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Abstract—The recent years have witnessed the growing popularity of indoor location-based services (LBS) in practice and research.
Among others, indoor shortest path query (ISPQ) is of fundamental importance for indoor LBS. However, existing works on ISPQ
ignore indoor temporal variations, e.g., the open and close times associated with entities like doors and rooms. In this paper, we define
a new type of query called Indoor Temporal-variation aware Shortest Path Query (ITSPQ). It returns the valid shortest path based on
the up-to-date indoor topology at the query time. A set of techniques is designed to answer ITSPQ efficiently. We design a graph
structure (IT-Graph) that captures indoor temporal variations. To process ITSPQ using IT-Graph, we design two algorithms that check a
door’s accessibility synchronously and asynchronously. Furthermore, we propose a novel index structure (IT-Index) that extends the
state-of-the-art index significantly by storing dynamic door-to-door distances in a compact distance cube associated with tree nodes.
When processing ITSPQ using IT-Index, we make use of the distance cube to avoid time-consuming indoor distance computation
on-the-fly. We evaluate the proposed techniques using extensive experiments on synthetic and real data. The results show that our
IT-Index based method is the most efficient for processing ITSPQ at a modest cost of index memory consumption.

Index Terms—Temporal variation, Shortest path query, Indoor space indexing
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1 INTRODUCTION

W ITH the recent advancements in indoor positioning tech-
nologies and the increasing availability of digital indoor

maps, indoor location-based services are becoming increasingly
popular. This trend has enabled a wide variety of applications such
as helping people navigate through complex buildings, directing
people to safe exits during emergency evacuations, tracking staff
and equipment in hospitals, and location-based shopping assis-
tance for customers [8], [10], [16], [17], [25], [28].

Shortest distance and shortest path queries are among the most
fundamental queries for providing various indoor location-based
services. Such queries can facilitate people in need. For example,
passengers in an airport would like to find the shortest path from
his/her current position to the boarding gate. Shortest distance or
shortest path queries can also be applied to indoor robots. For ex-
ample, in automatic warehouses of Amazon, JD.com, and Alibaba,
robots can accomplish operational tasks along the shortest paths,
e.g., delivering products from one location to another. To support
such real-life applications, indoor shortest distance/path queries
have received significant research attention [19], [26], [29] in the
past few years. Shortest distance/path queries in indoor venues
pose unique challenges compared to outdoor space (e.g., road
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networks) because, in the indoor space, movement is enabled and
constrained by unique indoor features such as doors, walls, and
staircases. Previous research [26] points out that the outdoor tech-
niques are not effective when extended for indoor venues because
they fail to exploit the unique properties of indoor venues. The
basic idea behind the existing techniques to answer indoor queries
is to model the indoor space as a graph and optionally precompute
and materialize distances between certain pairs of doors to enable
efficient query processing. For example, the distance matrix [19]
precomputes and stores the distances between all pairs of doors
in an indoor venue. The state-of-the-art technique, IP-Tree/VIP-
Tree [26], reduces the storage requirement by materializing the
distances between some selected pairs of doors instead of all pairs.

A major limitation of the existing techniques [19], [25] is
that they assume that the whole indoor venue is accessible for
navigation and the indoor topology does not change with time.
These assumptions do not hold in many real-world scenarios. For
example, it is typically desirable to restrict navigation through
certain areas of a building, e.g., private offices and meeting rooms
in an office building, security areas in an airport, and storage areas
in a shopping mall, etc. Similarly, access to some doors may be
restricted at certain times of the day, e.g., doors leading to patient
wards may only open during visiting hours or certain doors of
a shopping mall may close in the evening restricting access to
only the shops that are open till late. Such temporal variations
significantly affect the indoor topology, which entails a change in
the way people can navigate through the building.

Motivated by the aforementioned factors, in this paper, we
propose to study indoor temporal-variation aware shortest path
query (ITSPQ) which returns a shortest path from a source ps to
a target pt while disallowing navigation through private partitions
and ensuring that the doors along the path are open when the user
reaches there. Unfortunately, the existing techniques cannot handle
such queries because 1) the graphs used to model the indoor
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space do not consider temporal variations; and 2) the precomputed
and materialized door-to-door distances become invalid when one
or more doors open or close at certain times. For example, the
distance matrix may need to be re-computed (or updated) when
some doors open or close. The cost to update the existing indexes
in real-time may be prohibitive especially for large indoor venues,
e.g., the shopping mall that we use in our experimental study has
more than 2,000 doors and it is not feasible to update the distance
matrix containing over 4 million door-to-door distance entries.

To address the above challenges, we propose an indoor
temporal-variation graph (IT-GRAPH) which models the indoor
topology, semantic properties of indoor entities (e.g., private parti-
tions), geometric information, and temporal variation information
in a composite structure. Furthermore, we propose a hierarchical
index called indoor temporal-variation index (IT-INDEX) which
exploits the unique characteristics of the indoor space to facilitate
efficient query processing. Additionally, we use distance cubes for
the nodes of the IT-INDEX to materialize temporal-variation aware
distances between certain pairs of doors in each node. We design
algorithms that exploit IT-GRAPH and IT-INDEX to efficiently
answer the indoor temporal-variation aware shortest path queries.
Our experimental study on real and synthetic data sets shows that
our proposed algorithms are efficient and the size of our proposed
indexes increases linearly with the size of indoor venue (in contrast
to the distance matrix which has a quadratic cost to the number of
doors in the indoor venue).

Below we summarize the contributions made in this paper.
• To the best of our knowledge, this is the first study on indoor

temporal-variation aware shortest path queries (ITSPQ). We
formally define ITSPQ and summarize why the existing
techniques are not fit for ITSPQ (Section 2).

• We present IT-GRAPH that effectively captures temporal
changes and semantic properties of indoor venues (Section 3).

• We propose the novel index IT-INDEX to materialize
temporal-variation aware distances between door pairs, fol-
lowed by efficient query algorithms for ITSPQ (Section 4).

• We conduct extensive experiments on both real and synthetic
data (Section 5). The results demonstrate that IT-INDEX in-
curs low storage cost and short construction time but enables
highly efficient processing of ITSPQ.

In addition, we review the related work in Section 6 and
conclude the paper and discuss future directions in Section 7.

In contrast to our preliminary work [18], this paper contains
substantial extensions. First, it provides a technical discussion
on why the state-of-the-art techniques fail to work for ITSPQ
(Section 2.3). Second, it presents more technical details with
a concrete example of the IT-GRAPH based approaches (Sec-
tion 3.2). Third, it proposes the new index IT-INDEX (Section 4.1),
an efficient index based query processing algorithm (Section 4.2),
and a complexity analysis of all algorithms (Section 4.3). Fourth,
it reports on significantly more extensive experimental studies that
use both synthetic and real data to evaluate all proposed techniques
in a wide variety of settings (Section 5).

2 PRELIMINARIES

Table 1 lists the frequently used notations in this paper.

2.1 Differentiation of Indoor Entities
In this paper, we distinguish two types of indoor partitions.
Private partitions are occupied for a specific use and not used for

TABLE 1: Notations
Symbol Meaning

v, d, p partition, door, and point in an indoor space
PRD , PBD private door, public door
PRP , PBP private partition, public partition
ATI active time interval
GIT indoor temporal-variation graph
ADA(N) enterable access doors in a tree node N
AD@(N) leavable access doors in a tree node N

routing, e.g., someone’s office room or a meeting room. On the
contrary, public partitions can be used in routing, e.g., hallways
and staircases. We treat different partition types as a special
kind of temporal variation in that they can be used differently
at different times. For example, a private office room is not used
as an intermediate partition in routing at normal time but it may
be used at emergency time. Accordingly, a door that interconnects
two public partitions is a public door while a door that connects
to one or more private partitions is a private door. In this sense, a
private door can only be the first or the last door in an indoor path.

Example 1. Referring to the floorplan of an office building in
Figure 1, someone at point p1 can get to point p2 through doors
d3 and d17, but cannot go through d6 and d7 to reach p2 as v6 is
a private office that cannot be passed. Moreover, d6 is a private
door as it connects to a private office v6 whereas d3 is a public
door as it connects partitions v3 and v16 that are both public
hallways.
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Fig. 1: An Example of Indoor FloorPlan

For ease of presentation, we show only one floor in Figure 1.
Nevertheless, our model supports multiple floors where two adja-
cent floors are connected by a staircase. Specifically, a staircase
works as a special partition with two doors—each connects to an
adjacent partition at one of the two adjacent floors.

2.2 Problem Definition
In real life, we may encounter temporal variations of doors, which
can significantly change indoor topology and therefore affect the
routing process. For example, the doors in the space illustrated
in Figure 1 may be open and closed at different times as listed in
Table 2. In our setting, we use [open-time, close-time) to represent
an active time interval (ATI) of a door. Thus, [8:00, 16:00) means
a door is open at 8:00 and closed at 16:00. If a door features
multiple ATIs, we use an array to store them. Intuitively, the
temporal variation of a private door may have little impact on
the indoor topology while that of a public door can significantly
change the topology.
Example 2. In Table 2, the door d1 is open during the time
interval [5:00, 23:00). The door d9 is open at 0:00 and closed
at 6:00. It is open again at 6:30 and closed at 23:00. Moreover,
closing the private door d1 only affects those who want to enter or
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TABLE 2: Active Time Intervals (ATIs) of Doors
Door, ATIs Door, ATIs

d1, 〈[5:00, 23:00)〉 d2, 〈[8:00, 16:00)〉
d3, 〈[6:00, 23:00)〉 d4, 〈[9:00, 18:00)〉
d5, 〈[6:30, 23:00)〉 d6, 〈[8:00, 16:00)〉
d7, 〈[6:00, 23:30)〉 d8, 〈[9:00, 18:00)〉
d9, 〈[0:00, 6:00), [6:30, 23:00)〉 d10, 〈[8:00, 16:00)〉
d11, 〈[5:00, 23:00)〉 d12, 〈[5:00, 23:00)〉
d13, 〈[5:00, 17:00), [18:00, 23:00)〉 d14, 〈[0:00, 24:00)〉
d15, 〈[8:00, 16:00)〉 d16, 〈[8:00, 17:00)〉
d17, 〈[0:00, 24:00)〉 d18, 〈[0:00, 23:00)〉
d19, 〈[8:00, 16:00)〉 d20, 〈[5:00, 23:00)〉
d21, 〈[8:00, 16:00)〉

leave the partition v1. In contrast, closing the public door d9 will
block the direct path between the hallways v5 and v10, forcing
people in nearby partitions to choose alternative paths.

It is noteworthy that the doors may have different ATIs for
different days (e.g., weekdays vs weekends). Our techniques can
handle such cases by maintaining the date information. Consider-
ing the door directionality, a door may also have different ATIs for
its two directions. This can be addressed by replacing a door dwith
two unidirectional doors din and dout and associating specific
ATIs to each of them. To ease the presentation in our setting,
we assume that each door features the same ATIs daily, and the
ATIs are the same for each door’s two directions. Nevertheless,
the techniques proposed in this paper can be extended to handle
practicalities in real-world scenarios.

On top of the temporal variations of indoor entities, we
formulate our research problem as follows.

Research Problem (Indoor Temporal-variation aware Shortest
Path Query (ITSPQ)). Given a static start point ps, a static
target point pt, and a current timestamp t, an indoor temporal-
variation aware shortest path query ITSPQ(ps, pt, t) returns the
valid shortest path from ps to pt that meets the following rules:

1) Each door di in the path should be open at t + ∆t1, where
∆t is the walking time from ps to di and it is computed based
on human’s average walking speed [1] — 5km/h;

2) The path should not go through any private partition except
the private partitions that contain ps and/or pt.

Example 3. Given a query ITSPQ(p3, p4, 9:00), we consider two
candidate indoor paths, i.e., (p3, d15, d16, p4) with length 10m
and (p3, d18, p4) with length 12m. Although (p3, d15, d16, p4) is
the shorter one, it goes through a private partition v15 that breaks
rule 2) in the problem definition. Therefore, the query returns
(p3, d18, p4) as the result. In contrast, another query ITSPQ(p3,
p4, 23:30) returns null because d18 is closed at 23:00 and no path
can meet both rules in the problem definition.

ITSPQ is useful in pertinent indoor applications as it considers
the use of indoor space and temporal variations of indoor topology
in real life. For example, in an airport or a hospital where rooms
fulfill different purposes and doors are dynamically open and
closed, a path returned by ITSPQ can help a user quickly reach
her destination in the right way at the right time.

2.3 Indoor Shortest Distance/Path Query Techniques
Indoor distance computation and path querying have been studied
in the literature [19], [26].

1. In this paper, we do not consider the waiting tolerance in the routing, i.e.,
someone reaches a door and waits there until the door opens.

Indoor Distance-Aware Model [19] considers both geometric
and topological information of indoor space as a directed graph
(V , Ea, L, fdv , fd2d ). Specifically, V is a set of partitions
represented as a vertex set, Ea is a set of directed edges, L is
doors as edge labels, fdv is a function to compute the maximum
distance from a door to all positions within a partition, and fd2d
is a function to compute the door-to-door distance. In addition,
a distance matrix stores the shortest distances between each door
pair. It speeds up the shortest path queries at the costs of extra
storage and precomputing.
VIP-Tree [26] is an improved model for indoor shortest dis-
tance/path queries. In a VIP-tree, each leaf node consists of a
number of adjacent indoor partitions. The adjacent leaf nodes are
combined to form a non-leaf node, and adjacent non-leaf nodes
are combined hierarchically until a root node is formed. Access
doors and a distance matrix are maintained in each node. The
access door of a node N is a border door which can connect N
to the space outside of N . The distance matrix for a leaf node
stores the shortest distance (and the first hop door on the shortest
path) between every door of the leaf node to every access door
of the leaf node. The distance matrix for a non-leaf node only
stores the shortest distances and first-hop door between each pair
of access doors of its child nodes. Given a shortest path query
from ps to pt, VIP-tree finds the lowest common ancestor of the
leaf nodes Leaf(ps) and Leaf(pt) that connects the shortest
paths from ps to pt by access doors. Since only local shortest
paths and relevant access doors are maintained at each node, VIP-
tree has lower preprocessing costs than the indoor distance-aware
model [19].

However, unlike this work, neither the indoor distance-aware
model nor VIP-Tree supports temporal variations on doors and
different types of partitions. Consequently, the two approaches’
materialized shortest distance/path information becomes invalid
for ITSPQ and the two approaches fall short in processing
ITSPQ. Next, we introduce the indoor temporal-variation graph
that can facilitate ITSPQ.

3 ITSPQ USING TEMPORAL-VARIATION GRAPH

We present the structure of the indoor temporal-variation graph
(IT-GRAPH) in Section 3.1, and the query processing algorithms
based on IT-GRAPH in Section 3.2.

3.1 Indoor Temporal-Variation Graph
To integrate the temporal variations of doors into the indoor
topology, we design IT-GRAPH GIT (V , E, Lv , LE) where

1) V is the set of vertices. Each vertex v ∈ V is an indoor
partition.

2) E is the set of directed edges. Each edge (vi, vj , dk) ∈ E
means one can reach vj from vi through a door dk. We use
πD(E) to denote the set of doors associated with the edges
of E.

3) LV is the set of vertex labels. Each vertex label is a 3-
tuple(IDv , p-type , DM ) where IDv identifies the partition
in the vertex, p-type = {PBP ,PRP} indicates if the parti-
tion is a public partition (PBP ) or a private partition (PRP ),
and DM is a distance matrix that stores the intra-partition
distance between each pair of doors of that partition. DM is
set to null if the partition has only one door.

4) LE is the set of edge labels. Each edge label is a 3-tuple
(IDd, d-type , ATIs) where IDd identifies the door on the
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edge, d-type = {PBD ,PRD} indicates if the door is a
public door (PBD) or a private door (PRD), and ATIs are
the ATIs (see Section 2.2) of the door.

The IT-GRAPH corresponding to Figure 1 is depicted in Fig-
ure 2. The partitions are represented by circular vertices. The solid
and hollow ones are public and private partitions, respectively. We
use a square vertex to denote the outdoor space. The arrows of
an edge represent the directionality of the corresponding door. We
use a door table and a partition table to store LV and LE in IT-
GRAPH, respectively. Referring to the tables in Figure 2, a record
(d1, PRD , 〈[5:00, 23:00)〉) means d1 is a private door and is open
from 5:00 to 23:00. Also, we know v16 is a public partition and
the distance between its doors d3 and d17 is 2m.

In general, IT-GRAPH combines indoor topology (i.e., graph
structure), semantic properties of indoor entities (i.e., d-type and
p-type), geometric information (i.e., DM ), and temporal variation
information (i.e., ATIs) in a composite structure.

Following the previous work [19], we also use several mapping
functions to facilitate searching between partitions and doors.
Specifically, P2D(vk) maps a partition vk to the set of doors
connected to vk and D2P(di) maps a door di to the pair of
partitions connected by di. Considering the door directionality,
P2DA(vk) gives the set of enterable doors through which one
can enter partition vk, P2D@(vk) gives the set of leavable doors
through which one can leave partition vk, D2PA(di) gives the set
of partitions that one can enter through door di, and D2P@(dj)
gives those that one can leave through door dj . Those mappings
can be easily obtained based on the connectivity information
in IT-GRAPH. Referring to Figure 2, we have D2P(d3) =
{v3, v16}, D2P@(d3) = v3, and D2PA(d3) = v16. Also, we
have P2D(v3) = P2D@(v3) = {d1, d2, d3, d5, d6} whereas
P2DA(v3) = {d1, d2, d5, d6}.
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Fig. 2: Example of Indoor Temporal-Variation Graph

3.2 IT-GRAPH based ITSPQ Processing
The overall framework for processing ITSPQ based on IT-GRAPH

is presented in Algorithm 1. The algorithm first initializes a min-
heap H to keep the pairs of a door and the distance from ps to this
door (line 1). The min-heap is prioritized according to the distance.
The framework then goes through each door di in GIT (line 2),
initializes dist [di] that is the current shortest distance from ps
to di (line 3), and enheaps all of them into H (line 4). Besides,
prev [di] keeps the last hop door of the shortest path from ps to di
and is initialized to null for each door di (line 5). The algorithm
also initializes the shortest distance information for ps and pt, and
enheaps them into H (lines 6–7). It then iterates on H to search
for the shortest path from ps to pt (lines 8–34). First, it deheaps a
door (or a point) di with the minimum distance dist [di] (line 9).
If dist [di] is ∞, meaning all remaining unvisited doors cannot
get to pt, “no such routes” is returned (line 10). If di equals pt,

the shortest path will be returned by iteratively concatenating the
last hops from prev [di] (lines 11–17). Otherwise, the framework
searches the next partition v for the current di. In particular, if di
equals ps, v is ps’s covering partition P(ps). If not, v is obtained
as the enterable partition of di that has not been visited (line 18).
After that, di and v are marked as visited (line 19).

Next, if di is an enterable door of pt’s covering partition
P(pt) (line 20), the next hop of the shortest path should be
pt. In this case, the framework directly updates dist [pt] and
prev [pt] if dist [pt] is smaller than the current shortest path
distance in dist [pt] (lines 21–24). Otherwise, the framework tests
each unvisited door dj in v’s leavable door set (lines 25–34). In
particular, the next partition v′ after dj is obtained (line 27) and
dj is immediately discarded if v′ is private (line 28). Then, the
current path distance distj from ps to dj is obtained as the sum
of dist [di] and the distance from di to dj through v, and the
current time tc is obtained as query time t plus the time cost
from ps to di (line 29). Next, the framework calls a function
TV_Check(dj , DM(v, di, dj), tc) to check if dj is open at
the arrival time relative to the current time tc (line 30). Two
different strategies, namely Syn_Check() (Algorithm 2) and
Asyn_Check() (Algorithm 4) are used for this function. Their
details are to be given below. Afterwards, the shortest distance
and last hop information of the validated door dj is updated if the
current path distance distj is smaller than dj’s best one so far
(lines 31–34).

Algorithm 1 ITSPQ_ITGraph(ps, pt, t, GIT )
Input: Start point ps, taget point pt, query time t, and IT-GRAPH GIT

Output: A valid shortest path from ps to pt at t
1: initialize a min-heap H
2: for each door di ∈ πD(GIT .E) do
3: dist[di]←∞
4: enheap(H , 〈di, dist[di]〉)
5: prev [di]← null
6: dist[ps]← 0; enheap(H , 〈ps, dist[ps]〉)
7: dist[pt]←∞; enheap(H , 〈pt, dist[pt]〉)
8: while H is not empty do
9: 〈di, dist[di]〉 ← deheap(H)

10: if dist[di] =∞ then return no such routes
11: if di = pt then
12: path ← pt
13: while prev[di] 6= ps do
14: path ← prev[di] + ”, ” + path
15: di ← prev[di]

16: path ← ps + ”, ” + path
17: return path

18: if di = ps then v ← P(ps) else v ← D2PA(di)\ visited partitions
19: mark di and v as visited
20: if di ∈ P2DA(P(pt)) then
21: if dist[di] + |di, pt|E < dist[pt] then
22: dist[pt]← dist[di] + |di, pt|E
23: enheap(H , 〈pt, dist[pt]〉)
24: prev [pt]← (v, di)

25: else
26: for each unvisited door dj ∈ P2D@(v) do
27: v′ ← D2PA(dj)\v
28: if v′.d-type is PRP then continue
29: distj ← dist[di] +DM(v, di, dj); tc ← t+ dist[di]/velocity
30: if !TV_Check(dj , DM(v, di, dj), tc) then continue
31: if distj < dist[dj ] then
32: dist[dj ]← distj
33: enheap(H , 〈dj , dist[dj ]〉)
34: prev [dj ]← (v, di)

Example 4. Corresponding to the ATIs information in Table 2, we
want to find the shortest path from p1 to p2 at 11:00 in Figure 1. To
this end, we first find all the doors through which one can leave v3

(the host partition of p1), i.e., d1, d2, d3, d5, and d6. As d1 and d6

connect to private partitions that are not p2’s host partition, they
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are filtered out. Then, we compute the distances from the current
node p1 to the remaining doors d2, d3, and d5, and push each
door and its distance from p1 to a min-heap. Next, the nearest
door from p1 (i.e., d5) is deheaped as the new current node. Such
an expansion to the next node is repeated until a deheaped door
is an enterable door of p2’s host partition. By connecting the last
node to p2, we obtain a satisfactory path (p1, d3, d17, p2).

Synchronous Check. The idea of is to look up a door d’s ATIs
and compare it to the arrival time when one just leaves for d. In
Algorithm 2, the arrival time tarr is computed as the current time
tc plus the travel time (dist/velocity) to go through the distance
dist from the previous door to d (line 1). The function returns
false if tarr is not in the door d’s ATIs, and true otherwise.

Algorithm 2 Syn_Check(d, dist , tc)
Input: A door d, the distance dist, and current time tc
Output: A result whether the door is valid
1: tarr ← tc + dist/velocity
2: if tarr /∈ d.ATIs then return false else return true

Asynchronous Check. The synchronous check needs to validate
each encountered door by comparing the arrival time with the
door’s active time intervals. However, in usual scenarios, the
temporal variation of doors in IT-GRAPH can only happen at
several particular open or close times. We call such time points
checkpoints. The topology information will not change between
two consecutive checkpoints. For example, in Table 2 we can
find a set T of the checkpoints as (0:00, 5:00, 6:00, 6:30, 8:00,
9:00, 16:00, 17:00, 18:00, 23:00, 23:30, 24:00). The topology
between 9:00 to 16:00 remains the same as depicted in the left of
Figure 2. In contrast, when time goes between 16:00 and 17:00, the
topology will be changed to the one illustrated in Figure 3. A red
cross on an edge means the corresponding door is closed between
16:00 and 17:00. As such, an alternative checking strategy is to
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Fig. 3: Indoor Temporal-Variation Graph within [16:00,17:00)

directly refer to a time-dependent IT-GRAPH that only keeps all
currently open doors. The information of IT-GRAPH only needs
to be updated asynchronously at the next checkpoint. Given the
set T of checkpoints, model updating procedure at a time tarr
is presented in Algorithm 3. First, it initializes a new graph G′IT
using the initial graph G0

IT that keeps the original indoor topology
without considering temporal variations. Next, it searches the
previous checkpoint cp relative to tarr (line 2), and obtains the
set Dc of doors that have been closed at cp (line 3). Afterwards,
it goes through each such door di in Dc and removes its every
relevant edge (·, ·, di) in G′IT (lines 4–5). Note that we only need
to remove the closed doors at checkpoint cp from the complete
topology G′IT , and it has nothing to do with graph instances
at other time points. Finally, it returns cp along with the new

model G′IT (line 6). G′IT takes effect in the further iteractions of
Algorithm 1.

Algorithm 3 Graph_Update(tarr, T )
Input: Arrival time tarr and checkpoints set T
Output: An updated graph G′IT along with tarr’s previous checkpoint cp
1: G′IT ← G0

IT
2: cp ← Find_Previous_Checkpoint(tarr, T )
3: Dc ← Get_Closed_Door(cp)
4: for each door di ∈ Dc do
5: remove all edges (·, ·, di) from G′IT .E

6: return (cp, G′IT )

Based on the graph updating in Algorithm 3, we present the
asynchronous check in Algorithm 4. It first gets the current GIT

and its corresponding checkpoint cp (see line 6 in Algorithm 3)
and the arrival time tarr (lines 1–2). Next, if tarr to get to d is later
than the next checkpoint in T , it updates GIT using G′IT returned
by Algorithm 3 (lines 3–5). Here, we directly update the graph
to the latest checkpoint to tarr because the object will not leave
the current partition during [tc, tarr) (see line 2). In other words,
any topology changes within [tc, tarr) make no difference to the
routing. A true is returned to keep consistent with the interface of
Algorithm 2 (line 6). It ensures that the expansion in lines 31-34
of Algorithm 1 will be executed.

Algorithm 4 Asyn_Check(d, dist , tc)
Input: A door d, the distance dist, and current time tc
Output: A result whether the door is valid
1: get the current GIT and its corresponding cp for time tc
2: tarr ← tc + dist/velocity
3: if tarr > Find_Next_Checkpoint(cp, T ) then
4: (cp∗, G′IT )← Graph_Update(tarr, T )
5: (cp, GIT )← (cp∗, G′IT )

6: return true

Compared to the search using the synchronous check, the
search using the asynchronous check involves reduced versions of
IT-GRAPH in the outward expansion (lines 18–34 in Algorithm 1),
thus pruning some impossibly opening doors in advance and
reducing the costs of checking temporal variations.

In general, the two searches are suitable for different scenarios.
The search using the synchronous check can deal with improvised
variations, e.g., when a fire happens in a building and some doors
close urgently. The search using the asynchronous is more suitable
for the scenario where doors are opened and closed at fixed time
points. In this case, an asynchronous check saves more search
costs without on-the-fly handling of ATIs. These two searches are
experimentally compared in Section 5.1.4.

4 ITSPQ USING TEMPORAL-VARIATION INDEX

In Section 4.1, we present the indoor temporal-variation index
(IT-INDEX) that organizes indoor partitions into a tree structure
based on indoor topology. The indoor topology here refers to
physical layout only and does not involve temporal variations
and directionality of doors. Subsequently, we present a query pro-
cessing algorithm based on IT-INDEX in Section 4.2. Finally, we
analyze the complexity for all ITSPQ approaches in Section 4.3.

4.1 Indoor Temporal-Variation Index
Considering indoor topology, we find that a valid shortest path
should never go through public partitions with only one door
(except the partitions that contain ps and/or pt). Therefore, we
further differentiate partitions into two types for indexing use. In
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Fig. 4: Indoor Temporal-Variation Index

particular, impassable partitions include all private partitions and
those public partitions with only one door. In contrast, passable
partitions are public partitions with two or more doors. Referring
to Figure 1, the private partition v1 and the one-door public
partition v2 are both impassable partitions, whereas v3 and v11

are passable partitions.
We proceed to present the structure of IT-INDEX. In particular,

a set of topologically interconnected partitions form a leaf node,
and a set of interconnected leaf nodes further form a non-leaf node.
The non-leaf nodes are hierarchically merged to form a non-leaf
node at a higher level until one root node at the highest level is
formed. Corresponding to Figure 1, the tree structure of IT-INDEX

is illustrated in Figure 4(a).
In IT-INDEX, each leaf node Ni maintains a set of access

doors [26]. Based on door directionality, we distinguish enterable
access doors and leavable access doors for Ni, the doors through
which one can enter and leave Ni, respectively. A non-leaf node
maintains the pointers for its access doors. It can be shown that
the children of a non-leaf node are interconnected by the access
doors of its children. We omit the proof due to the page limit.

The tree construction of IT-INDEX follows the same overall
procedure of IP-tree [26]. However, as a special rule, each leaf
node in IT-INDEX must contain at least one passable partition.
This rule guarantees that any partition in a leaf node can be
physically reached (without considering temporal variations and
door directionality) via a passable partition that connects to it in
that node. Moreover, as a leaf node maintains the shortest distance
information for each pair of doors in it, the shortest distance
computation will be complicated if a leaf node contains too many
passable partitions with multiple public doors. Therefore, we set
another rule that only one of the passable partitions in a leaf node
can have more than k public doors. We chose k = 4 in our
implementation according to the evaluation in previous work [26].

Example 5. Referring to the tree structure in Figure 4(a) that
corresponds to the example in Figure 1, four interconnected
partitions v1, v2, v3, v6 form a leaf node N1 and the access
doors of N1 are d3, d5, d7. Particularly, N1 connects to another
leaf node N2 via the access door d5. Note that d5 is also an
access door for N2. Moreover, d3 is a leavable access door for
N1 due to its door directionality. Three interconnected leaf nodes
N1, N2, and N3 form a non-leaf node N7. N7’s access doors to
its outside, i.e., d3, d7, d13, d14, are stored.

Each tree node also maintains a three-dimensional structure
called distance cube to store the shortest path information relevant
to that node. One dimension of the cube refers to time and the
other two refer to doors. Specifically, we use a 3-tuple (di, dj , L)
to denote the index of a distance cube, where di, dj are two doors,
and L is a life interval during which the shortest path is valid
(considering temporal variation). The value in each cell indexed
by (di, dj , L) is denoted as (dist , φ), where φ = (di, . . . , dj) is

the shortest path from di to dj within the life interval L and dist
is corresponding path distance. The shortest path here conforms
to our rule that one can not pass any private door. An example
of distance cube for Ni in the tree is depicted in Figure 4(b).
Given the door pair of d1 and d7, the shortest path information is
divided into three parts due to the temporal variation of doors. For
example, the second record in the table indicates that the shortest
path from d1 to d7 during the life interval [5:59:51, 22:29:51) is
(d1, d3, d7) and its path length is 16m. Compared to IP-tree [26],
IT-INDEX maintains semantic properties and temporal variations
of indoor entities, together with the distance cube that keeps the
shortest distance information with respect to temporal variations.
Next, we detail the construction of distance cube.
Construction of Distance Cube. Algorithm 5 constructs the
distance cube DC (initialized in line 1) for a leaf node Ni by
calling a function Cell_Build to compute the shortest path for
each pair of an access door and a door in Ni (lines 2–4). Note that
we do not need to keep the shortest path for a pair of non-access
doors. If Ni is a non-leaf node, the shortest path is computed for
each pair of access doors of Ni’s child nodes instead.

Function Cell_Build (lines 5–41) updates DC for a door
pair (ds, dt) by going through the time range using two variables
t1 and t2 (lines 6–7 and 41). In particular, a min-heap H is
initialized by inserting each door di in IT-GRAPH (line 8), and
each di is associated with a shortest distance di.dist from ds to
di, an arrival time tarr to get to di, and a latest departure time tl
from ds at which one can get to di (lines 9–13). H is prioritized
according to di.dist (line 14). A set R is also initialized to keep
the next earliest open timestamps of close doors. The function
then iterates through each di deheaped from H . If di’s shortest
distance from ds is infinity, the end time t2 is obtained as the
current minimum timestamp in R, and the path from ds to pt
during the life interval [t1, t2) is set to null (lines 17–19). If di
equals pt, the function constructs the shortest path φ in the same
way as does the counterpart (see lines 12–16) of Algorithm 1,
setting t2 as the lastest departure time of di, and updates DC with
φ in the life interval [t1, t2) (lines 20-24). If di is closed when a
path reaches it (line 26), the function obtains the next open time to
of di, computes the earliest time at which one can reach di from
ds, i.e., to − di.dist/velocity, and adds it to the set R (lines 26–
29). Otherwise, the function goes through each enterable partition
v of di and finds the next unvisited door dj (lines 30–32). The
latest departure time tl of dj is updated in two different cases: If
dj is closed when a path gets to it, tl of dj should be the same as
its previous-hop door di (line 36). Otherwise, tl of dj is obtained
as the earlier one between the latest time to get to dj before dj
closes and the lastest departure time of di (lines 37–39).

4.2 IT-INDEX based ITSPQ Processing
Figure 5 illustrates the three different methods introduced in this
paper, including the aforementioned two methods based on IT-



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. –, NO. –, —— 2021 7

Algorithm 5 Cube_Build(Ni)
Input: A node Ni

Output: The distance cube for node Ni

1: initialize cube DC : (door × door × [ts, te])→ (dist, φ)
2: for each access door di ∈ Ni do
3: for each door dk ∈ Ni do
4: Cell_Build(di, dk , DC); Cell_Build(dk , di, DC)
5: function Cell_Build(ds, dt, DC)
6: t1 ← 0; t2 ← 0
7: while t2 < 24:00 do
8: initialize a min-heap H; initialize set R← ∅
9: for each door di ∈ πD(GIT .E) do

10: if di 6= ds then
11: di.dist ←∞; di.tarr ←∞, di.tl ←∞
12: else
13: di.dist ← 0; di.tarr ← t1; di.tl ← t1
14: enheap(H, 〈di, di.dist〉)
15: while H is not empty do
16: 〈di, di.dist〉 ← deheap(H)
17: if di.dist =∞ then
18: t2 ← min(R); DC[ds, dt, [t1, t2)]← (null,∞)
19: break
20: if di = dt then
21: φ← concatenate shortest paths from ds to di
22: t2 ← di.tl
23: DC[ds, dt, [t1, t2)]← (di.dist, φ)
24: break
25: mark di as visited
26: if di.tarr /∈ di.ATIs then
27: to ← Get_Next_Open_Time(di, di.tarr )
28: R.add(to − di.dist/velocity)
29: continue
30: for each partition v ∈ D2PA(di) do
31: if di 6= dt and v.d−type is PRD then continue
32: for each unvisited door dj ∈ P2D@(v) do
33: if di.dist + DM (v, di, dj) < dj .dist then
34: dj .dist ← di.dist + DM (v, di, dj)
35: dj .tarr ← DM (v, di, dj)/velocity + di.tarr
36: if dj .tarr /∈ dj .ATIs then dj .tl ← di.tl
37: else
38: tc ← Get_Next_Close_Time(dj , dj .tarr )
39: dj .tl ← min(tc − dj .dist/velocity, di.tl)
40: enheap(H, 〈dj , dj .dist〉)
41: t1 ← t2

GRAPH (i.e., ITG/S using synchronous check and ITG/A using
asynchronous check) and ITI to be detailed in this section.
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Fig. 5: Different Methods for ITSPQ Processing

The overall framework of ITI is given in Algorithm 6. It first
searches IT-INDEX Index IT for the lowest common ancestor
NLCA for the points ps and pt (line 1). Next, it obtains two
children of NLCA, namely Ns the ancestor of Leaf(ps) and
Nt the ancestor of Leaf(pt) (lines 2–3). Two variables dist∗

and path∗ are initialized to keep the shortest distance and path
found so far (line 4). It then calls a function Get_Dist_S2N to
compute the shortest paths from ps to each leavable access door
of Ns (line 5). Afterwards, it iterates through each such leavable
access door di and checks its temporal variation and semantic
properties (line 8). For each qualified di, it computes the shortest
distance from di to each enterable access door of Nt, using the
distance cube maintained at NLCA (line 9–10). For each qualified
dj (line 11), it computes the shortest distance from dj to pt by
calling a function Get_Dist_D2E (line 9–10). Consequently, the

shortest distance dist from ps to pt through di and dj is computed
as the sum of the shortest distances of ps → di, di → dj and
dj → pt (line 13). It updates the shortest path path∗ if the current
distance dist is smaller than dist∗ (lines 14–17). Finally, it returns
the path∗ when the loop is complete. Next, we detail functions
Get_Dist_S2N and Get_Dist_D2E, respectively.

Algorithm 6 ITSPQ_Index(ps, pt, t, Index IT )
Input: Start point ps, target point pt, query time t, and Index IT

Output: The valid shortest path from ps to pt at t
1: NLCA ← LCA(Leaf(ps), Leaf(pt)) in Index IT

2: Ns ← children of NLCA ∩ ancestors of Leaf(ps)
3: Nt ← children of NLCA ∩ ancestors of Leaf(pt)
4: dist∗ ←∞; path∗ ← null
5: S2N ← Get_Dist_S2N(ps, Ns, t)
6: for di ∈ AD@(Ns) do
7: ∆t1 ← S2N [di]/velocity + t
8: if ∆t1 6∈ di.ATIs or di.d-type is PRD then continue
9: for dj ∈ ADA(Nt) do

10: ∆t2 ← NLCA.DC[di, dj ,∆t1]/velocity + ∆t1
11: if ∆t2 6∈ dj .ATIs or dj .d-type is PRD then continue
12: d2e ← Get_Dist_D2E(dj , pt, t+ ∆t2)
13: dist ← S2N [di] +NLCA.DC[di, dj ,∆t1] + d2e
14: if dist < dist∗ then
15: dist∗ ← dist
16: path∗ ← concatenate shortest paths of
17: ps → di, di → dj and dj → pt

18: return path∗

Get_Dist_S2N (Algorithm 7) returns an array S2N (ini-
tialized in line 1) that keeps the shortest distance from a point
s to each leavable access door of Ns at a current time tc. The
algorithm finds the shortest distance from s to Ns towards the root
node by using variables Nc and PN c (lines 2–3 and 12). Here,
Nc is the current node in process and PN c is Nc’s parent node
to be processed next. For each Nc, we obtain a candidate leavable
access door set CAD@(Nc) by removing those unqualified doors
in its leavable access door set AD@(Nc). If the time at which
one reaches a leavable access door di is not in the ATI s of di,
di should be removed (line 7). Here, TSD(s, d, tc) is a time-
dependent shortest distance function that returns the shortest
distance from a point pt (either the point s or an access door)
to an access door d with respect to current time tc. Its details
are to be given shortly. If di is a private door and is not the first
door when one leaves the partition containing s, di should also
be removed (line 8). Afterwards, the algorithm iterates over each
leavable access door d in the parent node PN c (lines 9–11). It
marks d as processed and computes its shortest distance from s.
If d is a door in CAD@(Nc), it records the shortest distance in
S2N accordingly.

Function TSD (lines 14–28) computes the shortest distance as
follows. If the distance was previously computed, it just returns the
cached result (line 15). If pt is a door, it obtains the corresponding
node Nd of d (line 16), and directly obtains the shortest distance
from pt to d from the distance cube (line 17). Otherwise, pt is
a point. Two different cases are discussed. If Nd is a leaf node
that means pt and d are in the same leaf node. In such a case, it
returns the Euclidean distance between pt and d if they are in the
same partition (line 19). If pt and d are not in the same partition,
TSD first validates each possible door of the current partition if
the door is still open when one gets it from pt , and then adds the
valid ones in a set Do. If Do is not empty, the shortest distance
is computed as the minimum of the sum of the distance from pt
to a door dj ∈ Do and TSD(dj , d, tc). Otherwise, the shortest
distance is returned as ∞. If Nd is a non-leaf node (line 26), we
decompose the shortest distance into two parts: one from pt to an
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Algorithm 7 Get_Dist_S2N(s, Ns, tc)
Input: A point s, a node Ns, and current time tc
Output: The shortest distance from s to Ns at tc
1: initialize an array S2N : door → dist
2: Nc ← Leaf(s)
3: PN c ← the parent node of Leaf(s)
4: while Nc 6= Ns do
5: CAD@(Nc)← AD@(Nc)
6: for di in AD@(Nc) do
7: if TSD(s, di, tc)/velocity + tc 6∈ di.ATIs then CAD@(Nc) \ di
8: if di.d-type is PRD and di 6∈ P2D(P(s)) then CAD@(Nc) \ di
9: for each unmarked d ∈ AD@(PN c) do

10: mark d; compute TSD(s, d, tc)
11: if d ∈ AD@(Ns) then S2N [d]← TSD(s, d, tc)

12: Nc ← PN c; PN c ← the parent node of PN c

13: return S2N
14: function TSD(pt , d, tc)
15: return the cached result if computed
16: Nd ← d’s current corresponding node
17: if pt is a door then return Nd.DC[pt, d, tc]

18: if Nd is a leaf node then
19: if d ∈ P(pt) then return |pt, d|E
20: else
21: Do ← obtain doors that one can leave P(pt) from pt at tc
22: if Do 6= ∅ then
23: return mindj∈Do (|pt, dj |E + TSD(dj , d, tc))

24: else
25: return∞
26: else
27: CNd ← Nd’s child node that contains pt
28: return mindj∈CAD@(CNd)

(
TSD(pt, dj , tc) + TSD(dj , d, tc)

)

access door dj in Nd’s child node, and the other from dj to d.
Both parts are recursively computed by calling TSD (lines 27–28).
In our implementation, we keep and share all intermediate results
in the recursive calling of TSD to speed up the overall distance
computation.

Get_Dist_D2E (Algorithm 8) returns the shortest distance
(line 10) from an access door d ofNt to a point e for a current time
tc. The idea here is similar to that of Algorithm 7. The difference
is that it starts from the current door d and searches in the direction
towards the terminal point e. At the beginning, the current nodeNc
is set to Nt’s child node that contains Leaf(e), and CN c is set
to Nc’s child node that contains Leaf(e) (lines 1–2). In each step
of processing Nc, each leavable access door di of Nc is checked
if it is closed upon arrival or it is a private door (lines 4–6), and
each enterable access door dj of CN c is processed to compute
the shortest distance from d to dj . By iteratively computing and
caching the distances between the leavable access doors of Nc
and the enterable access doors of CN c, the algorithm can finally
return the distance from d to e in a recursive manner (line 10).

Function TSD2 (lines 11–25) computes the shortest distance
from an access door d to a point pt (either an access door or a
point e) with respect to current time tc. Its processing is similar
to TSD in Algorithm 7 but the direction is reversed such that the
search starts from a door to a point in the leaf node.

Note that Algorithms 7 and 8 only compute the shortest
distance, whereas the corresponding shortest path can also be
constructed by keeping the last hop of each visited door. We omit
the details due to the page limit.

Example 6. Assuming the same ITSPQ from p1 to p2 as in
Example 4, we first find the host nodes of p1 and p2 in IT-INDEX,
i.e., N1 and N6, respectively. Second, we find NLCA of N1 and
N6 as N9, and then find the children of N9, i.e., N7 (the ancestor
of N1) and N8 (the ancestor of N6). Third, we find the paths from
p1 to each available access door of N7, i.e., (p1, d3) with length
7m, (p1, d5, d9, d13) with length 19m, and (p1, d5, d9, d14) with

Algorithm 8 Get_Dist_D2E(d, e, tc)
Input: A point s, a point e, and current time tc
Output: The shortest distance from d to e at tc
1: Nc ← children of Nt ∩ ancestors of Leaf(e)
2: CN c ← children of Nc ∩ ancestors of Leaf(e)
3: while CN c 6= Leaf(e) do
4: for di ∈ ADA(Nc) do
5: if TSD2(d, di, tc)/velocity + tc /∈ di.ATIs or di.d-type is PRD

then
6: CAD@(Nc) \ di
7: for each unmarked dj ∈ ADA(CN c) do
8: mark dj ; TSD2(d, dj , tc)

9: Nc ← CN c; CN c ← children of CN c and ancestors of Leaf(e)

10: return TSD2(d, e, tc)
11: function TSD2(d, pt , tc)
12: return the cached result if computed
13: Nd ← d’s corresponding node
14: if pt is a door then return Nd.DC[d, pt, tc]

15: if Nd is a leaf node then
16: if d ∈ P(pt) then return |d, pt|E
17: else
18: Do ← obtain doors that one can enter P(pt) from d at tc
19: if Do 6= ∅ then
20: return mindj∈Do (TSD2(d, dj , tc) + |dj , pt|E)

21: else
22: return∞
23: else
24: CNd ← Nd’s child node that contains pt
25: return mindj∈CADA(CNd)

(
TSD2(d, dj , tc) + TSD2(dj , pt, tc)

)

length 22m. We do not consider (p1, d6, d7) as it goes through a
private partition v6. Fourth, we find all paths from one available
access door of N8 to p2, i.e, (d3, p2) with length 7m, (d7, p2)
with length 2m, (d14, p2) with length 13m, and (d11, d18, p2) with
length 13m. Finally, we concatenate each path found in the third
step and each path found in the fourth step. As a result, we return
(p1, d3, p2) with the shortest overall length 14m.

4.3 Complexity Analysis
Let V be the total partition number, D the total door number, Vo the
number of open partitions at a time point, Do the number of open
doors at a time point, d the average door number per partition,
and w the average number of doors on a shortest path. Let f be
the fan-out of IT-INDEX nodes, L the number of leaf nodes, ρ
the average number of access doors per node, and T the average
number of life intervals per door.

The space complexity of IT-GRAPH is O(V + Vd + Vd2 + D)
= O(Vd2). The space complexity of IT-INDEX is O(ρDT)+
(ρf)2LT). Specifically, O(ρDT) captures the space cost of the
distance cubes in leaf nodes, whereas O((ρf)2LT) is that of
the distance cubes in non-leaf nodes. For a non-leaf node, ρf
corresponds to the number of access doors from a child node and
L reflects the number of non-leaf nodes.

The time complexity of ITG/S isO(V log D+w). It consists of
the distance computing cost O(V log D) and the cost of backtrack-
ing the shortest path in w hops. The time complexity of ITG/A is
generally O(Vo log Do + w). The difference between ITG/S and
ITG/A is that ITG/A only considers the open doors/partitions in
the current reduced graph instance. The time complexity of ITI
is O(ρ2 logf L + w logf L). Specifically, O(ρ2 logf L) refers to
the cost of searching for the lowest common ancestor and finding
a pair of access doors from that ancestor node, and O(w logf L)
refers to the cost of constructing the shortest path.

5 EXPERIMENTAL STUDIES

Using both synthetic and real data, we evaluate the cost of
constructing IT-INDEX (see Section 4.1) and the search efficiency
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of our proposed methods ITG/S, ITG/A and ITI (see Figure 5).
All experiments are implemented in Java and run on a PC with a
2.30GHz Intel i5 CPU and 16 GB memory.

5.1 Results on Synthetic Data
5.1.1 Settings
Indoor Space. Based on a real-world floorplan [2], we generate a
multi-floor indoor space where each floor takes 1368m × 1368m.
The irregular hallways are decomposed into smaller but regular
partitions2. As a result, we obtain 141 partitions and 224 (virtual)
doors that connect these partitions. We treat each room partition
in the floorplan as a private partition and each hallway or staircase
partition as a public partition. Consequently, on each floor, we
have 53 public partitions and 88 private partitions. We duplicate
the floorplan 3, 5, 7, 9 or 11 times to simulate different indoor
spaces. Every two adjacent floors are connected by four staircases,
each having a stairway 20m long. In the default setting, we use a
7-floor indoor space with 987 partitions and 1568 doors.
Temporal Variations. We generate the ATIs for each door as
follows. First, we crawl the online shop information of five
shopping malls in Hong Kong, China, and parse the open and
close times of those shops. We select random pairs of open time
and close time to form the checkpoint set T in size of 4, 8, 12,
or 16. We then select a temporal door ratio (TDR) (20%, 40%,
60%, 80% or 100%) of doors to be the varied doors that open
and close from time to time. For each such temporally varying
door, we assign it with up to three ATIs, each corresponding to a
pair of open time and close time selected from T . The remaining
doors are always open.
Query Instances. Given a parameter s2t that controls the indoor
distance from the start point ps to the target point pt, we generate
query instances of ITSPQ(ps, pt, t) as follows. First, we randomly
select a point ps from the indoor space. Second, we find a door d
whose indoor distance to ps approximates s2t. Then, we expand
from d to find a random point pt whose indoor distance to ps
approaches s2t. For each setting of s2t, we generate five pairs of
ps and pt to form the query instances. In each query instance,
query time t is fixed to 12:00 to make a fair comparison. We also
study the effect of using different values of t in query processing.
The results are to be reported in Section 5.1.3. Table 3 lists the
parameter settings in our experiments, where the default values
are shown in bold.

TABLE 3: Parameter Settings for Synthetic Data
Parameters Settings

Floor Number 3, 5, 7, 9, 11
|T | 4, 8, 12, 16

TDR (% of varied doors) 20%, 40%, 60%, 80%, 100%
s2t (m) 1100, 1300, 1500, 1700, 1900
t 0:00, 2:00, . . . , 12:00, . . . , 22:00

Baseline Method. We use a general temporal graph
(GTG) [13], [14], [22], [23] to form a baseline. Each vertex in
GTG represents a door labeled with door type and active time
intervals, and the weight of each edge is the distance between
two doors. This way results in many door-to-door edges for the
same partition and leads to large size of the graph. We adapt the
synchronous check to GTG.3 We may capture door directionality

2. The decomposition algorithm is given in [29].
3. Our preliminary experiments found that the difference of the searches

using synchronous and asynchronous checks on GTG is similar to that on
ITG. Therefore, we omit the GTG variant using asynchronous check.

in a GTG’s node as partition pairs, each implying that one can
leave a partition to enter the other via the corresponding door. As
this leads to considerably more space cost and search time cost, we
assume all doors are bidirectional in the comparative experiments.
Performance Metrics. For IT-INDEX, we measure its construc-
tion time and index size. To compare the efficiency of different
search algorithms, we run each query instance ten times, and
measure the average running time, memory cost, and the number
of door visits (NDV) per run of a single query instance.
5.1.2 Cost of Index Construction
In the default parameter setting, IT-GRAPH can be built within
310 ms and its size is around 3.5 MB, while IT-INDEX can be
built within 30 minutes and its size is around 7 MB. The main
cost of constructing IT-INDEX results from building the distance
cubes associated with its tree nodes. Next, we vary and test
different parameters in the performance evaluation of IT-INDEX

construction. As the construction of IT-GRAPH is relatively steady
in different parameter settings, we omit its evaluation result.
Effect of Number of Floors. We vary the number of floors
and report the corresponding construction time and index size
in Figures 6 and 7, respectively. When the number of floors
increases, more doors and partitions will be involved in the indoor
space. On the one hand, more partitions lead to more nodes in
the tree structure of IT-INDEX. On the other hand, the number
of doors contained by a tree node will also increase, which
results in more time and space consumption for maintaining the
distance cube of the tree node. Because of these two factors, both
index construction time and index size increase steadily with an
increasing number of floors. Nevertheless, when the number of
floors increases to 11, the size of IT-INDEX is only 16.1 MB and
the time of index construction is around 7.65 hours.
Effect of |T |. With other parameters fixed to default, we vary
the checkpoint set size of T and report the time cost and size
of the index construction in Figures 8 and 9, respectively. Clearly,
both IT-INDEX’s time and space consumption increase moderately
when |T | increases. A larger |T | results in more diversified door
ATIs and more active temporal variations of indoor topology. In
such a case, the construction of a distance cube may need to
involve more life intervals on its time dimension, incurring larger
memory cost and corresponding computation time. However, this
trend flattens when |T | grows at 12. At this point, the distance cube
has maintained enough life interval information, and therefore
increasing the number of checkpoints in T will not bring a sig-
nificant lift in the index construction costs. For a large |T | = 16,
IT-INDEX of 7.4 MB can be built within 1.25 hours.
Effect of TDR. We also measure the time and memory costs
of the index construction for different values of TDR. Referring
to Figure 10, the index construction time is insensitive to an
increasing TDR. Since the doors with temporal variations are
randomly picked out from the space, the topology in a local range
is not significantly affected by an increasing TDR. As the index
is constructed based on the shortest path search within each local
node, the construction time only changes slightly. On the other
hand, the index size in Figure 11 increases first and then decreases
when TDR becomes larger. In the beginning, the increase in TDR
diversifies the temporal variations of doors. Consequently, the
number of life intervals in the distance cube increases. When the
TDR is increased at a large rate, doors may open and close more
frequently at different times, resulting in that more pairs of doors
in the distance cube correspond to empty records. Therefore, the
index size decreases instead when TDR is larger than 60%.
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Fig. 11: Size vs. TDR
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Fig. 12: Time vs. Floor
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Fig. 14: NDV vs. Floor
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Fig. 17: NDV vs. T
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Fig. 18: Time vs. TDR
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Fig. 20: NDV vs. TDR
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Summary. Overall, the index construction time and index size
increase when the floor number and |T | increase. However, the
index construction cost is insensitive to the ratio of doors with
temporal variations. The index size is sometimes even reduced
when most doors are associated with temporal variations. These
findings disclose that our IT-INDEX design is effective at indexing
indoor venues with temporal variations.

5.1.3 Efficiency of Search Methods
We investigate the search time and memory cost of our proposed
methods (ITG/S, ITG/A, and ITI) and the baseline method (GTG)
under different parameter settings.
Effect of Number of Floors. Referring to Figure 12, GTG is the
slowest due to its large graph size, whereas ITI always outperforms
the others by an order of magnitude. Compared to its alternatives
that iterate on the IT-GRAPH for the shortest path search, ITI
can quickly construct a set of local shortest paths stored in the
relevant distance cubes of IT-INDEX. The precomputed results
in IT-INDEX help reduce the overhead of the online search even
when involving dynamic indoor topology changes. When the floor
number increases, the search time of ITI only increases slightly,
whereas that of ITG/S and ITG/A increases very rapidly. A larger
floor number leads to more partitions and doors in a more complex
IT-GRAPH structure, thus incurring more execution time for the
two methods to explore the next hop door based on graph topology.
In contrast, ITI only needs to search IT-GRAPH for a small number
of path junctions (i.e., the access doors) when necessary. The
explanation also applies to the trends of different methods’ NDVs

reported in Figure 14. Referring to the memory consumption in
Figure 13, ITI uses the least memory because it does not require
additional memory space for graph search. When the floor number
is up to 5, the memory cost of ITG/A is slightly higher than that of
ITG/S as ITG/A needs to maintain multiple versions of IT-GRAPH

corresponding to different checkpoints. However, when the floor
is greater than 5, ITG/A’s memory cost is smaller than ITG/S’s
because ITG/S has to search a much more complex complete
graph in this case. GTG requires more memory than ITG/S and
ITG/A because it visits more doors (i.e., nodes in its graph).

Effect of |T |. Referring to Figure 15, the search time of each
method is insensitive to |T | when query time t is fixed to 12:00,
a time nearly all doors in the space are open. In such a case,
adding more checkpoints to T has little impact on the graph
topology at query time. We add a group of tests with t fixed to
9:00. At this time, varying |T | makes the size of active doors
different, impacting the cost of graph search. Nevertheless, ITI still
outperforms the other two by an order of magnitude. Referring to
Figure 16, the memory cost of ITI is stable whenever at 12:00
or 9:00. When |T | is 4, ITI cost more memory than ITG/S and
ITG/A at 9:00. In this setting, there is nearly no route for the query
instances at 9:00 with many doors closed, so ITG/S and ITG/A
cost a few memory, whereas ITI stores the distance cube which
leads to more memory cost than others. The NDV in Figure 17
exhibit trends consistent with those in the search time reported
in Figure 15. Our experiments show that GTG always performs
the worst when varying |T |. We exclude GTG in Figures 15, 16
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and 17 to avoid distraction.
Effect of TDR. Referring to Figures 18 and 20, the search time
and NVD of each method are stable for t = 12:00 in different
settings of TDR. Compared to the testing for t = 12:00, the search
time and NVD for t = 9:00 decline because the topology are
reduced. When TDR increases to 80%, there is nearly no routes
for the query instances because more door are closed. In this case,
ITG/A costs less time than ITG/S due to reduced topology. Still,
ITI performs best in terms of the search time and NVD whenever at
12:00 and 9:00. Referring to Figure 19, ITI’s memory cost is less
than ITG/S and ITG/A. However, when TDR = 80% or 100%
at 9:00, ITI costs more memory than others because it stores the
distance cube, while ITG/S and ITG/A just cost a few memory
because it expands a few doors.
Effect of s2t. When we increase s2t, each method’s search time
increases slightly, as shown in Figure 21. A similar trend is seen
for the NVDs reported in Figure 22. Nevertheless, ITI can still be
several times faster than the other two, showing that the IT-INDEX

is very efficient in the shortest path search using the pre-stored
door-to-door information.
Effect of t. We also test the search methods’ performance at
different query times (t) in a day. Referring to Figure 23, the
search time of each method increases before t comes to 9:00 and
then decreases when t is over 18:00. In our setting, a large number
of doors have been closed for the time before 9:00 or after 18:00,
and the corresponding graph, i.e., IT-GRAPH or GTG, becomes
simpler due to the reduced temporal variations. On the contrary,
the graph structure becomes more complex when more doors are
open during the period from 12:00 to 15:00. A complex graph
structure costs ITG/A, ITG/S and GTG more time to search for
accessible doors. The time cost of ITI increases as well but more
slowly, as it only searches for a small set of access doors that
connect the local shortest paths. Referring to Figure 24, ITI’s
memory cost before 9:00 is the highest as it needs to maintain
an additional IT-INDEX. Between 12:00 and 15:00, the memory
costs of all methods stay constant because nearly all doors are
open and the indoor topology is relatively stable. After 18:00,
the memory costs of all methods decrease as the graph structure
becomes simpler. Referring to Figure 25, after 9:00, NDV grows
rapidly for ITG/S and ITG/A, especially for GTG because more
doors are open. In contrast, ITI’s NDV only increases very slightly
as it only needs to explore several access doors during its search.
Summary. In general, ITI always has the highest search efficiency
with the aid of IT-INDEX. It is faster than the other three by an
order of magnitude in most tests. The search time and memory
cost of ITI increase slowly when the graph topology becomes
more complex, whereas those of ITG/S, ITG/A and GTG increase
rapidly as these methods rely heavily on the graph search. More-
over, GTG performs the worst due to its large graph size.

5.1.4 Comparison of ITG/A and ITG/S
We scrutinize the difference between ITG/A and ITG/S. Two
parameters in our setting determines the number of close and open
doors, namely the temporal door ratio TDR and the checkpoint set
size |T |. We use the control variates method, which stipulates that
T is an empty set such that all temporal doors controlled by TDR
keep closed. This reduces the fluctuation of query search time due
to uneven distribution of ATIs. As a result, we can analyze the
impact of varying TDR on ITG/A and ITG/S.

We conduct the comparative experiments under the default
settings and report the results in Figures 26 and 27. As we can

see, both measures of ITG/A and ITG/S decrease steadily with an
increasing TDR. However, when TDR increases to 80%, i.e., 80%
doors are closed at a query time, ITG/A shows great advantages
over ITG/S in both search time and memory consumption. In
general, if there are many doors with temporal variations in
the space, ITG/A is more efficient because it involves search in
only several reduced graph instances maintained asynchronously,
without expensive on-the-fly door checks over the full topology
graph. Therefore, for usual scenarios without urgencies like a fire,
we recommend ITG/A with asynchronous checks.
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Fig. 27: Memory vs. TDR

5.2 Results on Real Data
We collect a dataset with real indoor topology and temporal vari-
ation information from a seven-floor, 2700m × 2000m shopping
mall in Hangzhou, China. There are ten staircases in which each
stairway between two adjacent floors is roughly 20m long. In
our setting, we treat all stores and equipment rooms as private
partitions, and hallways and staircases as public partitions. As a
result, we obtain 497 private and 553 public partitions connected
by 2093 doors. We set the default values of |T | and TDR as 8 and
60%, respectively, according to the real-world use of the mall.
It takes around 3.53 hours to construct IT-INDEX in a size of
14.3 MB for the whole space. We randomly select five pairs of
ps and pt such that the distances between each pair is roughly
s2t = 1500m. The default query time t is fixed to 12:00.
Effect of |T | on Index Size. We modify the checkpoint set T
by adding to or removing pairs of open and close times from it.
Figure 28 implies that the index size increases moderately with a
larger T . When |T | is 16, the size of IT-INDEX is 16.6 MB. The
indoor space in the real data contains more doors and partitions.
Thus, the index size is larger than that in the synthetic data.
Effect of TDR on Index Size. We also modify the fraction
of doors with temporal variations in the real data from 20% to
100%. Referring to Figure 29, the results are consistent with
the counterparts reported in Figure 11. The index sizes increase
first as TDR increases. When TDR grows to a certain extent, the
temporal variations of doors tend to be consistent and less life
interval information needs to be maintained in the distance cubes.
Effect of |T | on Search Time. We also investigate different
methods’ search efficiency by varying |T |. The search time is
reported Figure 30. ITI outperforms others significantly, whereas
GTG performs the worst in terms of the search time. The search
time of each method is insensitive to |T | as the queries are issued
at 12:00, a time nearly all doors are open.
Effect of TDR on Search Time. Referring to Figure 31, all
methods’ search time stays stable as a complete graph is used
at default query time 12:00. ITI can return the shortest path in less
than 3ms, clearly outperforming its alternatives. Still, GTG runs
several times slower than the others.
Effect of t on Search Time. Referring to Figure 32, the search
time of each method increases before t comes to 9:00, stays
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stable until t comes to 18:00, and then goes down after that.
Note that the search time of ITI only increases slightly when more
doors are added to the graph structure (from 9:00 to 18:00). This
indicates that ITI is not significantly affected by the change of
graph topology. Similar trend can be seen in ITG/S, ITG/A and
GTG, but GTG always needs more time than the others.

6 RELATED WORK

Indoor Spatial Queries. Indoor spaces feature multiple entities
like doors, walls, and rooms, altogether forming a complex topol-
ogy that complicates distance-aware queries. Becker et al. [7]
propose an indoor symbolic model with semantic descriptions for
indoor entities and study the route planning problem based on the
proposed model. Li et al. [15] propose a lattice-based semantic
location model that keeps the semantic relationships and distance
in each location-exit lattice to support the navigation in indoor
spaces. Yuan et al. [31] propose a model to construct a wayfinding
network that is based on the geometry of the indoor space and that
supports length-dependent optimal routing. Goetz and Zipf [11]
define a weighted indoor routing graph with semantic information
to create a detailed and user-adaptive model for route search. Lu
et al. [19] propose a distance-aware indoor space model and an in-
dexing framework to facilitate distance-aware queries. To speed up
distance-aware indoor path finding, Shao et al. [26] design IP-tree
and VIP-tree that enable more aggressive pruning. VIP-tree also
supports indoor trip planning based on neighbour expansion [25].
Luo et al. [20] study the time-constrained sequenced route query
(TCSRQ) in indoor space. The result of TCSRQ considers the
stay-time period and types of indoor locations. Alamri et al. [4]
propose a cell-based index structure (C-tree) to group and manage
updates of indoor moving objects based on hop counts. As it does
not support indoor walking distances, C-tree cannot apply to the
shortest path problem studied in this paper. Many other indoor
spatial queries [28], [29], [30], [32] such as range queries and kNN
queries have been also studied for indoor spaces. However, none
of these works consider temporal variation information associated
with indoor entities, and thus they all fall short in solving the
problem studied in this paper.
Temporal Graph Queries. Temporal variations have been con-
sidered on graph structure in which the connections between
vertices are active at specific times [21]. Huo et al. [14] analyze
and evaluate shortest-path queries on evolving social graphs.
Semertzidis et al. [22] study the historical reachability queries
on evolving graphs. In the same setting, Semertzidis et al. [23]
study three general types of historical queries, namely, historical
graph queries, historical time queries and historical top-k queries.
Semertzidis et al. [24] use a compressed time neighbourhood and
path index to find the durable matches of an input pattern on the
temporal graphs. Akiba et al. [3] study the shortest-path distance
queries on large time-evolving graphs by using two dynamic
indexing schemes. Huang et al. [13] investigate the properties of

temporal DFS and BFS, and propose efficient algorithms for route
query in a temporal graph. Hirsch et al. [12] propose a method
for routing of information over dynamic communication networks.
These works, mainly oriented to social graphs or communication
networks, can support the shortest path query by setting the cost
as the edge weight.

There are also some temporal graph queries specific to phys-
ical spaces. Ding et al. [9] propose time-dependent algorithms to
find the minimum-travel-time path from a start point ps to an end
point pe with the best departure time relative to the current query
time tc. Ardakani et al. [5] propose an adaptive approach to solve
the dynamic shortest path problem. In the same setting, Ardakani
et al. [6] design an A∗ algorithm using the decremental approach
to speed up the shortest path query processing in dynamic net-
works. Wei et al. [27] propose an efficient distance and path oracle
on dynamic road networks using the randomization technique.

However, these aforementioned techniques cannot resolve
ITSPQ directly due to two reasons. First, those social-graph
oriented works [3], [12], [13], [14], [22], [23], [24] do not sup-
port the impact of travel time in the dynamic graph search, i.e.,
when an object arrives at a node (a door in our setting) at a
particular time, the node may already be invalid. As a matter
of fact, the existing techniques make use of a static snapshot
of the evolving graph for query processing. Second, none of the
aforementioned techniques [5], [6], [9], [27] consider the indoor
semantic information (e.g., private/public partitions and doors)
that further complicates the query processing. We might model
the indoor building as the aforementioned general temporal graph
(time-evolving graph), i.e., all doors are modeled as nodes labeled
with type (private or public) and active time intervals, and each
edge is labeled with distance. However, this way falls short in
our problem setting. It fails to represent the door directionality
information directly. Also, such a general temporal graph results
in many door-to-door edges for the same partition, which will
render the graph based search inefficient.

7 CONCLUSION AND FUTURE WORK

In this paper, we study the shortest path queries for indoor venues
with temporal variations. Given a start point ps, a target point pt,
and a current time t, an indoor temporal-variation aware shortest
path query ITSPQ(ps, pt, t) returns the valid shortest path from ps
to pt. We present a set of techniques to answer ITSPQ efficiently.
First, we propose a graph structure (IT-GRAPH) that integrates
the indoor temporal variations of doors into the indoor topology
and design a Dijkstra-based framework to answer ITSPQ with
IT-GRAPH. Under the framework, two different versions of al-
gorithms are devised to check doors accessibility synchronously
and asynchronously. Furthermore, we propose an index structure
(IT-INDEX) that extends the state-of-the-art index significantly
by storing dynamic door-to-door distances in a compact distance
cube associated with tree nodes. An IT-INDEX based algorithm
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is also devised to answer ITSPQ. The extensive experiments
demonstrate that our IT-INDEX based method is the most efficient
for processing ITSPQ as it materializes partial but critical shortest
distance information in the corresponding tree nodes.

For future work, it is relevant to consider allowing waiting
times for the doors to open while minimizing the total time to
the destination. It is interesting to support other practical issues
such as service time and capacity of elevators. Also, it is useful
to support other query types (e.g., range query and distance-aware
join) using our indoor temporal-variation aware structures.

ACKNOWLEDGMENT

This work was supported by Independent Research Fund Den-
mark (No. 8022-00366B), Australian Research Council (No.
FT180100140 and DP180103411), Hong Kong RGC Projects (No.
12200817 & C6030-18GF), and Guangdong Basic and Applied
Basic Research Foundation (No. 2019B1515130001).

REFERENCES

[1] Human average walking speed. https://en.wikipedia.org/wiki/Walking.
Accessed October 1, 2019.

[2] Floorplan for a shopping mall. https://www.deviantart.com/mjponso/art/
Floor-Plan-for-a-Shopping-Mall-86396406. Accessed October 1, 2019.

[3] T. Akiba, Y. Iwata, and Y. Yoshida. Dynamic and historical shortest-path
distance queries on large evolving networks by pruned landmark labeling.
In WWW, pages 237–248, 2014.

[4] S. Alamri, D. Taniar, K. Nguyen, and A. Alamri. C-tree: efficient cell-
based indexing of indoor mobile objects. Journal of Ambient Intelligence
and Humanized Computing, pages 2841–2857, 2020.

[5] M K. Ardakani, and L. Sun. Decremental algorithm for adaptive routing
incorporating traveler information. Computers & operations research,
pages 3012–3020, 2012.

[6] M K. Ardakani, and M. Tavana. A decremental approach with the A*
algorithm for speeding-up the optimization process in dynamic shortest
path problems. Measurement, pages 299–30, 2015.
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