
1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

1

Reverse Approximate Nearest Neighbor Queries
Arif Hidayat, Shiyu Yang, Muhammad Aamir Cheema, David Taniar

Abstract—Given a set of facilities and a set of users, a reverse nearest neighbors (RNN) query retrieves every user u for which the
query facility q is its closest facility. Since q is the closest facility to u, the user u is said to be influenced by q. In this paper, we propose
a relaxed definition of influence where a user u is said to be influenced by not only its closest facility but also every other facility that is
almost as close to u as its closest facility is. Based on this definition of influence, we propose reverse approximate nearest neighbors
(RANN) queries. Formally, given a value x > 1, an RANN query q returns every user u for which dist(u, q) ≤ x × NNDist(u) where
NNDist(u) denotes the distance between a user u and its nearest facility, i.e., q is an approximate nearest neighbor of u. In this paper,
we study both snapshot and continuous versions of RANN queries. In a snapshot RANN query, the underlying data sets do not change
and the results of a query are to be computed only once. In the continuous version, the users continuously change their locations and the
results of RANN queries are to be continuously monitored. Based on effective pruning techniques and several non-trivial observations,
we propose efficient RANN query processing algorithms for both the snapshot and continuous RANN queries. We conduct extensive
experiments on both real and synthetic data sets and demonstrate that our algorithm for both snapshot and continuous queries are
significantly better than the competitors.

Index Terms—Reverse Nearest Neighbors, Influence Detection, Continuous Monitoring, Voronoi Diagram

F

1 INTRODUCTION

People usually prefer the facilities in their vicinity, i.e.,
they are influenced by nearby facilities. A reverse nearest
neighbors (RNN) query [1], [2], [3], [4] aims at finding every
user that is influenced by a query facility q. Formally, given
a set of users U , a set of facilities F and a query facility q, an
RNN query returns every user u ∈ U for which the query
facility q is its closest facility. The set containing RNNs,
denoted as RNN(q), is also called the influence set of q.

Consider the example of Fig. 1 that shows four Starbucks
cafes (f1 to f4) and three users (u1 to u3). In the context of
RNN queries, the users u2 and u3 are both influenced by
f1 because f1 is their closest Starbucks. Therefore, u2 and
u3 are the RNNs of f1, i.e., RNN(f1) = {u2, u3}. Similarly,
it can be confirmed that RNN(f2) = ∅, RNN(f3) = ∅,
RNN(f4) = {u1}.

A reverse k nearest neighbors (RkNN) query [5], [6], [7], [8],
[9], [10] is a natural extension of the RNN query and uses a
relaxed notion of influence. Specifically, in the context of an
RkNN query, a user u is considered to be influenced by its
k closest facilities. Hence, an RkNN query q returns every
user u ∈ U for which q is among its k closest facilities.
In the example of Fig. 1, assuming k = 2, R2NN(f2) =
{u1, u2, u3} because f2 is one of the two closest facilities
for all of the three users. Similarly, R2NN(f1) = {u2, u3},
R2NN(f3) = ∅ and R2NN(f4) = {u1}.

RkNN queries have numerous applications [1] in loca-
tion based services, resource allocation, profile-based man-
agement, decision support etc. Consider the example of a

• A. Hidayat is with the Faculty of Information Technology, Monash
University, Australia and with Brawijaya University, Indonesia.
E-mail: arif.hidayat@monash.edu

• S. Yang is the corresponding author. He is with the School of Computer
Science and Engineering, The University of New South Wales, Australia
E-mail: yangs@cse.unsw.edu.au

• M. A. Cheema and D. Taniar are with the Faculty of Information
Technology, Monash University, Australia
E-mail: {aamir.cheema, david.taniar}@monash.edu

supermarket. The people for which this supermarket is one
of the k closest supermarkets are its potential customers and
may be influenced by targeted marketing or special deals.
Due to its significance, RNN queries and its variants have
received significant research attention in the past decade
(see [6] for a survey).

In this paper, we propose an alternative definition of in-
fluence and propose a variant of RNN queries called reverse
approximate nearest neighbors (RANN) query. This definition
is motivated by our observation that an RkNN query may
not properly capture the notion of influence.

Fig. 1: Illustration of RNN query and its variants

1.1 Motivation

Consider the example of a person living in a suburban area
(e.g., u2 in Fig. 1) who does not have any Starbucks nearby.
Her nearest Starbucks is f1 which is say 30 Km from her
location. In the context of R2NN query, u2 is influenced by
f1 and f2 – her two nearest facilities. However, we argue
that it is also influenced by f3 because a user who needs to
travel a minimum of 30 Km to visit a Starbucks may also be
willing to travel to a Starbucks cafe 31 Km far from her.

Similarly, consider the example of another person living
in a suburb (e.g., u1 in Fig. 1) who has only one Starbucks
nearby (f4) assuming that all other Starbucks (e.g., f1 to f3)
are in downtown area and are quite far. In the context of
R2NN queries, the user u1 is considered to be influenced by
both f4 and f2 because these are her two closest facilities.
However, we argue that the user u1 is only influenced by



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

2

f4 because the other facilities are significantly farther than
dist(u1, f4), e.g., a user who has a Starbucks within 1 Km is
not very likely to visit a Starbucks that is say 30 Km from
her location.

As shown above, the definition of influence used in
RkNN queries considers only the relative ordering of the
facilities based on their distances from u and ignores the
actual distances of the facilities from u. Motivated by this, in
this paper, we propose a reverse approximate nearest neigh-
bors (RANN) query that relaxes the definition of influence
using a parameter x (called the x factor in this paper) and
considers the relative distances between users and facilities.
Specifically, an RANN query returns every user u for which
the query facility is its approximate nearest neighbor.

Definition 1. Approximate nearest neighbor. LetNNdist(u)
denote the distance between u and its nearest facility. Given a
value of x > 1, a facility f is called an approximate nearest
neighbor of u if dist(u, f) ≤ x×NNdist(u).

Reverse Approximate Nearest Neighbors (RANN) query.
Given a value of x > 1, an RANN query q returns every user
u for which dist(u, q) ≤ x × NNdist(u), i.e., return every
user u for which q is its approximate nearest neighbor. The
set of RANNs of a query q is denoted as RANNx(q). Note
that an RANN query is the same as an RNN query if x = 1.

In the example of Fig. 1, assuming x = 1.2, RANN of
f2 are the users u2 and u3, i.e., RANN1.2(f2) = {u2, u3}.
Similarly, RANN1.2(f1) = {u2, u3}, RANN1.2(f3) = {u2}
and RANN1.2(f4) = {u1}.

In this paper, we study both snapshot and continuous
RANN queries. In a snapshot RANN query, the users and
facilities do not change their locations and the results of
a query are required to be computed only once. In a
continuous RANN query, the facilities (e.g., fuel stations)
do not change their locations but the users (e.g., drivers)
are continuously moving. In such scenario, the results are
to be continuously monitored and reported to the query
facility. For instance, a fuel station owner may want to
continuously monitor the cars influenced by it and may
send them promotions. Similarly, a restaurant owner may
want to continuously monitor the near by customers who
may be influenced by targeted deals.

Remark. RkNN queries and RANN queries assume that
the distance is the main factor influencing a user. This as-
sumption holds in many real world scenarios. For instance,
the users looking for nearby fuel stations are usually not
concerned about price (or even rating) because all fuel sta-
tions have similar price (or even the same price because, in
some countries, the fuel prices are regulated by the govern-
ment). Similarly, users interested in McDonald’s restaurants
or Starbucks cafe are mainly influenced by the distance
because other attributes such as price, menu, and ratings
are the same for all stores. Nevertheless, in the case where
the users are influenced by other attributes, reverse top-k
queries [11], [12], [13] can be used to compute the influence
using a scoring function involving multiple attributes such
as distance, price, and rating. This is a different line of
research and is not within the scope of this paper.

1.2 Contributions

We make the following contributions in this paper.
1. We complement the RkNN queries by proposing a new
definition of influence that considers every user u to be
influenced by a query q for which q is an approximate
nearest neighbor.
2. As we show in Section 3.2, the pruning techniques used
to solve RkNN queries cannot be applied or extended for
RANN queries. This is mainly because, in our problem
settings, a facility f may not be able to prune the users that
are quite far from f (see Section 3.2 for details). Based on
several non-trivial observations, we propose efficient prun-
ing techniques that are proven to be tight, i.e., given a facility
f used for pruning, the pruning techniques guarantee to
prune every point that can be pruned by f . We then propose
an efficient algorithm that utilizes these pruning techniques
to efficiently answer the snapshot RANN queries.

This paper is an extended version of our earlier
work [14]. We make the following new contributions.
3. The existing techniques for RANN queries can only be
applied for snapshot RANN queries and their extension
for continuous RANN queries is not trivial. Using the
snapshot RANN algorithm for every timestamp to mon-
itor continuous RANN queries is prohibitively expensive.
Therefore, we propose a novel Voronoi-based algorithm to
efficiently monitor concurrent continuous RANN queries
for moving objects. A by-product of our techniques for
continuous RANN queries is an alternative Voronoi-based
algorithm to solve snapshot RANN queries. This Voronoi-
based algorithm outperforms our previous algorithm [14]
by up to 20 times. To be fair with our previous algorithm,
the new Voronoi-based algorithm requires a pre-computed
Voronoi diagram and some changes to the standard indexes
(e.g., R*-tree, Quadtree). In contrast, our previous algorithm
(Section 3.2) can be applied on any branch-and-bound index
without requiring any modification. Therefore, the previous
algorithm may be preferred by a system administrator who
does not want to modify the existing indexes.
4. We conduct an extensive experimental study on both real
and synthetic data sets to show the effectiveness of our pro-
posed techniques. Since existing techniques cannot be ex-
tended to answer snapshot RANN queries, we compare our
snapshot algorithm with a significantly improved version
of a naïve algorithm called improved range query (IRQ).
The experimental results show that both of our snapshot
algorithms are several orders of magnitude better than the
competitor. The newly proposed Voronoi-based algorithm
significantly outperforms our other algorithm.

For continuous RANN queries, we present a non-trivial
extension of the state-of-the-art RkNN monitoring algo-
rithm [8] to handle RANN queries and use it as a competitor
for our Voronoi-based algorithm. Our experiments show
that our proposed algorithm significantly outperforms the
state-of-the-art algorithm in terms of both initial computa-
tion cost and continuous monitoring cost

The rest of the paper is organized as follows. We present
an overview of the related work in Section 2. The problem
definition, pruning techniques and algorithm for snapshot
RANN queries are discussed in Section 3. Section 4 presents
the proposed solution for continuous monitoring of RANN



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

3

queries. An extensive experimental study is provided in
Section 5 followed by conclusions in Section 6.

2 RELATED WORK

The RkNN query has been extensively studied [2], [3], [4],
[5], [7], [8], [9], [10], [15], [16], [17], [18], [19], [20] ever since
it was introduced in [1]. There has also been significant
interest in other variants of RkNN queries such as reverse
top-k queries [11], [12], spatial reverse top-k queries [13],
location constraint queries [21], reverse spatial keyword
queries [22], reverse furthest neighbors [23] and reverse sky-
line queries [24], to name a few. Due to the space limitations,
in this section we focus only on RkNN queries.

2.1 Snapshot RNN Queries

We briefly describe two widely used pruning strategies.
Half-space based pruning [5]. A perpendicular bisector
between a facility f and a query q divides the whole
space into two halves. Let Hf :q denote the half-space that
contains f and Hq:f be the half-space that contains q. A
user u that lies in Hf :q cannot be the RNN of q because
dist(u, f) < dist(u, q). Consider the example of Fig. 2,
where the half-space Ha:q is the shaded area. The users u1
and u2 cannot be the RNN of q because they lie in Ha:q . This
observation can be extended for RkNN queries. Specifically,
a user u cannot be the RkNN of q if it lies in at least k such
half-spaces. In Fig. 2, assuming k = 2, the user u2 cannot be
R2NN of q because it lies in Ha:q and Hb:q . In other words,
the area Ha:q ∩Hb:q (the dark shaded area) can be pruned.
Six-regions based pruning [2]. In six-regions based pruning
approach, the space around q is divided into six equal
regions of 60◦ each (see P1 to P6 in Fig. 3). Let dki be the
distance between q and its k-th nearest facility in a partition
Pi. It can be proved that a user u lying in a partition Pi

cannot be the RkNN of q if dist(u, q) > dki . Based on this
observation, the k-th nearest facility in each partition Pi is
found and the distance dki is used to prune the search space.
For instance, in Fig. 3, the shaded area can be pruned if
k = 1, i.e., the users u1 and u2 are pruned.

Fig. 2: Half-space pruning Fig. 3: Six-regions pruning

It has been shown [5] that the half-space based approach
prunes more area than the six-regions based pruning. How-
ever, the advantage of the six-regions based pruning is
that it is computationally less expensive. Six-region [2]
and SLICE [10] are the most notable algorithms that use
six-regions based pruning whereas TPL [5], FINCH [25],

InfZone [8], [26], and TPL++ [6] are some of the remark-
able algorithms that employ half-space based pruning. The
details of these algorithms can be found in a recent survey
paper [6].

To the best of our knowledge, none of the existing
algorithms can be applied or trivially extended to answer
RANN queries studied in this paper.

2.2 Continuous RNN Queries
The first algorithm for continuous monitoring of RNN
queries was presented in [27]. In this work, objects’ veloc-
ities are assumed to be known. Xia et al. [28] proposed the
first algorithm that does not assume any knowledge about
the objects’ motion pattern. This algorithm works based on
six region approach and monitors the RNN queries by mon-
itoring the unpruned area. Kang et al. [29] proposed RNN
monitoring algorithm based on half-space (TPL) pruning
approach that also monitors the unpruned area.

The first RkNN monitoring algorithm was proposed by
Wu et al. in [25]. In this algorithm, kNN queries are issued in
each region and the users that are closer than the k-th NN
become the candidates and are verified if the query point
is one of their k closest facilities. The RkNN of queries are
monitored using the circle that contains k nearest facilities
for each candidate object. Cheema et al. [19] proposed an
algorithm, called Lazy Updates, that reduces the number
of times pruning phase is executed. In this algorithm, they
assign a safe region for each moving object such that if the
object stays in the region, the pruning phase is not needed
to be called.

Cheema et al. [8], [26] present the state-of-the-art algo-
rithm for continuous RkNN queries. They introduce the
notion of influence zone of a query q which is an area such
that a user u is a RkNN of the query q if and only if u is
inside this area. Thus, once the influence zone of a query is
constructed, the system can efficiently monitor the RkNNs
of a query by monitoring the users that enter or leave its
influence zone.

To efficiently monitor the users that enter or leave the
influence zone, the space is partitioned using a grid contain-
ing N × N cells. A cell is called an interior cell if it is fully
contained by the influence zone. A cell is called a border cell
if it is partially contained by the influence zone. Consider
polygon ABCDEFGHI in Fig. 4 which is the influence zone
of q. The dark shaded cells are the interior cells and the light
shaded ones are the border cells. For each cell, the algorithm
maintains two lists called interior list and border list. The
interior (resp. border) list of a cell c consists of every query
q for which the cell c is an interior cell (resp. a border cell).
Whenever a user u enters a cell c, it becomes the RkNNs
of every query in the interior list of c. The algorithm also
checks every query in the border list of c and checks whether
u is inside its influence zone or not and updates the results
accordingly.

3 SNAPSHOT RANN QUERIES

3.1 Problem Definition
Given a set of users U , a set of facilities F , a query facility q
(which may or may not be in F ), and a value of x > 1, a re-
verse approximate nearest neighbors (RANN) query returns



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

4

every user u ∈ U for which dist(u, q) ≤ x × NNdist(u)
where NNDist(u) denotes the distance between u and its
nearest facility in F .

Although our techniques can be applied on any branch-
and-bound data structure, in this paper, we assume that
both the facility and user data sets are indexed by R*-
tree [30]. The R*-tree that indexes the set of facilities (resp.
users) is called facility (resp. user) R*-tree. Since most of
the applications of the RNN query and its variants are in
location-based services, similar to the existing RNN algo-
rithms [6], the focus of this paper is on two dimensional
location data.

3.2 Pruning Techniques

Given a facility f , a user u cannot be the RANN of q if
dist(u, q) > x × dist(u, f). In such case, we say that the
facility f prunes the user u. In this section, we will present
the pruning techniques that use a facility f or an MBR of
the facility R*-tree to prune the users. First, we highlight the
challenges.

3.2.1 Challenges
Existing pruning techniques for RkNN queries cannot be
applied or extended for the RANN queries regardless of
the value of k chosen. We illustrate this using an example.
Assume that all the facilities in the data set F are clustered
together. Consider a user u that is quite far from all these
facilities (e.g., the closest facility is 100km away and the
furthest facility is 101 km away). Now assume that the
query facility is 102 km away from the user u. Clearly,
dist(u, f) < dist(u, q) for every f ∈ F . In other words,
u cannot be RkNN of q for any value of k between 1
to |F |, i.e., u is pruned by all |F | facilities as per the
definition of RkNN queries. On the other hand, assume
that x = 1.05. The user u is a reverse approximate nearest
neighbor of q because q is its approximate nearest neighbor,
i.e. dist(u, q) < x×dist(u, f ′) where f ′ is the nearest facility
of u. Note that the above example does not assume any
particular pruning approach and holds for every possible
pruning approach (whether existing or yet to be developed)
for RkNN queries.

The pruning for RANN queries is more challenging than
the pruning for RkNN queries. For instance, the algorithms
to solve RkNN queries can prune most of the search space
by considering only the nearby facilities surrounding q. Con-
sider the example of Fig. 3 where the six-regions approach
finds the nearest facility to the query q in each of the six
partitions and the shaded area can be pruned. For example,
the users u1 and u2 in the partition P3 can be pruned by the
facility f .

However, in the case of RANN queries, the nearby
facilities surrounding the query q are not sufficient to prune
a large part of the search space. Assuming x = 2, while the
user u1 can be pruned by f the user u2 cannot be pruned
by f (see Fig. 5 where the pruned area is shown shaded). In
other words, the users that are further from a facility f are
less likely to be pruned by it.

In Fig. 5, assuming x = 2, the six shaded circles show
the maximum possible area that can be pruned by the six
facilities a to f (the details on how to compute the circles

will be presented later). Note that the facilities that are
close to q prune a smaller area as compared to the farther
facilities. Hence, the algorithm needs to access not only
nearby facilities but also farther facilities to prune a large
part of the search space. Also, note that RANN queries are
more challenging because the maximum area that can be
pruned is significantly smaller.

q A

B

C
DE

F

G

H

I

c
1

c
2

Fig. 4: RkNN monitoring [8] Fig. 5: Challenges

In Section 3.2.2, we present the pruning techniques that
prune the space using a data point, i.e. a facility f . In
Section 3.2.3, we present the techniques to prune the space
using an MBR of the facility R*-tree.

3.2.2 Pruning using a facility point

Before we present our non-trivial pruning technique, we
present the definition of a pruning circle.

Definition 2 (Pruning circle). Given a query q, a multiplication
factor x > 1 and a point p, the pruning circle of p (denoted as Cp)
is a circle centered at c with radius r where r = x·dist(q,p)

x2−1 and
c is on the line passing through q and p such that dist(q, c) >
dist(p, c) and dist(q, c) = x2·dist(q,p)

x2−1 .

Consider the example of Fig. 6 that shows the pruning
circle Cf of a facility f assuming x = 2. The centre of c
is located on the line passing through q and f such that
dist(q, c) = 4·dist(q,f)

3 , dist(q, c) > dist(f, c) and radius r =
2·dist(q,f)

3 . The condition dist(q, c) > dist(f, c) ensures that
c lies towards f on the line passing through q and f , i.e., f
lies between the points c and q as shown in Fig. 6. Next, we
introduce our first pruning rule in Lemma 1.

Lemma 1. Every user u that lies in the pruning circle Cf of
a facility f cannot be the RANN of q, i.e., dist(u, q) > x ×
dist(u, f).

Proof. Given two points v and w, we use vw to denote
dist(v, w). Consider the example of Fig. 6. Since u is inside
the circle Cf , uc < r. Assume that uc = n · r where
0 ≤ n < 1. Since r = x·qf

x2−1 , we have uc = n · r = n · x·qf
x2−1 .

Considering the triangle 4quc, qu =√
(qc)2 + (uc)2 − 2 · uc · qc · cos θ. Since uc = n · x·qf

x2−1
and qc = x2.qf

x2−1 , we have



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

5

Fig. 6: Lemma 1 Fig. 7: Lemma 3

qu =
[
(
x2 · qf
x2 − 1

)2 + n2(
x · qf
x2 − 1

)2

− 2n(
x · qf
x2 − 1

)(
x2 · qf
x2 − 1

) · cos θ
] 1

2

=

√
(
x · qf
x2 − 1

)2(x2 + n2 − 2 · x · n · cos θ)

= (
x · qf
x2 − 1

)
√
x2 + n2 − 2xn cos θ (1)

Similarly considering 4fcu, fu =√
(fc)2 + (uc)2 − 2 · uc · fc · cos θ. Since fc = qc − qf

and qc = x2.qf
x2−1 , we get fc = qf

x2−1 . We can obtain the value
of fu by replacing the values of fc and uc.

fu =
[
(

qf

x2 − 1
)2 + n2(

x · qf
x2 − 1

)2

− 2 · n( x · qf
x2 − 1

) · ( qf

x2 − 1
) · cos θ

] 1
2

= (
qf

x2 − 1
)
√
1 + n2x2 − 2nx cos θ (2)

Note that the user u can be pruned if dist(u, q) > x ×
dist(u, f). Therefore, we need to show qu− x · fu > 0. The
left side of this inequality can be obtained using the values
of qu and fu from Eq. (1) and Eq. (2), respectively.

qu− x · fu = (
x · qf
x2 − 1

)
√
x2 + n2 − 2.x.n.cos(θ)− x.

(
qf

x2 − 1
)
√
x2.n2 + 1− 2.x.n.cos(θ)

=
x.qf

x2 − 1

(√
x2 + n2 − 2xn cos θ

−
√
1 + x2n2 − 2xn cos θ

)
(3)

Since x > 1, ( x.qf
x2−1 ) is always positive. Hence,

we just need to prove that (
√
x2 + n2 − 2xn cos θ −√

1 + x2n2 − 2xn cos θ > 0. In other words, we need
to show (

√
x2 + n2 − 2xn cos θ >

√
1 + x2n2 − 2xn cos θ.

Note that both sides of this inequality are positive (other-
wise qu and fu in Eq. (1) and Eq. (2) would be negative
which is not possible). Hence, we can take the square of both
sides resulting in x2+n2−2xn cos θ > 1+x2n2−2xn cos θ

which implies that we need to prove (x2+n2−x2n2−1) > 0.
This inequality can be simplified as (x2 − 1)(1 − n2) > 0.
Since x > 1 and n < 1, it is easy to see that (x2−1)(1−n2) >
0 which completes the proof.

Note that although the pruning technique itself is non-
trivial, applying this pruning rule is not expensive, i.e., to
check whether a user u can be pruned or not, we only need
to compute its distance from the centre c and compare it
with the radius r. Next, we show that this pruning rule is
tight in the sense that any user u′ that lies outside Cf is
guaranteed not to be pruned by the facility f .

Lemma 2. Given a facility f and a user u′ that lies on or outside
its pruning circle Cf , then dist(u′, q) ≤ x× dist(u′, f), i.e. u′

cannot be pruned by f .

Proof. Consider the user u′ in Fig. 6. Since u′ is on or outside
the pruning circle, it satisfies u′c = n · r, where n ≥ 1. The
proof is similar to the proof of Lemma 1 except that we
need to show that u′q − x.fu′ ≤ 0, i.e., we need to show
(x2 − 1)(1− n2) ≤ 0 which is obvious given that x > 1 and
n ≥ 1.

Note that the pruning circle Cf is larger if dist(q, f)
is larger which implies that the facilities that are farther
from the query prune larger area. For instance, in Fig. 7,
the pruning circle Cb is bigger than the pruning circle Ca.

3.2.3 Pruning using the nodes of facility R*-tree
In this section, we present our techniques to prune the
search space using the intermediate or leaf nodes of the
facility R*-tree. These pruning techniques reduce the I/O
cost of the algorithm because the algorithm may prune the
search space using a node of the R*-tree instead of accessing
the facilities in its sub-tree.

A node of the facility R*-tree is represented by a mini-
mum bounding rectangle (MBR) that encloses all the facil-
ities in its sub-tree. Without accessing the contents of the
node, we cannot know the locations of the facilities inside
it except that each side of the MBR contains at least one
facility. We utilize this information to devise our pruning
techniques. Specifically, we use all four sides of the MBR and
use each side (i.e., line segment) to prune the search space.
Lemma 3 presents the pruning rule and Fig. 7 provides an
illustration.

Fig. 8: Pruning using MBR Fig. 9: Trimming an MBR

Lemma 3. Given a query q, a multiplication factor x > 1, and
a line ab representing a side of an MBR, a user u cannot be the



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

6

RANN of q if it lies inside both of the pruning circles Ca and Cb,
i.e., u can be pruned if u lies in Ca ∩ Cb.

Proof. Let maxdist(p, ab) denote the maximum distance
between a point p and a line ab. Note that maxdist(u, ab) =
max(dist(u, a), dist(u, b)). Since u lies in both Ca and Cb,
dist(u, q) > x × dist(u, a) and dist(u, q) > x × dist(u, b)
(according to Lemma 1). In other words, dist(u, q) >
x × maxdist(u, ab). Since there is at least one facility
f on the line ab, dist(u, f) ≤ maxdist(u, ab). Hence,
dist(u, q) > x × dist(u, f) which implies that the user u
can be pruned.

In Fig. 7, the shaded area can be pruned by using the
line ab. The next lemma shows that this pruning rule is also
tight.

Lemma 4. Given a line ab such that the only information we
have is that there is at least one facility f on ab, a user u cannot
be pruned if it lies outside either Ca or Cb.

Proof. Without the loss of generality, assume that u lies
outside Ca. Now assume that there is exactly one facility
f on the line ab and it lies at the end point a. Since f lies
on a, Ca = Cf which implies that u is outside Cf . Hence, u
cannot be pruned by f (Lemma 2).

To prune the search space using an MBR, we apply
Lemma 3 on each of side si of the MBR. Specifically, a user
u can be pruned if, for any side si of the MBR, u lies in both
of the pruning circles of the end points of si. Consider the
example of Fig. 8 where an MBR abcd is shown along with
the pruning circles of the corners of the MBR (see Ca to Cd).
Let Ai denote the area pruned by a side si of the MBR. In
Fig. 8, the shaded area can be pruned which corresponds to
∪4i=1Ai where A1 = Ca ∩ Cb, A2 = Cb ∩ Cc, A3 = Cc ∩ Cd,
and A4 = Cd ∩ Ca.

The efficient implementation of the pruning techniques
presented in this section are discussed in the conference
version [14] of this paper.

3.3 Algorithm
Our algorithm consists of three phases namely pruning, fil-
tering and verification. In the pruning phase, we traverse the
facility R*-tree to shortlist facility MBRs and facility points
to prune the search space. In the filtering phase, the users
that lie in the pruned space are pruned and the remaining
users are inserted in a candidate list called Lcnd. Finally,
in the verification phase, each candidate user u ∈ Lcnd is
verified to check whether it is an RANN of q or not.
Pruning Phase. In this pase, we traverse the facility R*-
tree to shortlist facility entries (i.e., MBRs and points) to
prune the search space. An aggressive pruning approach is
to shortlist every facility entry that prunes at least one point
in the search space not pruned by the previously consid-
ered facility entries. This approach ensures that the pruned
space is maximized, i.e., any user u that lies outside the
pruned space is guaranteed to be an answer. However, our
experimental study shows that this significantly increases
the pruning and filtering cost because the number of facility
entries considered for pruning and filtering may be quite
high. Therefore, similar to most of the existing work on
RkNN queries (e.g., see a survey in [6]), we use a moderate

pruning approach which shortlists only the facility entries
that lie outside the currently pruned search space. This is
inspired by the observation that a facility entry that lies
inside the pruned area is less likely to prune additional area.
Although the space pruned by the moderate approach is
not maximized, this significantly reduces the pruning and
filtering cost which results in a significant improvement
on overall query processing cost. The experimental results
comparing the aggressive and moderate pruning techniques
are presented in Section 5.1.

Algorithm 1 presents the details of our moderate prun-
ing technique. The algorithm initializes a heap h with the
root of the facility R*-tree. The entries are iteratively de-
heaped from the heap and are processed as follows. If a de-
heaped entry e lies in the pruned space, we ignore it (lines 5
and 6). Otherwise, we process it as follows.

Algorithm 1 Pruning
Input: facility R*-tree, and a query q
Output: The set of pruned areasA

1: A ← φ
2: insert root of facility R-tree in a h
3: while h is not empty do
4: de-heap an entry e
5: e′ ← PruneEntry(e,A) . Algorithm 1 in [14]
6: if e′ 6= φ then . e is not pruned
7: if e is an intermediate or leaf node then
8: for each side ab of e do
9: create Ai = Ca ∩ Cb and insert in A

10: for each child c of e do
11: if c overlaps with e′ then insert c in the heap
12: else . e is a facility point
13: create Ai = Ce and insert in A

If e is an intermediate or leaf node of the R*-tree, for
each side of e, we create a pruning area Ai and insert it in A
(line 9). We also insert its children in the heap h. Note that
a child c of e that does not overlap with e′ can be pruned
because it lies in the pruned area. Hence, only the children
that overlap with e′ are inserted in the heap (line 11). If e
is a facility point, we create the pruning circle Ce and add
it to A (line 13). The algorithm terminates when the heap
becomes empty.
Filtering Phase. Algorithm 2 describes the filtering phase. A
stack S is initialized with the root entry of the user R*-tree.
Each entry e is iteratively retrieved from S and processed as
follows. If e can be pruned byA, it is ignored (lines 5 and 6).
Otherwise, if it is an intermediate or leaf node, its children
that overlap with e′ are inserted in the stack (line 9). If e is
a user, it is inserted in Lcnd (line 11). The algorithm stops
when the stack S becomes empty.
Verification Phase. In the verification phase, each candidate
user u ∈ Lcnd is verified as follows. Note that a user u
is an RANN if and only if there is no facility f for which
dist(u, f) < dist(u,q)

x . A circular boolean range query is
issued with centre at u and radius r = dist(u,q)

x that returns
true if and only if there exists a facility in the circle. The
boolean range query is conducted on the facility R*-tree as
in previous works [7] and u is reported as an answer if it
returns false.



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

7

Algorithm 2 Filtering
Input: user R*-tree, query q, and A
Output: a list of candidates Lcnd

1: Lcnd ← φ
2: insert root of user R*-tree in a stack S
3: while S is not empty do
4: retrieve top entry e from S
5: e′ ← PruneEntry(e,A) . Algorithm 1 in [14]
6: if e′ 6= φ then . e is not pruned
7: if e is an intermediate or leaf node then
8: for each child c of e do
9: if c overlaps with e′ then insert c in stack S

10: else . e is a user
11: insert e in Lcnd

4 CONTINUOUSLY MONITORING RANN QUERIES

In this section, we present techniques to continuously mon-
itor RANN queries. Given a set of facilities F , a set of users
U , a set of queries Q and a value of x > 1, the problem of
continuous monitoring of RANN queries is to continuously
monitor the RANNs of every q ∈ Q when one or more users
change their locations.

4.1 System Overview

We assume a client-server paradigm. The server maintains
the locations of facilities and the moving users. When a
client issues a query, the server computes and sends its
initial results to the client. The server also assigns each
moving user a safe zone which is an area such that the user’s
movement within this area does not affect the results of
any query in the system. The user reports its location to
the server only when it leaves its respective safe zone. In
this case, the server updates the results of affected queries
and sends the relevant clients the updated results. Then, the
server computes the new safe zone and sends it to the user.
The system also maintains up-to-date results when queries
and/or users are added to or deleted from the system. Like
most of the existing work on continuous queries [19], we
assume a timestamp model in which the server receives the
location updates at each timestamp (e.g., after every t time
units) and updates the results accordingly.

4.2 Solution Overview

Recall that a user u is an RANN of a query q if and
only if it lies outside the pruning circle of every facility
(Lemma 1 and Lemma 2). Thus, a straightforward approach
to verify whether a user u is an RANN of a query q is to
check pruning circles of all facilities with respect to q and
determine if u is outside all these circles or not. Consider a
query facility q and two other facilities f1 and f2 in Fig. 10.
Cf1 (resp. Cf2 ) is the pruning circle of facility f1 (resp. f2)
with respect to the query q. In this example, u2 is an RANN
of q as it is outside all pruning circles. On the other hand, u1
is not an RANN of q since there is at least one pruning circle
(Cf2 ) that contains it. This simple approach requires O(|F |)
to check whether a given user u is an RANN of a query q
where |F | is the total number of facilities.

Next, we present an observation that allows checking
whether a user is an RANN of a query or not by considering
only one pruning circle.

Lemma 5. Let f be the nearest facility of a user u. u is an RANN
of a query q if and only if u is outside the pruning circle Cf of f .

Proof. If u is inside the pruning circle Cf , it cannot be an
RANN of q (Lemma 1), e.g u1 in Fig. 10. Next, we show that
if u is outside of Cf , it is guaranteed to be outside of the
pruning circle of every other facility f ′ and, therefore, is an
RANN of q. Since f is the nearest facility to u, dist(u, f) ≤
dist(u, f ′) for every other facility f ′. Since u lies outside
Cf (i.e., dist(u, q) < x × dist(u, f)), we have dist(u, q) <
x × dist(u, f ′). Thus, u lies outside the pruning circle of
f ′. Hence if u is not pruned by its nearest facility f then it
cannot be pruned by any other facility f ′.

Fig. 10: RANN verification Fig. 11: Significant Facility

Now, consider a case where the system has |Q| queries.
A simple approach is to verify the user u using the above
lemma for each of the |Q| queries. Assuming that the nearest
facility f is known, it requiresO(|Q|) to check which queries
have u as their RANNs. Next, we present an observation to
reduce the number of queries that need to be considered to
check which queries have u as their RANNs.

First, we extend the notation to identify the pruning
circle of a facility w.r.t. a query. Given a query q and a facility
f , we use Cf :q to denote the pruning circle of f with respect
to query q. If the query is clear by context, we simply use
Cf (as we did earlier).

Assume that the Voronoi diagram of all facility points
has been computed. Let Vf denote the Voronoi cell of a
facility f (e.g., the shaded Voronoi cell in Fig. 11). A facility
f is called an insignificant facility for a query q if Cf :q

completely contains its Voronoi cell Vf . On the other hand, a
facility f is called a significant facility for q if Cf :q does not
completely contain Vf . In the example of Fig. 11, the facility
f is an insignificant facility for q1 because the pruning circle
Cf :q1 (the solid circle) completely contains Vf . On the other
hand, f is a significant facility for q2 because Cf :q2 (the
dotted circle) does not completely contain Vf . The next
lemma shows that a user u in a Voronoi cell Vf can only
be an RANN of a query for which f is a significant facility.

Lemma 6. Let u be a user that lies in the Voronoi cell Vf of a
facility f . u cannot be an RANN of any query q for which f is an
insignificant facility.

Proof. Since u lies in the Voronoi cell Vf , f is the nearest
facility to u. Furthermore, since f is an insignificant facility



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

8

for q (i.e., Cf :q completely contains Vf ), u is inside Cf :q .
Therefore, u cannot be an RANN of q because it is contained
in the pruning circle of its nearest facility (see Lemma 5).

We use Lemma 5 and Lemma 6 to efficiently update
RANNs of the queries. Specifically, for each Voronoi cell Vf ,
we create a list called sigList that contains every query q
for which f is a significant facility. A user u that moves in a
cell Vf can be an RANN of only the queries in the sigList of
Vf . Hence, we only need O|K| instead of O|Q| to determine
what queries have u as its RANN where |K| is the number
of queries in sigList of Vf . Our experiments show that |K|
is significantly smaller than |Q| (around 1% of |Q|). In the
example of Fig. 11, sigList of Vf contains only q2 and a user
lying in Vf can be an RANN of only q2.

To efficiently implement the above observations, we
need techniques to efficiently determine the significant fa-
cilities for a given query q. Specifically, when a new query
q is registered at the system, the algorithm must be able to
efficiently determine each of its significant facilities and add
q to its sigList. The next section provides the details on how
to do this efficiently.

4.3 Efficiently identifying significant facilities

A naïve approach is to access each facility f ∈ F , construct
its pruning circle Cf :q and check whether it contains the
Voronoi cell Vf or not. However, this approach is not
only computationally expensive but also incurs high I/O
cost because the whole facility R*-tree (F-tree) needs to be
accessed for each query. We observe that some nodes in
the F-tree may not contain any significant facility and can
be pruned. Therefore, an efficient approach is to iteratively
access F-tree starting from the root node and accessing only
the nodes that may contain some significant facilities. Before
we present techniques to determine whether a node of F-
tree may contain a significant facility or not, we first need to
formalize how to check if a facility is significant for q or not.

Consider the example of Fig. 12 where Vf is represented
as a set of vertices v1 to v5. The maximum distance between
f and Vf is dist(f, v5) and the minimum distance between
f and its pruning circle Cf is dist(f, Z). Since dist(f, Z) >
dist(f, v5), we can confirm thatCf fully contains Vf . There-
fore, to check if f is a significant facility for q or not (i.e.,
Cf contains Vf or not), we need to compute the maximum
distance between f and Vf (denoted as maxdist(f, Vf ))
and the minimum distance between f and Cf (denoted
as mindist(f, Cf )). maxdist(f, Vf ) can be easily computed
using dist(f, vi) for each vertex vi of the Voronoi cell
Vf . Formally, maxdist(f, Vf ) = max

vi∈Vf

dist(f, vi). The next

lemma shows that mindist(f, Cf ) =
dist(q,f)

x+1 .

Lemma 7. Given a query q, a multiplication factor x > 1, and a
facility point f , mindist(f, Cf ) =

dist(q,f)
x+1 .

Proof. Consider the example of Fig. 12. Note that
mindist(f, Cf ) = dist(f, Z) = dist(c, Z)− dist(c, f). Note
that dist(c, f) = dist(q, c) − dist(q, f). By definition of the
pruning circle Cf (see Definition 2), dist(q, c) = x2·dist(q,f)

x2−1 .

Thus, dist(c, f) = x2·dist(q,f)
x2−1 − dist(q, f) = dist(q,f)

x2−1 . Since

Fig. 12: Lemma 7 Fig. 13: safe zone

dist(c, Z) is the radius of the pruning circle Cf , by defi-
nition of pruning circle, dist(c, Z) = x·dist(q,f)

x2−1 . Therefore,
mindist(f, Cf ) =

x·dist(q,f)
x2−1 − dist(q,f)

x2−1 = dist(q,f)
x+1 .

The next lemma summarizes the above observation. The
proof is obvious and is omitted.

Lemma 8. Given a query q and a facility point f , f is an
insignificant facility of q if dist(q,f)

x+1 > maxdist(f, Vf ).

Now, we are ready to extend the above lemma for a
node of the facility R*-tree. Given a leaf or intermediate
node e of the facility R*-tree, we define MaxMaxDist(e)
as the maximum of maxdist(f, Vf ) for every facility f ∈ e,
i.e., MaxMaxDist(e) = max

f∈e
maxdist(f, Vf ). Consider the

node e in Figure 12 (the shaded rectangle) which contains 3
facility points A, B and T . Assuming that maxdist(A, VA),
maxdist(B, VB) and maxdist(T, VT ) are 2, 5 and 3, respec-
tively, then MaxMaxDist(e) = 5.

The next lemma extends Lemma 8 for a node e of the
facility R*-tree.

Lemma 9. A node e of the facility R*-tree cannot con-
tain any significant facility for a query q if mindist(q,e)

x+1 >
MaxMaxDist(e).

Proof. We prove that every f ∈ e is an insignifi-
cant facility for q. Since dist(q, f) ≥ mindist(q, e) and
maxdist(f, Vf ) ≤ MaxMaxDist(e), we have dist(f,q)

x+1 >
maxdist(f, Vf ). Therefore, f is an insignificant facility (see
Lemma 8).

Note that the Voronoi diagram and MaxMaxDist(e)
are query independent and can be computed during pre-
processing. Specifically, in the pre-processing phase, we first
compute a Voronoi diagram of the facilities and calculate
maxdist(f, Vf ) for each facility f . Finally,MaxMaxDist(e)
for each node e in the facility R*-tree is computed in a
bottom-up fashion and stored along with e.

4.4 Algorithms
In this section, we present our algorithms to continuously
monitor the RANNs of queries. First, we show how to
handle the case when a new query is issued (Section 4.4.1).
Then, we present the algorithm to handle the case when a
new user arrives (Section 4.4.2). In Section 4.4.3, we show
how to handle the case when a query or a user is deleted.
Finally, we explain how to update the result when one or
more users change their locations (Section 4.4.4).



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

9

Note that the initial results can be computed by first
adding all the queries one by one (Section 4.4.1) and then
adding each of the users (Section 4.4.2).

4.4.1 Adding a query
When a new query q is issued, we need to compute its initial
results and to insert q into the sigList of each significant
facility of q. Algorithm 3 provides the details. The algorithm
initializes a list L with the root of the facility R∗-tree (F-
tree) (line 1). The entries in the list L are iteratively accessed
and are processed as follows. If the accessed entry e is
an intermediate or leaf node and cannot be pruned using
Lemma 9 (line 5), its children are inserted in the list L
(line 6).

Algorithm 3 addQuery(q)

1: insert root of F-tree in a list L
2: while L is not empty do
3: remove an entry e
4: if e is an intermediate or leaf node then
5: if e is not pruned then . apply Lemma 9
6: insert all children of e in the list L
7: else . e is a facility
8: if Ce:q does not contain Ve then
9: insert q in sigList of e

10: for each user u in Voronoi cell of e do
11: if u is outside Ce:q then
12: insert u as RANN of q . Lemma 5
13: insert q in qList of u

If e is a facility point, we check whether it is a significant
facility or not by checking if Ve is contained by Ce or not
(line 8). If e is a significant facility of q, q is inserted in the
sigList of the Vornoi cell of e (line 9). Then, for each user u in
the Voronoi cell of e, the algorithm checks if u is inside the
pruning circle Ce:q or not (line 10-12). If u is outside Ce:q ,
it will be inserted as an RANN of q and q will be inserted
in qList of u (line 13). qList of a user u stores all queries
for which u is an RANN. We need the qList to enable us
to efficiently find the queries for which u is a result (see
Section 4.4.3). The algorithm stops when the list L becomes
empty.

Note that at line 10 we need to obtain all users lying in a
particular Voronoi cell. To do this, the server maintains the
location of each user and the Voronoi cell in which it resides.
For each Voronoi cell, the server also maintains a list of users
residing in this cell. This list can be used to efficiently find
all users in a particular Voronoi cell.

4.4.2 Adding a user
When a new user u arrives, we need to compute the safe
zone of u and update the result set of queries for which
u is an RANN. Algorithm 4 provides the details. The safe
zone of u is a region such that if u is inside this region,
the RANN of all queries in the system remain unchanged.
Before we present the details of Algorithm 4, we provide an
observation to construct the safe zone.

Recall that a user u can be an RANN of only the
queries in the sigList of f where f is the nearest facility
of u (Lemma 6). Furthermore, u is a result of only a query

qi ∈ sigList of f for which u is outside Cf :qi (Lemma 5).
In other words, the user u does not affect the results of any
query qi ∈ sigList as long as it does not leave or enter
the circle Cf :qi . Therefore, we consider Cf :qi for every qi in
sigList of f and obtain the smallest circle such that as long as
u is inside it, it does not leave or enter any of Cf :qi . Below,
we formally describe this idea.

We use mindist(u,Cf :qi) to denote the minimum dis-
tance between u and a pruning circle Cf :qi where f is
the nearest facility to u. We compute mindist(u,Cf :qi) for
every query qi in the sigList of f . The minimum value
of mindist(u,Cf :qi) is maintained and is stored as rC ,
i.e rC = min

qi∈sigListf
mindist(u,Cf :qi). We create a critical

circle of u (denoted as CRu) centered at u with radius rC .
Consider the example of user u1 in Fig. 13 that lies in Vf . The
sigList contains q1 and q2 and the pruning circles Cf :q1 and
Cf :q2 are also shown. Since min

qi∈sigListf
mindist(u,Cf :qi) =

mindist(u1, Cf :q2), rC = mindist(u1, Cf :q2). The shaded
circle CRu1 is the critical circle for u1. Note that as long as u1
is in this circle, it does not enter or leave any pruning circle
and, therefore, does not affect the result of q1 or q2. Fig. 13
also shows the CRu2 for the user u2.

Note that the construction of CRu only considers the
queries in the sigList of facility f where f is the nearest
facility to u. Consequently,CRu is valid as long as u is inside
the Voronoi cell Vf of f . If u leaves the Voronoi cell of f , the
query results may change. Consider an example of u2 in
Fig. 13. If u2 leaves the Voronoi cell, even though it may
still be inside its critical circle CRu2 , the query results may
change. Hence, we construct the safe zone of u (denoted as
safeu) as the intersection region of CRu and the Voronoi
cell Vf of f , i.e., safeu = CRu∩Vf . In Fig 13, the safe zones
of u1 and u2 are the shaded regions.

Now, we are ready to present our algorithm to handle a
new user u that arrives. First, Algorithm 4 issues a nearest
neighbour query on facility R*-tree to find its nearest facility
f (line 1). Then, the Voronoi cell Vf of f is obtained from the
pre-computed Voronoi diagram. Subsequently, it accesses
the queries in sigList of Vf iteratively (line 3). For each
query qi in the sigList of f , the algorithm checks whether
u is inside Cf :qi or not. If u is outside Cf :qi , it is inserted as
RANN of qi and qi is inserted in qList of u (line 4-6). During
the iteration, the algorithm maintains rC (line 7-8) which
implies that rC corresponds to the radius of the critical circle
when every qi has been accessed. The safe zone of u (safeu)
is the intersection of CRu and the Voronoi cell of f (line 10).

Algorithm 4 addUser(u)

1: get the nearest facility f of user u
2: rC ←∞
3: for each qi ∈ sigList of Vf do
4: if u is outside Cf :qi then
5: insert u as RANN of qi
6: insert qi in qList of u
7: if rC < mindist(u, Cf :qi) then
8: rC ← mindist(u, Cf :qi)
9: create critical circle CRu centered at u with radius rC

10: safeu ← CRu ∩ Vf



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

10

4.4.3 Deleting a query or a user
Recall that qList of a user u contains every query q for
which u is an RANN. When a user u is deleted, we delete
u from the result set of every query in its qList and the
affected queries are notified of the updated results.

When a query q is deleted, we retrieve every facility f
for which q is in its sigList and delete q from the sigList.
Note that for each query, we can easily maintain a list of
its significant facilities, e.g., when a significant facility is
identified at line 9 of Algorithm 3. Then, we remove q from
the qList of every user u that has q in its qList (i.e., u is an
RANN of q). Note that when a query is removed, the safe
zone of some users may become larger. However, we decide
not to update the safe zone of such users because it may
incur unnecessary computation and communication cost
becasue the new safe zones need to be computed and sent
to the users. The safe zone of those users will be updated
when they leave their safe zones. This does not affect the
correctness of the algorithm.

4.4.4 Handling the movement of users
Recall that a user’s movement does not affect the results of
any query as long as the user remains in its respective safe
zone. Therefore, the user sends its location to the server only
when it leaves its safe zone. In this case, the results can be
easily maintained by first deleting the user from the system
and then adding the user (as described in the previous
sections). However, some simple yet effective optimizations
are possible as described below.

Note that Algorithm 4 (where we add a user u) requires
the nearest facility to u (line 1). To find it, a simple approach
is to issue a nearest neighbour query on the facility R*-tree
for every location update by the user. However, it may incur
unnecessary I/O cost. To improve this, we first check if u is
still inside the same Voronoi cell. If it is, we do not need
to compute its nearest facility because the nearest facility
and the Voronoi cell that contains u remain unchanged.
Otherwise, we handle the update as follows.

Let fold (resp. Vfold ) be the previous nearest facility (resp.
Voronoi cell) of u and fnew (resp. Vfnew

) is the current
nearest facility (resp. Voronoi cell) of u. If u is outside
Vfold , we need to find the current nearest facility to u
(fnew). Note that dist(u, fnew) < dist(u, fold). Thus, a
nearest neighbour query is issued with a simple modifica-
tion that every entry e in the facility R*-tree is ignored if
mindist(u, e) > dist(u, fold).

5 EXPERIMENTS

All algorithms were implemented in C++ and experiments
were run on Intel Core I5 2.3GHz PC with 8GB mem-
ory running on Debian Linux. We present the details of
the experimental setup and results for snapshot RANN
queries and continuous RANN queries in Section 5.1 and
Section 5.2, respectively.

5.1 Snapshot RANN Queries
5.1.1 Evaluated Algorithms
To the best of our knowledge, there is no prior algorithm
to solve RANN queries and extending existing algorithms

is non-trivial (see Section 3.2.1). We compare the following
algorithms in this paper.
1. Improved Range Query (IRQ). A naïve approach to answer
a snapshot RANN query is to issue a boolean range query
for each user u to verify whether it is an RANN or not
(see the verification phase in Section 3.3). However, this
approach is too expensive. In an earlier version [14] of
this paper, we proposed a significantly improved approach,
called improved range query (IRQ), that provides an im-
provement of up to two orders of magnitude. The main
idea is to extend the boolean range queries for intermediate
nodes of the user R*-tree and prune the intermediate nodes
that cannot contain any RANN (see [14] for details).
2. Voronoi. Our techniques to handle continuous RANN
queries include Algorithm 3 that adds a new query q to
the system. This algorithm can be immediately applied
to compute the snapshot RANN queries. Recall that the
algorithm relies on a pre-computed Voronoi diagram and
MaxMaxDist(e) for each node e of R*-tree. Therefore, it
is denoted as Voronoi in this section. We also pre-compute
and store, for each Voronoi cell V , the users lying in V .
This allows the algorithm to efficiently access the candidate
RANNs (see line 10 in Algorithm 3). Note that the pre-
computation does not depend on query parameters (e.g.,
query location or x-factor).
3. Standard. In contrast to Voronoi that requires a pre-
computed Voronoi diagram and modifications (e.g.,
MaxMaxDist(e)) to the standard R*-tree, our algorithm
presented in Section 3 can be applied on any standard
branch-and-bound indexes such as R*-tree and Quadtree
etc. Therefore, we call it Standard in this paper to emphasize
that this algorithm can be applied on existing standard
indexes without requiring any changes to the indexes.

5.1.2 Experimental Settings

Experimental settings are similar to a recent experimental
study [6] on RkNN queries. We use real data sets containing
175, 812 points from North America (called NA data set
hereafter) and 2.6 million points from Los Angeles (LA). We
also generate several synthetic data sets containing 1, 000
to 1 million points following normal distributions. Unless
mentioned otherwise, each data set is randomly divided
into two sets of almost equal size, one corresponding to the
facilities and the other to the users.

We randomly select 2, 000 points from the facility data
set and treat them as query points. The results report the
average CPU cost and I/O cost for a single RANN query.
The I/O cost for IRQ and Standard is the cost to access the
facility R*-tree and the user R*-tree while the I/O cost for
Voronoi includes the cost to access the modified facility R*-
tree as well as accessing the lists of users lying in particular
Voronoi cells accessed by the algorithm. The page size is set
to 4, 096 Bytes.

5.1.3 Results

Effect of the x factor. Fig. 14 shows the effect of the x factor
on the CPU cost of the three algorithms on NA and LA
data sets. Both of our algorithms are one to two orders of
magnitude faster than IRQ. Furthermore, Voronoi is up to
20 times more efficient than Standard and scales better as



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

11

the value of x increases (note that Fig. 14 uses log scale on
y-axis).

100

101

102

103

1.1 1.5 2 3 4

C
P

U
 c

o
st

 (
m

s)

x

IRQ

71
.3

3

93
.9

5

12
2.

91

18
8.

08

26
0.

44

Standard

2.
51 4.

35 7.
57

16
.4

2

29
.7

7

Voronoi

1.
72 2.
07 2.
60 3.

66 4.
83

(a) NA data set

100

102

104

106

1.1 1.5 2 3 4

C
P

U
 c

o
st

 (
m

s)

x

IRQ

21
43

.8
9

34
98

.3
3

36
60

.4
4

40
96

.9
1

42
98

.6
6

Standard

10
.5

7

21
.3

1

41
.4

9

12
5.

29

33
0.

15

Voronoi

5.
99 7.
52 9.
56 13

.4
7

17
.7

2

(b) LA data set

Fig. 14: Effect of the x factor on CPU cost

Fig. 15 shows the effect of the x factor on the I/O cost of
the three algorithms on NA and LA data sets. The I/O cost
of both of our algorithms is one to two orders of magnitude
smaller than the I/O cost of IRQ (note that log scale is
used on y-axis). The I/O cost of Voronoi is 60% to 80% of
the I/O cost of Standard on both data sets. Since both of
our algorithms are more than an order of magnitude better
than IRQ, in the rest of this section, we omit IRQ to better
illustrate the comparison between our algorithms.

101

102

103

104

1.1 1.5 2 3 4

#I
O

x

IRQ

63
7.

54

75
3.

13

95
9.

62

14
85

.3
5

20
74

.3
6Standard

48
.9

3

76
.5

7

11
9.

17 22
0.

73

33
1.

39

Voronoi

30
.8

0

50
.4

4

79
.9

4 15
6.

37

25
0.

36

(a) NA data set

102

104

106

1.1 1.5 2 3 4

#I
O

x

IRQ

37
31

5.
72

46
36

3.
02

54
01

5.
24

54
14

7.
87

58
42

9.
82

Standard

96
.1

1

17
3.

71

29
1.

07

57
2.

07

89
6.

01

Voronoi

80
.2

9

11
9.

95

18
2.

25

32
7.

24

50
0.

84

(b) LA data set

Fig. 15: Effect of the x factor on I/O cost

Effect of number of facilities. In Fig. 16, we vary the
number of facilities from 1000 to 1 million and the number
of users is fixed to 100K. The sets of facilities and users are
generated following normal distribution. Fig. 16(a) shows
the CPU cost of both algorithms. Voronoi significantly out-
performs Standard and is less affected by the change in the
number of facilities. Note that the cost of both algorithms
is larger if the number of facilities is too small or too large.
The reason is as follows. When the number of facilities is
too small (e.g., 1000), the total area that can be pruned
is smaller due to the lower density of the facilities. This
results in a larger number of candidates and RANNs which
increases the overall CPU cost. On the other hand, when the
number of facilities is too large (e.g., 1 million), the cost of
the pruning phase increases significantly. This is because the
algorithm needs to access a larger number of R*-tree entries
to prune the search space.

Fig. 16(b) studies the effect of the number of facilities
on the I/O cost of both algorithms. The total I/O cost is
broken down into the number of I/Os on the facility index
(i.e., facility R*-tree) and user index (i.e., user R*-tree in
Standard and the lists of users stored for each Voronoi cell
in Voronoi). As the number of facilities increases, the size
of facility index increases which results in a larger number
of I/Os on the facility index as shown in Fig. 16(b). The

 0

 5

 10

 15

 20

1K 10K 100K 1M

C
P

U
 c

o
st

 (
m

s)

Number of facilities

Standard

10
.5

2

4.
47

6.
36

18
.5

9

Voronoi

0.
70

0.
47

0.
54 0.
89

(a) CPU cost

 0

 50

 100

 150

 200

1K 10K 100K 1M

Stand
Vor Stand

Vor Stand
Vor Stand

Vor

#I
O

Number of facilities

User Index
Facility Index

4
7
.4

2

6
8
.6

4 1
0
2
.5

5

1
8
7
.8

7

1
0
.6

9

1
2
.6

1

1
2
.4

2

1
0
.8

0

(b) I/O cost

Fig. 16: Effect of the number of facilities (100K users)

I/O cost on the user index decreases for both algorithms
as the number of facilities increases. This is because, as the
number of facilities increases, a larger area can be pruned
which results in pruning more entries of the user index.

 0

 2

 4

 6

 8

 10

1K 10K 100K 1M
C

P
U

 c
o

st
 (

m
s)

Number of users

Standard

5.
67 5.
85 6.

36

9.
01

Voronoi

0.
50

0.
51

0.
54 0.
74

(a) CPU cost

 0

 50

 100

 150

1K 10K 100K 1M

Stand
Vor Stand

Vor Stand
Vor Stand

Vor

#I
O

Number of users

User Index
Facility Index

8
8
.0

1

9
2
.9

1

1
0
2
.5

5 1
2
5
.3

3

5
.8

1

6
.5

7

1
2
.4

2

1
6
.3

3

(b) I/O cost

Fig. 17: Effect the number of users (100K facilities)

Effect of number of users.. In Fig. 17, we vary the number of
users from 1000 to 1 million and fix the number of facilities
to 100K. Fig. 17(a) and Fig. 17(b) show that the CPU cost
and I/O cost of both algorithms increase as the number of
users increases. This is because the number of candidate
users and RANNs increases as the number of users increases
which results in a higher cost to filter and verify the users.
Voronoi significantly outperforms Standard across all data
sets. The above experiments show that Voronoi must be pre-
ferred if the underlying indexes can be changed. However,
Standard is a good choice if the system owner does not want
to modify the underlying standard indexes.
Comparing different pruning/filtering strategies. In Sec-
tion 3.3, we briefly discussed aggressive pruning approach
and moderate pruning approach. We also designed another
strategy called aggressive filtering which uses the moderate
pruning approach but filtering is done aggressively. Specifi-
cally, in our main approach, if a user entry U is not filtered
by the shortlisted facilities, all its children are considered to
be candidates which need to be verified. In the aggressive
filtering approach, if a user entry U is not filtered by the
shortlisted facilities, we traverse facility R*-tree to see if this
entry can be pruned by considering other facilities in the
facility R*-tree. This is done using the same idea used in the
improved range query algorithm discussed in Section 5.1 of
the conference version [14] of this paper. In this section, we
compare the three different strategies.

In Fig. 18, we compare aggressive pruning approach
(shown as aggPruning), aggressive filtering approach
(shown as aggFiltering) and moderate pruning approach
by varying the number of facilities. Moderate pruning ap-
proach outperforms both aggressive pruning and aggressive



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

12

10-2

100

102

104

1K 10K 100K 1M

C
P

U
 c

o
st

 (
se

co
n

d
)

Number of facilities

aggPruning

0.
39

56
71

23
.6

01
58

6 19
80

moderate

0.
01

01
89

62

0.
00

44
56

74

0.
00

63
57

74

0.
01

85
91

3

aggFiltering

0.
01

17
89

22

0.
00

95
24

35

0.
03

87
37

85

0.
37

19
81

11

Fig. 18: Comparing different pruning/filtering strategies

filtering approaches – the cost of aggPruning is not shown
for 1 Million facilities because it failed to return results even
after a couple of days. The aggressive pruning approach
aims to maximize the pruned space and ends up shortlisting
a much higher number of facilities which results in a much
higher pruning/filtering cost. On the other hand, it does not
significantly reduce the number of candidates. A detailed
explanation is provided in Appendix.

Note that the aggressive filtering (shown as aggFiltering)
is significantly more effective than the aggressive pruning
approach but it is still worse than moderate approach. How-
ever, we remark that, in the data sets that may exhibit worst-
case scenarios where most of users are failed to be pruned
by the facilities shortlisted by moderate pruning approach,
the aggressive filtering approach may be the right choice.
Therefore, the applications where avoiding the worst-case
scenarios is important, the aggressive filtering approach
may be preferable.

5.2 Continuous RANN Queries
5.2.1 Competitor
To the best of our knowledge, there is no existing algo-
rithm for continuously monitoring RANN queries. Influence
zone [8] is the state-of-the-art algorithm for continuous moni-
toring of RkNN queries. We extend the techniques proposed
in [8] to continuously monitor RANN queries by extending
the notion of influence zone for RANN queries, i.e., an area
such that a user is an RANN of a query if and only if the
user is inside this area.

Recall that a user u is an RANN of a query q if and only
if it lies outside the pruning circle of every facility (Lemma 1
and Lemma 2). Thus, the influence zone can be defined
as the area outside the pruning circles of all facilities. For
example, in Fig 5, influence zone is the white area and a
user u can be an RANN of q if and only if u lies in the
white area. Thus, a straightforward approach to compute
influence zone of a query q is to consider the pruning circles
for every facility. Influence zone of each query q ∈ Q can be
then computed and indexed using a grid (similar to [8]) and
the RANNs of all queries can be monitored using the ideas
presented in [8] (see Section 2.2).

However, note that the above approach requires comput-
ing |Q| × |F | pruning circles where |Q| and |F | denote the
total number of queries and facilities, respectively. This is
not only computationally expensive but also requires huge
memory to index all circles in the grid. As explained in
Section 3.2.1, it is not trivial to reduce the number of pruning
circles because unlike RkNN queries, the users that are
very far may still be the RANNs. Nevertheless, to optimize
the performance, we carefully design a pruning technique

that significantly reduces the number of pruning circles (see
Appendix). Our experiments show that this reduces the total
number of pruning circles by 30% to 65%.

We partition the data space into an N ×N grid structure
(N is set to 64 in the experiments as this gives the best
overall performance). For each grid cell, we maintain two
lists: q-list and c-list. The q-list of a cell c contains queries
whose pruning circles do not overlap c. When a user moves
into c, it will be immediately inserted as an RANN of each
query in the q-list of c. c-list of a cell c stores each query
q for which there exist at least one facility whose pruning
circle with respect to q overlaps c. For each q in c-list of c,
a list lq:c containing facilities whose pruning circle overlaps
c is maintained. When a user u moves into c, it is checked
against each query q in c-list of c. If u is outside the pruning
circles of each facility in lq:c, it is inserted as an RANN of q.

We also assign a safe zone for each user. Similar to the
Voronoi-based algorithm, for each user o in cell c, we iterate
over all pruning circles in c-list of c to get the minimum
distance between o and circles in c-list of c. We set this
distance as the radius of safe circle. The safe zone of o is
the intersection of the safe circle and the cell c.

5.2.2 Experimental Settings
We compare our algorithm Voronoi with the extended in-
fluence zone algorithm (denoted as InfZone). We use a
real world data set containing point of interests from Los
Angeles (LA). The moving objects (i.e., users) are generated
by simulating moving cars on the road network of LA
using the well-known Brinkhoff data generator [31]. The
parameters used in the experiments are shown in Table 1
and the default values are shown in bold.

TABLE 1: Experiments Parameters

Parameters Range
x 1.1, 1.5, 2, 3, 4
Number of facilities (X 1000) 10, 50, 100, 150
Number of users (X 1000) 10, 50, 100, 150
Users’ speed (Km/hr) 40, 60, 80, 100, 120
Users’ Mobility (%) 20, 40, 60, 80, 100

Due to its high memory usage, InfZone cannot handle
more than 1000 continuous RANN queries for all data set-
tings. Therefore we use 1000 continuous queries as default.
Each query is a randomly selected point from the facility
data set and we monitor all 1000 queries for 100 timestamps.
We report the total initial cost and the total monitoring
cost. The total initial cost is the cost to compute the initial
results of all queries. The total monitoring cost is the cost to
continuously update the results of the affected queries for
100 timestamps.

5.2.3 Results
Effect of the x factor. Fig. 19 studies the effect of the x factor
on both algorithms. As expected, the cost of each algorithm
increases with the increase of x factor because a smaller
area is pruned when x is larger. Fig. 19(a) shows that the
initial computation cost of Voronoi is two to three orders of
magnitude lower than that of InfZone and Voronoi scales
much better (note that log scale is used on y-axis). Fig. 19(b)
shows that Voronoi outperforms InfZone by up to two orders



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

13

1

8
15.7

1800

60000

1.1 1.5 2 3 4

C
P

U
 c

o
st

 (
se

c)

x

InfZone
Voronoi

(a) Initial cost

 0

 2000

 4000

 6000

1.1 1.5 2 3 4

C
P

U
 c

o
st

 (
se

c)

x

InfZone
Voronoi

(b) Monitoring cost

Fig. 19: Effect of the x factor

of magnitude and scales much better as the value of x
increases. The initial computation cost of Voronoi is quite low
as shown in the previous section for the snapshot RANN
queries. The continuous monitoring cost is also very small
due to the effective use of the Voronoi cells and significant
facilities. In contrast, InfZone is significantly more expensive
mainly because it requires computing and indexing a large
number of pruning circles for each query.
Effect of number of facilities. In Fig. 20, we study the effect
of the number of facilities on both algorithms. InfZone failed
to run for 150, 000 facilities because it ran out of memory.
The cost of both algorithms increases with the increase in
number of facilities mainly because the number of signifi-
cant facilities and the number of pruning circles increase as
the number of facilities increases. Fig. 20 shows that Voronoi
significantly outperforms InfZone in terms of both the initial
computation cost and the continuous monitoring cost and
scales better. In the rest of the experiments, we only compare
the monitoring cost of the two algorithms because the initial
cost of InfZone is two to three orders of magnitude higher
than Voronoi for all data settings.

1

5
12

1200

7000

10K 50K 100K 150K

C
P

U
 c

o
st

 (
se

c)

# facilities

InfZone
Voronoi

(a) Initial cost

 0

 500

 1000

 1500

10K 50K 100K 150K

C
P

U
 c

o
st

 (
se

c)

# facilities

InfZone
Voronoi

(b) Monitoring cost

Fig. 20: Effect of number of facilities

Effect of number of users. Fig. 21 shows the effect of num-
ber of users on the monitoring cost of both algorithms. As
expected, the monitoring cost of both algorithms increases
with the increase in number of users. Voronoi significantly
outperforms InfZone and scales much better.
Effect of mobility. Fig. 22 studies the effect of mobility
which correspond to percentage of the users that move
between two timestamps, e.g., 80% mobility corresponds
to the data set where 80% of the total users change their
locations between two timestamps and the rest of the users
are static (e.g., car waiting on traffic light). As expected,
the monitoring cost of both algorithms increases with the
increase in mobility. Voronoi significantly outperforms Inf-
Zone and scales much better which is mainly because the
safe zones created by Voronoi are larger and it takes longer

 0

 500

 1000

 1500

 2000

 2500

10K 50K 100K 150K

C
P

U
 c

o
st

 (
se

c)

# users

InfZone
Voronoi

Fig. 21: Effect of # of users

 0

 400

 800

 1200

 1600

20 40 60 80 100

C
P

U
 c

o
st

 (
se

c)

mobility (%)

InfZone
Voronoi

Fig. 22: Effect of mobility

for a user to leave its safe zone which results in requiring
fewer updates.

 0

 300

 600

 900

 1200

 1500

 1800

40 60 80 100 120

C
P

U
 c

o
st

 (
se

c)

speed(km/hr)

InfZone
Voronoi

(a) Monitoring cost

 0

 2

 4

 6

 8

40 60 80 100 120

# 
u

p
d

at
es

(i
n

 m
ill

io
n

s)

speed(km/hr)

InfZone
Voronoi

(b) Number of updates

Fig. 23: Effect of the user’s speed

Effect of the speed. Fig. 23 studies the effect of users’ speed
on the monitoring cost of both algorithms. Fig. 23(a) shows
that Voronoi significantly outperforms InfZone. Fig. 23(b)
shows the total number of updates in 100 timestamps where
an update corresponds to the instance when a user leaves
its safe zones. The monitoring cost of Voronoi increases with
the increase in speed because the number of users that leave
their respective safe zones increases with the increase in the
speed. Although the number of updates for InfZone also
increases with the increase in speed, its monitoring cost is
relatively stable. This is because the initial positions of the
users generated by Brinkhoff data generator are randomly
chosen. Therefore, the initial positions of the users are
different in each data set and the trend is difficult to predict
because a data sets where more users are located in dense
areas will have higher costs.

6 CONCLUSION

In this paper, we propose a variant of RNN queries called
reverse approximate nearest neighbors (RANN) queries.
An RANN query relaxes the definition of influence using
the relative distances between the users and the facilities.
RANN queries are motivated by our observation that RkNN
queries may be unable to properly capture the notion of
influence. Based on non-trivial observations, we propose
efficient algorithms for snapshot and continuous RANN
queries. Our extensive experimental study on real and
synthetic data sets demonstrate that our algorithms signifi-
cantly outperform the competitors.

REFERENCES

[1] F. Korn and S. Muthukrishnan, “Influence sets based on reverse
nearest neighbor queries,” in SIGMOD, 2000, pp. 201–212.



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2766065, IEEE
Transactions on Knowledge and Data Engineering

14

[2] I. Stanoi, D. Agrawal, and A. E. Abbadi, “Reverse nearest neighbor
queries for dynamic databases,” in ACM SIGMOD Workshop, 2000.

[3] M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei, “Proba-
bilistic reverse nearest neighbor queries on uncertain data,” IEEE
Trans. Knowl. Data Eng., 2010.

[4] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi, “Discovery
of influence sets in frequently updated databases,” PVLDB, 2001.

[5] Y. Tao, D. Papadias, and X. Lian, “Reverse knn search in arbitrary
dimensionality,” PVLDB, pp. 744–755, 2004.

[6] S. Yang, M. A. Cheema, X. Lin, and W. Wang, “Reverse k nearest
neighbors query processing: Experiments and analysis,” PVLDB,
2015.

[7] W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan, “FINCH: Evaluating
reverse k-nearest-neighbor queries on location data,” PVLDB,
2008.

[8] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang, “Influence zone:
Efficiently processing reverse k nearest neighbors queries,” in
ICDE, 2011, pp. 577–588.

[9] M. A. Cheema, W. Zhang, X. Lin, Y. Zhang, and X. Li, “Continuous
reverse k nearest neighbors queries in euclidean space and in
spatial networks,” VLDB J., pp. 69–95, 2012.

[10] S. Yang, M. A. Cheema, X. Lin, and Y. Zhang, “SLICE: Reviving
regions-based pruning for reverse k nearest neighbors queries,” in
ICDE, 2014, pp. 760–771.

[11] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg, “Reverse
top-k queries,” in ICDE, 2010, pp. 365–376.

[12] M. A. Cheema, Z. Shen, X. Lin, and W. Zhang, “A unified frame-
work for efficiently processing ranking related queries,” in EDBT,
2014.

[13] S. Yang, M. A. Cheema, X. Lin, Y. Zhang, and W. Zhang, “Reverse
k nearest neighbors queries and spatial reverse top-k queries,” in
VLDB Journal, 2016.

[14] A. Hidayat, M. A. Cheema, and D. Taniar, “Relaxed reverse nearest
neighbors queries,” in SSTD, 2015.

[15] T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle, “In-
cremental reverse nearest neighbor ranking in vector spaces,” in
SSTD, 2009.

[16] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun, “High dimen-
sional reverse nearest neighbor queries,” in CIKM, 2003.

[17] E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle, “Re-
verse k-nearest neighbor search in dynamic and general metric
databases,” in EDBT, 2009, pp. 886–897.

[18] M. Sharifzadeh and C. Shahabi, “Vor-tree: R-trees with voronoi
diagrams for efficient processing of spatial nearest neighbor
queries,” PVLDB, vol. 3, no. 1, pp. 1231–1242, 2010.

[19] M. A. Cheema, X. Lin, Y. Zhang, W. Wang, and W. Zhang,
“Lazy updates: An efficient technique to continuously monitoring
reverse knn,” PVLDB, pp. 1138–1149, 2009.

[20] T. Bernecker, T. Emrich, H.-P. Kriegel, M. Renz, , and S. Z. A. Züfle,
“Efficient probabilistic reverse nearest neighbor query processing
on uncertain data,” PVLDB, pp. 669–680, 2011.

[21] Z. Xu and H. Jacobsen, “Adaptive location constraint processing,”
in Proceedings of the ACM SIGMOD International Conference
on Management of Data, Beijing, China, June 12-14, 2007, 2007,
pp. 581–592. [Online]. Available: http://doi.acm.org/10.1145/
1247480.1247545

[22] Y. Lu, J. Lu, G. Cong, W. Wu, and C. Shahabi, “Efficient algorithms
and cost models for reverse spatial-keyword k-nearest neighbor
search,” ACM Trans. Database Syst., vol. 39, no. 2, pp. 13:1–13:46,
2014. [Online]. Available: http://doi.acm.org/10.1145/2576232

[23] S. Wang, M. A. Cheema, X. Lin, Y. Zhang, and D. Liu,
“Efficiently computing reverse k furthest neighbors,” in 32nd
IEEE International Conference on Data Engineering, ICDE 2016,
Helsinki, Finland, May 16-20, 2016, 2016, pp. 1110–1121. [Online].
Available: https://doi.org/10.1109/ICDE.2016.7498317

[24] E. Dellis and B. Seeger, “Efficient computation of reverse skyline
queries,” in Proceedings of the 33rd International Conference on
Very Large Data Bases, University of Vienna, Austria, September
23-27, 2007, 2007, pp. 291–302. [Online]. Available: http:
//www.vldb.org/conf/2007/papers/research/p291-dellis.pdf

[25] W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan, “Continuous reverse
k-nearest-neighbor monitoring,” in MDM, 2008, pp. 132–139.

[26] M. A. Cheema, W. Zhang, X. Lin, and Y. Zhang, “Efficiently
processing snapshot and continuous reverse k nearest neighbors
queries,” VLDB Journal, 2012.

[27] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest
neighbor and reverse nearest neighbor queries for moving ob-
jects,” in IDEAS, 2002, pp. 44–53.

[28] T. Xia and D. Zhang, “Continuous reverse nearest neighbor moni-
toring,” in ICDE, 2006, pp. 77–86.

[29] J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang, “Con-
tinuous evaluation of monochromatic and bichromatic reverse
nearest neighbors,” in ICDE, 2007, pp. 806–815.

[30] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
An efficient and robust access method for points and rectangles,”
in SIGMOD, 1990.

[31] T. Brinkhoff and O. Str, “A framework for generating network-
based moving objects,” Geoinformatica, vol. 6, p. 2002, 2002.

Arif Hidayat is currently a PhD student in the
Faculty of Information Technology, Monash Uni-
versity, Australia. He received his Master of
Applied Information Technology from Monash
University in 2009. He completed his Bachelor
of Science in Agro-Industrial Technology from
Brawijaya University, Indonesia in 2004. His cur-
rent research interests include spatial databases
and location-based services.

Shiyu Yang received the BS and MS degrees
from the Dalian University of Technology, China,
and the PhD degree from the University of New
South Wales, Australia. He is currently a postdoc
research fellow in the School of Computer Sci-
ence and Engineering, University of New South
Wales, Australia. His research interests include
spatial databases and location-based services.
He has published papers in conferences and
journals including ICDE, PVLDB, VLDB Journal
and the Computer Journal.

Muhammad Aamir Cheema is a Senior Lec-
turer at Clayton School of Information Technol-
ogy, Monash University, Australia. He obtained
his PhD from UNSW Australia in 2011. He is
the recipient of 2012 Malcolm Chaikin Prize for
Research Excellence in Engineering, 2013 Dis-
covery Early Career Researcher Award, 2014
Dean’s Award for Excellence in Research by an
Early Career Researcher. His PhD thesis was
nominated for SIGMOD Jim Gray Doctoral Dis-
sertation Award and ACM Doctoral Dissertation

Competition. He has won two CiSRA best research paper awards (in
2009 and 2010), two invited papers in the special issue of IEEE TKDE
on the best papers of ICDE (2010 and 2012), and two best paper awards
at WISE 2013 and ADC 2010, respectively. He served as PC co-chair
for ADC 2015, ADC 2016, 8th ACM SIGSPATIAL Workshop ISA 2016,
WWW International Workshop on Social Computing 2017, proceedings
chair for DASFAA 2015, tutorial co-chair for APWeb 2017 and publicity
co-chair for ACM SIGSPATIAL 2017.

David Taniar holds Bachelor, Master, and PhD
degrees - all in Computer Science, with a partic-
ular specialty in Databases. His current research
interests cover spatial query processing, and
parallel databases. He has published a book:
High Performance Parallel Database Processing
and Grid Databases (John Wiley & Sons, 2008).
He has published over 130 research papers that
can viewed at the DBLP server. He is a founding
editor-in-chief of International Journal of Data
Warehousing and Mining, International Journal

of Web and Grid Services, and International Journal of Web Informa-
tion Systems. He is currently an Associate Professor at the Faculty of
Information Technology, Monash University, Australia.


