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Abstract—Given a scoring function that computes the score of a pair of objects, a top-k pairs query returns k pairs with the smallest
scores. In this paper, we present a unified framework for answering generic top-k pairs queries including k-closest pairs queries, k-
furthest pairs queries and their variants. Note that k-closest pairs query is a special case of top-k pairs queries where the scoring
function is the distance between the two objects in a pair. We are the first to present a unified framework to efficiently answer a broad
class of top-k queries including the queries mentioned above. We present efficient algorithms and provide a detailed theoretical analysis
that demonstrates that the expected performance of our proposed algorithms is optimal for two dimensional data sets. Furthermore,
our framework does not require pre-built indexes, uses limited main memory and is easy to implement. We also extend our techniques
to support top-k pairs queries on multi-valued (or uncertain) objects. We also demonstrate that our framework can handle exclusive
top-k pairs queries. Our extensive experimental study demonstrates effectiveness and efficiency of our proposed techniques.
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1 INTRODUCTION
Given a scoring function s(ou, ov) that computes the score of
a pair of objects (ou, ov), a top-k pairs query returns k pairs
with the smallest scores among all possible pairs of objects. k
closest pairs queries, k furthest pairs queries and their variants
are some well studied examples of top-k pairs queries that rank
the pairs on distance functions.

The problems of k closest (or most similar) pairs queries,
k furthest pairs queries and their variants have received sig-
nificant research attention from the computational geometry
community (see [1] for a nice survey) and the database
community [2], [3], [4], [5]. However, all of the existing
techniques focus on a specific problem and there does not exist
a unified approach that can answer different variants of top-
k pairs queries (e.g., different Lp distances, generic scoring
functions etc.). We are the first to provide a unified framework
that supports a broad class of top-k pairs queries including the
queries mentioned above.

An interesting variation of top-k pairs queries for which
no efficient solution exists is to find the pairs of the objects
that are similar to each other in one subspace and dissimilar
in another subspace. Such top-k pairs queries can be used
for pair-trading [6]. Pair-trading is a market neutral strategy
according to which two correlated stocks that follow same
day-to-day price movement (e.g., Coca-Cola and Pepsi) may
be used to earn profit when the correlation between them
weakens, i.e., one stock goes up and the other goes down. The
profit can be earned by buying the under-performing stock and
selling it when the divergence between the two stocks returns
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to normal. A top-k pairs query can be issued to obtain the
pairs of stocks that are correlated (e.g., they belong to the
same business sector and have similar fundamentals such as
market caps, dividends etc.) and display different trends.

Consider another example of a sales company. The manager
might want to retrieve two salespersons who make similar sale
(i.e., the total cost of their sold items is similar) but receive
very different salaries. Suppose that the relevant information
is stored in a table named worker. The manager may
issue the following query to retrieve the top-k pairs of such
salespersons.

Q1: select a.id, b.id from worker a, worker b
where a.id <> b.id
order by
|a.sale - b.sale| - |a.salary - b.salary|
limit k

Here |x−y| denotes the absolute difference of x and y. Note
that the order by clause prefers the pair of salespersons
with larger difference in their salaries and smaller difference
in their sales.

While the example shows a simple ranking criterion, in
the real applications, the users may define more sophisti-
cated scoring functions. Our framework supports a generic
ranking function that is based on local and global functions.
Specifically, the function that computes the score of a pair
of objects on a single attribute is called a local scoring
function and the function that computes the final score of
a pair (by combining the local scores) is called the global
scoring function. Our framework supports any global scoring
function that is monotonic and any local scoring function that
is loose monotonic. Although we define monotonic and loose
monotonic scoring functions in Section 2.1, we remark here
that the loose monotonic functions are more general than the
monotonic functions. In the above example, the local scoring
functions are |a.sale − b.sale| and −|a.salary − b.salary|.
The global scoring function is the sum of the local scores.

Our proposed framework also supports more generalized
top-k pairs queries such as chromatic and non-chromatic top-
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k pairs queries. Suppose that each object in the database
has been assigned a color. A chromatic top-k pairs queries
considers only the pairs of objects that meet certain color
requirement. In contrast, a non-chromatic top-k pairs query
does not consider the colors of the objects (i.e., all pairs
are considered). The chromatic queries are further classified
into homochromatic and heterochromatic top-k pairs queries.
A homochromatic top-k pairs query returns the top-k pairs
among the pairs that contain two objects having the same
color. On the other hand, a heterochromatic top-k pairs query
considers only the pairs that contain two objects having
different colors.

In the example of salespersons, assume that the user wants
to consider only the pairs of salespersons who work under
different managers. The user may issue a heterochromatic
top-k pairs query by adding the condition a.manager ̸=
b.manager in the where clause of the query Q1. We
remark that a bichromatic query is a special case of hete-
rochromatic queries where the number of colors is restricted
to two. Although there exist techniques to solve bichromatic k
closest pairs queries [2], [3], their extension to heterochromatic
queries is either non-trivial or inefficient.

Below, we summarize our contributions in this paper.
1. We are the first to propose a unified framework for a broad
class of top-k pairs queries including k-closest pairs queries,
k-furthest pairs queries and their chromatic variants. Some
features of our proposed framework include low memory
consumption, no requirement of pre-built data structure and
easy implementation.
2. We conduct extensive theoretical analysis to evaluate the
performance of the proposed algorithms and show that the
expected performance is optimal when the number of attributes
involved is two or less.
3. Our extensive experimental study demonstrates a significant
improvement over the existing best known solution for k clos-
est pairs query. For generic top-k pairs queries, a comparison
with a naı̈ve algorithm demonstrates up to three orders of
magnitude improvement.

This paper is an extended version of [7] and we make the
following additional contributions in this version.
4. We formally define top-k pairs queries on multi-valued
(or uncertain) objects and present efficient techniques based
on non-trivial lower bounds. Extensive experimental study
demonstrates the efficiency of our proposed techniques and
effectiveness of the lower bounds.
5. We extend our techniques to efficiently answer exclusive
top-k pairs queries (defined in Section 4.2) and provide
experimental results to demonstrate the effectiveness of our
proposed optimizations.

The rest of the paper is organized as follows. We formally
define the problem and give an overview of the most relevant
work in Section 2. Section 3 describes our framework and
presents techniques to answer top-k pairs queries on regular
(single-valued) objects. In Section 4, we present our techniques
to answer top-k pairs queries on multi-valued objects and ex-
clusive top-k pairs queries. Our extensive experimental study
is given in Section 5 followed by conclusion in Section 6.

2 PRELIMINARIES

2.1 Problem Definition
First, we define monotonic and loose monotonic scoring func-
tions. A function f is called a monotonic function if it satisfies
f(x1, · · · , xn) ≤ f(y1, · · · , yn) whenever xi ≤ yi for every
1 ≤ i ≤ n.

Now, we define the loose monotonic functions. Let s(., .)
be a scoring function that takes two values as parameter and
returns a score. A function s(., .) is a loose monotonic function
if for every value xi both of the following are true: i) for a fixed
xi and every xj > xi, s(xi, xj) either monotonically increases
or monotonically decreases as xj increases, and ii) for a fixed
xi and every xk < xi, s(xi, xk) either monotonically increases
or monotonically decreases as xk decreases.

The absolute difference of two values (e.g., |xi − xj |)
is a loose monotonic function. This is because for a fixed
xi and any value xj larger than it, the absolute difference
monotonically increases when xj increases. Similarly, for
any fixed xi and any value xk smaller than it, the absolute
difference monotonically increases as xk decreases. Please
note that the loose monotonic functions are more general
because these require the scores to be monotonic only with
respect to every individual xi and the function may not
be monotonic in general. All monotonic functions are loose
monotonic functions but the converse may not be true for some
functions. For example, the absolute difference of two values is
a loose monotonic function but it is not a monotonic function.
The average of two values is a loose monotonic function as
well as a monotonic function.

For ease of presentation, we classify loose monotonic func-
tions into different categories. A loose monotonic function is
called right increasing (resp. decreasing) function if for every
xj > xi for the fixed xi, s(xi, xj) monotonically increases
(resp. decreases) as xj increases. For example, the absolute
difference is a right increasing function. A loose monotonic
function is called left increasing (resp. decreasing) function if
for every xk < xi for the fixed xi, s(xi, xk) monotonically
increases (resp. decreases) as k decreases. For instance, the
absolute difference is a left increasing function whereas the
average of two values is a left decreasing function.

Let d be the number of attributes specified by the user for a
top-k pairs query. For each attribute i, the user specifies a loose
monotonic scoring function si(., .) that computes the score of
a pair on the attribute i. Such scoring function is called a local
scoring function and the score si(a, b) of a pair (a, b) is called
its local score. The users are allowed to define a different
local scoring function for each attribute. The user defines a
monotonic global scoring function f that takes d local scores
as parameter and returns the final score SCORE(a, b) of a
pair (a, b) as f(s1(a, b), · · · , sd(a, b)).
Top-k pairs query. Given a set of objects O, a non-chromatic
top-k pair query returns a set of pairs P ⊆ O×O that contains
k pairs such that for any pair (a, b) ∈ P and any pair (a′, b′) /∈
P , SCORE(a, b) ≤ SCORE(a′, b′).
Chromatic queries. Consider that each object in a set of
objects O is assigned a color. A chromatic query is similar
to a non-chromatic query except for an additional constraint;
that is, only the pairs that meet the color requirement are
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considered. A homochromatic top-k pairs query considers only
the pairs that have two objects having the same color. In
contrast, a heterochromatic top-k pair query considers only
the pairs that contain objects with different colors.

2.2 Related Work
The problem of k closest pairs queries has received significant
research attention by the computational geometry community
(see [1] for a nice survey). Hjaltason et al. [2] are the first
to study the problem of closest pairs in the context of spatial
databases. While the proposed solution has a nice feature that
it returns the pairs incrementally, its priority queue size may be
prohibitively large. Shin et al. [8] also propose algorithms for
incremental distance join and demonstrate that their algorithms
outperform the techniques in [2].

Corral et al. [3] propose several algorithms for k-closest
pairs queries. Similar to the previous algorithm [2], they also
index the datasets by R-trees. They use distance bounds to
prune the intermediate node pairs. They observe that the
performance of their algorithm largely depends on the overlap
factor of the two datasets. It is important to note that although
the amount of the memory used by their algorithm is small
as compared to the memory usage of the algorithm proposed
in [2], there is no guarantee on the amount of the main memory
usage (e.g., the size of the heap can be O(V ) where V is the
total number of possible pairs).

Shen et al. [9] study the top-k pairs queries over sliding
windows. We remark that their focus is on efficiently updating
the results of top-k queries for the data streams. In contrast,
we focus on efficiently computing the initial results of the
top-k queries. Zhang et al. [10] study the similarity joins on
multi-valued objects. Similar to this work, they use ϕ-quantile
score to define the queries. In contrast to this work, they only
consider Euclidean distance whereas this work allows a broad
class of scoring functions.

Top-k queries retrieve the top-k objects based on a user
defined scoring function. The problem has been extensively
studied [11], [12], [13], [14], [15], [16]. Ilyas et al. [17] give
a comprehensive survey of top-k query processing techniques.
We briefly describe some of the top-k processing algorithms
that combine multiple ranked sources and return the top-k
objects. More specifically, each source Si contains the objects
ranked on their scores according to a preference i. Let xi be the
score of an object in a source Si. The final score of the object is
computed by using a monotonic function f(x1, · · · , xd) where
d is the number of sources. The algorithms report k objects
with the smallest final scores.

The top-k algorithms assume that the objects in a source
can be accessed in two ways. A sorted access on a source
reads the next object in the sorted order. A random access
returns the score of any specified object in a given source.
In a random access, the specified object is searched in the
source and its score is returned. It is important to note that
not all the sources can support both types of accesses (e.g., a
search engine provides the sorted access but does not support
a random access).

Now, we briefly introduce threshold algorithm (TA) which
is a well known algorithm and is used in our techniques.

Threshold Algorithm (TA). TA (independently proposed
in [18], [15], [19]) assumes that the sources support both sorted
and random accesses. TA works as follows.
1. Do sorted accesses in parallel on each of the d sources.
For each object o returned from a source Si, do the random
accesses on every other source to obtain its scores in the other
sources. Compute the final score of o using the monotonic
function f . Maintain a heap that contains k objects with the
smallest scores. Let Wk be the largest of the scores of the
objects maintained in the heap.
2. Let xi be the score of the last object returned from the
source Si through a sorted access. After every sorted access,
update the threshold value as t = f(x1, · · · , xd). Terminate
the algorithm when t ≥Wk. Report the objects in the heap as
top-k objects.

3 TECHNIQUES

3.1 Our Proposed Framework
Let d be the number of local scoring functions involved in the
top-k pairs query. We map our problem to the well studied
problem of top-k query that combines the scores from different
ranked sources (see the previous section). More specifically,
we maintain d sources (please see Fig. 1) such that each source
Si incrementally returns the pair with the best score according
to the ith local scoring function. The existing top-k algorithms
(e.g., TA) view these sources as the ranked inputs and can be
used to retrieve the top-k pairs by combining these ranked
inputs.

Fig. 1. Our framework
Most of the existing work on the top-k queries can be

applied to solve the problem of the top-k pairs queries.
However, these algorithms assume that the sources can report
the elements in a sorted order. Hence, it is important to develop
efficient techniques to create and maintain the sources such
that each source can return the pairs of objects in a sorted
order. A straightforward solution to create a source Si is
to sort all possible pairs according to their local scores on
the ith attribute. However, this solution requires storing and
sorting O(V ) pairs where O(V ) is the number of valid pairs
(this number is O(N2) for non-chromatic queries if N is the
number of objects). Clearly, the time and the space complexity
of this straightforward approach may be prohibitive.

In Section 3.2, we present an internal memory optimal
algorithm to create and maintain such sources. The internal
memory algorithm uses O(N) space and is optimal in time
complexity. An external memory I/O optimal algorithm can
also be developed using the ideas similar to internal memory
algorithm. However, due to the space limitations, we omit the
details and refer the readers to the conference version of this
paper [7].
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Our proposed techniques have various advantages such
as known main memory requirement, no need for pre-built
indexes, optimality for two-dimensional data sets, and ease of
implementation and extension (see [7] for details).

3.2 Maintaining The Sources
First, we define some terminologies. Suppose that all the
objects are sorted in ascending order of their attribute values
such that o1 ≤ o2 ≤ · · · ≤ o

N
. For any pair (ou, ov), we refer

to the first object ou in the pair as host and the second object
ov as guest. A pair (ou, ov) means that the object ou is a host
to a guest ov .

For the ease of presentation, we assume that the local
scoring function s(., .) satisfies1 s(ou, ov) = s(ov, ou). To
avoid reporting a pair (ou, ov) again as (ov, ou), we will
consider only the pairs (ou, ov) such that u < v. This implies
that every object ou can host only the objects that are on
the right side of ou in the sorted list o1 ≤ o2 ≤ · · · ≤ oN .
For chromatic queries, only the objects that meet the color
requirement and are on the right side of ou will be considered
its guests. Let ov and ov′ be two guests of ou. We say that
ov is a better guest of ou than ov′ if s(ou, ov) < s(ou, ov′).
An object ov is called the best guest of a host ou if for every
other guest ov′ of the host ou, s(ou, ov) ≤ s(ou, ov′). We say
that an object ou has hosted the object ov, if the pair (ou, ov)
has been reported to the main algorithm.
Algorithm 1 Creating and maintaining a source

1:InitializeSource()
1: sort the objects in ascending order of their values
2: for each object ou do
3: ov ← the best guest of ou
4: insert the pair (ou, ov) into heap with score s(ou, ov)

getNextBestPair()
1: get the top pair (ou, ov) from the heap
2: if next best guest of ou exists then
3: ov′ ← the next best guest of ou
4: insert the pair (ou, ov′) in heap with score s(ou, ov′)
5: return (ou, ov)

Algorithm 1 presents the details of creating and maintaining
a source. Initially, all the objects are sorted in ascending order
of their attribute values (ties are broken arbitrarily). Then, for
each object ou, a pair (ou, ov) is created such that ov is the
best guest of ou. All these pairs are inserted in a heap.

Whenever a request for the next best pair arrives, the source
retrieves the top pair (ou, ov) from the heap and reports it to
the main algorithm. The next best pair (ou, ov′) is inserted
in the heap where ov′ is the next best guest of ou. At any
stage during the execution, the next best guest of ou is the
best guest among the guests of ou which has not been hosted
by ou earlier.

EXAMPLE 1 : Consider the example of Fig. 2 which shows
six objects o1 to o6 sorted on their attribute values. The values
inside the circles are the attribute values. Assume that the

1. The scoring functions for which s(ou, ov) ̸= s(ov , ou) can be easily
handled by joining two sources such that the first source considers only the
pairs (ou, ov) for every u < v and the second source considers only the pairs
(ov, ou) for every u < v.

Fig. 2. Illustration of Algorithm 1
scoring function is the absolute difference. A pair (ou, ov)
is shown by a directed edge from the host ou to the guest
ov . Initially, for each object, a pair with its best guest is
created and inserted in the heap. Note that the best guest of an
object is its right adjacent object when the function is absolute
difference. Fig. 2(a) shows the pairs (see the edges) that are
inserted in the heap. The number on an edge corresponds to
the score of the pair. The best pair is (o3, o4) and its score
is 1. When this is retrieved, the algorithm determines that the
next best guest of o3 is o5 and inserts (o3, o5) in the heap
with score 6 (see Fig. 2(b)). Now the top pair of the heap is
(o2, o3) which is returned when the system requests the next
best pair from this source. The next best guest of o2 is o4 so
a new pair (o2, o4) is inserted in the heap with score 3 (see
Fig. 2(c)).

The intuitive justification of the correctness of the algorithm
is that at any stage, we keep the best guests (among those that
it has not hosted yet) for each object in the heap. This implies
that for every pair that does not exist in the heap either there
exists a better pair in the heap or the pair has already been
reported to the main algorithm. For a formal proof, see Lemma
1 in [7].

In order to achieve the optimal complexity, the algorithm
must find the best guests for all N objects in O(N). Moreover,
the algorithm must find the next best guest of any object ou in
O(1). Before we show the details of how to do these operations
with required complexity, we introduce the concept of left
adjacent and right adjacent objects.

A left (resp. right) adjacent object of ou is the first object
ox on the left (resp. right) side of ou in the sorted list o1 ≤
o2 ≤ · · · ≤ oN such that the pair (ou, ox) satisfies the color
requirement. Fig. 3 shows an example where the objects o1
to o6 are shown. Some objects are shaded (o2, o4 and o5) and
others are white (o1, o3 and o6). Fig. 3(a), (b) and (c) show the
adjacent objects for non-chromatic queries, heterochromatic
queries and homochromatic queries, respectively. The adjacent
objects are shown with broken lines. An arrow from an object
ox to oy indicates that oy is the adjacent object of ox in that
direction. Later in this section, we show that the left and the
right adjacent objects of all the objects can be determined in
O(N).

3.2.1 Finding the best guest for each object ou
Below, we describe the procedure for the right increasing
and the right decreasing functions (see Section 2.1 for the
definitions).
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Fig. 3. Adjacent objects (a) Non-chromatic (b) Hete-
rochromatic (c) Homochromatic
For right increasing functions. Recall that if the scor-
ing function is right increasing then the score s(ou, ov) ≤
s(ou, ov′) if v < v′ (i.e., ov′ is on the right side of ov in the
sorted list). Hence, for any object ou, its best guest is its right
adjacent object. For example, in Fig. 3(c), o3 is the best guest
of o1 if the scoring function is right increasing function (e.g.,
absolute difference).
For right decreasing functions. For any object ou, the best
guest in this case is the right most object ov such that the
pair (ou, ov) meets the color requirement. More specifically,
for non-chromatic queries, the best guest of any object ou is
o
N

. For example, in Fig. 3(a) the best guest of every object is
o6 if the scoring function is a right decreasing function (e.g.,
s(ou, ov) = −(ou + ov)).

For the heterochromatic queries, if o
N

has a color different
than ou then o

N
is the best guest of ou. Otherwise the left

adjacent object of oN is the best guest of ou because it is
guaranteed to have a color different than ou. In the example
of Fig. 3(b), o6 is the best guest of o2, o4 and o5 whereas o5
is the best guest of o1 and o3.

For the homochromatic queries, we scan the sorted list o1 ≤
· · · ≤ oN once and maintain the right most object of each
color. For each object ou, its best guest is the right most object
of the same color. In the example of Fig. 3(c), o6 is the best
guest for o1 and o3 whereas o5 is the best guest of o2 and o4.

3.2.2 Finding next best guest of any object ou
Let ov be the current best guest of the object ou. The next best
guest of ou can be determined in O(1). Below, we describe
how to find the next best guests for the right increasing
functions and the procedure is similar for the right decreasing
functions.

For the non-chromatic queries and the homochromatic
queries, the next best guest ov′ for an object ou is the right
adjacent object of ov . In the example of Fig. 3(c), let o3 be
the current guest of o1. The next best guest of o1 is o6 which
is the right adjacent object of o3.

For the heterochromatic queries, the next best guest of ou
is ov+1 if ov+1 has a color different than ou. Otherwise, the
right adjacent object of ov+1 is guaranteed to have a different
color and hence is the next best guest of ou. Consider the
example of Fig. 3(b) and assume that the current best guest of
the object o2 is o3. When (o2, o3) is reported, the algorithm
checks o4 to see if it is the next best guest of o2. Since o2 and
o4 have the same color, the next best guest of o2 is o6 which
is the right adjacent object of o4.

3.2.3 Finding the adjacent objects
Now we illustrate how to add pointers to the adjacent objects
in O(N). For the non-chromatic queries, the procedure is
trivial. So, we first discuss the procedure for determining the
right adjacent objects for the heterochromatic queries. The
procedure starts with setting the right adjacent object of oN to
NULL. Then, it starts scanning the sorted list of the objects
from right to left. For each object ou, if ou+1 has a different
color than ou then ou+1 is set as the right adjacent object of
ou. Otherwise, the right adjacent object of ou+1 is set as the
right adjacent object of ou.

Consider the example of Fig. 3(b). The right adjacent object
of o6 is set to NULL. The right adjacent object of o5 is o6
because they have different colors. The right adjacent object
of o4 is not o5 because they have same color. So, the right
adjacent object of o5 (which is o6) is set as the right adjacent
object of o4. The algorithm continues in this way. The left
adjacent objects can be set similarly by scanning the list from
left to right.

For the homochromatic queries, we assign the right adjacent
objects as follows. While we scan the list from right to left,
we maintain the last seen object of each color. For any object
ou, its right adjacent object is the last seen object of the same
color (NULL if no object has been seen of this color). The
left adjacent objects are set similarly by scanning the list from
left to right.

3.2.4 Complexity
The first pair is returned in O(N logN) (the objects are sorted
and O(N) pairs are inserted in the heap). We remark that
this meets the lower bound of returning the closest pair in
one dimension [20]. Since our general framework covers the
closest pairs, the lower bound of the algorithm is O(N logN)
hence our algorithm is optimal.

As illustrated earlier, the next best guest of any object ou can
be determined in O(1). For each host ou, the heap contains
at most one pair (ou, ov). Hence, the maximum size of the
heap is O(N) which implies that each heap operation takes
O(logN). In other words, a source incrementally returns the
next best pair in O(logN).

3.3 Query Processing Algorithm
3.3.1 Technique
We apply the threshold algorithm (TA) [18], [15], [19] to
combine the scores of a pair from different sources and return
the top-k pairs. Recall that TA assumes that the sources
support the random accesses (see Section 2.2). In other words,
when a pair is returned from a source Si, TA needs to obtain
its score on every other attribute. We assume that the objects
are stored in the main memory (this consumes O(dN) memory
space). When a pair (ou, ov) is returned from one of the
sources, we use the object table and retrieve the attribute
values of ou and ov and compute the score of (ou, ov) on
every other attribute. We use our external memory algorithm
(see [7]) when the available memory is less than O(dN).
Incrementally returning top-k pairs. Incremental algorithms
return the results one-by-one, i.e., the partial results are
incrementally reported to the users without waiting for all the



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

results to be computed. Next, we show that we can modify
TA such that it reports top-k pairs incrementally.

Recall that TA maintains Wk which corresponds to the
largest of the scores of the objects maintained in the heap (see
Section 2.2). The algorithm terminates when the threshold t
becomes at least equal to Wk. Let Wi be the i-th largest score
of the objects maintained in the heap. We modify TA such that
it starts by setting i = 1 and reports the best pair as soon as
t ≥ W1. The algorithm continues by iteratively incrementing
i by one and reporting the i-th best pair as soon as t ≥ Wi.
It can be easily shown that the complexity of this variation of
TA is the same as that of the original TA.

3.3.2 Complexity Analysis

The number of elements accessed by TA is always less than
or equal to the number of elements accessed by Fagin’s
Algorithm (FA) [18]. FA stops the sorted accesses when
exactly k elements are returned from all d sources. Let V be
the number of elements in each source. The expected number
of sorted accesses by FA is T = O(V (d−1)/dk1/d) under
the assumption that the score of an element in one source
is independent of its score in other sources [21].

As the cost of TA is always less than or equal to FA, the
number of pairs our algorithm is expected to access from each
source is O(T ) assuming that the score of a pair in one source
is independent of its score in the other sources. The total
number of accesses from all d sources is O(dT ). As shown
earlier, the cost of accessing a pair from a source is O(logN),
hence the total expected cost2 is given by Eq. (1).

O(dT Log N) = O(d V
d−1
d k

1
dLog N) (1)

For the non-chromatic queries, the total number of valid
pairs O(V ) is O(N2). Hence the expected cost of our
algorithm to answer a two dimensional closest pair query
is O(N logN) which is optimal in algebraic decision tree
model [20].

4 EXTENSIONS

4.1 Top-k Pairs Queries on Multi-Valued Objects

An object having multiple instances is called a multi-valued
object [22], [10]. Multi-valued objects exist in many real world
applications. For instance, a real estate development company
may evaluate different towns by modelling each town as a
multi-valued object such that each residential property in the
town is its instance that has several attributes such as its price,
household income, and number of people living in the property
etc. Similarly, the performance of a basketball player in a game
may be measured by his statistics (scores, assists, rebounds,
steals, blocks etc.) and may be treated as an instance of the
player; consequently, each player has a set of instances [22]
where each instance corresponds to his performance in a
particular game. In this section, we formally define top-k pairs

2. Note that the cost analysis includes the cost of creating the sources. The
cost of creating d sources is O(d(N logN)) which is dominated by Eq. (1).
Our experimental results also include the cost of creating the sources.

queries on multi-valued objects3 and propose efficient query
processing techniques.

4.1.1 Problem Definition
Similar to existing research on multi-valued objects [22], [10],
we define top-k pairs based on ϕ-quantile scores. Let U =
{u1, · · · , um} denote a multi-valued object with m instances
where each instance ui is a multi-dimensional object and
w(ui) denotes its weight s.t.

∑m
i=1 w(ui) = 1. Given two mul-

tivalued objects U = {u1, · · · , um} and V = {v1, · · · , vn},
the weight of a pair of instances p = (ui, vj) s.t. ui ∈ U
and vj ∈ V is w(p) = w(ui) × w(vj) and the score of the
pair is denoted as p.score which is computed using a given
scoring function (e.g., by applying the global scoring function
as stated in Section 2).
Aggregated weight of a pair of instances. Let L =
{p1, · · · , pm×n} be the list of all possible pairs of instances
of U and V sorted in ascending order of their scores, i.e.,
pi.score ≤ pj .score for i < j. The aggregated weight of pj
(denoted as pj .aggW ) is pj .aggW =

∑j
i=1 w(pi).

ϕ-quantile score. Given a value ϕ (0 < ϕ ≤ 1), the ϕ-
quantile score of the pair of multivalued objects (U, V ) is
the score of the first pair pj in L in the sorted order such
that

∑j
i=1 w(pi) > ϕ. In other words, ϕ-quantile score of

(U, V ) is the score of the pair pj such that pj .aggW > ϕ and
pj .aggW − w(pj) ≤ ϕ. Such a pair pj is called pivot pair of
(U, V ).

Note that 0.5-quantile score represents the median4 of
the scores of all possible pairs between the instances of U
and V . When the score of each pair of instances (u, v) is
computing using the global scoring function SCORE(u, v)
as described in Section 2, its ϕ-quantile score is denoted as
SCOREϕ(U, V ).

Fig. 4. Illustration of ϕ-quantile score

EXAMPLE 2 : Consider the example of Fig. 4(a) where two
multi-valued objects U = {u1, u2, u3} and V = {v1, v2} are
shown in a two-dimensional space (along with the weight of
each of their instances). Assume that the score of a pair of
instances (ui, vj) is the Manhattan distance between them (i.e.,
local scoring function is the absolute difference and the global
scoring function is the summation). Fig. 4(b) shows the list of

3. We remark that uncertain objects can also be modelled as multi-valued
objects where the weight of each instance corresponds to its occurrence
probability. Hence, our techniques can also be applied to answer top-k pairs
queries on uncertain objects.

4. http://wikipedia.org/wiki/Median#Medians of probability distributions
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TABLE 1
Notations

Notation Definition
U a multi-valued object
ui instance of a multi-valued object U
w(ui) weight of an instance
p a pair of instances (u, v)
w(p) or w(u, v) weight of a pair of instances (u, v)
p.score global score of a pair of instances
p.score[i] ith local score of a pair of instances
(U, V ) a pair of multi-valued objects
SCOREϕ(U, V ) ϕ-quantile global score of (U, V )

Sϕ[i](U, V ) ϕ-quantile local score of (U, V ) in ith

dimension
LB SCOREϕ(U, V ) a lower bound on SCOREϕ(U, V )
LB Sϕ[i](U, V ) a lower bound on Sϕ[i](U, V )

all possible pairs sorted on their scores along with the weights
of the pairs. The aggregated weight of the pair (u2, v2) is
0.54. The 0.5-quantile score of (U, V ) is SCORE0.5(U, V ) =
5 which is the score of the pair (u2, v2). Note that the pair
(u2, v2) is the pivot of (U, V ) when ϕ = 0.5. The 0.8-quantile
score is SCORE0.8(U, V ) = 7 and the pivot corresponds to
(u3, v1).

Top-k Pairs of Multi-Valued Objects. Given a set of multi-
valued objects O and a quantile value ϕ (0 < ϕ ≤ 1), a
top-k pairs query returns a set of pairs P ⊆ O × O that
contains k pairs such that for any pair (A,B) ∈ P and any
pair (A′, B′) /∈ P , SCOREϕ(A,B) ≤ SCOREϕ(A

′, B′).

4.1.2 Solution Overview
In this section, we provide an overview of our solution for the
top-k pairs query over multi-valued objects. For simplicity of
presentation, we focus on non-chromatic queries and assume
that the local scoring function is the absolute difference of
the values (i.e., |a− b|). However, by using similar ideas, our
techniques can be immediately applied to chromatic queries
and any other local scoring function that is loose monotonic.
We choose absolute difference as the local scoring function
because it is a loose monotonic function but not a monotonic
function and is more challenging to handle for this reason.
First, we define a few terms and notations.

The local score of a pair of instances p = (u, v) in ith

dimension is denoted as p.score[i], i.e. p.score[i] = |u[i] −
v[i]|. The ith local ϕ-quantile score of a pair of multi-valued
object (U, V ) is computed using p.score[i] of the pairs of
instances (i.e., L is sorted on p.score[i]) and is denoted as
Sϕ[i](U, V ).

Fig. 5. Local ϕ-quantile scores

EXAMPLE 3 : Continuing the example of Fig. 4(a), Fig. 5(a)
and Fig. 5(b) show the pairs of instances of U and V
in sorted order of their local scores in first and second
dimensions, respectively. Recall that the ith local score of
a pair of instances (u, v) is |u[i] − v[i]|. 0.8-quantile local
scores are S0.8[1](U, V ) = 5 (pivot pair is (u3, v1)) and
S0.8[2](U, V ) = 3 (pivot pair is (u2, v1)).

Similar to our framework presented in Section 3.1, we
divide the problem into d one-dimensional problems and then
apply a variation of TA algorithm to compute top-k pairs of
multi-valued objects. To achieve this, we present Lemma 1
that ensures that the global ϕ-quantile score SCOREϕ(U, V )
of a pair (U, V ) can be lower bounded by using its ϕ

d -
quantile local scores Sϕ/d[i](U, V ) in each of d dimensions.
We use LB SCOREϕ(U, V ) to denote a lower bound on
SCOREϕ(U, V ) and LB Sϕ/d[i](U, V ) to denote a lower
bound on Sϕ/d[i](U, V ). Table 1 shows the notations used
throughout this paper.

LEMMA 1 : Let LB = f(LB Sϕ
d
[1](U, V ), · · · ,LB Sϕ

d
[d]

(U, V )) where f is the global scoring function and
LB Sϕ

d
[i] is the ith ϕ

d -quantile local score of (U, V ). LB

is a lower-bound of SCOREϕ(U, V ).

Proof: We prove this by contradiction. Assume that
SCOREϕ(U, V ) < LB. This implies that the total weight
of the pairs of instances that have p.score smaller than LB
is larger than ϕ. Note that a pair p can have a global score
smaller than LB if and only if its local score p.score[i] in
at least one dimension i is smaller than LB Sϕ/d[i](U, V ).
By definition of Sϕ/d[i](U, V ), in a given dimension i, the
total weight of such pairs is at most ϕ/d. This implies that
the total weight of all such pairs in d dimensions is at most
ϕ. Hence, the total weight of the pairs of instances that have
p.score smaller than LB is at most ϕ which contradicts the
assumption. �

Remark. Replacing LB Sϕ/d[i] with LB Sϕ[i] in Lemma 1
does not give a correct lower bound. Consider the example of
Fig. 4 and 5 where SCORE0.8(U, V ) = 7, S0.8[1](U, V ) =
5 and S0.8[2](U, V ) = 3. LB = 5 + 3 = 8 which is not
less than SCORE0.8(U, V ). Note that our algorithm computes
LB Sϕ/d[i] on-the-fly and does not require pre-computation
(for details, see Section 4.1.3).
Framework. We create and maintain d sources such that 1)
each source Si incrementally returns the pair (U, V ) with the
smallest LB Sϕ

d
[i] (i.e., a sorted access) in O(logN) where

N is the total number of multi-valued objects; and 2) for a
given pair of multi-valued objects (U, V ), LB Sϕ/d[i](U, V )
can be computed in O(1) (i.e., a random access). The details
on how to construct the sources are presented in Section 4.1.3.
A variation of TA algorithm is used to compute the top-k pairs
of multi-valued objects as shown in Algorithm 2.

The algorithm accesses each source in a round-robin fash-
ion. A pair (U, V ) returned by a source Si is possibly among
the top-k pairs. Therefore, we need to compute its ϕ-quantile
global score SCOREϕ(U, V ) and update the list of top-k pairs
accordingly (lines 7 and 8). SCOREϕ(U, V ) is computed
using Algorithm 3 (to be described in Section 4.1.4).
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Algorithm 2 Top-k Algorithm
1: for each source Si in round-robin fashion do
2: access next pair (U, V ) ∈ Si with smallest LB Sϕ/d[i]
3: L[i] =LB Sϕ/d[i](U, V )
4: if p was never seen in any other source then
5: compute LB SCOREϕ(U, V ) /* using Lemma 1 */
6: if LB SCOREϕ(U, V ) < score of k-th best pair then
7: compute SCOREϕ(U, V ) /* Algorithm 3 */
8: update top-k pairs and k-th best pair if required
9: t = f(L[1], · · · , L[d])

10: if t ≥score of k-th best pair then
11: return top-k pairs

Since computing SCOREϕ(U, V ) is expensive, our algo-
rithm tries to avoid this computation. Specifically, if (U, V )
has already been seen in any other source then we do not
need to compute SCOREϕ(U, V ) because it has already been
considered (line 4). If the pair has not been seen in any other
source, we compute the lower bound LB SCOREϕ(U, V )
by doing random access on each other source and applying
Lemma 1. If LB SCOREϕ(U, V ) is larger than the score of
k-th best pair seen so far then (U, V ) cannot be among the
top-k pairs. Hence, the computation of SCOREϕ(U, V ) is not
required (line 6).

Similar to the standard TA, the algorithm stops when the
best possible score of any unseen pair (i.e., threshold) cannot
be smaller than the score of k-th best pair. Specifically, let
L[i] denote the lower bound local score of the last pair
accessed from the source Si (line 3). Clearly, the best pos-
sible ϕ-quantile global score of any unseen pair is at least
t = f(L[1], · · · , L[d]). Therefore, if t is not smaller than the
score of k-th best pair, the algorithm terminates by reporting
top-k pairs (lines 9 to 11).
Space complexity. Let N be the total number of objects and
m be the average number of instances in a multi-valued object.
In the next section, we show that creating and maintaining a
source requires sorting critical and terminal instances of all N
objects along with an interval tree and a heap that contain at
most N elements. Hence, O(N) storage is required to create
and maintain each source. The memory required for all d
sources is O(dN). A naı̈ve algorithm to compute the exact
score of a pair of objects at line 7 of Algorithm 2 requires
storing at most O(m2) pairs of instances. Note that these
O(m2) pairs can be deleted as soon as the exact score is
computed. Although (in practice) our algorithm to compute
the exact score (Algorithm 3) requires significantly smaller
space, in the worst case, its space complexity is also O(m2).
Furthermore, the main algorithm maintains k best pairs of
multi-valued objects. Hence, the worst case space complexity
of Algorithm 2 is O(dN +m2 + k).

4.1.3 Creating and Maintaining Sources
In this section, we describe how to create and maintain
a source Si. Similar to our solution in Section 3.2, we
need to sort the instances of all multi-valued objects to
create the sources. After this sorting operation that takes
O(Nm logm+N logN) (as explained later in this section),
every sorted access (i.e., retrieve next best pair according to
LB Sϕ/d[i]) takes O(logN) and every random access (i.e.,
compute LB Sϕ/d[i] of a given pair of objects) takes O(1)
where N is the total number of multi-valued objects and

m is the average number of instances in each multi-valued
object. First, we describe how to compute a lower bound
LB Sϕ/d[i](U, V ) for a given pair (U, V ).

LEMMA 2 : Let L denote the list of every pair (ui, vj) where
ui ∈ U and vj ∈ V . Let L′ ⊆ L be the set of pairs such
that the total weight of the pairs of instances in L′ is at least
(1−ϕ/d). Let p ∈ L′ be a pair with the smallest ith local score
in L′, i.e., there is no pair q ∈ L′ s.t. q.score[i] < p.score[i].
p.score[i] is a lower bound on Sϕ/d[i](U, V ).

Proof: Note that the total weight of the pairs in L−L′ is at
most ϕ/d. Hence, for every pair p′ for which p′.aggW > ϕ/d,
there must exist at least one pair p ∈ L′ for which p.score[i] <
p′.score[i] (otherwise p′.aggW ≤ ϕ/d). This implies that the
pivot pair cannot have a score smaller than p.score[i], i.e.,
Sϕ/d[i](U, V ) cannot be smaller than p.score[i]. �

EXAMPLE 4 : Consider the example of Fig. 5(a) and assume
that ϕ = ϕ/d = 0.8 (assuming d = 1 for simplicity in this
particular example). Note that S0.8[1](U, V ) = 5. A lower
bound on S0.8[1](U, V ) is obtained as follows. Without loss
of generality, assume that L′ contains (u1, v2) and (u3, v1).
The total weight of these pairs is 0.34 > (1 − ϕ/d). The
score of pair (u1, v2) is 4 which is smaller than the score of
(u3, v1). Therefore, LB S0.8[1](U, V ) = 4. We remark that
L′ can contain any combination of pairs as long as the total
weight is at least (1− ϕ/d).

Before we present Lemma 3 that provides an efficient way
to construct L′ and LB Sϕ/d[i](U, V ), we introduce a few
terms.
Terminal instance. For a multivalued object U , its terminal
instance in ith dimension is the instance with the largest value
in ith dimension and is denoted as ut.
Critical instance. Let {u1, · · · , um} denote the instances of a
multi-valued object U sorted in ascending order of their values
in ith dimension. The critical instance of U is an instance
uc such that

∑m
j=c w(uj) ≥ 1 − ϕ/d and

∑m
j=c+1 w(uj) <

1− ϕ/d.

EXAMPLE 5 : Fig. 6 shows two multi-valued objects U and
V with 4 and 5 instances, respectively. The weight of each
instance ui ∈ U is 0.25 and the weight of each vi ∈ V is 0.2.
The terminal instances of U and V are u4 and v5, respectively,
and are shown with circles having thick boundaries. Assuming
(1−ϕ/d) = 0.6, the critical instances of U and V are u2 and
v3, respectively (shown with shaded circle).

Fig. 6. Critical and terminal instances

LEMMA 3 : Let U and V be two multi-valued objects such
that ut ≤ vt where ut and vt are the terminal instances of
U and V , respectively. LB Sϕ/d[i](U, V ) = max(0, vc − ut)
where vc is the critical instance of v.
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Proof: When vc ≤ ut, the lower bound score is 0 which
does not require a proof because the score (i.e., the absolute
difference) cannot be less than 0. We prove the lemma for
the case when vc > ut. Let L′ be the set that contains every
pair (ui, vj) where ui is any instance in U (i.e., ui ∈ U )
and vj is either a critical instance of V or the instance on the
right side of critical instance (i.e., vj ∈ V for j ≥ c). In Fig. 6,
L′ contains every pair between {u1, · · · , u4} and {v3, v4, v5}.
Clearly, the total weight of the pairs in L′ is at least 1−ϕ/d.
This is because the sum of weights vj ∈ V for j ≥ c is at least
1− ϕ/d. According to Lemma 2, the pair with the minimum
score in L′ is a lower bound. It is easy to verify that the pair
(ut, vc) has the minimum score (i.e., |ut − vc|) in L′. �

Now, we are ready to present the details of how to create and
maintain the sources. The algorithm is the same as Algorithm 1
except the details of sorting the objects and computing best
guest and next best guest of an object U . Next, we briefly
describe these details using the example of Fig. 7 where five
multi-valued objects U , V , W , X and Y are shown. The
terminal instances of the objects are shown above the critical
instances of the objects (and are sorted according to their
values).
Sorting. The instances of each object are sorted in ascending
order of their values in ith dimension. The terminal and critical
instances of each object are also identified (this can be done
using a linear scan on the sorted instances of each object).
If the total number of objects is N and each object has m
instances, this step takes O(Nm logm). Then, the following
two sorted lists are created as shown in Fig. 7: 1) terminal list
contains the terminal instances of the objects sorted according
to their values; 2) critical list contains the critical instances
sorted on their values. The elements in critical instances are
connected according to the sorted order (see the arrows shown
in broken lines). The cost of creating these lists is O(N logN).
We also construct an interval tree [23] that indexes the interval
[uc, ut] for each multi-valued object U . The construction cost
of the interval tree is O(N logN).
Finding best guest of U . An object U serves as a host to an
object V only if ut ≤ vt. An object V is called eligible guest
of an object U if ut ≤ vt. In Fig. 7, U will be the host of the
objects V , X and Y . The best guest V of an object U is the
object with minimum LB Sϕ/d[i](U, V ) = max(0, vc − ut).
Hence, the best guest of U is an object V which has minimum
vc among all eligible guests of U . We consider the following
two cases.
1. vc ≤ ut. Note that every eligible guest V for which vc ≤
ut has LB Sϕ/d[i](U, V ) = 0. Since for every such object
V , vc ≤ ut and vt > ut, the interval [vc, vt] overlaps with
ut. To efficiently identify such objects, we issue a stabbing
query [23] on the interval tree that indexes [vc, vt] for each
multi-valued object V in our data set. A stabbing query returns
every interval that overlaps a given value.

In Fig. 7, the best guest of object W is the object U (and
LB Sϕ/d[i](W,U) = 0) which is returned by the stabbing
query (the interval [uc, ut] = [4, 8] overlaps wt = 6). The cost
of a stabbing query is O(x + logN) where x is the number
of results. If x > 1, we suspend the stabbing query as soon
as we find one object satisfying the query (i.e., the cost is

at most O(logN)). The stabbing query is resumed when the
next best guest of U is to be found (as we describe later in
this section). The suspension and resumption of the stabbing
query requires just a single pointer pointing to the relevant
node in the interval tree. Hence, the storage complexity does
not increase.

Fig. 7. Computing best guest and next best guest
2. vc > ut. If the stabbing query does not return any object
then it means there is no eligible guest with vc ≤ ut. In this
case, the best guest is identified as follows. Every object V
for which vc > ut is an eligible guest because vt > ut.
Hence, a binary search on critical list can be conducted to
find the object with minimum vc among the objects that have
vc > ut. This takes O(logN). In Fig. 7, the best guest of
object U is V because 1) the stabbing query does not return
any object; and 2) the object with minimum vc among the
objects for which vc > ut is the object V . Hence, (U, V ) with
LB Sϕ/d[i](U, V ) = 4 is inserted.

Fig. 7 shows the best guest object for each object by
drawing an arrow from the host object to the guest object
(the number on an arrow denotes LB Sϕ/d[i]). These four
pairs are inserted in the heap when the source is initialized
(see line 4 of Algorithm 1).
Finding next best guest of U . Let V be the current best
guest of U . The next best guest of U can be determined as
follows. If V was obtained using a stabbing query (case 1
above), the stabbing query is resumed to obtain another object
V ′ satisfying the query. If such an object is found it is selected
as the next best guest. If the stabbing query does not return
any object, a binary search on critical list is conducted (as in
case 2 above) to find the next best guest of U . In the case
when V was obtained using a binary search, then an object
V ′ is the next guest where V ′ is the object that has critical
instance v′c adjacent to vc in the sorted list. Clearly, the cost
of this operation is at most O(logN).

In Fig. 7, assume that the current pair (W,U) was retrieved
and we want to find the next best guest of W . The stabbing
query does not return any other object. Hence, a binary search
is conducted as in case 2 and the object V is determined as
the next best guest with LB Sϕ/d[i](W,V ) = |vc − wt| = 6.
If the current pair (U, V ) is retrieved, the next best guest of
U is X because xc is adjacent to vc in the critical list and
LB Sϕ/d[i](U,X) = |xc − ut| = 7.
Remark. Note that the cost of sorted access does not depend
on the number of instances m of the multi-valued objects. At
each sorted access, the top pair from the heap is retrieved and
the next best pair is determined in O(logN) and inserted in
the heap. The size of the heap is O(N). Hence, the cost of a
sorted access is O(logN).

4.1.4 Computing SCOREϕ(U, V )

In this section, we describe how to compute the score
SCOREϕ(U, V ) of a pair of objects (U, V ) requested at line 7



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

of Algorithm 2. The algorithm applies a variation of TA on d
sources that maintain the pairs of instances according to their
local scores. Note that these sources are not the sources that we
described in Section 4.1.3. The sources in Section 4.1.3 allow
sorted and random accesses on pairs of multi-valued objects
whereas Algorithm 3 requires sorted and random accesses on
pairs of instances of a given (U, V ). These sources are created
using the techniques we presented in Section 3.2.
Algorithm 3 Compute SCOREϕ(U, V )

Input: (U, V ) and the value of ϕ
Output: SCOREϕ(U, V )

1: initialize an empty list L
2: insert a dummy pair p in L with p.aggW = 0, w(p)=0 and

p.score =∞ and call it pivot
3: for each source Si in round-robin fashion do
4: retrieve a pair p from Si

5: s[i] = p.score[i]
6: if p was never seen in any other source then
7: Do random access on all sources to compute p.score
8: if p.score ≤ pivot.score then
9: pivot.aggW = pivot.aggW + w(p)

10: insert p in L in sorted order
11: while pivot.aggW − w(pivot) > ϕ do
12: pivot.aggW = pivot.aggW − w(pivot)
13: pivot← the pair on the left of pivot in sorted L
14: t = f(s[1], · · · , s[d])
15: if t ≥ pivot.score or t ≥ score of k-th best pair then
16: return pivot.score

The algorithm initializes an empty list L that will maintain
the accessed pairs in ascending order of their global scores
(i.e., p.score). The algorithm will maintain a pivot that always
points to a pair p in L for which pivot.aggW > ϕ and
pivot.aggW − w(pivot) ≤ ϕ. If at any stage, pivot does not
satisfy this condition, we say that pivot has become invalid in
which case we update pivot to point to a pair that satisfies the
condition. Note that if all pairs are considered, pivot.score is
SCOREϕ(U, V ).

Initially, a dummy pair p is inserted with p.aggW = 0,
p.score = ∞ and w(p) = 0. This dummy pair is selected
as pivot (line 2). The algorithm proceeds with doing sorted
accesses on each source Si in a round robin fashion. For each
accessed pair p from a source Si, if p was never accessed be-
fore, its score p.score is computed by doing random accesses
on each other source (line 7). If p.score > pivot.score then p
is ignored. Otherwise, p.score ≤ pivot.score which indicates
that the weight of p contributes to pivot.aggW in which case
pivot.aggW is incremented by w(p) (line 9). The pair p is
inserted in L in sorted order (in case of tie between p and
pivot, p is inserted before pivot) (line 10). Since pivot.aggW
has changed, we need to check whether pivot is valid or
invalid. If the pivot has become invalid we compute a new
pivot by sequentially traversing the list L from pivot towards
the leftmost pair in L until we find a pair p that satisfies the
pivot condition. This pair is set as pivot and the algorithm
continues (lines 11 to 13).

At the end of each round, we compute a threshold t as in TA
algorithm that serves as a lower bound score for any unseen
pair. At the end of a round, if t > pivot.score, it indicates
that none of the unseen pair can contribute to pivot.aggW .
Hence, the algorithm terminates after reporting pivot.score
which corresponds to SCOREϕ(U, V ).

Note that exact computation of SCOREϕ(U, V ) is not
required if (U, V ) is guaranteed not to be among the top-
k pairs of multi-valued objects. Therefore, the algorithm can
safely terminate if pivot.score is not smaller than the score
of k-th best pair of multi-valued objects seen so far (lines 14
to 16).
Remark. The cost of Algorithm 3 degrades as ϕ increases
because the cost depends on the number of pairs that have
p.score <SCOREϕ(U, V ) and SCOREϕ(U, V ) increases
with ϕ. We improve the performance of Algorithm 3 for larger
ϕ as follows. Note that the ϕ-quantile score can be converted to
an identical (1 − ϕ)-quantile score which is computed using
the list L sorted in descending order of p.score (instead of
ascending order). Hence, when ϕ > 0.5, we compute (1−ϕ)-
quantile score by applying ideas similar to Algorithm 3 and
maintaining the list L in descending order of p.score.

4.2 Exclusive Top-k Pairs Queries
Consider a set S containing top-k pairs. We say that an object
ou satisfies the exclusiveness constraint if ou appears at most
once in the set of pairs S, i.e., there exists at most one pair
related to ou in S.

An exclusive top-k pairs (ETP) query retrieves k pairs
with the smallest scores such that every object ou satisfies
the exclusiveness constraint. In such queries, if the best pair
returned by the query is (ou, ov) then the algorithm continues
retrieving the remaining top-(k − 1) pairs by ignoring the
objects ou and ov and the pairs involving these two objects.
The traditional top-k pairs queries studied earlier in this paper
are called inclusive top-k pairs queries throughout this section.

An ETP query has many interesting applications. For exam-
ple, an exclusive k closest pairs query can be issued to solve
car-parking assignment problem [24] where each parking slot
is to be reserved for at most one car (the car that is closest to
it). Consider another example of a recruitment agent who has
a list of applicants and a list of jobs. On a given day, he may
want to arrange k interviews (one interview corresponds to
one job-applicant pair). He may issue an exclusive top-k pairs
query to retrieve k job-applicant pairs such that the scores
(suitability) of the reported job-applicant pairs are better than
the remaining pairs. Due to time constraints, it may not be
possible for an applicant to appear in more than one interviews
on a given day. Hence, the agent may issue the query such that
every applicant satisfies the exclusiveness constraint.

In the above example, the agent may have no problem
arranging more than one interviews for a single job in a single
day. Hence, he may not require that every job also satisfies the
exclusiveness constraint. Although, for the sake of simplicity,
we focus to present the techniques for the case where every
object is required to satisfy the exclusiveness constraint, we re-
mark that our techniques can be easily extended to answer the
queries where only a certain type of objects (e.g., applicants)
are required to satisfy the exclusiveness constraints.

4.2.1 Technique
As described in Section 3.3.1, TA can be modified to return
top-k pairs incrementally. We adopt this version of TA to solve
ETP. As soon as ith best pair (ou, ov) is returned by TA, we
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conduct the following three operations: 1) delete every pair
that violates exclusiveness constraint, i.e., delete the pairs that
involve ou or ov; 2) adjust the left and right adjacent objects
such that no object has ou and ov as its left or right adjacent
object; and 3) for each deleted pair (ox, ov), insert (ox, ow)
in the heap where ow is the next best guest of ox. This step
guarantees that the heap contains, for each host ox, a pair
formed with its best guest among the guests that it has not
hosted earlier.

A straightforward approach to implement the first operation
is to traverse through the heap to delete every pair related
to ou or ov. The second and third operations are similar to
the techniques presented in Section 3.2. Next, we present
optimizations that significantly improve the performance as
demonstrated by our experimental study.
Optimizations. Consider the example of Fig. 8(a). Recall from
the description of Example 1 that all the pairs connected by
the arrows are the pairs that have been inserted in the heap.
More specifically, the pairs (o1, o2), (o2, o5), (o3, o5), (o4, o5)
and (o5, o6) are inserted in the heap with scores 6, 8, 6, 5 and
10, respectively. Now assume that a pair containing o5 has
been reported as ith best pair by TA. The algorithm needs to
delete the pairs (o2, o5), (o3, o5), (o4, o5) and (o5, o6) from the
heap. Note that each deletion from the heap takes O(logN)
where N is the number of pairs in the heap. Next, we present
a strategy that guarantees that each object has at most two
pairs related to it in the heap.

Fig. 8. Invitation List of o5
Recall that Algorithm 1 ensures that each object ov can

have at most one pair in the heap such that ov is the host
object. However, there may be more than one pairs in the
heap for which ov is the guest object. For example, there are
three pairs (o2, o5), (o3, o5), (o4, o5) for which o5 is the guest
object (see the incoming edges of o5 in Fig. 8(a)). We modify
Algorithm 1 such that each object ov has at most one pair in
the heap for which ov is the guest object. In other words, even
if there are more than one incoming edges of ov, only at most
one incoming edge is inserted in the heap (the one with the
smallest score).

In the example of Fig. 8(b), the pair (o4, o5) is inserted in
the heap. The other incoming edges of o5 (shown in broken
lines) are not inserted in the heap. Instead, they are inserted in
a list called the invitation list of o5 as shown in Fig. 8(b). The
invitation list of an object o5 records the objects that will host
o5 in future. For instance, when the pair (o4, o5) is reported to
the main algorithm, the invitation list is used to insert a new
pair (o3, o5) in the heap.

The invitation list of each object ov is always kept sorted
to ensure that the next pair that is to be inserted in the heap
can be determined efficiently. Note that the cost of keeping the
invitation list sorted is O(logm) per insertion where m < N
is the size of the invitation list. When an object ov is deleted,
for each object ox in its invitation list, the next best guest ow
is determined and the object ox is inserted in the invitation
list of ow.

4.2.2 Analysis
We provide the analysis for the simpler version of our algo-
rithm and the cost of the optimized algorithm is always at
most equal to the cost of the simpler version. Assume that
the algorithm terminates after accessing Z elements from each
source. Let M be the average number of valid pairs containing
any object ou. If a pair (ou, ov) is reported to the user, TA
ignores at most 2(M−1) unseen pairs (M−1 pairs containing
ou and M−1 pairs containing ov). If k pairs are reported, the
number of ignored pairs is at most 2k(M −1). Assuming that
the algorithm terminates after accessing Z pairs from each
source, the number of pairs that the algorithm ignores is at
most Z·2k(M−1)

V where V is the total number of valid pairs.
The algorithm stops when T = O(V (d−1)/d · k1/d) have been
seen from each source [21] excluding the pairs that have been
ignored.

Z − Z · 2k(M − 1)

V
= V (d−1)/d · k1/d (2)

The above equation can be solved to compute the value of
Z. Note that Z is at most equal to V (the total number of
valid pairs).

Z = min(V,
V

V − 2k(M − 1)
· V (d−1)/d · k1/d) (3)

For non-chromatic queries, V is at most N2 and M is equal
to N − 1. Hence, the expected number of elements accessed
from each source is O(min(N2, N

N−2k · N
2(d−1)/d · k1/d)).

Note that this number is O(N/(N−2k)) times the number of
pairs accessed for the score-based top-k pairs queries studied
in Section 3.3 and k << N in many real world applications.

5 EXPERIMENTS

We present the results for top-k pairs queries and exclusive
top-k pairs queries on single-valued objects in Section 5.1
and 5.3, respectively. Top-k pairs queries on multi-valued
objects are evaluated in Section 5.2.

5.1 Top-k pairs queries on single-valued objects
5.1.1 k-Closest Pairs Queries
We compare our algorithm with the best known k-closest pairs
algorithm called KCPQ [3]. The k closest pairs query joins two
data sets each containing 100, 000 objects and returns the k
closest pairs. k is set to 10 in all experiments unless mentioned
otherwise.

It has been noted that the overlap between the data sets
is one of the main factors [3] that affect the performance
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of the existing algorithms. Fig. 9(a) shows the effect of the
overlap on KCPQ and our algorithm. It can be observed that
our algorithm is 2 to 3 times faster when the overlap is at
least 40%. For the smaller overlaps, the performance of KCPQ
is better because most of the intermediate nodes of the R-
trees are quickly pruned. However, its performance is still not
significantly better than our algorithm. Note that our algorithm
is not sensitive to the data overlap.
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Fig. 9. Effect of overlapping and data distribution

Fig. 9(b) studies the effect of different data distributions.
More specifically, we generated the data sets following uni-
form, normal, correlated and anti-correlated distributions. For
each distribution, we generated two data sets with 50% overlap
between them. Fig. 9(b) demonstrates that our algorithm is
not affected by the data distribution and performs significantly
better than KCPQ.

We compared the two algorithms for several other param-
eters and data sets and observed that although our algorithm
supports more general scoring functions and does not require
pre-built indexes, it outperforms KCPQ for all settings except
when the overlap is too small.

5.1.2 Generic Scoring Functions
For the general scoring functions defined in Section 2, we
compare our algorithms with a naı̈ve algorithm. The naı̈ve
algorithm uses nested loop to join a data set with itself.
Real Data. The real data set consists of location data con-
sisting of 304, 895 location points from 87 different towns in
USA. Each location corresponds to the location of a residential
block which has four attributes: two location coordinates,
population and average rent of the properties in the block. The
blocks that are in the same town are assigned the same color.
We run several heterochromatic and homochromatic queries
each involving two to four preferences (i.e., attributes). More
details of the real data set and the scoring functions can be
found in Section VI-B of [7].

TABLE 2
Parameters for regular queries

Parameter Range
Number of objects (×1000) 100, 200, 300, 400, 500
Number of colors 50, 100, 150, 200, 250
Number of attributes 2, 3, 4, 5, 6
k 1, 10, 25, 50, 100

Synthetic Data. The default synthetic data set contains points
following a uniform distribution. Each object is randomly
assigned a color. The number of colors vary from 50 to 250.
The local scoring functions used by the algorithms are the
sum and the absolute difference. The global scoring function
is a weighted aggregate (we allow negative weights). For each
dimension, a local scoring function is randomly chosen (sum
or absolute difference) and is assigned a random weight. For

synthetic data set, we present the results for the homochro-
matic top-k queries. The results for the non-chromatic and the
heterochromatic queries follow similar trends. Table 2 shows
the default parameters in bold.
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Fig. 10. Effect of number of attributes

Fig. 10 shows the effect of number of attributes on the
queries issued on real and synthetic data sets. The naı̈ve
algorithm is up to three orders of magnitude slower than our
algorithm. The query time for our algorithm is low which
demonstrates the applicability of our approach in the real
world applications.
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Fig. 11(a) and Fig. 11(b) study the effect of increasing the
number of objects and the number of colors, respectively.
Our algorithm is more than an order of magnitude faster
than the naı̈ve algorithm and scales much better with the
data cardinality. Fig. 11(b) demonstrates that our algorithm
performs slightly better when the number of colors is large.
This is mainly because the number of valid pairs decreases
when the number of colors is large. However, the effect is not
very significant because the number of pairs that are accessed
from each source is not significantly affected.

5.2 Top-k pairs queries on multi-valued objects

We conduct extensive experimental study on synthetic data
sets. Table 3 shows the parameters where the default values
are shown in bold. Specifically, we create N points following
uniform distribution where each point corresponds to the cen-
ter of a multi-valued object. A number m is randomly chosen
between 1 and M where M demonstrates the maximum
number of instances an object may have. For an object, its m
instances are created following a uniform distribution such that
the value of the instance in a dimension does not deviate more
than v% of the whole space from the center of the object. The
weights assigned to the instance follow normal distribution.
We conducted experiments on various data distributions (for
weights and locations of object centers and instances) and
observed similar results. Note that our synthetic data sets have
up to 5 Million instances in total. The local scoring function
for each dimension is the absolute difference and the global
scoring function is the summation of the local scores.

To the best of our knowledge, there does not exist any
algorithm that answers top-k pairs queries involving generic
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TABLE 3
Parameters for queries on multi-valued objects

Parameter Range
Number of objects N 250, 1000, 2000, 3000, 5000
Maximum # of instances M 100, 300 500, 700, 1000
Maximum variation v (in %) 0.25, 0.5, 1, 2, 3
ϕ 0.5, 0.6 0.7, 0.8, 0.9
k 1, 10, 25, 50, 100

scoring functions on multi-valued objects. Therefore, we con-
sidered various naı̈ve algorithms as our competitors. However,
due to the complexity of the problem, the algorithms either
ran out of memory or did not return results even after a few
days. Therefore, we compare our algorithm with a different
version of our algorithm (denoted as NO LB) that uses our
framework but does not utilize the lower bound computation
(i.e., it ignores lines 5 and 6 of Algorithm 2). Note that
our comparison with this algorithm also demonstrates the
effectiveness of our proposed lower bound.
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Fig. 12. Effect of dimensionality and ϕ

Fig. 12(a) studies the effect of number of attributes (i.e.,
dimensionality). Our algorithm performs up to three orders
of magnitude faster than NO LB. Interestingly, the perfor-
mance of our algorithm improves when the dimensionality is
increased to 3 and it degrades as the number of attributes
are further increased. This is due to the following reason. As
the dimensionality increases, the probability that the multi-
valued objects overlap in all dimensions is reduced. This
results in improved lower bounds. On the other hand, larger
dimensionality reduces the effectiveness of TA algorithm.
NO LB did not return results (for the data sets containing 6
attributes) even after several days and was terminated. In the
rest of the experiments, the default number of attributes is 2.

In Fig. 12(b), we vary the value of ϕ from 0.5 to 0.9 and
study its affect on both algorithms. Note that a ϕ-quantile
query can be converted to an identical (1-ϕ)-quantile query
by changing the order in which the objects are sorted (as
explained in Section 4.1.4). Hence, the results for ϕ < 0.5
are not shown in experiments because the trend is a mirrored
reflection of the reported graph. Fig. 12(b) shows that the
performance improves for larger values of ϕ. This is because
1) the lower bound is more effective for larger values of ϕ;
and 2) Algorithm 3 performs worse when ϕ is closer to 0.5.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 250  1000  2000  3000  5000

T
im

e 
(in

 s
ec

on
ds

)

Number of multivalued objects

NO_LB
Our

(a) Number of objects

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 1  10  25  50  100

T
im

e 
(in

 s
ec

on
ds

)

k

NO_LB
Our

(b) Effect of k
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Fig. 13(a) and 13(b) study the effect of number of multi-
valued objects and the value of k, respectively. As expected,
the running time of each algorithm increases as the number
of objects or the value of k increases. However, our algorithm
scales reasonably well.
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Fig. 14(a) and Fig. 14(b) study the effect of number of
instances and the maximum variation v. As the number of
instances increases, the cost increases because the computation
of global score of a pair becomes more expensive. Fig. 14(b)
demonstrates that the performance degrades with the increase
in the variation. This is because when v increases, the multi-
valued objects have higher chance to overlap each other which
negatively affects the lower bounds.

5.3 Exclusive top-k pairs queries
To the best of our knowledge, we are the first to study exclu-
sive top-k pairs queries involving generic scoring functions.
We compared our algorithm with a naı̈ve algorithm that uses
a nested loop to generate all pairs and then computes top-k
pairs by applying exclusiveness constraint. We also compared
our algorithm with a basic version of our algorithm denoted as
Basic which does not utilizes the optimizations we presented
in Section 4.2. Our algorithm is denoted as Optimized.
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Fig. 15(a) and Fig. 15(b) demonstrate the effect of number
of objects and the value of k, respectively. As can be expected,
the naı̈ve algorithm was up to three orders of magnitude
slower than our algorithm. Therefore, to clearly illustrate the
effectiveness of our optimizations, we do not show the results
for naı̈ve algorithm. It can be observed that our optimizations
improve the performance by up to four times.

6 CONCLUSION

We present a unified approach to answer a broad class of top-k
pairs query including the k closest pairs queries, the k furthest
pairs queries and their variants. The expected performance of
the proposed algorithms is optimal when the queries involve
at most two attributes. Extensive experiments demonstrate the
efficiency of our proposed algorithms.

We also extend our framework to answer top-k pairs queries
on multi-valued (or uncertain) objects where the score of a
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pair of objects is based on the notion of ϕ-quantile score and
exclusive top-k pairs queries. In future, we intend to study
top-k pairs on uncertain data considering the possible worlds
semantics. Another interesting direction for future work is to
investigate the top-k groups queries where a group can contain
two or more objects. Top-k groups queries can be useful in
identifying groups of interesting objects, e.g., selecting a team
of players with best overall statistics over specified attributes.
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[19] U. Güntzer, W.-T. Balke, and W. Kießling, “Optimizing multi-feature
queries for image databases,” in VLDB, 2000.

[20] M. Ben-Or, “Lower bounds for algebraic computation trees (preliminary
report),” in STOC, 1983.

[21] R. Fagin, “Combining fuzzy information from multiple systems,” J.
Comput. Syst. Sci., vol. 58, no. 1, pp. 83–99, 1999.

[22] W. Zhang, X. Lin, M. A. Cheema, Y. Zhang, and W. Wang, “Quantile-
based knn over multi-valued objects,” in ICDE, 2010, pp. 16–27.

[23] K. Mehlhorn, “Computational geometry,” in Data Structures and Algo-
rithms 3. Springer Berlin Heidelberg, 1984, vol. 3, pp. 79–268.

[24] L. H. U, N. Mamoulis, and M. L. Yiu, “Continuous monitoring of
exclusive closest pairs,” in SSTD, 2007.

Muhammad Aamir Cheema is a Lecturer
at Clayton School of Information Technology,
Monash University, Australia. He obtained his
PhD from UNSW Australia in 2011. His re-
search areas are spatio-temporal databases,
mobile and pervasive computing and probabilis-
tic databases. He is the recipient of 2012 Mal-
colm Chaikin Prize for Research Excellence in
Engineering and 2013 Discovery Early Career
Researcher Award. His PhD thesis was nomi-
nated for SIGMOD Jim Gray Doctoral Disserta-

tion Award and ACM Doctoral Dissertation Competition. He has also
won two CiSRA best research paper awards (in 2009 and 2010), two
“one of the best papers of ICDE” (in 2010 and 2012), and two best paper
awards at WISE 2013 and ADC 2010, respectively. He served as local
organization co-chair for APWEB 2013 and workshop co-chair for MSTD
2013.

Xuemin Lin is a Professor in the School of Com-
puter Science and Engineering, the University
of New South Wales. He has been the head of
database research group at UNSW since 2002.
Before joining UNSW, Xuemin held various aca-
demic positions at the University of Queensland
and the University of Western Australia. Dr. Lin
got his PhD in Computer Science from the Uni-
versity of Queensland in 1992 and his BSc in
Applied Math from Fudan University in 1984.
During 1984-1988, he studied for PhD in Applied

Math at Fudan University. He currently is an associate editor of ACM
Transactions on Database Systems. His current research interests lie in
data streams, approximate query processing, spatial data analysis, and
graph visualization.

Haixun Wang is a staff research scientist at
Google Research. Before joining Google, he
was a senior researcher at Microsoft Research
Asia, where he managed the database team.
Haixun Wang has published more than 120
research papers in refereed international jour-
nals and conference proceedings. He won the
IEEE ICDM 2013 Ten Year highest impact pa-
per award, ER 2008 best paper award, etc.
He is associate editor of Distributed and Par-
allel Databases (DAPD), IEEE Transactions of

Knowledge and Data Engineering (TKDE), Knowledge and Information
System (KAIS), Journal of Computer Science and Technology (JCST).
He isPC co-Chair of CIKM 2012, ICMLA 2011, and WAIM 2011.

Jianmin Wang graduated from Peking Univer-
sity, China, in 1990, and got his M.E. and Ph.D.
in Computer Software from Tsinghua Univer-
sity, China, in 1992 and 1995, respectively. He
is now a professor at the School of Software,
Tsinghua University. His research interests in-
clude unstructured data management, workflow
& BPM technology, Enterprise Information Sys-
tem, benchmark for database system. He has
published over 100 DBLP indexed papers in
Journals, such as TKDE, TSC, DMKD, CII, DKE,

FGCS, and IJIIS, and in conferences, such as VLDBSIGMOD, SIGIR,
ICDE, AAAI, IJCAI, ICWS, and SAC. He has led to develop a product
data/lifecycle management system (PDM/PLM), which has been imple-
mented in hundreds enterprises in china. Nowadays, he leads to develop
an unstructured data management system, LaUDMS

Wenjie Zhang is currently a lecturer in School of
Computer Science and Engineering, the Univer-
sity of New South Wales, Australia. She received
PhD in computer science and engineering in
2010 from the University of New South Wales.
Since 2008, she has published more than 20
papers in SIGMOD, VLDB, ICDE, TODS, TKDE
and VLDBJ. She is the recipient of Best (Stu-
dent) Paper Award of National DataBase Con-
ference of China 2006, APWebWAIM 2009, Aus-
tralasian Database Conference 2010 and DAS-

FAA 2012, and also co-authored one of the best papers in ICDE2010,
ICDE 2012 and DASFAA 2012. In 2011, she received the Australian
Research Council Discovery Early Career Researcher Award.


