ≥ |f | where |f+| and
|f | are max-flow of G+

U,V and GU,V , respectively. Thus, we

have ¬P-SD(U ,V ,Q) if |f+| < 1.
Suppose instances of U and V are organized by hierarchi-

cal structure (e.g., R-Tree), we can iteratively conduct the
above pruning and validation procedures in a level-by-level
fashion until the algorithm is terminated at high level or
instances of the objects are reached.

5.2 NN candidate computation
In this subsection, we introduce the NN candidates (NNC)

computation algorithm for a given spatial dominance oper-
ator SD.

Suppose MBRs of the objects are organized by a global
R-Tree RO , Algorithm 1 outlines our NNC computation al-
gorithm. By maintaining a min heap H , entries and objects
are visited in a non-decreasing ordering based on their mini-
mal distance to the query Q. In Line 5-9, each visited object
V will be evaluated against existing NNC objects based on
the dominance checking algorithms proposed in Section 5.1.
Then V becomes an NN candidate if it survives the dom-
inance check (Line 10-11). According to the cover-based
verification rules, an entry e (i.e., objects associated with
e) is discarded if F-SD(Umbr,embr ,Qmbr) holds (Line 13-
16). Otherwise, its child entries or associated objects will
be pushed into H for further processing (Line 17-21). The
algorithm terminates when H becomes empty. The objects
in NCC are NN candidates of O for the given query Q.

Correctness. According to Theorem 4, F-SD(Umbr ,Vmbr,
Qmbr) implies that we have F-SD(U ,V ,Q), P-SD(U ,V ,Q),
SS-SD(U ,V ,Q), and S-SD(U ,V ,Q). Since Vmbr is contained
by embr for every object V in the entry e, it is safe to ex-
clude an entry e in Algorithm 1 if F-SD(Umbr,embr ,Qmbr)
holds at Line 15. Moreover, V is not an NNC object if
SD(U ,V ,Q) holds at Line 8. Consequently, all objects ex-
cluded in Algorithm 1 are not NNC objects. Now we show
every non-candidate object will be discarded. Since objects
are accessed based on their minimal distance to Q, an object
V cannot be dominated by any object accessed after V ac-
cording to the statistic-based pruning rules and cover-based
pruning rules. Together with the fact that all four spatial
dominance operators have the transitivity property, we only
need to conduct dominance check against NNC objects seen
so far to guarantee that all non-candidate objects will be
excluded.

Progressive property of Algorithm 1. As stated in
the above proof, we can safely claim that an object is an
NN candidate object if it is not dominated by any objects
seen as far. This implies that Algorithm 1 is a progressive



Algorithm 1: NNC(O,Q,SD)

Input : O : a set of objects O
Q : query, SD : SD operator

Output: NNC(O, Q, SD)
NNC := ∅ ;1

push root of RO into a heap H ;2

while H 6= ∅ do3

e := H.deheap();4

if e is an object V then5

F := false;6

for each object U ∈ NNC do7

if SD(U , V , Q) then8

F := true; break;9

if F = false then10

NNC := NNC ∪ V ;11

else12

F := false;13

for each object U ∈ NNC do14

if F-SD(Umbr, embr, Qmbr) then15

F := true; break;16

if F = false then17

if e is a data entry associated with object U18

then
push U into H ;19

else20

Push all child entries of e into H ;21

return NNC22

algorithm in the sense that an object can be output before
exploring all objects.

6. PERFORMANCE EVALUATION
In this section, we present the results of a comprehen-

sive performance study to evaluate the effectiveness and ef-
ficiency of the proposed techniques in this paper.

Algorithms. We implement SSD, SSSD, PSD, FSD and
F+SD which are NN candidate search methods based on Al-
gorithm 1 by replacing SD at Line 8 with S-SD, SS-SD, P-
SD, F-SD and F+-SD respectively. Here, F+-SD (U ,V ,Q)
is F-SD(Umbr ,Vmbr,Qmbr) where MBRs of objects are orga-
nized by an R-Tree, and the implementation is from [16]. In
addition, pruning and validation rules, level by level search-
ing mechanism and geometrical properties introduced in Sec-
tion 5.1 are also included for the corresponding dominance
operators.

Note that the dominance check of F-SD(U ,V ,Q) on in-
stance level is not investigated in [16, 25]. Thus, we propose
an efficient dominance check algorithm for performance eval-
uation. Similar to P-SD, we observe that only the query
points on the convex hull need to be considered for F-SD.
In particular, for each q ∈ CH(Q), we issue an NN search and
a furthest neighbor search against the instances of V and U ,
respectively. We may immediately claim ¬F-SD(U ,V ,Q) if
there is a query instance q with δmax(q, U) > δmin(q, V ),
otherwise F-SD(U ,V ,Q) holds. The dominance check is
rather efficient because instances of each object are orga-
nized by a local R-Tree in the experiment.

Remark 1. As shown in Section 1, NN-core ap-
proach [36] may miss important NN objects, and cannot even

cover popular NN functions in N1. Therefore, we do not
evaluate the NN-core approach in our experiment.

Datasets. Two real datasets, NBA1 and GW2, are de-
ployed in the experiments. NBA dataset is extracted from
NBA players’ game statistics, of 1, 313 players with 298, 051
records, each of which consists of the number of points,
assistances and rebounds for a player in a game. Thus,
each player is an object and each record is treated as a 3-
dimensional instance (point). GW is obtained from GoWalla
check-in dataset, consisting of 107, 092 users with 6, 442, 890
check-ins. In GW, each user is regarded as an object and
its check-ins are 2-dimensional instances (points). Instances
in the same object have the same occurrence probability in
this experiment.

Also, three real datasets, HOUSE3, CA4 and USA5

are employed to represent the centers of objects as semi-
real data. HOUSE is a 3-dimensional dataset with 127, 932
records, each of which represents the percentage of an Amer-
ican family’s annual income on 3 types of expenditures. CA
is a 2-dimensional spatial dataset of 62k locations in Califor-
nia. USA dataset is obtained from the U.S. Geological Sur-
vey (USGS) with 1 million locations. USA dataset is used to
evaluate the scalability of the proposed methods. By using
methodologies in [8], we also generate synthetic centers for
objects following the anti-correlated (A) or independent (E )
distribution, where anti-correlated is the default distribution
for synthetic data. The dimensionality (d) varies from 2 to
5, with default value 3. The number of objects (n) we used
in synthetic dataset is kept as 100k. To generate instances
for object centers, the expected edge length (hd) of minimal
bounding box (MBB) for objects varies from 100 to 500 with
default value 400. Given a hd, the lengths of objects are ran-
domly chosen between 0 and 2 × hd. Each object has md

instances on average which follows Normal (N ) distribu-

tion, with standard deviation hd

2
. md varies from 20 to 100

with default value 40. All dimensions are normalized to do-
main [0, 10000]. Note that, the total number of instances in
the default synthetic dataset is 100k×40 =4 million, and
for the largest dataset USA, the instance number reaches
40 million. The experiment parameters are list in Table 2,
where the default value is in bold font.

Evaluation parameter Values

dimensionality d 2, 3, 4, 5
# of objects n 100k, 200k, 400k, 600k, 1M

# of object instances md 20, 40, 60, 80, 100
edge length of object hd 100, 200, 300, 400, 500
object center distribution anti (A), indep (E)
# of query instances mq 10, 20, 30, 40, 50
edge length of query hq 100, 200, 300, 400, 500

Table 2: The summary of experiment parameter.

Workload. The query workload for NN candidates search
consists of 100 randomly selected objects or centers from the
underlying dataset. For the semi-real and synthetic data,
the instance distribution of each query is the same as the
objects. Moreover, the edge length of query (hq) varies from

1http://www.nba.com
2http://snap.stanford.edu/data/loc-gowalla.html
3http://www.ipums.org
4http://www.census.gov/geo/www/tiger
5http://www.usgs.gov/



100 to 500 with 200 as default. The number of instances
(mq) varies from 10 to 50 with default value 30.

All algorithms are implemented in C++ with GNU GCC
4.8.2. Experiments are conducted on a PC with Intel Xeon
3.4GHz CPU and 32G memory using Ubuntu Linux. Sim-
ilar to existing works (e.g., [26, 21, 37]), we employ n + 1
R-trees to organize the n objects. Particularly, we use a
global R-Tree to organize MBRs of the uncertain objects,
and the page size is 4096 bytes. For each individual object,
its instances are kept in a local R-Tree with fan-out 4, and
we load the whole local R-tree into the main memory if it
could not be pruned based on its MBR. The code for convex
hull related computation is obtained from www.qhull.org.
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Figure 10: Candidate Size of Different Datasets

6.1 Effectiveness Evaluation
In this subsection, we evaluate the effectiveness of the al-

gorithms through the average number of NN candidates.
In the first set of experiments, Figure 10 reports effective-

ness of SSD, SSSD, PSD, FSD and F+SD against all the
datasets A-N, E-N, HOUSE, CA, NBA, GW and USA un-
der the default setting. Particularly, A-N denotes the 3 di-
mensional synthetic data whose centers and instances follow
the anti-correlated and Normal distribution, respectively.
Similar definition goes to E-N. As expected, the candidate
size of SSD, SSSD, PSD, FSD and F+SD increase level by
level in all datasets due to the NN candidates inclusion rela-
tionship illustrated in Figure 5. Moreover, we observe that
the candidate size of PSD is much smaller than that of FSD
and F+SD, given that the three operators have the same
coverage of NN functions. SSD and SSSD can further sig-
nificantly reduce the NN candidates size with smaller cov-
erage of NN functions. For instance, in HOUSE dataset,
SSD, SSSD and PSD have 7, 38, and 55.8 candidates re-
spectively, while FSD and F+SD have reached 657 and 1100,
respectively. The gap becomes more significant in A-N, E-N
and USA. Particularly, in USA dataset, the candidate size
of FSD and F+SD have reached 10415 and 15580.4 respec-
tively, while the candidate size of SSD, SSSD and PSD are
quite stable, with 133.2, 422.5 and 933 respectively. In NBA
and GW datasets, the instances of objects are highly over-
lapped, which renders an increase in the candidate size for
all algorithms. Nevertheless, the performance of SSD, SSSD
and PSD still outperforms that of FSD and F+SD by a large
margin.

We also evaluate the impact of different parameters
against the NN candidate size on synthetic dataset and USA
dataset. Figure 11(a) and Figure 11(b) depict the candidate
size as a function of the number of object instances (md)
and the edge length (hd) on A-N dataset, respectively. It
is shown that SSD, SSSD and PSD are well scalable to the
growth of md and hd. However, the performance of FSD and
F+SD is rather sensitive to the growth of hd. This is because
the full spatial dominance heavily relies on the boundaries
(i.e., δmin(q, U) and δmax(q, U)) of the objects, while S-SD,
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Figure 11: Impact of Diff. Parameters on Effectiveness

SS-SD and P-SD are much less sensitive, since the distance
distributions are considered. Similar observation is reported
in Figure 11(c) and Figure 11(d) where the number of in-
stances and the edge length grow regarding the queries on
A-N dataset.

To evaluate the scalability of proposed operator on the
number of object (n), we conduct experiment on USA
dataset by using 200k, 400k, 600k, 800k and 1M data. It
is reported that the performance of FSD and F+SD dete-
riorates with the growth of n, while SSD, SSSD and PSD
are less sensitive. In Figure 13(f), we evaluate the impact
of dimension (d) on A-N dataset. It shows that the number
of candidates drops dramatically when the dimensionality
varies from 2 to 5. This is because when the dimensionality
d grows, the volume of minimal bound box of the objects
becomes relatively smaller, which results in less overlapping
among objects.
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6.2 Evaluation of Efficiency
In this subsection, we demonstrate the efficiency of the

algorithms by reporting the average query response time.
Figure 12 reports the performance of 5 algorithms against

A-N, E-N, HOUSE, CA, NBA, GW and USA datasets un-
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Figure 13: Impact of Diff. Parameters on Efficiency

der the default setting. Due to the simplicity of dominance
check, FSD and F+SD demonstrate superior performance in
all datasets except USA. This is because, in USA dataset,
the candidate size of both operators is too large (up to
15000), which renders plenty of verification cost in the search
of candidates. Moreover, it is not surprising that PSD has
the worst performance among 5 algorithms due to the ex-
pensive dominance checking costs. Nevertheless, considering
that PSD keeps the same coverage of NN functions compared
to FSD and F+SD, but provides much smaller candidate set,
the gain of PSD is significant. This is because a smaller can-
didate size is more crucial in our problem settings, e.g., the
user may need to manually check the candidates and choose
the object of her choice. As expected, SSD and SSSD out-
perform PSD because of the smaller candidate size and the
cheaper dominance checking cost. Moreover, it is noticed
that the performance of SSD and SSSD is even comparable
to that of FSD and F+SD on the hard datasets (e.g., NBA
and GW) and outperforms FSD and F+SD on USA dataset,
due to the large number of candidates obtained by FSD and
F+SD. This suggests that when users are only interested
in the ranking functions in N1,2 [1, 23], which actually al-
ready covers the majority of the NN functions, SSSD can
provide NN candidates with much smaller size than that of
PSD with a faster query response time. The performance
can be further improved in terms of both candidate size and
query delay if users only consider stable aggregation func-
tions (N1) [2, 37], which have been widely used in many
applications.

Figure 13 demonstrates the impact of various parameters
on 5 algorithms on synthetic dataset and USA dataset. It
is observed that FSD and F+SD outperform other competi-
tors when the number of object instances (md) , the edge

length of object (hd), the number of object instances (mq)
and the edge length of object (hq) increases. However, in
Figure 13(e), SSD and SSSD outperform FSD and F+SD
towards the number of object (n), when the dataset size in-
creases from 200k to 1M. As explained before, this is because
the significant growth in candidate size of FSD and F+SD
leading to lots of verification cost. Nevertheless, SSD and
SSSD also perform reasonably well and are less sensitive to
the change in md, hd, mq, hq and n. As reported in Fig-
ure 11(f), the number of candidates is significantly reduced
towards the dimensionality. Consequently, the same trend
is observed for the time efficiency in Figure 13(f).
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Figure 14: Performance of Progressive Property

Next we demonstrate the progressive property of the al-
gorithm on USA dataset. As shown in Figure 14, x-axis is
the candidate return progress, i.e., the percentage of can-
didate returned, and the corresponding response time and
candidate quality (avg. number of objects dominated by re-
turned candidates) are reported. As shown in Figure 14(a),
for PSD, 20 percentage candidates are returned in less than
1s and 70 percentage candidates are return in half time, since
as the number of returned candidates grows the verification
cost also increases. In Figure 14(b), we can observe that
higher quality candidates are often tendered to be returned
first. Thus, the progressive property of the algorithm is well
suited for users to explore the candidates in a progressive
way without waiting until all candidates are returned, like
web search engine. Due to the space limitation, we defer the
experimental results of the effectiveness of different filtering
techniques and experiment summary to the Appendix C.

7. CONCLUSION
To address new challenges arising in the NN search on

objects with multiple instances, we studied the problem of
NN candidates search which can effectively provide users a
small set of candidates for a given query object. By mod-
eling various existing NN ranking functions as three repre-
sentative families, we devised three spatial dominance op-
erators which are optimal w.r.t. different coverage of NN
functions with theoretical underpinnings. Effective and effi-
cient filtering and verification techniques have been proposed
for the dominance check and NN candidates computations.
Our comprehensive experiments justified the effectiveness of
the new spatial dominance operators, which confirmed that
users can make a good trade-off among the NN candidates
size and the coverage of NN functions. Moreover, our ex-
tensive performance evaluation demonstrated the efficiency
of our techniques proposed in this paper.
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APPENDIX

A. SOME NN FUNCTIONS
In this section, we introduce three popular NN functions

that belong to N3, which derive the NN score based on a
subset of pair-wise distances.

Informally, two sets of points are close in the Hausdorff
distance [14, 27] if every point of either set is close to some
points of the other set. Given two objects U andQ, following
is a formal definition of their Hausdorff distance.

Definition 11. Hausdorff distance.

Dh(U,Q) = max{max
u∈U

δmin(u,Q),

max
q∈Q

δmin(q, U)} (5)

Under our problem settings where each object has multi-
ple instances with total probability mass 1, the definitions of
Earth Mover’s distance [10] and Netflow distance [27]
are equivalent to each other. Below we formally introduce
the Netflow distance [27].

Distance Network. Let N (E) denote a set of vertices
(edges) and W (C) records the weights (capacities) of the



edges. G=<N ,E,C,W> is a network with s, t ∈ N be-
ing source and sink, respectively. A feasible flow f of the
network G maps each edge e ∈ E a non-negative value
f(e) following the capacity constraint and conservation of
flow constraint [11]. The value |f | of the flow is defined as
|f | =

∑
〈s,x〉∈E f(〈s, x〉), and the cost c(f) of the flow is

defined as c(f) =
∑

e∈E w(e)f(e).
In this paper, we assume that the total probability

(weight) of the instances for each object is 1. Then the
distance network between the object U and the query Q,
denoted by GU,Q, can be constructed as follows.

• Vertices s and t for source and sink respectively.
• Each instance q ∈ Q contributes a vertex q and an edge

<s, q> with cs,q = p(q) and ws,q = 0.
• Each instance u ∈ U contributes a vertex u and an edge

<u, t> with cu,t = p(u) and wu,t = 0.
• For any two instances q ∈ Q and u ∈ U , there is an edge

<u, q> with cu,q = ∞ and w(〈u,q〉) = δ(u, q).

Definition 12. Netflow distance. Given the distance
network GU,Q of the object U and query Q, the netflow dis-
tance between U and Q, denoted by Mnd(U,Q), is the min-
imal cost of the maximal flow c(f) of GU,Q with |f | = 1.

B. PROOFS

B.1 Proof of Theorem 1

Theorem 1. Match order is equivalent to the usual
stochastic order.

Proof. “⇒”: Given X �M Y , there is a match MX,Y

where t.x ≤ t.y for every t ∈ MX,Y . Then we have X �st Y
because for every t ∈ MX,Y , t.y ≤ λ implies that t.x ≤ λ for
every λ ∈ R.
“⇐”: Given X �st Y , we show how to iteratively find a fea-
sible match MX,Y such that t.x ≤ t.y for every t ∈ MX,Y .
We visit the instances of Y (X) in non-decreasing order.
Let xi and y denote the smallest unvisited instance of X
and Y , respectively. Since Pr(X ≤ y) ≥ Pr(Y ≤ y)
and the same amount of probability mass has been con-
sumed in previous instance matches, there is a set of in-
stance {xi, . . . , xk} where xk is the smallest instance such
that

∑
i≤j≤k p(xj) ≥ p(y). If

∑
i≤j≤k p(xj) > p(y), we may

split the instance xk such that
∑

i≤j≤k p(xj) = p(y). For

every xj ∈ {xi, . . . , xk}, we generate a tuple t〈xj , y, p(xj)〉.
Figure 3(b) illustrates a simple example of the match be-
tween AQ and BQ. In this way, we generate a feasible match
MX,Y and X �M Y follows.

B.2 Proof of Theorem 2

Theorem 2. F-SD ⊂ P-SD ⊂ SS-SD ⊂ S-SD.

Proof. SS-SD ⊂ S-SD: Given two objects U and V ,
and the query Q, we show that SS-SD(U ,V ,Q) implies S-
SD(U ,V ,Q) but not vice versa. Given SS-SD(U ,V ,Q), we
have Pr(Uq ≤ λ)≥Pr(Vq ≤ λ) for every λ ∈ R regarding
every q ∈ Q. Since we have Pr(UQ ≤ λ) =

∑
q∈Q Pr(Uq ≤

λ) × p(q) and Pr(VQ ≤ λ) =
∑

q∈Q Pr(Vq ≤ λ) × p(q),

it is immediate that we have Pr(UQ ≤ λ)≥Pr(VQ ≤ λ),
and hence UQ �st VQ. Thus, S-SD(U ,V ,Q) holds. On the
other hand, Figure 3 illustrates an example where we have
S-SD(A,C,Q) and ¬SS-SD(A,C,Q). Therefore, SS-SD ⊂
S-SD follows.

P-SD ⊂ SS-SD: P-SD(U ,V ,Q) implies that there is a
match MU,V such that t.u �Q t.v for each t ∈ MU,V . There-
fore, for each q ∈ Q, we have δ(t.u, q) ≤ δ(t.v, q), and hence
Uq �M Vq . Then we have Uq �st Vq according to The-
orem 1. Thus, SS-SD(U ,V ,Q) holds. Figure 4 gives an
example where SS-SD(A,B,Q) but ¬P-SD(A,B,Q).

F-SD ⊂ P-SD: F-SD(U ,V ,Q) implies that for every q ∈ Q,
δmax(q, U) ≤ δmin(q, V ). Thus, for every match MU,V , we
have δ(t.u, q) ≤ δ(t.v, q) for every t ∈ MU,V and q ∈ Q.
Thus, P-SD(U ,V ,Q) holds. In the example of Figure 4, we
have P-SD(A,C,Q) but ¬F-SD(A,C,Q).

B.3 Proof of Theorem 3

Theorem 3. When |Q| = 1, we have F-SD ⊂ P-SD =
SS-SD = S-SD.

Proof. Since |Q| = 1, it is immediate that SS-SD is
equivalent to S-SD. Moreover, according to Theorem 1,
we have P-SD = SS-SD = S-SD. Figure 15 illustrates an
example where we have P-SD(A,B,Q), SS-SD(A,B,Q), S-
SD(A,B,Q) but ¬F-SD(A,B,Q). Together with Theorem 2,
we have F-SD ⊂ P-SD.
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Figure 15: Example of Theorem 3

B.4 Proof of Theorem 5

Theorem 5. S-SD is optimal w.r.t. N1, and S-SD does
not cover N2,3.

Proof. Correctness. Given two independent objects U
and V , and query Q, UQ and VQ are two independent ran-
dom variables and S-SD(U ,V ,Q) implies that UQ �st VQ.
Since a stable aggregate function will be used against all
pair-wise distances for a function f ∈ N1, it is immediate
that we have f(U) ≤ f(V ) according to Definition 8.

Completeness. ¬S-SD(U ,V ,Q) implies that there is a λ ∈ R

such that Pr(UQ ≤ λ) < Pr(VQ ≤ λ). Let φ = Pr(VQ ≤ λ),
we have quanφ(UQ) > quanφ(VQ) according to Definition 10
where quantile is a function in N1.

Not cover N2,3. In the example of Figure 3, we have S-

SD(A,C,Q) but C is NN object if NN probability is used,
which is a function in N2. Moreover, the example in Fig-
ure 4 shows that S-SD(A,C,Q) but EMD(A,Q)>EMD(C,Q)
where EMD is a function in N3. Consequently, S-SD does
not cover N2,3.

B.5 Proof of Theorem 6

Theorem 6. SS-SD is optimal w.r.t. N1,2, and SS-SD
does not cover N3.

Proof. Correctness. The correctness is immediate re-
garding N1 since SS-SD ⊂ S-SD and S-SD is optimal
w.r.t. N1. Now we only consider N2. Given objects U
and V , and the query Q, SS-SD(U ,V ,Q) indicates that for
every q ∈ Q we have Uq �st Vq. So for every λ ∈ R,
we have Pr(Uq ≤ λ) ≥ Pr(Vq ≤ λ) regarding a given
query instance q since Uq and Vq are independent. Recall



that δ(U,W ) and s(U,W ) denote the distance and score
of the object U in the possible world W , respectively, and
we have s(U,W ) ≤ s(V,W ) if δ(U,W ) < δ(V,W ) for ev-
ery function in N2. Let Wq denote the possible worlds in
which q occurs, we have Pr(Uq ≤ λ)≥ Pr(Vq ≤ λ) for ev-
ery λ ∈ R. This implies that

∑
W∈Wq∧s(U,W )≤ξ Pr(W ) ≥∑

W∈Wq∧s(V,W )≤ξ Pr(W ) for every possible score ξ. Conse-

quently, we have UW �st VW as Uq �st Vq held for every
q ∈ Q. Since the stable aggregate function is used to derive
the NN score, we have f(U) ≤ f(V ) for every f ∈ N1,2.

Completeness. Given ¬SS-SD(U ,V ,Q), there is at least one
query instance q1 ∈ Q such that Uq1 6�st Vq1 ; that is, there
exists a λ1 ∈ R where Pr(Uq1 ≤ λ1) < Pr(Vq1 ≤ λ1), i.e.,
Pr(Uq1 > λ1) > Pr(Vq1 > λ1). Then we can construct a
function f as follows. Let the aggregate function g be the
weighted sum of scores where the weight of a score s(U,W )
is set to Pr(W ) if W ∈ Wq1 , and it is set to 0 otherwise.
Clearly, g is a stable function. Moreover, we set s(U,W )
to 1 if δ(U,W ) > λ1, and 0 otherwise. In this way, we
have f(U) = Pr(Uq > λ1)×p(q1) and f(V ) = Pr(Vq > λ1)
×p(q1). Thus, we have f(U) > f(V ).

Not cover N3. In the example of Figure 4, we have SS-
SD(A,C,Q) and EMD(A,Q) > EMD(C,Q) where EMD is a
function in N3.

B.6 Proof of Theorem 7

Theorem 7. P-SDis optimal w.r.t. N1,2,3.

Proof. Correctness. The correctness is immediate re-
garding N1,2 since P-SD ⊂ SS-SD and SS-SD is optimal
w.r.t. N1,2. Now we only consider N3. Given objects
U and V , and the query Q, P-SD(U ,V ,Q) implies that
there is a match MU,V such that t.u �Q t.v for every
t ∈ MU,V . For every function f ∈ N3 with aggregate sta-
ble function g, σV (VQ) denotes the corresponding selected
pair-wise distances from VQ during the computation of f(V ).
Based on the match MU,V , we can construct the counterpart
σV (UQ) for object U . For every pair 〈δ(v, q), p〉 in σV (VQ),
its counterpart in UQ is 〈δ(u, q), p〉 with δ(u, q) ≤ δ(v, q)
since v is assigned to u in MU,V . Consequently, we have
σV (UQ) �st σV (VQ), and hence g(σV (UQ)) ≤ g(σV (VQ)).
Since f is a counterpart computable function, we have
f(U) ≤ g(σV (UQ)), and then f(U) ≤ f(V ) holds.

Completeness. ¬P-SD(U ,V ,Q) implies that for every pos-

sible match MV,U , we can find a pair 〈δ(v, q), p〉 from VQ

such that δ(v, q) is always smaller than its counterpart in
UQ. By simply selecting the pair 〈δ(v, q), p〉 in VQ and its
couterpart pair in UQ regarding a match MU,V , we have
f(U) > f(V ).

B.7 Proof of Theorem 8

Theorem 8. F-SD is correct w.r.t. N1,2,3, but does not
have completeness property w.r.t. N1,2,3.

Proof. Since we have F-SD ⊂ P-SD, the correctness of
F-SD is immediate. In Figure 4, we have ¬F-SD (A,C,Q)
because δ(a2, q2) > δ(c2, q2). Nevertheless, we have f(A) ≤
f(C) for every f ∈ N1,2,3 because P-SD (A,C,Q) holds.
Consequently, F-SD is not complete w.r.t. N1,2,3.

B.8 Proof of Theorem 9

Theorem 9. S-SD, SS-SD, P-SD and F-SD have the
transitivity property.

Proof. Given S-SD(U ,V ,Q) and S-SD(V ,Z,Q), we have
Pr(UQ ≤ λ) ≥ (VQ ≤ λ) and Pr(VQ ≤ λ) ≥ (ZQ ≤ λ) for
every λ ∈ R. This immediately implies that Pr(UQ ≤ λ)
≥ Pr(ZQ ≤ λ). Thus, S-SD(U ,Z,Q) holds. We show that
SS-SD also satisfies this property with similar rationale.

Given F-SD(U ,V ,Q) and F-SD(V ,Z,Q), for every q ∈
Q, we have δmax(q,U) ≤ δmin(q, V ) and δmax(q, V ) ≤
δmin(q, Z). Then we have δmax(q, U) ≤ δmin(q, Z), and
hence F-SD(U ,Z,Q) holds.

Given P-SD(U ,V ,Q) and P-SD(V ,Z,Q) we have two
matches MU,V and MV,Z with t.u �Q t.v and m.v �Q m.z
for every t ∈ MU,V and m ∈ MV,Z . By splitting instances,
we can come up with two new matches with the same num-
ber of tuples, denoted by M∗

U,V and M∗
V,Z . For every tuple

t ∈ M∗
U,V and its counterpart tuple m ∈ M∗

V,Z , we gener-
ate a tuple t∗〈t.u,m.z, t.p〉 for the new match MU,Z . With
similar rationale to F-SD, u �Q v and v �Q z implies that
u �Q z. Therefore, P-SD satisfies the transitivity property
because P-SD(U ,Z,Q) holds.

B.9 Proof of Theorem 10

Theorem 10. Given two random variables X and Y with
n instances each, any algorithm to determine whether X �st

Y must have complexity of at least Ω(n log(n)) if the algo-
rithm is based only on comparisons between elements from
X and Y .

Proof. Given two random variables X and Y , it is im-
mediate that X = Y if X �st Y and Y �st X since for
any value λ, P (X ≤ λ) = P (Y ≤ λ). Since a set can be
regarded as a random variable in which each element has
the same probability, we can determine whether two sets
are equal by conducting two stochastic dominance checks.
As shown in [6], for any computation tree solving the prob-
lem of set equality, its lower bound time complexity must
be Ω(n log n) where n is the size of the set. This implies
that any comparison based algorithm to determine whether
X �st Y musth have complexity of Ω(n log(n)).

B.10 Proof of Theorem 12

Theorem 12. Let GU,V be the network constructed based
on two objects U , V and the query Q, we have P-SD(U ,V ,Q)
if and only if |f∗| = 1 where f∗ is a max-flow of GU,V .

Proof. P-SD(U ,V ,Q) implies that there is a match
MU,V between U and V where t.u �Q t.v for every t ∈
MU,V . Then we can construct a flow f of GU,V as follows.
For every tuple t ∈ MU,V , we set f(〈t.u, t.v〉) = t.p. More-
over, for every u ∈ U and v ∈ V , we set f(s, u) = p(u)
and f(v, t) = p(v). Clearly this flow f is feasible (i.e., sat-
isfying capacity and conservation constraints) with |f | = 1.
which is a max-flow since

∑
u∈U c(s, u) = 1. With similar

rationale, given |f∗| = 1 we can construct a match MU,V to
verify that P-SD(U , V , Q) holds.

C. EXPERIMENTS AND ANALYSIS

C.1 Additional Experiments
In this experiments, Figure 16 demonstrates the effective-

ness of different filtering techniques proposed in Section 5.1
on SSD, SSSD and PSD. The number of data instance (md)
varies from 20 to 100 on HOUSE dataset and the number
of average instance comparison is reported. We explore the
effectiveness of filtering strategies by adding them to the
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Figure 16: Effectiveness of Diff. Filtering Techniques

brute force method one by one. In particular, All is the al-
gorithm with all filtering techniques; BF is method without
any filtering techniques, i.e., the brute force method; L is
the algorithm that adds level by level searching mechanism
to BF; LP stands for the method adding pruning rules to L;
LG stands for the method adding geometrical strategy on
L; LGP stands for the method adding pruning rules on LG.
It is reported that all four techniques make remarkable con-
tribution in improving the efficiency of the NN candidates
searching. Given the filtering strategies, SSD and PSD save
up to 2 order of magnitude of cost and SSSD saves 60 times
of cost comparing with the brute force method respectively.

C.2 Summary
In this section, we evaluate the NN candidates computa-

tion algorithms based on five spatial dominance operators.
Following are some important observations.

• Experiments confirm that F+SD [16, 25] and FSD algo-
rithms always lead to a much larger number of NN can-
didates compared with SSD, SSSD and PSD. Thus, they
are not suitable to provide NN candidates for users.

• It is observed that three spatial dominance operators (
S-SD, SS-SD and P-SD) proposed in this paper can sig-
nificantly reduce the number of candidate objects, which
is crucial in our problem since users need to make deci-
sion among the NN candidates. Moreover, experiments
shows that users may make a good trade-off between the
candidate size (time efficiency) and the coverage of NN
functions.

• Experiments demonstrate that our algorithms can in-
stantly output a large portion of high quality NN can-
didates. This can enhance the users’ satisfaction since
they can immediately start to browse the promising re-
sults once the query is issued.

D. RELATED WORK
In this section, we review the existing works on objects

with multiple instances which are closely related to this pa-
per.

D.1 NN Search
NN candidate search on objects with multiple instances

has been studied in different contexts. As discussed in Sec-
tion 3, given the distance measure of two points (instances),
there are three representative families of NN ranking mech-
anisms including all pairs based NN search (N1), possible
world based NN search (N2), and selected pairs based NN
search (N3).

There is a long history of study for NN functions in N1

and N3. In many applications such as economics and social
study, distance between two objects is derived based on an
aggregation function against the pair-wise distances. Typ-
ical examples include min, max, mean, and quantile dis-
tances (e.g., [29, 37]). To describe the closeness of two set
of points or distributions, various distances such as Haus-
dorff distance [27], Earth Mover’s distance [10], and Netflow

distance [27] have been proposed based on a subset of the
pair-wise distances.

In recent years, the inherent uncertainty of data in
many applications lead to the emergence of many uncertain
database models (e.g., [13, 31]). A variety of ranking meth-
ods have been proposed in the literature for uncertain data
processing such as U-top k[32], global top k [39, 18], expected
rank [12], and parameterized ranking [23], which have been
employed in nearest neighbor search on uncertain objects
(e.g., [21, 7, 9, 40, 2, 1]). Besides the possible world seman-
tics based approaches, Earth Mover’s distance has also been
applied to retrieve NN object on uncertain data (e.g., [35,
28]).

D.2 NN Candidate Search
The spatial dominance operator is first introduced by

Sharifzadeh et al. in [30]. Informally, we say a point x
spatially dominates another point y w.r.t. a set of query
points if x is closer to every query point than y. Efficient
algorithms [30, 33] have been developed to compute spatial
skyline. Nevertheless, the problem studied in this paper is
inherently different, since the work in [30, 33] focuses on the
case where each object has only one instance. The full spa-
tial dominance (F-SD) operator in [16, 25] can be regarded
as its natural extension in the context of NN search on multi-
instance objects. Various efficient algorithms (e.g., [16, 25,
15]) have been proposed to check the spatial dominance in
the context of NN search, all NN search, and reverse NN
search on both certain and uncertain data. We remark
that these works focus on how to efficiently prune the non-
promising objects at high level, based on the approximations
(e.g., rectangles and hyperspheres) of the objects to speed
up the computation, instead of providing the end-user with
a set of NN candidates with consideration of popular NN
ranking functions. In [36], Yuen et al. introduce the concept
of NN-core to retrieve NN candidates based on the pair-wise
competitions among the objects. However, as discussed in
Section 1, NN objects regarding some popular NN ranking
functions may be missed by NN-core.

D.3 Skyline Computation
The problem of skyline computation has been investigated

in the context of uncertain data. Probabilistic skyline on
uncertain data is first tackled in [26]. Efficient techniques
are proposed following the bounding-pruning-refining frame-
work. P-domination is proposed by Bartolini et al. [5] to
capture the dominance among uncertain objects based on
the tuple-level uncertain object model. The stochastic or-
der based skyline computation for multi-dimensional uncer-
tain objects is investigated in [24, 38]. Recently, Zhang et
al. [41] propose a layer based indexing technique for multi-
dimensional uncertain objects based on the match based
dominance operator. Our problem can be regarded as the
skyline computation based on new spatial dominance oper-
ators. Nevertheless, the problem is inherently different from
previous studies since a query object with multiple instances
is involved.


