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Abstract—Mechanisms for dynamically adding and remov-
ing Virtual Machines (VMs) to reduce cost while minimizing
the latency are called auto-scaling. Latency improvements
are mainly ful�lled through minimizing the “average” re-
sponse times while unpredictabilities and �uctuations of
the Web applications, aka �ash crowds, can result in very
high latencies for users’ requests. Requests in�uenced by
�ash crowd su�er from long latencies, known as outliers.
Such outliers are inevitable to a large extent as auto-scaling
solutions continue to improve the average, not the “tail” of
latencies. In this paper, we study possible sources of tail
latency in auto-scaling mechanisms for Web applications.
Based on our extensive evaluations in a real cloud platform,
we discovered sources of a tail latency as 1) large requests,
i.e. those data-intensive; 2) long-term scaling intervals; 3)
instant analysis of scaling parameters; 4) conservative, i.e.
tight, threshold tuning; 5) load-unaware surplus VM selection
policies used for executing a scale-down decision; 6) cooldown
feature, although cost-e�ective; and 7) VM start-up delay. We
also discovered that a�er improving the average latency by
auto-scaling mechanisms, the tail may behave di�erently,
demanding dedicated tail-aware solutions for auto-scaling
mechanisms.

Index Terms—cloud computing; auto-scaling; tail latency;
resource provisioning; performance evaluation

I. Introduction

With the advent of cloud computing, an increasing number

of services are now hosted and deployed on the cloud.

Application providers o�en host web applications along with

other applications in Virtual Machines (VMs) running in

cloud service infrastructures like Amazon EC2 and Microso�

Azure to provide services to end-users. �ey pay the cost

of Web server, Application server, Database server, Storage

and so on as much as they actually use, in contrary to

traditional solutions requiring considerable up-front cost [1].

�e elasticity feature of cloud, by which the numbers of VMs

can dynamically be added/removed using an auto-scaling

mechanism, has further encouraged application providers to

use cloud VMs [2]. Auto-scaling’s main goal is to prevent

both over- and under-provisioning of computing resources

[3]. �ese mechanisms are utilized for many purposes in-

cluding cost reduction, VM performance optimization, and

most importantly guaranteeing �ality of Experience (QoE)

for end-users interacting with the application [4]. One of

the critical QoE metrics for the Web users is latency [5]. �e

latency for a user’s request is calculated from the issue time

to the time the response is returned back to the user.

High latency can severely impact businesses. Every 100ms

increase in the page load latency decreases sales by 1% [6].

An expert from Google believes that “users really respond to

speed” [7], meaning that the higher the latency the lower the

visits to a Website. �erefore, studying the causes of latencies

is important.

Latency optimization using auto-scaling mechanisms in

terms of the average is well-understood in the cloud com-

munity. Researchers mostly take the results of averages of

latencies as a major factor for evaluating their auto-scaling

solutions [1]. Looking at the literature [4], [8], it is

clear that the improvement of latency, especially in average,

by resource auto-scaling has been rigorously investigated.

However, auto-scaling using the average is not su�cient for

achieving low latency.

It is reported that, while optimization solutions can reduce

the average latency, one out of a thousand user requests will

still su�er from an unacceptable delay [9]. In other words,

when a �ash crowd happens, i.e. a surge in the workload

occurs, it is more likely that a number of users’ requests

experience very high latency (even 10X higher) even though

the average latency is being optimized. �ese requests are

called outliers. Exploring and studying �ash crowds and

subsequently such outliers require understanding the Tail
Latency concept [5].

�e term tail latency originates from statistics and refers

to the distribution and frequency of outliers in a distribution

(i.e., the values that are really far from the mean). Note that

in statistics, tail refers to outliers on both sides of the mean.

In this paper, we only consider the outliers with high latency

since the main concern is mostly in this area [9].

�e e�ciency of an auto-scaling mechanism from the

viewpoint of mitigating such outliers can be evaluated using

tail latency metrics. It is also apparent that common solutions

for average latency, although e�ective, cannot guarantee

shorter tail latency [9]. �ere is a considerable recent discus-

sion about tail latency optimization in cloud environments,

ranging from task scheduling [10] to load balancing [11],

[12], but the impact of auto-scaling has not been investigated

yet, to the best of our knowledge. Note that the latency for

outliers—with 99.9th percentile latency—is orders of magni-

tude worse than the average [9]. Hence, the study of tail

latency for auto-scaling mechanisms deserves more a�ention.

In this paper, the issue of tail latency in auto-scaling

mechanisms is extensively investigated. First, we answer the



following questions:
• How does an auto-scaling system work?

• What is the tail of latency in statistics?

• What are potential components and features of the web

applications auto-scaling mechanisms which can be the

sources of tail latency?

• What are the solutions for these tail latency sources?

�en, we contribute to the literature by the following:

• Investigating and discovering potential sources of tail

latency in cloud auto-scaling mechanisms,

• evaluating if the tail has di�erent behavior than average

latency, and

• conducting a series of experiments to evaluate the

sources of tail latency under real-world workload.

Methodology/Roadmap. To answer the aforementioned

questions, we �rst dissect auto-scaling mechanisms to know

how they work and what are the possible causes of tail la-

tency, thereby raising several questions about possible tail la-

tency sources by reviewing related work (Section II); in sum-

mary, discovered sources are sevenfold: the Web requests’

size, scaling interval, analyzing method, threshold tuning,

surplus VM selection policy, cooldown feature, and VM start-

up delay. �en, the sevenfold concerns are comprehensively

evaluated through real implementation on OpenStack and

utilizing Mediawiki as the Web application along with real-

world Wikipedia traces as workload (Section III). Tail-related

metrics such as Percentiles, Skew and Kurtosis to discover

sources of tail latency are evaluated (Section III). A�er the

evaluations, the signi�cance of such sources are measured

using statistical approaches and discussed in Section IV.

Finally, we draw our conclusions in Section V.

II. Sources of Tail Latency in Auto-scaling

In the cloud environments, cloud providers, application

providers, and end-users are three main stakeholders (see Fig.

1). �e application provider utilizes two main components to

serve the Web application: data management for balancing

the load and resource management for resource auto-scaling

(with four phases), which will be discussed in the following.

A. Data Management

Data management mainly depends on the type of incoming

workload (e.g. transaction or batch mode) and load balancing

methods. Workload for the Web applications is transactional,

meaning that there are many requests that iteratively arrive

and the load balancing component is responsible for submit-

ting them to the corresponding VMs.

1) Load Balancing: Research [9] has claimed that the size

of requests may be a source of tail latency; that is, they

believe if requests are large and require more resource/data

to be returned back to the user, they may cause tail latency.

However, the impact of this ma�er when investigating auto-

scaling mechanisms is unclear yet. Q1: Is the size of requests
a ma�er of concern for tail latency?
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Fig. 1. �e architecture of auto-scaling systems in cloud.

B. Auto-scaling

To systematically study the potential sources of tail latency

in an auto-scaling mechanism for Web application, it is im-

portant to categorize necessary activities into distinguished

phases to make the process understandable. MAPE-K concept

introduced by IBM [13], which refers to the mechanism

acting based on Monitoring, Analyzing, Planning, Executing

and pu�ing the data into a Knowledge-based repository,

can perfectly ful�ll this goal. In the following sections, the

lifecycle of an auto-scaling mechanism is fully reviewed and

the potential sources of latency are discussed.

1) Monitoring: When it comes to an auto-scaling mech-

anism, the �rst phase is monitoring which is responsible

for collecting necessary information from the whole environ-

ment, ranging from the VMs’ status to end-users’ QoE status,

through sensors. It is apparent that the more the sensors,

the more the possibility for accurate decision-making in the

mechanism. �e sensors performance and elements involving

in the monitoring demand speci�c investigations which are

out of the scope of this work. However, running an auto-

scaling mechanism, we must decide on the period of time

on which the whole mechanism should be executed which

is called scaling interval (SI). �e SI indicates the frequency,

usually in minutes, at which the auto-scaling cycle should

be repeated. �e monitoring interval is not necessarily equal

to SI. �e SI equals 1 to 12 minutes were used in recent

works [14], but they never investigated as to whether this

time can have any relationship with tail latency. Q2: Is there
any connection between SI and tail latency?

2) Analyzing: In the second phase, the analyzer analyzes

the data collected by the monitor to be used as decisions-

making parameters. �ese parameters include response time,

resource utilization, number of VMs, incoming load, Ser-

vice Level Agreement’s status, etc [15]. Some researchers



who mainly focus on the decision-making, not analyzing,

reactively pass the raw data (i.e. the latest observation),

to the decision-making phase while others adopt proactive

analyzing methods like Moving Average (MA), Weighted

Moving Average (WMA), Single/Double Exponential Smooth-

ing (SES/DES) [14], or even Arti�cial Neural Networks,

pass the prediction of observations to the decision-maker

[2], [14]. �ose not considering complex/proactive analyzing

justify that their solution is more agile, is independent of

the previous observations, and has low overhead. Advocates

of utilizing proactive methods, however, claim that they will

reach more accurate and reliable decisions. Proactive methods

for analyzing parameters, like response time, can predict the

future growing trend for the parameter, helping the auto-

scaler to provision, or at least be prepared for provisioning

resources in advance, resulting in preserving QoE for end-

users. Q3: Does the way we analyze the monitored data can
impact the tail latency?

3) Planning: Having analyzed the parameters, the scaling

decision-maker, i.e. planner, comes into play to decide on

scaling-up or down. It evaluates if the resources are less than

required or higher. �is phase of MAPE is also known as

resource planning or capacity planning. If the resource, i.e.

VMs, are less, the planner will announce a scale-up decision,

and vice versa. In horizontal scaling, we focus on the number

of VMs while, in vertical scaling, the resources of a VM are

manipulated, in accordance to the scaling decision. In case

of horizontal scaling, the step-size parameter indicates how

many VMs should be added/removed as a result of a scaling

decision [2].

Importantly, to reach scaling decisions there are di�er-

ent methodologies including: analytical modelling, machine

learning and rule-based [2]. �e �rst two approaches can

result in proactive and provident decisions. For instance,

Learning Automata used by [15] and arti�cial neural net-

works used by are common, wherein the planner can regard

past, current, and future status of parameters. Rule-based

approaches, however, are most popular in the community

wherein a set of rules, like if-else, are de�ned, and their

conditions at every time of scaling can reactively result

in a decision [16]. As examples, distinguished parameters

like CPU utilization and response time, the combination of

parameters through Fuzzy-based or Decision-Tree models can

be evaluated. Technically, there is a need for threshold tuning

to specify when we must interpret the situation as the time to

make a scale-up, scale-down, or none decision. For example,

if the planner sets a rule for evaluating CPU utilization, it

needs a pair of prede�ned thresholds for scale-ups and scale-

downs. �is is to de�ne conditions for triggering scaling

decisions. Looking at related works [2], [17], there is no

consensus on the pair of thresholds to be used, as di�erent

range of thresholds for scale-up, e.g. 70, 80, 85, or 90%, and

scale-down, e.g. 40, 30, 25, 20, or 10% has been assigned.

Although threshold tuning analysis was performed by [18],

they did not analyze it for tail latency. Q4: Does the threshold
tuning has any impact on tail latency? How?

4) Executing: Executor plays the role of a broker between

application provider and cloud provider to perform the an-

nounced decision using provided APIs in cloud. �is process

is done by requesting to release or launch new VMs in

horizontal scaling, or allocating or de-allocating resources,

like CPU cores, to an already rented VM in vertical scaling.

�ere are three technical points residing in this phase that

potentially can be causes of tail latency: surplus VM selection

policy, cooldown time, and VM start-up delay; the �rst is

related to executing scale-down decisions and others to scale-

up decisions.

Surplus VM selection policy comes to play when executing

a scale-down decision and seeks for the due VM to be selected

as the surplus. Assume that the application is hosted on the

cloud using 8 VMs and now the executor has decided to

execute a scale-down decision, so it must select a VM among

eight as surplus to be released. Here, the question of which

VM to select is raised. Amazon EC2 default policy takes the

age of VMs into account, that is selection of the oldest [4]; in

[17], selection of the youngest is proposed. Further studies

discuss load-aware, selecting the VM with the lowest load

to reduce failed requests, or cost-aware, selecting the VM

whose renting time is equal or close to its billing period [1].

Cost-aware policy has the root to the billing cycle de�ned

by cloud providers where they count a partial time as a full

billing cycle. For instance, Amazon EC2 has an hourly billing

cycle and partial usages, e.g. 10 min, are considered one hour,

so a cost-aware policy seeks for the most cost-e�cient VM.

Studies consider only the role of surplus selection policy in

either request failure or cost reduction. Q5: Can the surplus
VM selection policy in�uence the tail of latency?

Cooldown time, or cooling time [2], is another feature

resided in the executor to reduce the overhead of the

mechanism. Since the planner may, because of ine�cient

design, iteratively decide on scaling-up while unnecessary, a

cooldown time between decisions is required. Such decisions

can stem from the lack of awareness about the VM start-up

delay. For instance, assume the planner decides on scaling-

up now and the VM is to be launched 6 min later (because

of start-up delay); at the next SI, if shorter than 6 min,

the planner will again decide on scaling-up because it is

unaware that the requested VM is about to be launched.

Hence, application should keep track of requested VMs.

Such iterative decisions can result in contradictory decisions,

negatively a�ecting the cost, so intelligent mechanisms are

equipped with a feature called cooldown which is responsible

for neutralizing the subsequent scale-up decision. Cooldown

has a time, usually equal to SI or VM start-up time, and

during this period prevents the executor from any scale-up

decision. While having positive impact on the cost, its e�ect

on tail latency needs to be investigated. Q6: Is cooldown time
a source of tail latency?

VM start-up delay is a technical obstacle in the real-world

usage of cloud resources [19]. When the executor asks the

cloud provider to launch a VM, the VM requires to pass

initial stages like allocating physical resources, launching,
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and deploying the application to be then ready and available.

�is is called VM start-up delay which is either neglected in

simulation-based research [20], or assigned a static value as

in [21]. In a real-world scenario, this delay is dynamic and

considered the time of day the VM is requested, the step-size,

the con�guration of the VM, the renting type (on-demand,

reserved, or spot), etc. For example, the start-up delay for a

Large VM with 8 cores in Amazon Ec2 is by far longer than

for a Micro VM with just 1 core. �is is the case for step-size

as well; cloud resource allocator can surely �nd resources for

1 VM faster than for 3 VMs, for instance. Start-up delay is

rarely considered to be dynamic, e.g. in [1], in simulation-

based experiments. Regardless of the experimental test-bed,

real cloud or simulator, the role of this technical obstacle in

tail latency has never been investigated. Q7: Can VM start-up
delay, either static or dynamic, be a source of tail latency?

III. Tail Latency Evaluation

�e discussed auto-scaling features are evaluated in the

following sub-sections, to investigate their possible impact

on tail latency. We conduct extensive experiments using

an OpenStack platform which is deployed on a cluster of

physical hosts in DisNet laboratory at Monash University.

Architecture of the test-bed is shown in Fig. 2.

In cloud provider layer, OpenStack is providing VMs

in di�erent sizes and allowing us to launch/destroy VMs

using its APIs from our auto-scaler to communicate with.

Each communication requires the auto-scaler to establish the

authentication and receive a valid token to be able to use

OpenStack APIs.

In application provider layer, a three-tier web application

(Client, Application, and Data storage) is deployed as well

as the auto-scaling mechanism. Each tier is deployed on a

separated VM while the VMs in application-tier are supposed

to be horizontally scaled up/down. �e client-tier is directly

in connection to the end-user where it receives HTTP re-

quests and distributes them among the VMs in application-

tier to be processed and then delivers responses to end-

users. �e HAProxy (version 1.6) installed on an m1.medium

VM is acting as the load balancer. �e load balancer dis-

tributes requests in a load-aware manner (prioritizing the

VM with the least connections, leastconn). In the application-

tier, an installed Linux, Apache, MySQL, PHP (LAMP) Server

hosts the Mediawiki (version 1.30) application on its Apache

Server (version 2.4.18). Since the auto-scaler is supposed to

instantiate VMs representing application-tier, we created a

snapshot of our pre-con�gured application server which has

the Mediawiki already installed and requires the m1.small
�avor at least. Utilizaing m1.small VMs with low computing

power results in more auto-scaling decisions, whereby the

auto-scaler will be well-stressed. Technically, each newly

instantiated VM in the application tier needs to recon�gure

its Mediawiki by adding its IP to the con�guration �le in

advance. �is is done by placing a bootstrapping shell script

in the snapshot which is being run at start-up time. Another

shell script running at the startup is the CPU utilization

logger that at every single second will collect the system-level

CPU usage for all cores using the sar tool (i.e. sar –u 1 1) and

will append it to a �le to be read by the monitoring phase

of the auto-scaler. �e data storage-tier is realized using an

m1.xlarge VM storing the dumps of English Wikipedia in its

MYSQL, containing roughly 7 million wiki pages.

Our auto-scaler program, wri�en in Java (available on

GitHub
1
), will continuously monitor requests’ rate, and re-

sponse time of the application-tier VMs measured using

HAProxy on the client-tier VM by calling HAProxy APIs.

Also, CPU utilization of the VMs are collected. Note that

CPU usage is highly variable and making decisions only by

relying on just one observation would not be justi�able. To

make the measurements more accurate, �rstly, for each VM,

the average of all cores are measured; secondly, at least the

average value for last 30 seconds is included; and thirdly, the

monitor passes the CPU usage average for all VMs to the

analyzer phase. A�er monitoring, the analyzing and planning

phases are called to analzye the monitored data and to make a

scaling decision with the step-size of 1 using load-aware rule-

based algorithms. Upper and lower thresholds are assigned

for CPU and workload according to the collected pro�ling

data. �en, executor performs scale up/down decisions by

calling the OpenStack APIs. �e executor also re-con�gures

HAProxy to update, i.e. add/remove records, the list of

application-tier VMs a�er each decision. Once a scale up

decision is performed, a new VM, which is to be added to the

application-tier, is created from a snapshot, having installed

the Mediawiki.

At the top layer, an m1.medium VM having Wikibench [22]

installed is emulating end-users’ behavior. Wikibench is a

Java-wri�en benchmark tool which reads the traces of access

to Wikipedia website and sends to the Mediawiki application.

In the literature, experiments with the workloads at the scale

of seconds and minutes are mostly performed [23] while the

web applications with sever �uctuation would not be well-

stressed at that scales. We collect a 4-hour trace containing

2% of all requests sent to the Wikipedia website worldwide

(roughly 1.4 million HTTP requests) to ensure the reliability

1
h�ps://github.com/aslanpour/auto-scaling-in-openstack



of our results. �e characteristics of all Linux-based VMs

(Ubuntu Xenial 16.04) used in this research are summarized

in Table II.

Having prepared the test-bed, the tail analysis of seven

distinct features of auto-scaling is performed here. Met-

rics of importance, which are considered here, include: the

percentile, average, standard deviation (SD), skewness, and

kurtosis of latency. To make our analysis more understand-

able, we categorize the percentiles and name them as: Low,

medium, high, and very high percentile (see Table I). �e very

high percentile has recently been considered very important,

yet challenging to minimize, for cloud latency optimization.

To supplement the discussions, parameters like CPU utiliza-

tion, cost and total scale up decisions are evaluated as well

(by brie�y reporting without visualizing).

TABLE I: Naming each measure of percentiles.

Name/Degree Low Medium High Very High

Percentile Rank 50th 75th 90–95th 99–100th

TABLE II: �e characteristics of the VMs

Flavor VCPUs Memory (GB) Disk (GB)
m1.small 1 2 20

m1.medium 2 4 40

m1.xlarge 8 16 160

A. E�ect of Size of Web Requests

Initially, we investigate the tail latency changes when the

size—or data requirements—of user’s requests varies. It has

been claimed that larger requests can cause more tail latency

[12] in general. To evaluate the consequences of requests’

size, we manipulate Wikibench so it substitutes all HTTP

request addresses within the Wikipedia traces with a speci�c

tiny, small, large, and very large request per experiment,

requesting 5000, 18000, 40000, and 90000 bytes of data,

respectively. �e larger the requests are, the higher the tail

latency will probably be. �e necessity of such evaluations

for auto-scaling mechanisms has been elaborated in [1].

According to Fig. 3 and 4, the general pa�ern of

the results demonstrates that larger requests deteriorate the

tail of latency although the mechanism is taking care of

all requests with the same con�guration. �is is because

the larger requests do not only require fetching more data

from the data storage-tier, but also demand more processing

time in the application-tier. �e tiny requests are answered

promptly. �e only exception in this pa�ern was seen where

the low, medium and high percentiles for large requests are

higher than that of very large. �is might be because of the

processing requirements of the HTTP requests which can be

CPU-intensive. In other words, assuming two requests, both

requesting the same amount of data but one is connecting

to the data storage-tier and another to both data storage-

and application-tiers, being CPU-intensive as well as data-

intensive. �e second would certainly sustain more latency.

Although out of the scope, it is worth mentioning that the

tiny and small requests increased the number of scaling

decisions than others. Looking at Fig. 4, the increasing

trend, once the requests’ size goes up, is seen as well.

Noteworthy, we clearly see that the tail (Fig. 3) and the

average (Fig. 4) can behave di�erently, particularly for the

large requests, re�ecting the paramount importance of tail

speci�c evaluations. More interestingly, the SD’s values are

also behaving di�erently when compared to the tail and

average.

FINDING 1: Large requests in�uence the tail latency,

especially when they are CPU-intensive as well, since they

demand the communication with the whole application tiers.

B. E�ect of Scaling Interval

Scaling interval (SI) is a challenging parameter to be set

because each application workload and even VM type may

require speci�c interval period to be set for its auto-scaling

mechanism [2]. Leaving aside the way we can set the optimal

value for SI, here we study the tail-related impact of di�erent

intervals including: short-term (2 min—close to the VM start-

up delay), mid-term (4 min), and long-term (8 min). �is range

of SI is based on the VM start-up times studied by [19].

Fig. 5 and 6 illustrate the impact of SIs on latency.

Once the SI increases, the latency in terms of the tail, avg

and SD goes up, regardless of rare exceptions. �is trend

becomes stronger when it comes to very high percentiles.

Weak performance of long-term SIs has the root to the late

reaction of the auto-scaler to workload variation. Also, when

the auto-scaler makes irrelevant decision by mistake, the

consequences would be alleviated by short-term SIs while

long-terms fail to. More than 30 scaling decisions were made

for the short-term SI while it was only 15 and 10 decisions

for the mid-term and long-term SIs, respectively. Furthermore,

late reaction of auto-scalers with long-term SIs is revealed by

investigating the average CPU utilization where the results

showed 70, 80, and 84% of CPU usage for short-, mid-, and

long-term SIs, respectively. �is witnesses that with long-term
SIs the workload is more accumulated on VMs resulting in a

higher CPU usage. Analyzing the shape of distributions, they

were rather equally long-tailed (positively-skewed), but the

kurtosis value reveals the reason why long-term SIs failed.

Kurtosis for the short-term SI (= 3) represents a distribution

with the tendency to be more light-tailed while for mid-terms
and long-terms was 7 and 8, respectively, representing heavy-

tailed distributions with many outliers who are the main

cause of their weakness in very high percentiles. While the

long-term SI is representing the largest latencies in terms

of the tail, it stands in the second rank when it comes to

the average latency evaluations (see Fig.6). �is is true in

terms of the SD evaluations, particularly indicating the need

for tail-speci�c solutions for SI selections. It teaches us that

when selecting the SI, the engineer has to decide on its main

performance goal. If they plan to avoid the long tail latencies,

they have to avoid the long-term SIs; otherwise, if they plan

to avoid the longer average latencies, they obviously have to

avoid the mid-term SIs. One may argue that why not always



selecting the short-term SIs? �e clear answer is that the

overhead they impose on the mechanism can be signi�cant.

Moreover, technical designs may force the engineers to adopt

the longer SIs.

FINDING 2: SIs can be a major cause of latency variation,

although valid reasons for other applications generating

batch workload, not transactional, are worth investigating.

C. E�ect of Analyzing Method

�e parameters contributing to the scaling decision-

making can either reactively obtain their values from the

current monitored data (instant analysis), or proactively

obtain a bunch of monitored data from both current and

past observations. �e real impact of each method on the tail

latency is still an unanswered question. Simply considering

the latest value, for example current CPU utilization or

request rate, is less aware of the �uctuations. However, it

is expected that more intelligent data analyzing methods

like MA, WMA and SES methods can positively improve the

auto-scaling, thereby reducing the tail latency. Hence, this

issue is investigated here to compare the impact of raw data

(just considering the latest observation) and some analytical

methods on the tail of latency.

Looking at Fig. 7 and 8, analyzing methods like MA,

WMA, and SES ful�lled lower latency in terms of the average,

SD, and tail, respectively with minor exceptions compared to

the simple approach that does not consider these methods.

�e di�erence gets very large when it comes to very high

percentiles. Simple analyzing method expands the tail, and

the data con�rms the importance of adopting more com-

plex analyzing methods, instead of just considering current

variable observations. Looking deeper at the mechanism’s

performance, we observed 22, 14, 11, 8 scaling decisions

when using the SIMPLE, MA, WMA and SES methods,

respectively. �is once again con�rms that the more complex

the analysis method is, the less scaling decisions it has to

take, subsequently lees incorrect decisions will happen. Such

an improvement happens even when our selected analyzing

methods are not that intelligent. �is would be expected

to increase even more when more complex statistical and

machine learning methods are used as analyzers. Our further

analysis revealed that the direction and shape of the distri-

butions are positively-skewed (long-tailed) and heavy-tailed

(Kurtosis > 0) under all analyzing methods.

FINDING 3: �e more accurate the analyzing method is,

the less tail and even average and SD for latency will be.

D. E�ect of �reshold Tuning

�resholds for parameters contributing to auto-scaling

decision would be other possible sources of tail latency if

not properly tuned. Here, we investigate the role of three

commonly-used [1], [4], [15] strategies including loose,

moderate, and tight thresholds. According to our pro�ling

data each VM can handle a maximum of 10 requests per

second simultaneously with an acceptable performance. �e

loose, moderate and tight thresholds are set as 7-4, 8-3, and

9-2 running requests per VM, respectively, for scale-up and

scale-down decisions. For instance, tight thresholds result in

scale-up decisions if the observed value for requests’ rate is

higher than 9 and result in scale-down if it is lower than 2.

Fig. 9 and 10 demonstrate that the tight strategy reduces

the latency at low and medium percentiles but the improve-

ment is not signi�cant. However, the loose and moderate
strategies can remarkably reduce the tail of latency when

it comes to high and very high percentiles. �is success is

largely because of the early reaction to the growing behavior

of scaling parameters like requests’ rate. For instance, when

the incoming workload is growing, the loose strategy would

result in a scale up decision once the requests’ rate is more

than 7 while a tight strategy would wait until it reaches

9 requests. Scaling up a�er reaching 9 requests per VM

would make the under-test VMs saturated and subsequently

su�ering from the delay in the starting-up of the requested

VM increases the tail of latency. �e average and SD of

latency also support this claim that the tight strategy imposes

higher tail latency. It is noticeable that, while e�ective in tail,

the loose one has repercussions in terms of the cost of renting

VMs as, being sensible to workload variation, it acts to

provision and deprovision more resources. �e loose strategy

resulted in provisioning 19 VMs while this was only 8 for the

tight, which resulted in 15% increase in the cost by applying

loose strategies. Fourteen VMs were provisioned when using

the moderate thresholds. Note that this analysis demonstrates

that looser tuning of thresholds is more tail e�cient, not

merely the studied thresholds, as these are selected according

to pro�ling investigations. Again, the direction and shape of

the distribution for response times were of positively long-

tailed and heavy-tailed families.

FINDING 4: A conservative, i.e. tight, threshold tuning

can considerably increase the tail of latency, particularly the

very high percentiles, while loose tuning decreases it.

E. E�ect of Surplus VM Selection Policy

Surplus VM selection comes to play once a scale-down

decision is to be executed. �is selection may a�ect the

performance of auto-scaling mechanism, at least in terms of

the cost which is con�rmed by [1]. However, its e�ect on

the tail latency needs more investigation. Here, four distin-

guished and commonly used policies are studied including:

the Youngest, Resource-aware, Load-aware, and Cost-aware. To

calculate the relative cost for VMs, the Amazon on-demand

pricing model is used [4].

�e obtained results, in Fig. 11 and 12, overall witness

that this feature can considerably impact the tail, particularly

for the high and very high percentiles. �is selection can

technically in�uence the latency if aware of the load on

VMs as the load will be postponed as a result of scale-

down actions. Hence, it is obvious that the Load-aware policy

performs be�er. �e Resource-aware policy is also indirectly

aware of the load and reduces the tail. �is is because the

Resource-aware is selecting the VM with the lowest CPU

utilization. �e CPU utilization here represents the number
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Fig. 8. �e impact of analyzing methods on

average and SD (Standard Deviation) latency.

of running requests as the major application running on

the Web servers is the Mediawiki. �e Cost-aware and the
Youngest fail to reduce the tail as they are unconscious of the

load on VMs although the Cost-aware managed to ful�ll its

promises as cost-reduction. Another observation is that while

the tail (in very high percentiles) and SD evaluations con�rm

the same order for the policies’ performance, the average

evaluation’s results (see Fig. 12) are behaving di�erently,

indicating the need for average speci�c solutions for the

optimization in this component. Precisely, in order for the tail

of latency optimization, the Load-aware and Resource-aware
work well while for the average of latency optimization the

Load-aware and the Youngest policies work well. �e SD is

behaving the same as the tail in this experiment.

FINDING 5: Surplus VM selection policies can in�uence

the tail of latency when not aware of the load on the VMs.

F. E�ect of Cooldown Time

We here compare auto-scaling mechanisms with enabled

and disabled cooldown times to investigate cooldown impact

on tail latency. It is expected that enabled cooldown can be

cost-saving, but its e�ect on the tail latency is unknown.

�e results in Fig. 13 and 14 show that cooldown-

enabled mechanisms can deteriorate the tail, average and SD

of latency. �e tail of latency increased remarkably when

cooldown feature was enabled, i.e., ON. �is gap becomes

wider for very high percentiles, around 4x longer tails.

�e reason for this is that once a surge in the incoming

workload occurs, the mechanism may need to perform sub-

sequent scale-ups although the cooldown feature prevents.

Hence, until it allows, although pro�table for the applica-

tion provider, the users’ requests may su�er from resource

shortage. Noticeably, as expected, an enabled cooldown time

could reduce the total number of scale actions: 23 and 15

actions for the cooldown OFF and ON, respectively. Note that

we considered a minimal value for our cooldown component

that mitigates only the next possible scale-up decision, i.e.

the cooldown value is equal to 121 seconds while SI is set to

120. Hence, referring back to the SI investigations (Section

III-B), it can be claimed that increasing cooldown time value

always increases the tail.

FINDING 6: �e cooldown time feature in auto-scaling

mechanisms is a major cause of tail latency.

G. E�ect of VM Start-up Delay

Last parameter to be analyzed for the tail latency is

the start-up time of a VM. Once the start-up time/delay

becomes longer, the user’s requests must wait longer to

have the requested VM launched. Studies show that this

delay time is approximately between 2 and 10 minutes

while some simulation-based research neglect considering

this delay time [17]. Hence, we here examine three types of

VM start-up delays included: a) no start-up delay whereby

the start-up delay is omi�ed; b) static start-up delay whereby

a �x value, here 5 min, is set for the start-up time; and

c) dynamic start-up delay which, in addition to the static
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5 min, takes the external conditions like the busy time of

the day into account. Such experiments are not applicable

unless using a cloud simulator. We developed our simulator

available on GitHub
2
, extending CloudSim [24] and develop

an auto-scaling mechanisms based on the MAPE-K concept.

�e widely-used real-world dataset, NASA [25], containing

the Web traces of NASA servers for a day was used to stress

the auto-scaler. �ese three approaches are examined under

di�erent conditions of scaling rules: Resource-aware, SLA-

aware, and Hybrid and SIs: 5 and 10 min to mitigate the

interference (3 × 3 × 2 = 18 tests).

Figures 15 and 16, show that once the delay time

in starting-up a VM increased, the tail, average and, SD

of latency were negatively impacted. �e increasing trend

continues to exist even for very high percentiles. As expected,

dynamic start-up delay shows more impact on latency than

static. Our supplementary results show that SLA violation,

time to adaptation, and the number of failed requests in-

creased once the start-up delay are considered more.

FINDINGS 7: �e start-up delay of VMs is a major

cause of tail latency, so not considering—or considering only

statically—this delay in simulation-based investigations may

in�uence the correctness of results. �e higher the VM start-

up delay is, the longer the tail will be.

IV. Discussion

In each previously studied tail sources, 3 to 4 di�erent tests

were conducted, depending on the type of latency factor, to

2
h�ps://github.com/aslanpour/AutoScaleSim
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Fig. 15. �e impact of VM start-up delay on tail latency.

evaluate the tail latency under di�erent circumstances (except

for the cooldown time that we used t-Test as it had only

two tests i.e., On or O�). �ose tests showed that how and

under which conditions the seven investigated factors can

cause/deteriorate the tail of latency. For instance, we learnt

that if we pick longer SIs, the tail latency gets larger. �e

results may give the implication that all the studied factors

are sources of tail latency, but the reality is that they are

showing that only if not well-tuned, can they become a tail

source. In other words, since there is no baseline for the tail

latency evaluation in auto-scaling mechanisms (e.g., latency

larger than 1 second or 10 seconds), one cannot target any
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sharp value to categorize the factors as shorter or larger

than the baseline to reach a unique conclusion. Hence, we

particularly demonstrated under which conditions each factor

is causing/deteriorating the tail of latency.

It is clear that the mean and latency distribution for tests in

each experiment (Section III-A to III-G) may di�er, indicating

the positive or negative impact of tuning the corresponding

latency factor (e.g., threshold tuning, scaling interval, etc.).

�e main question is that ”the impact of tuning which factor

is statistically signi�cant and which is not?” Here, using

ANOVA (Analysis of Variance) Single Factor method, we

investigated the signi�cance level for every factor. We here

feed those latency-related results to ANOVA tool, for each set

of experiments, to evaluate if the di�erence between means is

statistically signi�cant. A p-value less than 0.05 is considered

statistically signi�cant. �e F value higher than the F-Critical

value is interpreted that the tests in that set of experiments

are representing signi�cantly di�erent behavior. To clearly

explore which test had exactly di�erent average, we utilize

Bonferroni approach, whereby the di�erence between tests

are evaluated using pairwise t-Test, i.e., two-sample assuming

equal variances tool on a pair-by-pair basis. Due to space

limitation we brie�y report the �ndings. Our statistically

signi�cant investigation demonstrates that the impact of

tuning each factor on the latency in auto-scaling mechanisms

is as follow. Factors with signi�cant impact are fourfold: �e

size of the Web requests, analysis method, cooldown time and

VM start-up. In the Web requests’ tests, the tiny and small
requests resulted in signi�cant di�erence in comparison to

the very large requests. �is is the case for the instant and

proactive analysis when it comes to analysis methods. �e

signi�cant e�ect of the enabled cooldown time was already

clear with the percentile results and here was con�rmed as

well. In the VM start-up delay evaluations, the di�erence

between only No-start-up delay and Dynamic start up delay

is signi�cant. Now that signi�cant sources are discovered,

one may strictly ask which factors do produce more outliers?

To answer this question, Fig. 17 delivers a broader view of

the sources (i.e. factors) of tail latency in terms of their

contribution in producing outliers. Fig. 17 draws a distinction

between all tests’ results, excluding simulation-based tests

in the interest of consistency. Obviously, turning on the

cooldown feature seems to be the most outlier producer in

auto-scaling mechanisms, imposing more than 7000 ms of

latency for very high percentiles, i.e. double the other factors.

�en comes poor threshold tuning. Poor scaling interval

and surplus VM selection tuning stand at the third place,

with the potential to produce outliers more than requests’

length and poor analysis method. Hence, another lesson

we can learn with this boxplot is that although tuning a

parameter might not have statistically signi�cant e�ect on

tail latency, still this tuning can play the role of a huge

outlier producer. For example, threshold tuning did not have

statistically signi�cant e�ect on tail latency, according to the

earlier ANOVA reports, but Fig. 17 meaningfully illustrates

that such poor thresholds can produce more outliers when

compared to those tail sources with statistically signi�cant

e�ect. Overall, it is obvious that developers have to decide

on which primary objective they are looking to meet: tuning

parameters to achieve less statistically signi�cant impact on

tail latency or those to achieve less outliers. It seems that

these two objectives are con�icting and demand accepting

a compromise, although reaching a trade-o� may be an

interesting research objective for the future works.

One may be curious about the factors actively presented to

be a source of tail latency in order for shi�ing greater focus

on only those factors. Hence, another concluding analysis

would be to discover the relationship between all evaluations

and �ndings in this research. A�er evaluating percentiles,

average, SD, statistically signi�cant and outliers measures, we

can see which tail factors are actively present. �is further

analysis led us discover the presence of the analysis method

and cooldown time components in all evaluations as the

major sources of tail latency in auto-scaling mechanisms.

Practical solutions include: 1) turning o� the cooldown com-

ponent; 2) improving the cooldown functionality by adopting

dynamic and variable time slots [16]; and 3) undoubtedly

leveraging more complicated analysis methods such as ma-

chine learning, instead of just instant analysis [17].

Another critical lesson we learnt is that, while the average

of latency may be alleviated/deteriorated for an auto-scaling

mechanism by tuning a speci�c component (e.g. the SI), the

opposite may happen for the mechanism in terms of the

tail latency, simultaneously. �e experiments for the size of

web requests, SI and surplus VM selection policy con�rm

this inconsistency. For instance, in the size of request’s

experiments, the large requests’ length showed larger average

than that of the very large while the opposite is true for their

tail latency. In the SI’s experiments also the mid-term SI had

a slightly larger average latency than that of the long-term
while the opposite is true when it comes to the tail latency

for this tuning. �is observation, once again, warns us of the

importance of designing mechanisms speci�cally focusing on

the tail latency minimization as the average and tail would
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V. Conclusions and Future Work

Auto-scaling of Web applications in clouds is a widely-

investigated topic which aims at minimizing the cost and the

latency of responses for hosting Web applications. Looking

at available solutions, it is obvious that researchers mainly

take the average of latency into account and neglect the

tail. In this paper, seven possible sources of tail latency

were investigated. Having empirically evaluated, we found

that sources of tail latency in auto-scaling web applications

include: (1) large requests; (2) long-term scaling intervals;

(3) instant analysis of scaling parameters; (4) conservative,

i.e. tight, threshold tuning; (5) load-unaware surplus VM

selection policies; (6) cooldown time feature; and (7) VM

start-up delay. We learnt that the length of requests, analysis

method, cooldown feature and VM start-up delay can result

in signi�cant impact on tail latency. We visualized the latency

distribution for all factors in order to discover which factors

produce more outliers. �ese evaluations demonstrated that

the cooldown feature, poor threshold tuning, poor scaling in-

terval and poor surplus VM selection produce more outliers.

Overall, poor analysis method and cooldown feature are the

most critical sources of tail latency.

One cannot claim that having all tail sources at the same

time in a mechanism would multiply the tail. Furthermore,

our investigations are for transactional Web applications and

cannot be generalised to other applications which is the focus

of our future work. We also plan to investigate tail latency

in multi-tenant scenarios with multiple running applications.

Finally, having discovered the contrary behavior of average

and tail latency, we are interested to �nd solutions which

will jointly minimize the average and tail.
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