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Safest Nearby Neighbor Queries in Road Networks
Punam Biswas, Tanzima Hashem, and Muhammad Aamir Cheema

Abstract—Safety on the roads has become a major concern
in recent days. Travellers prefer to avoid road inconveniences
that may occur from crime incidents, street harassment, protests
or riots during unrest in a country. To facilitate safe travel,
we introduce a novel query for road networks called the k
safest nearby neighbor (SNN) query. Given a query location vl ,
a distance constraint dc and a point of interest pi, we define
the safest path from vl to pi as the path with the highest path
safety score among all the paths from vl to pi with length less
than dc. The path safety score is computed considering the
road safety of each road segment on the path. Given a query
location vl , a distance constraint dc and a set of POIs P, a kSNN
query returns k POIs with the k highest path safety scores in P
along with their respective safest paths from the query location.
We develop two novel indexing structures called Ct-tree and a
safety score based Voronoi diagram (SNVD). We propose two
efficient query processing algorithms each exploiting one of the
proposed indexes to effectively refine the search space using the
properties of the index. Our extensive experimental study on real
datasets demonstrates that our solution is on average an order
of magnitude faster than the baseline.

Index Terms—Ct-tree, road networks, safest nearby neighbor,
safest path, Voronoi diagram

I. INTRODUCTION

Crime incidents such as kidnapping and robbery on roads
are not unusual especially in developing countries [1]–[3].
Street harassment (e.g., eve teasing, sexual assaults) is a
common scenario that mostly women experience on roads [4],
[5]. A traveler typically prefers to avoid a road segment with
high crime or harassment rate. Similarly, during unrest in a
country, people prefer to avoid roads with protests or riots.
Also, elderly or sick people may prefer to avoid bumpy roads.
However, traditional k nearest neighbors (kNN) queries that
find k closest points of interest (POI) (e.g., a fuel station or
a bus stop) fail to consider a traveler’s safety or convenience
on roads. In real-world scenarios, a user may prefer visiting
a nearby POI instead of their nearest one if the slightly
longer path to reach the nearby POI is safer than the shortest
path to the nearest POI. In this paper, to allow travelers to
avoid different types of inconveniences on roads (e.g., crime
incidents, harassment, bumpy roads etc.), we introduce a novel
query type, called a k safest nearby neighbors (kSNN) query
and propose novel solutions for efficient query processing.

Intuitively, a path is safer if it requires a smaller distance
to be travelled on the least safe roads. Since in real-world
scenarios, a user may not want to travel on paths that are longer
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Fig. 1: An example kSNN query for k = 1 and dc = 10.

than a user-defined distance constraint dc, we incorporate dc in
the formulation of the kSNN query. Given a set of POIs P on
a road network, a query location vl and a distance constraint
dc, a kSNN query returns k POIs (along with paths from vl to
them) with the highest Path Safety Score (PSS) considering
only the paths with distances less than dc.

Consider Fig. 1 that shows 3 restaurants (p1 to p3), a query
located at s and the Path Safety Scores (PSS) of some paths
from s to the three POIs (we formally define PSS in Section II).
Assume a 1SNN query (i.e., k = 1) located at s and dc =
10km. The restaurants that meet the distance constraint are
the candidates for the query answer (i.e., p1 and p2). The POI
p3 is not a candidate because the length of the shortest path
P4 between s and p3 is 14, which exceeds dc. The safest path
between s and p1 is P1. The PSS of P1 is 0.4 and its length
is 8km, which is smaller than dc = 10km. Though the safest
path P3 between s and p2 has a higher PSS than that of P1, we
do not consider P3 because it is longer than dc = 10km. The
PSS of the safest path P2 between s and p2 within dc is 0.3.
Thus, 1SNN query (also called SNN query) returns p1 along
with the path P1.

Although there are efficient algorithms [6]–[9] for finding
the safe paths between two locations, the straightforward ap-
plication of those algorithms to evaluate kSNN queries would
require multiple searches and incur prohibitively expensive
computations. We consider this straightforward approach as
one of the baselines in our experiments and compare the
performance of our proposed efficient algorithms against it.

Finding kSNNs in a road network is a computational chal-
lenge because the number of POIs in the road network and the
number of possible paths between a user’s location and a POI
can be huge. The processing overhead of a kSNN algorithm
depends on the amount of required road network traversal and
the number of POIs considered for finding the safest nearby
POIs. In this paper, we develop two novel indexing structures
called Connected Component Tree (Ct-tree) and safety score
based network Voronoi diagram (SNVD) to refine the search
space and propose two efficient algorithms for finding the
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safest nearby POIs with a single search in road networks.
Although a number of indexing structures [10]–[16] have
been developed, they are developed to reduce the processing
overhead for finding nearest neighbors and cannot be applied
or trivially extended for efficient processing of kSNN queries.
We extend index independent incremental network expansion
(INE) technique [17] for nearest neighbor search to evaluate
kSNN queries and consider it as one of the baselines.

A Ct-tree recursively partitions the road network graph into
connected and safer subgraph(s) by recursively removing the
roads with the smallest safety scores. Each node of the Ct-
tree represents a subgraph, and for every subgraph, the Ct-tree
stores some distance related information. By exploiting Ct-
tree properties and the stored distance information, we develop
pruning techniques that avoid exploring unnecessary paths that
cannot be the safest ones to reach a POI and have distances
less than the distance constraint.

In the past, the Voronoi diagram [18] has also been widely
used for finding nearest neighbors with reduced processing
overhead. The traditional Voronoi diagram divides the road
network graph into subgrpahs such that each subgraph corre-
sponds to a single POI which is guaranteed to be the nearest
POI of every query location in this subgraph. We introduce
SNVD that guarantees that, for every query location in a
subgraph, its unconstrained safest neighbor (i.e., SNN where
the distance constraint is ignored) is its corresponding POI.
Note that the unconstrained safest neighbor of a query location
is not necessarily its SNN depending on the distance constraint
specified by the user. By exploiting the SNVD properties, we
develop an algorithm to identify the SNNs, and similar to
our Ct-tree based approach we improve the performance of
our SNVD based algorithm with novel pruning techniques to
refine the search space.

We are the first to address the problem of finding kSNNs.
Our major contributions are as follows:
• We define a PSS measure by incorporating road safety

scores and individual distances associated with the road
safety scores. Our solution can be easily extended for any
other PSS measure that satisfies certain properties.

• We introduce two indexing structures, named Ct-tree and
SNVD, and develop two novel algorithms for processing
kSNN queries efficiently using them, respectively.

• We propose novel pruning techniques to refine the search
space and further improve the performance.

• We conduct an extensive experimental study using real
datasets that demonstrate that the two proposed algo-
rithms significantly outperform the baseline and the INE-
based approach.

II. PROBLEM FORMULATION

We model a road network as a weighted graph G = (V,E),
where V is a set of vertices and E is a set of edges. A vertex
vi ∈V represents a road junction in the road network and an
edge ei j ∈ E represents a road between vi to v j. Each edge
ei j is associated with two values wd

i j and wss
i j . Here, wd

i j is a
positive value representing the weight of the edge ei j, e.g.,
length, travel time, fuel cost etc. For simplicity, hereafter, we

TABLE I: A list of notations

Notation Explanation
G(V,E) The road network graph
ei j An edge connecting vertices vi and v j
vl A query location
dc A user-defined distance constraint
pi A POI located at vi

wd
i j Weight (e.g., length, travel time) of ei j

wss
i j Edge safety score (ESS) of ei j

smax Maximum ESS, i.e., argmaxei j∈E wss
i j

pti j A path from a vertex vi to a vertex v j
dist(pt) Sum of weights of edges in pt
pti j.ds Total weight of edges in pti j with ESS equal to

s
pss(pt) Path safety score of pt

pts f
i j The safest path between vi and v j that has

distance less than dc
ptsh

i j The shortest path between vi and v j

use length to refer to wd
i j. wss

i j represents the edge safety score
(ESS) of ei j (higher the safer). Computing wss

i j is beyond the
scope of this paper and we assume that edge safety scores are
given as input (e.g., computed using existing geospatial crime
mapping approaches [19], traffic conditions, past incidents
etc.). Table I summarizes the main notations used the paper.

A path pti j between two vertices vi and v j is a sequence
of vertices such that the path starts at vi, ends at v j, and
an edge exists between every two consecutive vertices in the
path. Cost of a path pti j is the sum of the weights of the
edges in the path, e.g., total length, total travel time etc. For
simplicity, hereafter, we use distance/length to refer to the cost
of a path pti j and denote it as dist(pti j). Let dc be a user-
defined distance constraint. We say that a path pti j is valid if
dist(pti j)< dc.

A. Path Safety Score (PSS)

Intuitively, we want to define a Path Safety Score (PSS)
measure that ensures that a path that requires smaller distance
to be travelled on less safe roads has a higher PSS. Before
formally representing this requirement using Property 1, we
first define s-distance (denoted as ds) of a path which is the
total distance a path requires travelling on edges with safety
score equal to s.

Definition 1. s-distance: Given a path pti j and a positive
integer s, s-distance of the path (denoted as pti j.ds) is the
total length of the edges in pti j which have safety score equal
to s, i.e., pti j.ds = ∑exy∈pti j∧wss

xy=s wd
xy.

Consider the example of Fig. 2 that shows three paths P1,
P2 and P3 from source s to a POI p1, with lengths 9, 5 and 9,
respectively. In Fig. 2, P1 has two edges with ESS equal to 4.
The lengths of these edges are 1 and 3, respectively. Therefore,
4-distance of P1 is P1.d4 = 1+3= 4. Table II shows s-distances
for the three paths for each s from 1 to 5, e.g., P1.d1 = 0,
P2.d1 = 1, P3.d1 = 1, P2.d2 = 1, and P3.d2 = 2+2 = 4.

Property 1. Let pti j and pt ′i j be two valid paths (i.e., have
distances less than dc). Let s be the smallest positive integer
for which pti j.ds ̸= pt ′i j.ds. The path pti j must have a higher
PSS than pt ′i j if and only if pti j.ds < pt ′i j.ds.
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Fig. 2: For each road segment, its ESS and length (in km)
are shown as ⟨ESS, length⟩. Assuming dc = 10km, p1 is the
1SNN for query s and P1 is the safest path from s to p1.

TABLE II: Three paths and their s-distances

Path Pi.ds (s-distance for each path Pi)
Pi.d1 Pi.d2 Pi.d3 Pi.d4 Pi.d5

P1 0 0 0 4 5
P2 1 1 0 1 2
P3 1 4 0 0 4

Consider Fig. 2 and Table II. According to Property 1, P1
must have a higher PSS than P2 and P3 because P1.d1 = 0
is smaller than P2.d1 = P3.d1 = 1, i.e., P1 does not require
traveling on an edge with safety score 1 whereas P2 and P3
require traveling 1km on roads with safety score 1. P2 must
have a higher PSS than P3 because, although P2.d1 = P3.d1,
P2.d2 = 1 is smaller than P3.d2 = 4. Hereafter, we use ds to
denote pti j.ds wherever the path pti j is clear by context.

Next, we define a measure of PSS (Definition 2) which
satisfies Property 1. For this definition, we assume that, for
each edge, wd

i j ≥ 1 and wss
i j is a positive integer. These

assumptions do not limit the applications because wd
i j ≥ 1 can

be achieved by appropriately scaling up if needed and, in most
real-world scenarios, safety scores are integer values based on
safety ratings (e.g., 1-10).

Definition 2. Path Safety Score (PSS): Let dc > 1 be the dis-
tance constraint and pti j be a valid path (i.e., dist(pti j)< dc).
Let smax be the maximum ESS of any edge in the road network
G. The PSS pss(pti j) of pti j is computed as 1

∑
smax
s=1 ws×ds

, where

ws = d(smax−s)
c .

Here ws represents the weight (importance) assigned to the
edges with ESS equal to s. For example, if dc = 10 and
smax = 5, we have w1 = 104, w2 = 103, w3 = 102, w4 = 101

and w5 = 100. We calculate PSS for paths P1,P2 and P3 of
Figure 2 as follows. As shown in Table II, ds values for P1 are
P1.d1 = P1.d2 = P1.d3 = 0, P1.d4 = 4 and P1.d5 = 5. The PSS
for path P1 is 1

(w4×4)+(w5×5) =
1

(10×4)+(1×5) =
1
45 . For P2, ds

values are P2.d1 = 1, P2.d2 = 1, P2.d3 = 0, P2.d4 = 1, P2.d5 =
2. The PSS for path P2 is 1

(w1×1)+(w2×1)+(w4×1)+(w5×2) =
1

(104×1)+(103×1)+(10×1)+(1×2) =
1

11012 . Finally, ds values for P3

are P3.d1 = 1, P3.d2 = 4, P3.d3 = 0, P3.d4 = 0, P3.d5 = 4. The

PSS for P3 is 1
(w1×1)+(w2×4)+(w5×4) =

1
(104×1)+(103×4)+(1×4) =

1
14004 . Thus, as required by Property 1, P1 has the highest PSS
followed by P2 and then P3.

Note that the importance ws is set such that it fulfils the
following condition: a unit length edge with ESS equal to s
contributes more in the sum than all other edges in a valid
path with ESS greater than s, i.e., ws > dist(pti j)×ws+x for
x≥ 1 (this is because dist(pti j)< dc and ws+x = ws/dx

c ). This
condition ensures that our PSS measure satisfies Property 1.
For example, when dc = 10, we have w1 = 104 and w2 =
103. Since each edge has length at least 1, this implies that
w1× d1 > w2× dist(pti j) because length of pti j is less than
dc = 10.

Although the PSS of a path can vary depending on dc, the
relative ranking of two paths based on PSSs remains the same
irrespective of the value of dc as long as both paths are valid
(i.e., have distance less than dc).

B. kSNN Query

We denote the safest valid path between two vertices vi and
v j as pts f

i j which is a path with the highest PSS among all
valid paths from vi to v j. Now, we define kSNN query.

Definition 3. A k Safest Nearby neighbors (kSNN) Query:
Given a weighted road network G(V,E), a set of POIs P, a
query location vl and a distance constraint dc, a kSNN query
returns a set Pk containing k POIs along with the safest valid
paths from vl to each of these POIs such that, for every pi ∈ Pk
and every pi

′ ∈ P\Pk, pss(pts f
li )≥ pss(pts f

li′ ) where pss(pts f
li )

and pss(pts f
li′ ) represent the safest valid paths from vl to pi

and pi
′, respectively.

In Fig. 2, P1 has the highest PSS among all valid paths
from s to any of the three POIs, Thus a 1SNN query returns
p1 along with the path P1 as the answer. In some cases, there
may not be k POIs whose distances from the query location are
less than dc. In such scenario, a kSNN query returns all POIs
with distances less than dc, ranked according to their PSSs.
Hereafter, a 1SNN query (i.e., k = 1) is also simply referred
as a SNN query. Following most of the existing works on POI
search, we assume that the POIs and query location lie on the
vertices in the graph.

C. Generalizing the Problem

We remark that our definition of PSS is more general than
the definitions in previous works [6]–[8] that do not have any
distance constraint and treat each road segment either as safe
or unsafe instead of assigning different safety scores to each
road as in our work. Consequently, our definition is more
general and we can easily use our definition to compute the
path that minimizes the distance travelled through unsafe zones
(as in [6]–[8]) by assigning each edge in the safe zone a safety
score x and each edge in the unsafe zone a safety score y such
that x > y and setting dc to be larger than the length of the
longest path in the network.

Although our definition of PSS is already more general than
the previous work, in this section, we show that our algorithms
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can be immediately applied to a variety of other definitions
of PSS. This further generalizes the problem studied in this
paper and the proposed solutions. Specifically, we propose two
algorithms to solve kSNN queries and both algorithms are
generic in the sense that they do not only work when PSS is
defined using Definition 2 but are also immediately applicable
to a variety of other definitions of PSS. Specifically, our Ct-
tree based algorithm works for any other definition of PSS as
long as it satisfies both of the Properties 2 and 3, whereas,
our SNVD based algorithm is immediately applicable to any
definition of PSS as long as it satisfies Property 2.

Property 2. Let ptxy be a subpath of a valid path ptxz. The PSS
computed using the defined measure must satisfy pss(ptxz) ≤
pss(ptxy).

Property 2 requires that a subpath must have equal or higher
PSS than any path that contains this subpath. This requirement
is realistic as the risk/inconvenience associated with a path
inherits the risk/inconvenience associated with travelling on
any subpath of this path.

Property 3. Let ptxy.minSS be the minimum safety score
among all edges in the path ptxy, i.e., ptxy.minSS =
argminei j∈ptxywss

i j . Given two valid paths ptxy and pt ′xy such that
ptxy.minSS < pt ′xy.minSS, the PSS computed using the defined
measure must satisfy pss(ptxy)< pss(pt ′xy).

Property 3 is also realistic as it dictates that if the least safe
edge on path P is safer than the least safe edge on path P′,
the PSS of P must be equal to or greater than that of P′.

Many intuitive definitions of PSS satisfy the above-
mentioned properties. E.g., assume that ESS represents the
probability that no crime will occur on this edge (as in [20]).
If PSS is defined as multiplication of ESS on all edges on
a path [20] (i.e., probability that no crime will occur on the
whole path), this definition of PSS satisfies Property 2 but
not Property 3. Thus, SNVD based algorithm can be used to
handle queries involving such PSS. On the other hand, if PSS
corresponds to the minimum ESS on any edge on the path,
then this definition of PSS satisfies both properties, therefore,
both Ct-tree and SNVD based approaches can be used.

We remark that our PSS measure (Definition 2) satisfies
both properties and thus, both of our algorithms can be
used for it. For example, in Fig. 2, the PSS for path P1 is

1
(w4×4)+(w5×5) =

1
(10×4)+(1×5) =

1
45 . Now if we consider the

subpath of P1 by removing the last edge with ESS 5 and length
2, the PSS increases to 1

(w4×4)+(w5×3) = 1
(10×4)+(1×3) = 1

43
(which satisfies Property 2). Similarly, P1.minSS = 4 and
P2.minSS = 1, and the PSSs of P1 and P2 are 1

45 and 1
11012 ,

respectively (which satisfies Property 3).
For the ease of presentation, in our problem setting, we

assume that each edge has a single safety score wss
i j . However,

if an edge has multiple safety scores representing the road
safety conditions at different times of the day (e.g., day
vs night) or different types of crimes, our solutions can be
immediately applied by only considering the relative safety
score for each edge (e.g., safety scores for night time if the
query is issued at night).

III. RELATED WORK

A variety of route planning problems have been studied in
the past such as: shortest route computation [13], [21] which
requires to find the path with the smallest overall cost; multi-
criteria route planning [22], [23] which aims to return routes
considering multiple criteria (e.g., length, safety, scenery etc.);
obstacle avoiding path planning [24]–[28] which returns the
shortest path avoiding a set of obstacles in the space; safe
path planning [6]–[8] that aims to return paths that are safe
and short; alternative route planning [22], [29]–[31] where
the goal is to return a set of routes significantly different from
each other so that the user has more options to choose from;
and multi-stop route planning (also called trip planning) [23],
[32]–[34] which returns a route that passes through multiple
stops/POIs satisfying certain constraints. Below, we briefly
discuss some of these route planning problems most closely
related to our work.

Multi-criteria route planning. Existing techniques [22],
[23], [35], [36] typically use a scoring function (e.g., weighted
sum) to compute a single score of each edge considering
multiple criteria. Once the score of each edge has been
computed, the existing shortest path algorithms can be used
to compute the path with the best score. In contrast, our work
cannot trivially use the existing shortest path algorithms due
to the nature of the PSS. Also, as noted in [20], it is non-trivial
for a user to define an appropriate scoring function combining
the multiple criteria. Thus, some existing works [20], [37]
approach the multi-criteria route planning differently and
compute a set of skyline routes which guarantees that the
routes returned are not dominated by any other routes. This
is significantly different from our work as it returns possibly
a large number of routes instead of the safest route.

Safe path planning. There are several existing works that
consider safety in path planning. In [6]–[8], the authors divide
the space into safe and unsafe zones and minimize the distance
travelled through the unsafe zones. However, these works are
unable to handle different safety levels of roads and do not
consider any distance constraint on the paths. In Section II,
we show that our work is more general and is applicable
to a wider range of definitions of safe paths. Some other
existing works [20], [35], [36] also consider safety, however,
they model the problem as multi-criteria route planning and are
significantly different from the problem studied in this paper
(as discussed above). A couple of recent approaches [38], [39]
consider minimizing the total risk scores or maximizing the
total safety score of a path. Optimizing the total scores does
not allow a path to exclude a high risk road and thus, cannot
ensure a traveler’s safety. The most closely related work to our
work is [9] which develops an algorithm to find the safest paths
between a source and a destination by considering individual
distances associated with different safety scores of a path,
which is similar to the definition of our path safety score.

The problem studied in this paper is significantly different
from the above-mentioned route planning problems. Unlike
route planning problems, our problem does not have a fixed
destination, (i.e., each POI is a possible destination) and the
goal is to find k POIs with the safest paths. In other words, the
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problem studied in this work is a POI search problem similar
to a k nearest neighbor (kNN) query. We use [9] in one of our
baselines to find the safest paths to candidate kSNNs.

kNN Queries. Answering kNN queries has been extensively
studied, e.g., see [40] which describes and evaluates some of
the most notable kNN query processing algorithms on road
networks. A straightforward application of a existing kNN
algorithms to kSNNs is prohibitively expensive as it would
require two independent traversals of the road network for
first finding k′ > k nearest neighbors as candidate kSNNs, and
then computing the safest paths from the query location to
each of the candidate kSNN, respectively. We extend the index
independent INE [17] technique for kNN search to identify
kSNNs with a single search in the road network and consider
it as a baseline (please see Section IV for details).

IV. INCREMENTAL NETWORK EXPANSION

Incremental network expansion (INE) [17] is among the
most efficient nearest neighbour search techniques that do not
rely on any distance-based indexing structure. Since the PSS
of a path is no larger than that of its subpath (Property 2), we
can adapt the INE search to find kSNNs.

Starting from the query location vl , the INE based search
explores the adjacent edges of vl . For each edge eli, a path
consisting of vl and vi is enqueued into a priority queue Qp.
The entries in Qp are ordered in the descending order based
on their PSSs. Then the search continues by dequeueing a path
from Qp and repeating the process by exploring adjacent edges
of the last vertex of the dequeued path. Before enqueueing a
new valid path pl j into Qp, its PSS is incrementally computed
from the PSS of the dequeued path pli and the PSS of the path
pi j that consists of a single edge ei j using the following lemma
(the proof of the lemma is included in the full version1 [41]
of this paper).

Lemma 1. Let ptl j be a valid path such that ptl j = ptli⊕
pti j where ⊕ is a concatenation operation. Then, pss(ptl j) =

1
1

pss(ptli)
+ 1

pss(pti j)
.

The first SNN is identified once the last vertex of a dequeued
path from Qp is a POI and the distance of the path is less than
dc. The search for kSNNs terminates when paths to k distinct
POIs have been dequeued from Qp and the distances of the
paths are smaller than dc.

To refine the search space, we check if a path can be pruned
before enqueueing it into Qp using the following pruning rules.
Pruning Rule 1 is straightforward as it simply uses the distance
constraint for the pruning condition.

Pruning Rule 1. A path ptl j can be pruned if dist(ptli)≥ dc,
where dc represents the distance constraint.

A path ptl j between vl and v j can be pruned if there is
already a dequeued path pt ′l j which is at least as short as ptl j
and at least as safe as ptl j. The following lemma justifies the
above intuition (the proof of the lemma is included in the full
version [41] of this paper).

1The full version includes detailed descriptions (e.g., proof of the lemmas,
complexity analysis) and more results of our experiments.

Lemma 2. If path pt ′l j is at least as short as path ptl j and at
least as safe as ptl j, then path pt ′lk = pt ′l j⊕ pt jk is at least as
short as and at least as safe as path ptlk = ptl j⊕ pt jk.

Since the search dequeues paths in descending order of PSSs
from Qp and Pruning Rule 2 is applied to a path ptl j before
enqueueing it, the PSS of any dequeued path is higher than
pss(ptl j). Thus, Pruning Rule 2 only checks whether there is
a dequeued path to v j that is at least as short as ptl j.

Pruning Rule 2. A path ptl j can be pruned if dist(ptl j) ≥
Dsh[ j], where Dsh[ j] represents the distance of the shortest
path pt ′l j from vl to v j dequeued so far.

We remark that, since Dsh[ j] is less than dc when a valid
dequeued path to v j exists, Pruning Rule 2 facilitates the
pruning of the valid paths (i.e., the path length is smaller than
dc). On the other hand, Pruning Rule 1 prunes the invalid
paths, when there is no existing dequeued path that ends at
v j, i.e., Dsh[ j] = ∞. We provide complexity analysis of the
algorithm in the full version [41].

V. CT-TREE

In this section, we introduce a novel indexing structure,
Connected component tree (Ct-tree) and develop an efficient
solution based on Ct-tree to process kSNN queries. Index
structures like R-tree [10], Contraction Hierarchy (CH) [42],
Quad tree [43], ROAD [12], G-tree [13], G∗-tree [14], LG-
tree [15] and HN-tree [16] have been proposed for efficient
search of the query answer based on the distance metric
and are not applicable for kSNN queries. Some of these
indexing techniques [10], [43] divide the space into smaller
regions based on the position of the POIs, whereas some other
indexing techniques [12], [42] divide the space based on the
properties of the road network graph. These existing indexing
techniques cannot be applied or trivially extended to compute
kSNNs because they do not incorporate Edge Safety Score
(ESS)s of the edges in the road network graph.

A. Ct-Tree Construction and Properties

The key idea to construct a Ct-tree is to recursively partition
the graph by removing the edges with the smallest ESSs in
each step. Removing the edges with the smallest ESS s may
partition the graph into one or more connected components.
A component is denoted as Gst , where t is a unique identifier
for the partitions created by removing edges with ESS s.
Each connected component Gst is recursively partitioned by
removing the edges with the smallest ESS within Gst . The
recursive partitioning stops when Gst either contains a single
vertex or all edges within Gst have the same ESS.

Without loss of generality, we explain the Ct-tree construc-
tion process using an example shown in Figure 3. The original
graph has edge ESSs in the range of 1 to 4, and for the sake
of simplicity, we do not show the edge distances in the figure.
The root of the Ct-tree represents the original graph G. After
removing the smallest edge ESS 1, G is divided into three
connected components G11 , G12 and G13 . These connected
components are represented by three child nodes of the root
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(a) Ct-tree subgraphs (b) Ct-tree
Fig. 3: Ct-tree Construction Steps

node at tree height h = 1. Each of these components is then
recursively partitioned by removing the edges with the smallest
ESS. For example, the edges with ESS 2 are removed from
G11 , and G11 is divided into three connected components G21 ,
G22 and G23 . The recursive partitioning of G21 and G23 stop
as they have edges with same ESS. On the other hand, after
removing the edges with ESS 3, G22 is divided into G33 and
G34 . We formally define a Ct-tree as follows:

Definition 4. Ct-tree: A Ct-tree C is a connected component
based search tree, a hierarchical structure that has the follow-
ing properties:
• The Ct-tree root node represents the original graph G.
• Each internal or leaf Ct-tree node represents a connected

component Gst , where Gst does not include any edge with
ESS smaller than or equal to s and Gst is included in the
graph represented by its parent node.

• The maximum height of the tree, hmax = smax−1
• Each internal or leaf Ct-tree node maintains the following

information: the number of POIs n(Gst ) in Gst , a border
vertex set Bst , the minimum border distance dmin

B (vx,Gst )
and the minimum POI distance dmin

p (vx,Gst ) for each
border vertex vx ∈ Bst .s

Fig. 4: Border vertices, the minimum border distance and the
minimum POI distance

Border vertices, the minimum border distance and the
minimum POI distance. A vertex vx is called a border vertex

of a subgraph Gst , if there is an outgoing edge from vx whose
ESS is smaller than or equal to s and the edge is not included
in Gst . We denote the set of border vertices of Gst with Bst .
For example, in Figure 4, B12 includes {v1,v5,v8}. A border
vertex of Gst represented by a Ct-tree node is also a border
vertex of the subgraphs represented by its descendent nodes.
For example, v5 is a border vertex of both G12 and G21 .

For each border vertex, the corresponding Ct-tree node
stores the minimum border distance and the minimum POI
distance. The minimum border distance dmin

B (vx,Gst ) of a
border vertex vx of Gst is defined as the minimum of the
distances of the shortest paths from vx to vy for vy ∈ Bst \ vx.
In Figure 4, the distances of border vertex v8 from other
border vertices v1 and v5 are 16 and 21 respectively. Thus,
dmin

B (v8,G11) = 16.
The minimum POI distance dmin

p (vx,Gst ) of a border vertex
vx is defined as is the distance from vx to its closest POI
in Gst . In Figure 4, the distances of border vertex v8 from
POIs v1, v3 and v10 are 16, 10 and 20 respectively. Thus,
dmin

p (v8,G11) = 10.
After the Ct-tree construction, for each vertex v in G, we

store a pointer to each Ct-tree node whose subgraph contains
v. Since the height is smax− 1, this requires adding at most
O(smax) pointers for each v. We remark that the height h of
the Ct-tree can be controlled if needed. Specifically, to ensure
a height h, the domain of possible ESS values is divided in h
contiguous intervals and, in each iteration, the edges with ESS
in the next smallest interval are removed. E.g., if ESS domain
is 1 to 10, a Ct-tree of height 5 can be constructed by first
removing edges with ESS in range (0,2] and then (2,4],(4,6]
and (8,10] (in this order).

B. Query Processing

1) kSNN search: The efficiency of any approach for eval-
uating a kSNN query depends on the area of the graph search
space for finding the safest paths having distances less than dc
from vl to the POIs and the number of POIs considered for
identifying kSNNs. The Ct-tree structure and Property 3 of our
PSS measure allow us to start the search from the smallest and
safest road network subgraph that has the possibility to include
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kSNNs for vl . By construction of Ct-tree, it is guaranteed
that the subgraph of a child node is smaller and safer than
that of its parent node. Thus, starting from the root node, our
approach recursively traverses the child nodes that include vl .
The traversal ends once a child node that includes less than k
POIs and vl is reached. The parent of the last traversed child
node is selected as the starting node of our kSNN search. Note
that the subgraph Gst of the starting node includes greater than
or equal to k POIs.

If the lengths of the paths from vl to at least k POIs in Gst

is smaller than dc, then our approach does not need to expand
Gst . This is because, by definition, the edges that connect the
border vertices in Gst to other vertices that are not in Gst have
lower ESSs than those of the edges in Gst . If there are less than
k POIs in Gst whose safest paths from vl have distances less
than dc, our Ct-tree based approach recursively updates Gst

with the subgragh of its parent node until kSNNs are identified.
To find the safest path having distance less than dc from

vl to the POIs in Gst , we improve the INE based safest path
search discussed in Section IV by incorporating novel pruning
techniques using Ct-tree properties. Specifically, the minimum
border distance and the minimum POI distance stored in the
Ct-tree node allow us to develop Pruning Rules 3 and 4 to
further refine the search space in Gst .

Pruning Rule 3. A path ptl j can be pruned if dist(ptl j)+
dmin

B (v j,Gst )≥ dc and dist(ptl j)+dmin
p (v j,Gst )≥ dc, where v j

is a border vertex of Gst and dmin
B (v j,Gst ) and dmin

p (v j,Gst ) are
the minimum border distance and the minimum POI distance
of v j, respectively.

Pruning Rule 4. A path ptl j can be pruned if dist(ptl j)+
dmin

B (v j,Gst )≥ dc and dist(ptl j)+dmin
p (v j,Gst )≥maxD, where

v j is a border vertex of Gst , Pst represents the set of POIs
in Gst , and maxD represents the maximum of the current
shortest distances of the POIs in Pst from vl , i.e., maxD =
maxpi∈Pst

Dsh[i].

Fig. 5: pt05 can be pruned using Pruning Rule 3 for a query
location v0 and dc = 20

If the first condition that uses the minimum border distance
in Pruning Rule 3 or 4 becomes true then it is guaranteed that
the expanded path through ptl j cannot cross Gst to reach a
POI outside of Gst due to the violation of distance constraint.
On the other hand, satisfying the second condition in Pruning
Rule 3 means that the expanded path through ptl j cannot reach
a POI inside Gst due to the violation of distance constraint. For
the second condition, Pruning Rule 4 exploits that if the POIs

inside Gst are already reached using other paths then maxD,
the maximum of the current shortest distances of the POIs in
Gst can be used to prune a path. If the second condition in
Pruning Rule 4 becomes true then it is guaranteed that the
expanded path through ptl j cannot provide paths that are safer
than those already identified for the POIs in Gst (please see
Pruning Rule 2 for details).

Fig. 6: pt01 can be pruned using Pruning Rule 4 for a query
location v0 and dc = 20

Pruning Rule 4 can prune more paths than Pruning Rule 3
when maxD is less than dc, i.e., at least one path from vl
to every POI in Gst have been identified. On the other hand,
Pruning Rule 3 is better than Pruning Rule 4 when maxD is ∞,
i.e., no path has yet been identified for a POI in Gst . Hence we
consider all pruning rules (Pruning Rule 1–Pruning Rule 4) to
check whether a path can be pruned.

Figure 5 shows an example where a path pt05 is pruned
using Pruning Rule 3 for a query location v0 and dc = 20.
In the example, v5 is a border vertex of G21 , dist(pt05) =
10, dmin

B (v5,G21) = 11 and dmin
p (v5,G21) = 13. Here, both

dist(pt05) + dmin
B (v5,G21) and dist(pt05) + dmin

p (v5,G21) are
greater than dc. Hence according to Pruning Rule 3, path pt05
can be pruned. From the figure we also observe that if we
expand pt05, it cannot reach a POI outside G21 through a
border vertex (v1 or v10) or a POI (v3 or v10) in G21 due
to the violation of the distance constraint.

In Figure 6, the POIs (v3, v6 and v10) in G21 are already
reached using other paths and Dsh[3] = 11, Dsh[6] = 16 and
Dsh[10] = 15. Thus maxD = 16. The query location is v0,
dc = 20, dist(pt01) = 10, v1 is a border vertex of G21 ,
dmin

B (v1,G21) = 15 and dmin
p (v1,G21) = 8. Here, dist(pt01)+

dmin
B (v1,G21) is greater than dc and dist(pt01)+dmin

p (v1,G21)
is greater than maxD but not dc. Thus, in this case path pt01
is pruned using Pruning Rule 4.

2) Algorithm: Algorithm 1, Ct-kSNN, shows the pseu-
docode to find kSNNs in the road network using the Ct-tree.

The algorithm uses two priority queues Qcur and Qnext ,
where Qcur is used for the path expansion in Gst , and Qnext
stores the paths that will be expanded WHILE searching the
parent subgraph of Gst . Each entry of these queues represents
a path, the PSS and the path’s length. The entries in a queue
are ordered in descending order based on their PSSs. The
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Algorithm 1 Ct-tree-kSNN(vl ,k,dc)

1: Initialize(Qcur,Qnext ,Dsh)
2: Gst ←Contains(vl)
3: Enqueue(Qcur,vl ,∞,0)
4: while Qcur! = /0 do
5: ptli, pss(ptli),dist(ptli)← Dequeue(Qcur)
6: if dist(ptli)< Dsh[i] then
7: Dsh[i]← dist(ptli)
8: end if
9: if isPOI(vi) and !Include(A,vi) then

10: A← A∪{ptli}
11: if A.size() == k then
12: return A
13: end if
14: end if
15: if vi ∈ Bst then
16: Enqueue(Qnext , ptli, pss(ptli),dist(ptli))
17: end if
18: for ei j ∈ Est do
19: if !PrunePath(ptl j,dc,Dsh,Gst ) then
20: Enqueue(Qcur, ptl j, pss(ptl j),dist(ptl j))
21: end if
22: end for
23: if Qcur = /0 then
24: Gst ← GetParent(Gst )
25: Qcur← Qnext
26: Qnext ← /0
27: end if
28: end while
29: return A

algorithm uses an array Dsh, where Dsh[i] stores the distance
of the shortest dequeued path from vl to vi.

The algorithm starts with initializing two priority queues
Qcur and Qnext to /0 and Dsh[i] for each vi to dc using Function
Initialize (Line 1). Then, starting from the root node, Function
Contains recursively traverses the child nodes using the stored
pointers of vl until it identifies the smallest subgraph Gst of a
Ct-tree node that includes vl and has at least k POIs (Line 2).
The vl and the corresponding path information are enqueued
to Qcur. The algorithm iteratively processes the entries in Qcur
until it becomes empty or kSNNs are found (Lines 4–28).

In every iteration, the algorithm dequeues a path ptli from
Qcur and updates Dsh[i] of the last vertex vi of the dequeued
path if dist(ptli) < Dsh[i] (Lines 5–8). If vi represents a POI
that is not already present in A, then ptli is added to A, and if
A includes k entries, the answer is returned (Lines 9–14).

If vi is a border vertex of Gst , then there is at least one
outgoing edge from vi with safety score smaller than or equal
to s, which might need to be later considered if kSNNs are
not found in current Gst . Thus, ptli and the corresponding path
information are enqueued to Qnext (Lines 15–17). Note that the
ESS of Gst are larger than s.

Next, for each outgoing edge ei j of vi in Gst , the algorithm
checks whether the newly formed path ptl j by adding ei j
at the end of ptli can be pruned using PrunePath function
(PrunePath is elaborated below). If the path is not pruned,

then ptl j and the corresponding path information are enqueued
to Qcur (Lines 18–22).

At the end of the iteration, the algorithm checks whether
the exploration of Gst is complete, i.e., Qcur is empty. If this
condition is true, then it means that the safest paths having
distances less than dc from vl to kSNNs are not included in
Gst . Thus, the algorithm sets the parent of Gst as Gst , assigns
Qnext to Qcur and resets Qnext to /0 (Lines 23-27).

PrunePath. Algorithm 2 returns true if path pti j can be
pruned by any of our pruning criteria and f alse otherwise. It
first checks whether pti j can be pruned using the criteria in
Pruning Rules 1 or 2. Note that an entry Dsh[x] for a vertex
vx is initialized to dc and later it gets updated once a path to
vx is dequeued from the queue (see Line 7 in Algorithm 1).

If pti j is not pruned, Function checkBorder(Gst ,v j) checks
whether v j is a border vertex of Gst or one of its descendants.
If so, it returns true for IsBorder and the node Gs′t′

for which
v j is a border vertex. Otherwise, IsBorder is set to f alse. By
construction of the Ct-tree, a border vertex of a Ct-tree node
is also the border vertex of its descendants. Thus, there may
be multiple nodes for which v j is a border vertex, in which
case, Gs′t′

is chosen to be the highest node in the Ct-tree for
which v j is a border vertex.

Algorithm 2 PrunePath(ptl j,dc,Dsh,Gst )

1: if dist(ptl j)≥ Dsh[ j] then
2: return true
3: end if
4: isBorderGs′t′

← checkBorder(Gst ,v j)

5: if isBorder == true and dist(ptl j) + dmin
B (v j,Gs′t′

) ≥ dc
then

6: if dist(ptl j)+dmin
p (v j,Gs′t′

)≥ maxD then
7: return true
8: end if
9: end if

10: return false

If v j is a border vertex then the algorithm checks whether
pti j can be pruned using Pruning Rules 3 or 4 (Lines 5–8).
One of the pruning conditions that uses the minimum border
distance is the same in both Pruning Rules 3 and 4, which
is checked in Line 5. The left part of the other condition,
adding the minimum POI distance with dist(pti j) is also same
in both pruning rules. The right part is dc for Pruning Rule 3
and maxD for Pruning Rule 4, where maxD represents the
maximum of the current shortest distances of vl to the POIs
in Gs′t′

. The shortest distance of every vertex (including POIs)
is initialized to dc (Line 1 of Algorithm 1). Thus, maxD is
initially dc and later may become less than dc when the paths
to POIs in Gs′t′

are dequeued from the priority queue (Lines
5–7 of Algorithm 1). Since the minimum border distance and
minimum POI distance of a Ct-tree node are at least equal to
those of its descendants, we do not need to check these pruning
conditions for v j for the descendants of Gs′t′

separately.
In full version [41] of this paper, we provide complexity

analysis of the algorithm and discuss how to update Ct-tree
when there are updates to the road network and POIs.
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VI. SAFETY SCORE BASED NETWORK VORONOI
DIAGRAM

Network Voronoi diagram (NVD) [44], [45] has been
shown as an effective method for faster processing of kNN
queries [18], [46]. Traditional NVD is computed using dis-
tances and does not apply for processing kSNN queries. In
Section VI-A, we present safety score based network Voronoi
diagram (SNVD) and its properties. Our efficient technique to
compute the kSNNs is composed of two phases: preprocessing
(Section VI-B) and query processing (Section VI-C).

(a) Original Graph (b) SNVD

Fig. 7: An example of SNVD

A. SNVD Properties

An SNVD divides the road network graph into subgraphs
such that each subgraph contains a single POI which is the
unconstrained safest neighbor for every point of the subgraph.
We differentiate the unconstrained safest neighbor from the
safest nearby neighbor (SNN) by considering unconstrained
safest path. For an unconstrained safest path, we assume a
sufficiently large value for dc such that every simple path in
the graph has length less than dc, e.g., dc is just bigger than
the sum of the lengths of all edges in the graph. The subgraphs
are called Voronoi cells and a point that defines the boundary
between two adjacent Voronoi cells is a called a border vertex.
The Voronoi cell of POI pi is denoted as VCi and the border
vertex set for VCi is denoted as Bi.

Figure 7 shows an example of an SNVD. Black vertices
represent the generator POIs p1, p2 and p3, white vertices
represent the road intersections, and grey vertices represent
the border vertices.

Unlike traditional distance based NVD [46], [47], a border
vertex b between two adjacent Voronoi cells VCi and VC j
may not have equal PSS for its unconstrained safest paths to
pi and p j. Figure 8 shows examples of such scenarios. When
the PSSs for b’s unconstrained safest paths to pi and p j differ,
the unconstrained safest neighbor of b is one of the POIs pi
and p j for which b has the higher PSS.

The following lemmas shows the properties of SNVD that
we exploit in our solution.

Lemma 3. Let p1, p2, . . . , pk−1 represent the k− 1 uncon-
strained safest POIs of vl , respectively. The unconstrained
safest path from vl to its kth unconstrained safest POI pk can
only go through {VC1,VC2, . . . ,VCk−1,VCk}.

Proof. Assume that the unconstrained safest path from vl to
pk goes through a vertex v of VCt , where t /∈ {1,2, . . . ,k}.
By construction of SNVD, POI pt is safer than POI pk for v.

Since the unconstrained safest path from vl to pk goes through
v, POI pt is also safer than POI pk for vl . Thus t ∈{1,2, . . . ,k},
which contradicts our assumption.

Lemma 4. Let v1,v2, . . . ,vk−1 represent the k − 1 uncon-
strained safest POIs of vl , respectively. The kth unconstrained
safest POI pk of vl lies in one of the adjacent Voronoi cells
of VC1,VC2, . . . ,VCk−1.

Proof. If the kth unconstrained safest POI vk of vl
does not lie in one of the adjacent Voronoi cells of
VC1,VC2, . . . ,VCk−1, then the unconstrained safest path be-
tween vl and vk must go through a vertex which does not
lie in VC1,VC2, . . . ,VCk−1,VCk, which contradicts Lemma 3.
Thus, the kth unconstrained safest POI of vl lies in one of the
adjacent Voronoi cells of VC1,VC2, . . . ,VCk−1.

B. Prepossessing

The following information will be precomputed and stored
for the faster processing of kSNN queries:
• Voronoi cells, where each Voronoi cell VCi has the POI

pi as the generator, a set Bi of border vertices, and a list
Li of pointers to adjacent Voronoi Cells

• For every vertex v ∈ Bi, the unconstrained safest path
between v and pi and its PSS

• For every pair of border vertices vi ∈ Bi and v j ∈ Bi,
the unconstrained safest path between vi and v j that lies
completely inside VCi and its PSS

• For every vx ∈ Bi the minimum border distance
and the minimum POI distance, where the minimum
border distance of a border vertex is defined as
argminvy∈Bi\vx dist(ptsh

xy) and the minimum POI distance is
dist(ptsh

xi ) and the shortest paths for the minimum border
distance and the minimum POI distance are computed
by considering only the subgraph represented by Voronoi
cell VCi

• For every vertex v in the road network graph G, a
pointer to the Voronoi cell whose POI generator is the
unconstrained safest neighbour of v

To construct the SNVD, we first apply parallel Dijkstra al-
gorithm [48] to find the unconstrained safest POI for each road
network vertex. Starting from a vertex, the Dijkstra algorithm
keeps tracks of the unconstrained safest path for every visited
vertex. When the safest path’s distance is unconstrained, no
path gets pruned and thus unlike INE, it is sufficient to only
expand the unconstrained safest path from a vertex.

Then we compute the border vertices as follows: (i) if the
unconstrained safest paths from v to two POIs pi and p j have
the same PSS, then v is considered as a border vertex of
Voronoi cells VCi and VC j, and (ii) if two end vertices of
an edge have different unconstrained safest POIs, say pi and
p j, and the Edge Safety Score (ESS) associated with the edge
is s, then the point b of the edge that provides equal distance
associated with s in both of the b’s safest paths to pi and p j
is identified as a border vertex of Voronoi cells VCi and VC j.
Figure 8 shows three example scenarios. In case 1, the end
vertices of the edge with ESS 1 has different unconstrained
safest POIs and the distance of the edge is 4. There is no other
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Fig. 8: Example border vertices of an SNVD, weights associated with each edge are wss
i j , wd

i j, respectively

edge in pti j with ESS 1. Thus b is placed at the midpoint of
the edge so that both of the b’s safest paths to pi and p j have
equal distance for ESS 1. For case 2, b is not the midpoint
of the edge as there is another edge in pti j with ESS 1. Note
that in case 3, b is placed at the mid of the edge with ESS 2,
which is not the minimum ESS in pti j. This is because both
of the b’s safest paths to pi and p j already have an edge with
the same distance for ESS 1.

The resulted distances of the splitted edges with a border
vertex b may become less than 1. This occurs when the length
of the edge that is splitted by b is 1 and no other edge in
pti j has the same ESS as the splitted edge. Our PSS measure
requires the edge weight to be greater than or equal to 1.
Thus, after the construction of the whole SNVD, if the distance
of any splitted edge becomes less than 1, we scale up the
distances of all edges in the road network to ensure that the
distances of the splitted edges are greater than or equal to 1
and recompute the SNVD.

To compute the unconstrained safest path between vi and v j
that lies completely inside VCi for every pair of border vertices
vi ∈ Bi and v j ∈ Bi, we apply Dijkstra algorithm within VCi.

C. Query Processing

According to the construction of SNVD, a POI pi is the
unconstrained safest neighbor for every location v in a Voronoi
cell VCi. However, an unconstrained safest neighbor is not
necessarily the SNN for a location v if the distance of the
unconstrained safest path from v to pi is greater than or
equal to the distance constraint dc specified in the query.
Hence, unlike the existing NVD based nearest neighbor search
algorithms [18], we cannot simply return the POI of the
Voronoi cell that includes the query location as the SNN.
Since dc is a query specific parameter, it is also not possible to
consider dc while computing the Voronoi cells of the SNVD.
In Sections VI-C1, we discuss our SNVD based solution to
find kSNNs and in Section VI-C2, we elaborate our efficient
(unconstrained and constrained) safest path computation tech-
niques by exploiting SNVD properties.

1) kSNN search: Our SNN search technique using SNVD
incrementally finds the unconstrained safest neighbors and
adds each of these neighbors in a candidate set. The incre-
mental search stops when the candidate set contains at least k
POIs that have unconstrained safest paths with length less than
dc. Let k+m be the size of the candidate set where m ≥ 0.
The k SNNs are guaranteed to be among the candidate set.
Then, we compute the PSSs of the safest paths from vl to the
remaining m POIs in the candidate set to determine the query
answer. The POIs whose safest paths from vl among k +m
candidates have k largest PSSs and have distances less than
dc are identified as kSNNs.

Algorithm 3 shows the steps to find kSNNs in the road
network using the SNVD. The algorithm’s inputs are vl , k
and dc. The algorithm initializes it and j to 1, finds the
first unconstrained safest neighbor using the stored pointer
(Function FindUSN) and adds it to the candidate POI set
CP (Lines 1–2). Then the algorithm iterates in a loop until
CP includes kSNNs. In every iteration, the algorithm checks
whether the distance of the unconstrained safest path from vl
to the jth unconstrained safest neighbor is less than dc. If yes,
Function IsConstrained returns true and it is incremented by 1
(Lines 4–6)). Irrespective of the returned value (true or false)
of Function IsConstrained, the algorithm increments j by 1
and finds the next ( jth) unconstrained safest neighbor using
Function NextUCN (Lines 7–8). When it becomes greater than
k, then the loop ends and it is guaranteed that CP includes
kSNNs. Finally, FindA identifies kSNNs from CP in A (Line
10), and Algorithm 3 returns A as the kSNN query answer
(Line 11).

Algorithm 3 SNVD-kSNN(vl ,k,dc)

1: it, j← 1
2: CP← FindUSN(vl)
3: while it ≤ k do
4: if IsConstrained(CP, j,dc) then
5: it← it +1
6: end if
7: j← j+1
8: CP←CP∪NextUSN(vl , j)
9: end while

10: A← FindA(CP)
11: return A

Incremental computation of unconstrained safest neigh-
bors. Function FindUSN locates Voronoi cell VCq that in-
cludes vl and returns the corresponding POI pq as the first
unconstrained safest neighbor. VCq becomes the first candidate
Voronoi cell of the set CVC. To compute the second uncon-
strained safest neighbor, Function NextUSN adds the adjacent
Voronoi cells of VCq to CVC as they include the second
unconstrained safest POI of vl (Lemma 4). The POI of one
of these candidate Voronoi cells in CVC whose unconstrained
safest path to vl has the second best PSS is identified as
the second unconstrained safest neighbor of vl (please see
Section VI-C2 for unconstrained safest path computation tech-
nique). Similarly, to find the jth unconstrained safest neighbor
of vl , NextUSN adds the adjacent Voronoi cells of the ( j−1)th

unconstrained safest neighbor’s Voronoi cell in CVC, if they
are not already included in CVC. The jth unconstrained safest
neighbor of vl is the POI that has the jth best PSS for the
unconstrained safest path from vl among the POIs of the
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candidate Voronoi cells.

2) Safest Path Computation: Our PSS measure and the
property shown in Lemma 3 allow us to adapt the shortest
path computation technique proposed in [18] for finding the
unconstrained safest paths from vl to a POI of the candidate
Voronoi cell in CVC. After FindUSN locates Voronoi cell
VCq that includes vl , it computes the unconstrained safest
paths from vl to pq and the border vertices of VCq using
Dijkstra algorithm. Then similar to [18], we use precomputed
unconstrained safest paths between border vertices for this
purpose and reduce the processing overhead significantly. In
experiments, we show that the number of border vertices of an
SNVD is small with respect to the total number of vertices and
thus, the overhead for storing the unconstrained safest paths
for the border vertices is negligible.

On the other hand, we cannot use precomputed uncon-
strained safest paths and adapt [18] to compute the safest
path between vl and a POI while identifying kSNNs from
candidate k+m POIs. We improve the INE based safest path
search technique discussed in Section IV by incorporating
novel pruning techniques for search space refinement using
SNVD properties and apply it to compute the safest paths that
have distances less than dc. Pruning Rules 5 and 6 use the
minimum border distances and minimum POI distances of the
border vertices, respectively, in the pruning condition:

Pruning Rule 5. Let the safest path between vl and POI
py needs to be determined. A path ptl j can be pruned if
dist(ptl j) + dmin

B (v j,VCx) ≥ dc, where v j is a border vertex
of Voronoi cell VCx, dmin

B (v j,VCx) represents the minimum
border distance of v j and dc represent the distance constraint.

Pruning Rule 6. Let the safest path between vl and POI
px needs to be determined. A path ptl j can be pruned if
dist(ptl j)+dmin

p (v j,VCx)≥ dc, where v j is a border vertex of
Voronoi cell VCx, dmin

p (v j,VCx) represents the minimum POI
distance of v j and dc represent the distance constraint.

We have sk, the upper bound of the PSS of the safest
path between vl and its kth SNN, once k unconstrained safest
neighbors of vl that have distances less than dc from vl are
identified. Later if a safest path from vl to a new POI is
identified that has the distance less than dc and PSS higher than
current sk, then sk is updated to the new PSS. By exploiting
Property 2 of PSS and sk, we develop a new pruning technique
as follows:

Pruning Rule 7. A path ptl j can be pruned if pss(ptl j)< sk,
where sk represent the upper bound of the PSS of the safest
path between vl and its kth SNN.

Thus, in addition to Pruning Rules 1 and 2, our SNVD based
solution checks whether a path can be pruned using Pruning
Rules 5, 6 and 7 to find the safest paths that have distances
less than dc.

In full version [41] of this paper, we provide complexity
analysis of the algorithm and discuss how to update SNVD
when there are updates to the road network and POIs.

(a) CH (b) PHL (c) SF

(d) CH (e) PHL (f) SF

(g) CH (h) PHL (i) SF

(j) CH (k) PHL (l) SF

Fig. 9: Effect of varying dc, k, Rss and ρ for the three datasets

VII. EXPERIMENTS

A. Setup

There is no existing work to compute kSNNs and thus,
in this paper, we compare our algorithms Ct-tree-kSNN and
SNVD-kSNN against two baselines: R-tree-kSNN and INE-
kSNN. R-tree-kSNN, indexes POIs using an R-tree and uses
techniques in [49] to find the candidate kSNN POIs whose
Euclidean distances from the query location are less than dc.
Then, R-tree-kSNN applies the most recent technique [9] to
find the safest valid paths to these candidate POIs to determine
the kSNNs. INE-kSNN is the extension of INE for evaluating
kSNN queries (Section IV).

Datasets: We used real-world datasets of three cities that
differ in terms of the road network size and crime statistics.
Specifically, we extract the road network of Chicago, Philadel-
phia and San Francisco, using OpenStreetMap (Table III). All
edge weights representing distances were scaled up and integer
values were taken.

Edge wss
i j Computation. We used crime datasets of

Chicago [50], Philadelphia [51] and San Francisco [52] to
assign weights (wss

i j ) representing realistic Edge Safety Score
(ESS)s of the respective road network graphs. We generated
the ESSs of edges separately for three different ESS ranges
[1,smax] denoted as Rss (see Table IV). The crime datasets in-
clude locations (latitude and longitude) of the crime incidents
like robbery, motor vehicle theft, sexual offense, weapons
violation, burglary and criminal damage to vehicle. For each
edge, we count the number of crime incidents within 1km and
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set it as the crime count of the edge. These crime counts are
normalized to integers between the range [1,smax] representing
crime scores. The crime score of each edge is converted to a
safety score as smax+1−crimescore, e.g., if smax is 10 and the
crime score for an edge is 10, the safety score of the edge is
1. The PSS of a path is computed based on the ESSs included
in the path (Definition 2) and can be a float value.

TABLE III: Road Network Dataset

Dataset # Vertices # Edges
Chicago (CH) 125,344 200,110

Philadelphia (PHL) 80,558 120, 581
San Francisco (SF) 40,528 72,819

Parameters: The distance constraint dc is a user specified
parameter. Although our solution works for any dc, in our
experiments, we set dc to a value that is large enough to find
the kSNNs for each query. Let dk be the distance between
query location vl and its kth closest POI. We set dc = δ ×dk

where δ > 1 is a parameter in the experiments varied from 1.25
to 2. Existing studies involving other parameterized queries
also adapt similar settings to ensure query results are not
empty [53] and contain at least k POIs [54]. We evaluate the
algorithms by varying δ , ESS range (Rss), k, and the density
of POIs (ρ), where density is the total number of POIs divided
by the total number of vertices in the graph. The range and
default values of the parameters are shown in Table IV. The
justification of the parameter values can be found in [41].

TABLE IV: Experiment Parameters

Parameters Range Default
k 1, 5, 10, 25, 50 10
δ 1.25, 1.5, 1.75, 2 2

Rss 1-5, 1-10, 1-15 1-10
ρ 0.001%, 0.01%, 0.1%, 1%, 10% 1%

Measures: For each experiment, we randomly select 100
vertices as query locations and report the average processing
time to evaluate a kSNN query. We measure the preprocessing
and storage cost for Ct-tree and SNVD in terms of the
construction time, index size and the percentage of border
vertices. All algorithms are implemented in C++ and the
experiments are run on a 64-bit Windows 7 machine with an
Intel Core i3-2350M, 2.30GHz processor and 4GB RAM.

B. Results

Effect of δ : Figures 9(a)–9(c) show that our algorithms
can find kSNNs in real time. The query processing time slowly
increases with the increase of δ (and consequently dc) because
more paths need to be explored for larger δ . For Ct-tree-kSNN
and SNVD-kSNN, we observe on average 11.6 times and 13.8
times faster processing time than that of R-tree-kSNN and on
average 9.7 times and 12.7 times faster processing time than
that of INE-kSNN, respectively.

Effect of k: Figures 9(d)–9(f) show that the time increases
with the increase of k, which is expected. The increase rate is
low for Ct-tree-kSNN and SNVD-kSNN and shows almost a
linear growth for varying k from 1 to 50, whereas in case of
INE-kSNN and R-tree-kSNN, the time increases significantly.

TABLE V: Effectiveness of Pruning Rules (PRules) on CH
dataset. The Basic algorithm in each approach only applies
Pruning Rule 1. Each % value x shown in a parenthesis
indicates that the value in this cell is x% of the value of the
Basic of the same approach.

Setting Time (ms) |Va|
# of Valid

Paths
Basic 2225 2708 18223INE PRule 2 1787 (80.31%) 2545 (93.9%) 14534 (79.75%)
Basic 682 1601 4531

PRule 2 485 (71.11%) 1056 (65.95%) 3287 (72.65%)
PRule 3 460 (67.44%) 942 (58.83%) 2721 (60.05%)
PRule 4 471 (69.06%) 955 (59.65%) 2913 (64.31 % )

Ct-tree

All 377 (55.27%) 875 (54.65 % ) 2621 (57.84%)
Basic 442 391 942

PRule 2 349 (78.95%) 341 (87.21%) 699 (74.20 % )
PRules 5, 6 364 (82.35%) 356 (91.04%) 719 (76.32 % )

PRule 7 379 (85.74%) 371 (94.88%) 772 (81.95%)
SNVD

All 229 (51.81%) 162 (58.56%) 623 (66.13%)

Effect of Rss: Figures 9(g)–9(i) show that the time increases
for R-tree-kSNN, INE-kSNN and Ct-tree-kSNN for larger Rss,
whereas for SNVD-kSNN the required time is the least among
four algorithms and remains almost constant for all Rsss. A
larger Rss increases the height of the Ct-tree which in turn
increases the number of subgraphs accessed by Ct-tree-kSNN.
On the other hand, the number of subgraphs represented by
SNVD cells does not vary with different Rsss.

Effect of ρ: Figures 9(j)–9(l) show that the time decreases
for INE-kSNN, Ct-kSNN and SNVD-kSNN with the increase
of the POI density, ρ , whereas the time sharply increases
for R-tree-kSNN. For INE-kSNN, a larger ρ increases the
possibility of finding the required POIs with less amount of
incremental network expansion. For Ct-tree-kSNN, a larger
ρ increases the number of POIs in a Ct-tree node which
in turn decreases the need of search in a larger subgraph.
For SNVD-kSNN, the decrease curve is less steeper, since in
SNVD-kSNN, the search time mainly depends on the number
of SNVD cells that need to be explored rather than the total
number of SNVD cells in the SNVD. On the other hand, for R-
tree-kSNN, the number of candidates for kSNNs increases with
the increase in ρ , which also causes increase in the number
of independent safest path computations.

Effect of Datasets and Performance Scalability: In our
experiments, we used three datasets that vary in the number
of road network vertices, edges, POIs and crime distributions.
Irrespective of the datasets, both Ct-tree-kSNN and SNVD-
kSNN outperform R-tree-kSNN and INE-kSNN with a large
margin. In addition, the query processing time linearly in-
creases with increase of the dataset size in terms of the number
of road network vertices, edges and POIs. Thus, our algorithms
are scalable and applicable for all settings. In default parameter
setting, the average time for Ct-kSNN is 371 ms, 123 ms and
66 ms for CH, PHL, and SF datasets, respectively. The average
time for SNVD-kSNN is 223 ms, 96 ms and 41 ms for for
CH, PHL, and SF datasets, respectively.

Pruning Effectiveness: We investigate the effectiveness of
our pruning rules for the search space refinement. Table V
summarizes the experiment results in the default setting of
the parameters in terms of the query processing time, number
of network vertices accessed ∥Va∥ and number of valid paths
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TABLE VI: For k = 10, comparison of kNN and kSNN queries
on CH dataset showing: average # of common POIs in kNNs
and kSNNs; probability that 1SNN is one of the POIs in kNNs;
average PSS of the k paths returned by kNN queries vs kSNN
queries, and their ratios (i.e., kNN:kSNN); and average length
of the k paths returned by kNN vs kSNN queries, and their
ratios.

Measure δ=1.25 δ =1.5 δ = 1.75 δ = 2
#common POIs 4.71 4.12 2.23 1.34
probability of
1SNN in kNN 0.19 0.15 0.13 0.12

PSS kNN 0.00029 0.00029 0.00029 0.00029
kSNN 0.00091 0.0018 0.0024 0.0048
ratio 1:3.1 1:6.2 1:8.3 1:16.5

Length kNN 1311 1311 1311 1311
kSNN 1507 1717 1941 2084
ratio 1:1.15 1:1.3 1:1.5 1:1.6

explored in road networks for different approaches when dif-
ferent pruning rules are applied. The Basic Algorithm includes
only Pruning Rule 1(i.e., considers only valid paths). The
performance of our algorithms are the best when all pruning
rules are applied, which in turn means that each of the pruning
rule contributes in improving the efficiency of our algorithms.
Table V also explains why SNVD is faster than Ct-tree and
Ct-tree is faster than INE based approach.

Query Effectiveness: We compare kSNNs with traditional k
nearest neighbors (kNNs) on CH dataset using default settings
but varying δ . The results on the other datasets can be found
in [41]. We generate 100 query locations and run a kNN query
and a kSNN query for each of these query locations, and
report average results. We compare kSNNs with traditional k
nearest neighbors (kNNs) using default settings but varying δ .
Specifically, for each data set, we generate 100 query locations
and run a kNN query and a kSNN query for each of these
query locations, and report average results. Table VI shows
that kSNNs are significantly different from kNNs (see number
of common POIs). Furthermore, the traditional kNN queries
are not likely to include a POI that is also the first SNN.
Finally, although the path lengths to kSNNs are longer, these
paths are much safer. Specifically, the paths to kSNNs are up
to 1.6 times longer on average but they are up to 16 times
safer than the paths to kNNs. The number of common POIs
among kSNNs and kNNs decreases and the safety (PSS) of
the paths from vl to kSNNs increases with the increase of δ .
Thus, in real-world scenarios where safety may be important
for users, an application may show some kSNNs as well as
some kNNs to give users more options to choose from.

Preprocessing and Index Size: We also evaluated the
construction time and index size of Ct-tree and SNVD. The
detailed results can be found in [41]. We observe that the
construction times for Ct-tree and SNVD are comparable
whereas SNVD is up to 1.6 times bigger in size than Ct-tree.
Specifically, for default settings (i.e., Rss = 1− 10, ρ = 1%),
the construction time for Ct-tree for the three datasets ranges
from 54− 123 minutes as compared to 50− 122 minutes
for SNVD. On the other hand, the index size of Ct-tree for

the three datasets ranges from 63− 114 MB compared to
101−168 MB for SNVD.

VIII. CONCLUSIONS

In this paper, we introduced k Safest Nearby neighbor
(kSNN) queries in road networks and formulated the measure
of path safety score. We proposed novel indexing structures,
Ct-tree and a safety score based Voronoi diagram (SNVD), to
efficiently evaluate kSNN queries. We adapt the INE based
technique and the R-tree based technique to develop two
baselines to find kSNNs. Our extensive experimental study on
three real-world datasets shows that Ct-tree and SNVD based
approaches are up to an order of magnitude faster than the
baselines. Comparing Ct-tree and SNVD on default settings,
both approaches have comparable construction time whereas
SNVD index is around 1.6 times bigger than Ct-tree but is
1.2-1.7 times faster in terms of query processing cost. Thus,
if the storage is not an issue, one should go for the SNVD
based approach to get faster query processing performance.

ACKNOWLEDGMENTS

Tanzima Hashem is supported by basic research grant
of Bangladesh University of Engineering and Technology.
Muhammad Aamir Cheema is supported by the Australian
Research Council DP230100081 and FT180100140.

REFERENCES

[1] C. H. Stubbert, S. F. Pires, and R. T. Guerette, “Crime science and
crime epidemics in developing countries: a reflection on kidnapping for
ransom in colombia, south america,” Crime Science, 2015.

[2] M. Natarajan, “Crime in developing countries: the contribution of crime
science,” Crime Science, vol. 5, pp. 1–5, 2016.

[3] V. Spicer, J. Song, P. Brantingham, A. Park, and M. A. Andresen, “Street
profile analysis: A new method for mapping crime on major roadways,”
Applied Geography, vol. 69, pp. 65–74, 2016.

[4] BBC. (23 October 2018) Street harassment ’relentless’ for women
and girls. [Online]. Available: https://www.bbc.com/news/uk-politics-
45942447

[5] P. International. (20 April 2020) 1 in 5 girls have
experienced street harassment during lockdown. [Online]. Avail-
able: https://plan-uk.org/media-centre/1-in-5-girls-have-experienced-
street-harassment-during-lockdown

[6] S. Aljubayrin, J. Qi, C. S. Jensen, R. Zhang, Z. He, and Y. Li, “Finding
lowest-cost paths in settings with safe and preferred zones,” The VLDB
Journal, vol. 26, no. 3, pp. 373–397, 2017.

[7] S. Aljubayrin, J. Qi, C. S. Jensen, R. Zhang, Z. He, and Z. Wen, “The
safest path via safe zones,” in ICDE, 2015, pp. 531–542.

[8] J. Kim, M. Cha, and T. Sandholm, “Socroutes: safe routes based on
tweet sentiments,” in WWW, 2014, pp. 179–182.

[9] F. T. Islam, T. Hashem, and R. Shahriyar, “A privacy-enhanced and per-
sonalized safe route planner with crowdsourced data and computation,”
in ICDE, 2021, pp. 229–240.

[10] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in SIGMOD, 1984, p. 47–57.

[11] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-
tree: An efficient and robust access method for points and rectangles,”
SIGMOD Rec., vol. 19, no. 2, p. 322–331, May 1990.

[12] K. C. K. Lee, W. Lee, B. Zheng, and Y. Tian, “ROAD: A new spatial
object search framework for road networks,” IEEE TKDE, 2012.

[13] R. Zhong, G. Li, K. Tan, L. Zhou, and Z. Gong, “G-tree: An efficient
and scalable index for spatial search on road networks,” IEEE TKDE,
vol. 27, no. 8, pp. 2175–2189, 2015.

[14] Z. Li, L. Chen, and Y. Wang, “G*-tree: An efficient spatial index on
road networks,” in ICDE, 2019, pp. 268–279.

[15] T. Dan, C. Luo, Y. Li, Z. Guan, and X. Meng, “LG-tree: An efficient
labeled index for shortest distance search on massive road networks,”
IEEE T-ITS, vol. 23, no. 12, pp. 23 721–23 735, 2022.



14
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