
Noname manuscript No.
(will be inserted by the editor)

Reverse k nearest neighbors queries and spatial reverse top-k queries

Shiyu Yang · Muhammad Aamir Cheema · Xuemin Lin · Ying Zhang · Wenjie

Zhang

Received: date / Accepted: date

Abstract Given a set of facilities and a set of users, a re-

verse k nearest neighbors (RkNN) query q returns every user

for which the query facility is one of the k-closest facili-

ties. Almost all of the existing techniques to answer RkNN

queries adopt a pruning-and-verification framework. Regions-

based pruning and half-space pruning are the two most no-

table pruning strategies. The half-space based approach prunes

a larger area and is generally believed to be superior. Influ-

enced by this perception, almost all existing RkNN algo-

rithms utilize and improve the half-space pruning strategy.

We observe the weaknesses and strengths of both strate-

gies and discover that the regions-based pruning has certain

strengths that have not been exploited in the past. Motivated

by this, we present a new regions-based pruning algorithm

called SLICE that utilizes the strength of regions-based prun-

ing and overcomes its limitations. We also study spatial re-

verse top-k (SRTk) queries that return every user u for which

the query facility is one of the top-k facilities according to

a given linear scoring function. We first extend half-space

based pruning to answer SRTk queries. Then, we propose

a novel regions-based pruning algorithm following SLICE

framework to solve the problem. Our extensive experimen-

tal study on synthetic and real data sets demonstrates that

SLICE is significantly more efficient than all existing RkNN

and SRTk algorithms.
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1 Introduction

Consider a set of facilities (e.g., supermarkets) and a set of

users (e.g., residents). The influence set of a query facility

q consists of every user u for which the query facility is an

important facility. Since q is an important facility for such

users, these users are said to be influenced by q, e.g., the

query facility can send targeted deals to these users to at-

tract them. In this paper, we study two types of influence set

namely reverse k nearest neighbors and spatial reverse top-k
users. These two differ from each other due to the different

definition of important facilities. Below, we give more de-

tails of each.

Reverse k Nearest Neighbors (RkNN) Queries. In the con-

text of RkNN queries, a facility is considered to be impor-

tant for a user u if it is among her k-closest facilities. An

RkNN query q returns every user u for which q is one of

its k closest facilities. Consider the example of a restaurant.

The people for which this restaurant is one of the k-closest

restaurants are its potential customers and may be influenced

by targeted marketing or deals.

Spatial Reverse Top-k Queries (SRTk) Queries. In RkNN

queries, the notion of importance is based only on the dis-

tance between users and facilities. However, in many real

world applications, distance is not usually the only criterion

desired by the users and a user may also be interested in

other attributes of the facilities such as price and rating. In

the context of SRTk queries, a user u considers a query to

be important if q is one of the top-k facilities for the user u
according to a given linear scoring function.

Consider the example of a person who is looking for

restaurants. She may be interested in the restaurants that are

close to her location, have good reputations and are cheap,

i.e., distance, rank and price are the three criterions. She may

issue a top-k query that uses a scoring function involving

these three criterions to compute the score of each restau-

rant and returns the top-k restaurants based on their scores.
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We say that the query facility q is important for her if q is

one of her top-k restaurants. Next, we formally define spa-

tial reverse top-k queries.

Fig. 1 RkNN vs SRTk queries (k = 1): RkNN = u2 , SRTk= u1 , u2

Let W be a linear scoring function that computes the

score of a facility f for a given user u. A spatial reverse top-

k (SRTk) query returns every user u for which q is one of

the top-k facilities according to the scoring function W .

Example 1 Consider the example of Fig. 1 that shows two

facilities (q and f ) and two users u1 and u2. The distances

between the users and the facilities are shown above the bro-

ken lines. RkNN (k = 1) returns the user u2 because q is the

closest facility for the user u2. The user u1 is not the RkNN

because q is not the closest facility for u1.

Now, consider a spatial reverse top-k (k = 1) query

and assume that the scoring function W is a linear scor-

ing function involving two criterions (price and distance)

and both criterions have equal weighting, i.e., w[price] =
w[distance] = 0.5. Then, the score of a facility for a user is

the weighted sum of its distance from the user and its price,

e.g., score(u1, q) = 0.5× 6+ 0.5× 2 = 4, score(u1, f) =
0.5 × 5 + 0.5 × 4 = 4.5. Although f1 is closer to the user

u1, the top-1 facility of u1 is q because it has a better score

due to it being cheaper. The top-1 facility of u2 is q because

score(u2, q) = 2.5 and score(u2, f1) = 4. For k = 1, the

spatial reverse top-k query returns both of the users u1 and

u2 because for both users q is the top-1 facility.

Next, we present the contributions we make in this paper

for both the RkNN queries and SRTk queries.

1.1 Reverse k Nearest Neighbors Queries

RkNN query has received significant research attention [42,

20,26,1,25,40,27,16,7] ever since it was introduced in [17].

The existing techniques use a pruning and verification frame-

work. The two most notable pruning strategies employed by

the existing techniques are regions-based pruning [26,39]

and half-space pruning [28,40,7]. As we show later in Sec-

tion 3.2, the advantage of half-space pruning is that it prunes

a much larger area as compared to the area pruned by the

regions-based pruning. However, its disadvantage is that the

cost of pruning is significantly higher than the regions-based

pruning.

It has been a general perception that the half-space prun-

ing is superior to the regions-based pruning. Consequently,

most of the proposed techniques use half-space pruning to

compute RkNNs and related problems. Surprisingly, there

has been no effort to utilize the strength of regions-based

pruning (i.e., cheap pruning) and to address its limitations

(low pruning power and expensive verification). In this pa-

per, we propose an algorithm called SLICE that addresses the

limitations of regions-based approach and utilizes its strength.

Specifically, SLICE uses a more powerful and flexible prun-

ing approach that prunes a much larger area as compared

to existing regions-based technique (called six-regions) with

almost similar computational complexity. Furthermore, it sig-

nificantly improves the verification phase of the algorithm

by employing the novel concept of significant facilities (see

Section 3.2 for more details).

Below, we summarize our contributions for RkNN queries.

– Influenced by the perception that regions-based pruning

is always inferior to half-space pruning, almost all ex-

isting techniques use half-space pruning to solve RkNN

queries [28,40,7,18] and its variants (e.g., continuous

RkNN queries [8,16,11], probabilistic RkNN queries [6,

4], and incremental RkNN queries [18,13] etc). In this

paper, we address the limitations of six-regions approach

and demonstrate that the regions-based pruning is not

necessarily inferior to half-space pruning. We propose

an algorithm based on regions-based pruning that signif-

icantly outperforms state-of-the-art algorithm in terms

of running time. This also indicates that the improved

regions-based approach may be useful to solve other vari-

ants of RkNN queries. We demonstrate this by develop-

ing a regions-based technique to answer spatial reverse

top-k queries.

– Our experimental study on real and synthetic data sets

demonstrates that SLICE is significantly more efficient

than the existing algorithms for all settings (except when

k = 1).

1.2 Spatial Reverse Top-k Queries

Spatial reverse top-k query is closely related to the tradi-

tional reverse top-k query which has been extensively stud-

ied [34,15,37,14,47,36,38,12,9] in the past few years. One

major difference is that the traditional reverse top-k queries

do not consider the spatial distance between the locations

of users and facilities as one of the criterions. Due to this

important difference, the existing techniques to answer tra-

ditional reverse top-k queries cannot be applied or easily ex-

tended to answer spatial reverse top-k queries. Specifically,

the traditional reverse top-k queries assume that each facility

f has a set of attributes (e.g., price) and, for each attribute,

the facility has the same value for all the users (e.g., price is

the same for all the users). In contrast, the distance between
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a user u and a facility f depends on the locations of u and f .

Consequently, the distance value of a facility is different for

each user and this important difference makes the existing

techniques inapplicable for the spatial reverse top-k queries.

To the best of our knowledge, the only existing technique

that can be used to answer spatial reverse top-k queries has

been recently proposed in [21]. However, the proposed tech-

nique has certain limitations. It can only handle the case

when k = 1. Furthermore, the techniques can only be ap-

plied when the number of attributes/criterions is two (includ-

ing the distance criterion). It requires non-trivial changes

in the indexing and query processing algorithm to handle

more attributes and k > 1. Our experiments demonstrate

that our proposed approach significantly outperforms it even

for k = 1 and two attributes both in terms of CPU time and

I/O cost.

Below, we summarize our contributions for spatial re-

verse top-k queries.

– To the best of our knowledge, we are the first to pro-

pose solutions for spatial reverse top-k queries for ar-

bitrary number of attributes/criterions and k ≥ 1. To

showcase the strength of regions-based pruning, based

on several non-trivial observations, we develop regions-

based pruning techniques for SRTk queries and propose

a highly efficient algorithm.

– As stated earlier, the existing technique (PCK) [21] can

only handle at most two attributes and k = 1. To demon-

strate the effectiveness of our proposed algorithm for ar-

bitrary number of attributes and k > 1, we carefully ex-

tend TPL [28] to efficiently answer SRTk queries - TPL

is arguably the most popular half-space based pruning

approach for RkNN queries. We conduct extensive ex-

periments on real and synthetic data sets and demon-

strate that SLICE is up to several orders of magnitude

better than the TPL based algorithm and PCK in terms

of both CPU cost and I/O cost.

The rest of the paper is organized as follows. In Sec-

tion 2, we present the related work. Our techniques to an-

swer RkNN queries are presented in Section 3. Section 4

presents the algorithms to answer spatial reverse top-k queries.

Experimental evaluation is presented in Section 5 followed

by conclusion in Section 6.

2 Related work

2.1 Reverse k Nearest Neighbors

RkNN queries have been extensively studied considering

different settings such as continuous RkNN queries [2,41,

16,8], probabilistic RkNN queries [6,19,3,4], RkNN queries

on graphs [29,46,24], metric spaces [29] and adhoc spaces

[45] etc. Since the focus of this paper is on static queries in

Euclidean space, we provide a brief overview of the tech-

niques to solve RkNN queries in Euclidean space.

Korn et al. [17] were first to study RNN queries. They

answer the RNN query by pre-calculating a circle for each

data object p such that the nearest neighbor of p lies on the

perimeter of the circle. RNN of a query q is every point that

contains q in its circle. Techniques to improve their work

were proposed in [42,20].

Next, we briefly describe some of the most related tech-

niques that do not require pre-computation namely six-regions

[26], TPL [28], FINCH [40] and InfZone [7]. A comprehen-

sive experimental study comparing these algorithms is pre-

sented in [43]. These techniques have two phases namely

pruning and verification. In the pruning phase, the space that

cannot contain any RkNN is pruned by using the set of fa-

cilities. In the verification phase, the users that lie within the

unpruned space are retrieved. These are the possible RkNNs

and are called the candidates. Most of the existing tech-

niques verify a candidate by issuing a range query and check-

ing if q is one of its k nearest facilities or not. We present

only the pruning strategy of these techniques. The verifica-

tion phase of these techniques (except of InfZone) is similar.

Specifically, for each candidate u, a range query centered at

u and range set as dist(u, q) is issued and the user is re-

turned as a RkNN if the range contains less than k facilities.

The verification phase of InfZone will be discussed later.

Six-regions. Stanoi et al. [26] proposed the first technique

that does not need any pre-computation. They solve RkNN

queries by partitioning the whole space centred at the query

q into six equal regions of 60◦ each (P1 to P6 in Fig. 2).

As stated in Section 1, the k-th nearest facility of q in each

region defines the area that can be pruned. In other words,

assume that dk is the distance between q and its k-th nearest

facility in a regionPi. Then any user u that lies in Pi and lies

at a distance greater than dk from q cannot be the RkNN of

q. This is because, for such user u, dist(u, f) < dist(u, q)
for every f where f is one of the k-nearest facilities of q in

the region Pi.

Fig. 2 shows a RkNN (k = 2) query q and four facilities

a to d. In region P2, b is the second nearest facility of q and

the shaded area can be pruned, i.e., only the users that lie in

the white area can be the RkNNs. A user u that lies in the

shaded area cannot be RkNN because it is guaranteed to be

closer to a and b than q.

TPL. Tao et al. [28] propose TPL that prunes the space us-

ing the half-space pruning. Let Ba:q denote the perpendic-

ular bisector between a facility a and q (see Fig. 3). The

bisector divides the space into two halves. We use Ha:q to

denote the half-space that contains a. For a point p that lies

in Ha:q , dist(p, a) < dist(p, q). In other words, p cannot be

the RkNN (k = 1) of q and we say that the half-space Ha:q

prunes the point p. Clearly, a point that is pruned by at least

k half-spaces cannot be the RkNN of q.
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TPL algorithm iteratively accesses the nearest facilities

in the unpruned area. Each accessed facility f is used to

prune the space. The pruning phase completes when there

does not exist any facility in the unpruned space. Fig. 3

shows the example where the bisectors between q and a,

c and d are drawn (Ba:q, Bc:q and Bd:q, respectively). If

k = 2, the shaded area can be pruned because every point in

it lies in at least two half-spaces. Note that the facility b lies

in the pruned area so its bisector is not used for pruning.

Fig. 2 Six-regions [26] Fig. 3 TPL [28]

Let m be the number of facilities for which the bisectors

are considered for pruning. An area that is the intersection

of any combination of k half-spaces can be pruned. The to-

tal pruned area corresponds to the union of pruned regions

by all such possible combinations of k bisectors (a total of

m!/k!(m− k)! combinations). Since the number of combi-

nations is too large, TPL uses an alternative approach which

has less pruning power but is cheaper. First, TPL sorts the

m facilities by their Hilbert values. Then, only the combina-

tions of k consecutive facility points are considered to prune

the space (total m combinations). The cost to prune an entry

using this strategy is O(km).

Fig. 4 FINCH [40] Fig. 5 InfZone [7]

FINCH. As discussed above, to prune the entries, TPL uses

m combinations of k bisectors which is expensive. To over-

come this issue, Wu et al. [40] propose an algorithm called

FINCH. Instead of using bisectors to prune the objects, they

use a convex polygon that approximates the unpruned area.

Any object that lies outside the polygon can be pruned. For

example, in Fig. 3, the unpruned area is the white area. FINCH

approximates this unpruned area by a convex polygon (the

white area in Fig. 4 with boundary shown in broken lines).

Any point that lies outside this polygon can be pruned, i.e.,

the shaded area of Fig. 4 can be pruned. Clearly, pruning of

FINCH is more efficient than TPL because containment can

be done in logarithmic time for convex polygons. Hence, a

point can be pruned in O(log m). Unfortunately, the cost

of computing the convex polygon that approximates the un-

pruned area is O(m3) where m is the number of facilities

used for pruning.

InfZone. The verification phase of six-regions, FINCH and

TPL is quite expensive because it requires issuing a range

query for each candidate. Cheema et al. [7] propose Inf-

Zone which uses the concept of influence zone to signifi-

cantly improve the verification phase. Influence zone is the

area such that a point p is a RkNN of q if and only if p lies

inside this area. It was shown that the influence zone is a

star-shaped polygon [22] and the point containment can be

done in logarithmic time to the number of edges of the star-

shaped polygons, i.e., the cost to prune a point is O(log m).
Note that InfZone does not require the verification of a can-

didate because every user u that lies in the influence zone is

guaranteed to be RkNN. In other words, the verification cost

is O(log m).

The influence zone corresponds to the unpruned area

when the bisectors of all the facilities have been considered

for pruning. For instance, in Fig. 5, the bisectors between

q and all facilities are drawn (Ba:q, Bb:q , Bc:q, and Bd:q).

The shaded area can be pruned and the white area is the in-

fluence zone. Recall that FINCH and TPL did not consider

Bb:q because when the bisectors of a, c and d are considered

the facility b lies in the pruned area and is ignored. Cheema

et al. [7] present several properties to reduce the number of

facilities that must be considered in order to correctly com-

pute the influence zone. The cost of computing the influence

zone using m facilities is O(km2) [10].

2.2 Reverse Top-k Queries

Reverse top-k query has gained significant research atten-

tion since it was first introduced by Vlachou et al. [35]. They

proposed two variants of the reverse top-k queries namely

monochromatic and bichromatic reverse top-k queries. A

monochromatic query returns every possible scoring func-

tion for which q is one of the top-k objects. On the other

hand, in a bichromatic query, a set of scoring functions F
is given and every function f ∈ F is returned for which q
is one of the top-k objects. Many variations of reverse top-

k query have also been studied in the past few years such

as probabilistic reverse top-k query [15], continuous reverse

top-k query [37,14] and reverse top-k query on graphs [47]

etc. Next, we briefly describe the most closely related work.

Vlachou et al. [35] propose a threshold-based algorithm

which utilizes some geometric properties to eliminate un-

necessary objects based on a threshold. The threshold is main-

tained throughout the execution of the algorithm and is im-

proved as new users are accessed. They also propose a space
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partitioning based index structure to further improve reverse

top-k query processing.

In their follow up work, Vlachou et al. [36,38] propose

techniques to further improve their earlier algorithm. In [36],

the authors discuss the geometric interpretation of the so-

lution space for higher dimensionality. They also present

a more comprehensive experimental study which evaluates

the proposed algorithms for both monochromatic and bichro-

matic reverse top-k query. In [38], they propose an efficient

algorithm which processes reverse top-k query by traversing

the branch-and-bound data structures while utilizing novel

lower and upper bounds.

Chester et al. [12] propose an index structure specific

for a fixed value k such that multiple reverse top-k queries

can be efficiently answered using this index. If the value of

k is unknown at the query time (which is usually the case),

the index is to be constructed on-the-fly which becomes the

bottleneck. The proposed index pays off when numerous

queries use the same value of k. The proposed techniques

are only applicable to two dimensional data sets.

Cheema et al. [9] propose I/O and CPU efficient algo-

rithms to answer various ranking related queries including

the reverse top-k queries. They utilize the concept of k-

lower envelope to efficiently answer the reverse top-k queries.

Their main reverse top-k query processing algorithm is based

on an I/O optimal algorithm to compute k-lower envelope.

Similar to the work by Chester et al. [12], the proposed tech-

niques are only applicable for two dimensional data sets.

We remark that the problem studied in this paper is dif-

ferent from the traditional reverse top-k queries. Specifi-

cally, in the traditional reverse top-k queries, the attributes

of a facility are the same for all users, e.g., price is the same

regardless of the user. In contrast, in spatial reverse top-k
queries, the distance between facilities and users is also one

of the attributes/criterions. Note that the distance between a

facility and users may be different for each user. Hence, the

existing techniques cannot be applied or extended for the

spatial reverse top-k queries.

The two most closely related work to the problem stud-

ied in this paper are presented in [37,21]. In [37], the authors

study a continuous version of SRTk problem where the users

are continuously moving. They identify various properties

of spatial reverse top-k queries that enable efficient moni-

toring of the result set. However, they assume that the ini-

tial results of spatial reverse top-k query are already known,

and they focus on updating the results when the users move,

without re-computing the results from scratch.

Recently, Park et al. [21] proposed an algorithm (PCK)

for the spatial reverse top-k (k = 1) queries. The PCK algo-

rithm consists of both spatial and non-spatial pruning tech-

niques. They also introduce Hausdorff distance to improve

efficiency of query processing. However, the online Haus-

dorff distance computation is quite time consuming. Fur-

thermore, the proposed techniques can only handle two at-

tributes (including the spatial distance). Also, the proposed

techniques are only applicable for k = 1. Extending the

techniques for more than two attributes and k > 1 is non-

trivial. Nevertheless, we demonstrate that our proposed al-

gorithm is several orders of magnitude better than PCK in

terms of both CPU and I/O cost.

3 Answering Reverse k Nearest Neighbors Queries

In Section 3.1, we formally define RkNN queries and its two

variations. The motivation behind our algorithm, SLICE is

presented in Section 3.2. Our pruning and verification tech-

niques are presented in Section 3.3 and Section 3.4, respec-

tively. The overall algorithm is presented in 3.5.

3.1 Problem Definition

RkNN queries are classified [17] into bichromatic RkNN

queries and monochromatic RkNN queries.

Bichromatic RkNN Queries. Consider a set of facilities F
and a set of users U . Given a query q ∈ F , a bichromatic

RkNN query returns every user u ∈ U for which q is one of

its k-closest facilities.

Monochromatic RkNN Queries. Given a set of facilities

F and a query q ∈ F , a monochromatic RkNN query re-

turns every facility f ∈ F for which q is one of its k-closest

facilities.

Consider a set of police stations. For a given police sta-

tion q, its monochromatic RkNNs are the police stations for

which q is one of the k nearest police stations. Such police

stations may seek assistance (e.g., extra policemen) from q
in case of an emergency event.

Since most of the applications of RkNN queries are in

location-based services, like existing techniques [7,40,26],

the focus of this paper is on two dimensional location data.

Similar to most of the existing algorithms, we assume that

the users and facilities are indexed by two separate R*-trees

called user R*-tree and facility R*-tree, respectively. Our

proposed approach can be applied to answer both bichro-

matic and monochromatic RkNN queries. However, for ease

of presentation, we limit our discussion to bichromatic RkNN

queries unless specifically mentioned. Later, in Section 3.5.3,

we show that our techniques can be easily applied for the

case of monochromatic RkNN queries.

3.2 Motivation

As discussed earlier, there are two most notable pruning

strategies used by the existing techniques: half-space prun-

ing; and regions-based pruning. The advantage of half-space

pruning is that it prunes a much larger area as compared to

the area pruned by six-regions (compare the shaded area in



6 Shiyu Yang et al.

Operation Six-regions InfZone SLICE

Prune a facility O(1) O(m) O(t)
Prune the space O(m log k) O(km2) O(tm log k)
Prune a user O(1) O(log m) O(1)
Verify candidate range query O(log m) O(k)

Expected #cand.
6k|U|

|F |

k|U|

|F |
< 3.1k|U|

|F |

Table 1 Comparison of computational complexities

Fig. 2 and Fig. 3). The advantage of the regions-based ap-

proach is that, once dk is computed, the cost of checking

whether a point p can be pruned or not is O(1) where dk
is the distance between q and its k-th nearest facility in the

region that p lies in (see Section 2). Specifically, to check

whether a point p is pruned by six-regions pruning, we only

need to compare dist(p, q) with dk. On the other hand, half-

space pruning is significantly more expensive. For instance,

checking whether p can be pruned requires to check whether

p lies in at least k half-spaces or not. The cost is O(m) where

m is the number of facilities considered for pruning.

Table 1 compares six-regions approach [26] and InfZone

[7,10], the state-of-the-art half-space pruning based approach.

InfZone not only improves the pruning cost of a user from

O(m) to O(log m) but also significantly improves the veri-

fication cost. However, note that the pruning cost of InfZone

is still significantly higher than that of six-regions. The prun-

ing cost of InfZone for a facility is O(m) which is higher

than the pruning cost of a user O(log m). This is because In-

fZone utilizes a different pruning criterion for facilities and

prunes only the facilities that are unable to further prune the

unpruned area.

As shown in Table 1, the bottleneck of the six-regions

approach is its verification phase. Six-regions approach ver-

ifies a candidate u by issuing a range query centered at u
with radius dist(u, q). This results in not only additional

computational cost but also I/O cost because the index is

to be accessed to verify each candidate. Table 1 also shows

the expected number of candidates (i.e., the users that cannot

be pruned) where |F | denotes the total number of facilities

and |U | denotes the total number of users. Hence, the ver-

ification phase of six-regions approach is expected to issue
6k|U|
|F | range queries that dominates the total cost of the algo-

rithm. Note that the expected number of candidates for six-

regions is 6 times the expected number of candidates for In-

fZone. This is due to the poor pruning power of six-regions

approach.

Several techniques have been proposed to address the

limitations of half-space pruning (e.g., FINCH [40], InfZone

[7]). Surprisingly, there is no work that tries to utilize the

strength of regions-based pruning (i.e., cheap pruning) and

addresses its limitations (low pruning power and expensive

verification). This motivates us to carefully develop a tech-

nique called SLICE that utilizes the strengths of regions-

based pruning and address its limitations. Specifically, SLICE

uses a more powerful and flexible pruning approach that

prunes a much larger area as compared to six-regions with

almost similar computational complexity. SLICE also signif-

icantly improves the verification phase by computing sigList
for each partition Pi. The sigList of a partition Pi consists

of a set of facilities that is sufficient to verify every candi-

date u ∈ Pi. Hence, a candidate can be verified by accessing

sigList instead of issuing a range query.

Table 1 compares the cost of SLICE with six-regions and

InfZone. t denotes the number of partitions used by our ap-

proach (typically 6 to 12). We remark that, in the worst case,

m may be as large as |F | where |F | is the total number of fa-

cilities. Note that the pruning cost of our algorithm is signif-

icantly smaller than InfZone and is quite close to six-regions

approach.

We also remark that a majority of the users are pruned

by “prune a user” operation and the number of candidates

that require verification is usually small, e.g., when |U | =
|F |, the expected number of candidates is less than 3.1k (see

theoretical analysis in [44]). Hence, the dominating cost of

InfZone and SLICE is the pruning phase for which SLICE is

significantly more efficient.

A reader may assume that the verification phase of Inf-

Zone is more efficient than that of SLICE which is not nec-

essarily true. The verification phase of the two algorithms

consist of two major operations: 1) pruning the user entries;

2) verifying the unpruned users, i.e., candidates. As shown

in Table 1, SLICE is more efficient for the first operation

whereas InfZone is faster for the second operation. Hence,

the total verification cost depends on the ratio of the num-

bers of the two operations during the verification phase. Our

experimental study demonstrates that the verificaiton phase

of SLICE is slower than that of InfZone only for larger k.

This is because the number of candidates increases as the

value of k increases. A detailed theoretical analysis can be

found in the conference version of this paper [44].

We remark that SLICE aims at reducing the overall com-

putational cost by compromising on a slightly higher I/O

cost than InfZone [7]. Later in Section 5, we demonstrate

that the I/O cost of each algorithm is negligible when com-

pared with its CPU cost and the overall cost of SLICE is

much lower than InfZone. Nevertheless, InfZone must be

preferred if the focus is to minimize the number of I/Os.

Next, we present our techniques to improve the pruning

power of regions-based pruning by keeping its low compu-

tational cost.

3.3 Reviving Regions-Based Pruning

First, we define a few terms and notations (Table 2 contains

a summary).

Definition 1 Subtended angle. Given a query point q, the

subtended angle between two points x and y is the angle

∠xqy in the triangle △xqy. It is denoted as angle(x, y). If

x, q and y lie on the same line then angle(x, y) = 0◦ or
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angle(x, y) = 180◦ depending on the relative positions of

x, q and y.

In Fig. 6(a), angle(f, p) = α. Note that angle(x, y) ≤
180◦. Similar to six-regions approach, we divide the whole

space into several partitions. Next, we define maximum and

minimum subtended angle between a point and a partition.

Definition 2 Maximum (minimum) subtended angle. Given

a query point q, maximum subtended angle between a point

x and a partition P , denoted as maxAngle(x, P ), is the

maximum subtended angle between x and any point p in

the partition P , i.e., argmaxp∈P angle(x, p). The mini-

mum subtended angle is defined similarly and is denoted as

minAngle(x, P ).

In Fig. 6(b),maxAngle(f, P ) = θ1 andminAngle(f, P ) =
θ2 (the partition P is shown shaded). Since angle(x, y) ≤
180◦, minAngle(f, P ) < maxAngle(f, P ) ≤ 180◦. Also,

note that minAngle(f, P ) = 0◦ if f lies inside the partition

P .

Next, we present a lemma that identifies the area that can

be pruned by a facility f . We say a facility f prunes a point

p if dist(f, p) < dist(p, q). Note that a point that is pruned

by at least k facilities cannot be a RkNN of q.

Lemma 1 A facility f prunes every point p ∈ P for which

dist(p, q) > dist(f,q)
2 cos(θ) where θ = maxAngle(f, P ) and

0◦ ≤ θ < 90◦.

Proof Fig. 6(b) shows a point p ∈ P for which dist(p, q) >
dist(f,q)
2 cos(θ) . Consider the triangle obtained by joining f , p and

q as shown in Fig 6(a). Let the side lengths of the trian-

gle be denoted as a, b and c and angle(f, p) be denoted as

α. To prove the lemma, we need to show that dist(f, p) <
dist(p, q), i.e., a < b. The side length a can be calculated

by using Law of Cosines.

a2 = b2 + c2 − 2bc · cos(α)

To prove a < b, we need to show that c2−2bc ·cos(α) <

0. Since dist(p, q) > dist(f,q)
2 cos(θ) (i.e., b > c

2 cos(θ) ), the follow-

ing inequality holds.

c2−2bc·cos(α) < c2−2
c

2 cos(θ)
c·cos(α) = c2(1−

cos(α)

cos(θ)
)

Since α ≤ θ and 0 ≤ θ < 90◦,
cos(α)
cos(θ) ≥ 1. Hence, c2−2bc ·

cos(α) < 0. ⊓⊔

For the ease of presentation, we define upper arc (the

lower arc will be defined later).

Definition 3 Upper arc. Upper arc of a facility f w.r.t. a

partitionP is the arc centered at q with radius
dist(f,q)
2 cos(θ) where

θ = maxAngle(f, P ) and 0◦ ≤ θ < 90◦. The radius of the

upper arc is denoted as rUf :P (or simply rU when the facil-

ity f and the partition P are clear by context). If θ ≥ 90◦,

rUf :P = ∞.

Notation Definition

q the query point

P a partition

angle(x, y) the subtended angle between x and y
maxAngle(x, P ) argmaxp∈Pangle(x, P )
minAngle(x, P ) argminp∈Pangle(x, P )
rUf :P or rU The upper arc of facility f for partition P

rLf :P or rL The lower arc of facility f for partition P

rB:P or rB The bounding arc for a partition P

Table 2 Notations

(a) Proof of Lemma 1 (b) Illustration of terms

Fig. 6 Pruning space using a facility f in a partition P

Fig. 6(b) shows the upper arc of f for the partition P .

We say that a point lies outside (resp. inside) an arc of ra-

dius r if its distance from the center of the arc is greater

(resp. smaller) than r. According to Lemma 1, a facility

prunes area outside the upper arc of f for every partition

P for which maxAngle(f, P ) < 90◦. Fig. 7 shows the area

pruned (shown shaded) by a facility f for different parti-

tions. This pruning approach is superior to six-regions ap-

proach in the following ways.

1. In six-regions approach, a facility f prunes search space

in only the partition in which f lies. In contrast, our pro-

posed approach prunes space in every partition P for which

maxAngle(f, P )< 90◦. For instance, in Fig. 7(a), our pro-

posed approach prunes space in partitions P2 and P3 (the

shaded area) whereas the six-regions approach prunes only

the space in the partition P2.

2. Even for the partition Pi that contains f , our approach

is superior because it prunes at least as much area of Pi as

pruned by six-regions approach. In Fig. 7(a), the area of P2

pruned by our approach is shown shaded whereas the area

of P2 pruned by six-regions approach is bounded by the dot-

ted arc. Note that when maxAngle(f, P ) = 60◦, the area

pruned by our approach for the partition that contains f is

the same as the area pruned by six-regions approach because
dist(f,q)
2 cos(60◦) = dist(f, q).

3. Six-regions approach restricts the division of the space

into strictly six regions each of equal size. In contrast, our

approach allows arbitrary number of partitions where each

partition may have a different size1. In Fig. 7(b), we di-

1 Although the partitions with different sizes can be used, in this

paper, we use equally sized partitions so that the partition that contains
a point p can be identified in O(1).
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(a) Prunes more area (b) Effect of number of partitions

Fig. 7 Comparison with six-regions approach

vide the space into 12 equally sized partitions and the area

pruned by the facility f is shown shaded. Note that the area

pruned by our approach becomes larger as the number of

partitions increases (compare the shaded area in Fig. 7(a)

and Fig. 7(b)). Although increasing the number of partitions

increases the pruned area, it results in computational over-

head because more partitions are to be processed for each

facility. In the conference version of this paper [44], we pre-

sented a detailed theoretical analysis to study the effect of

the number of partitions.

Definition 4 Bounding arc. The k-th smallest upper arc of

a partition P is called its bounding arc. The radius of the

bounding arc of a partition P is denoted as rB:P (or simply

rB when clear by context). If the partition contains less than

k upper arcs, rB:P = ∞.

Note that a point p that is pruned by at least k facilities

cannot be a RkNN. In other words, the area that is pruned

by at least k upper arcs cannot contain any RkNN. Hence, a

point p ∈ P cannot be a RkNN if it lies outside the bounding

arc, i.e., dist(p, q) > rB:P .

Fig. 8 shows the area pruned by two facilities f1 and

f2. The upper arcs of f1 are shown using solid lines and the

upper arcs of f2 are shown using broken lines. The bounding

arc rB for one of the partitions is also shown (assuming k =
2). Clearly, the shaded area cannot contain a RkNN (k = 2)

and can be pruned.

3.4 Improving Verification Phase

As stated earlier, most of the existing techniques issue a

range query to verify a candidate u and check whether the

range contains less than k facilities or not. This requires ac-

cessing the facility R*-tree for each such user and incurs

un-necessary I/O and CPU cost. In this section, we present

several observations that help to significantly improve the

verification phase. First, we define significant facilities.

Definition 5 Significant facility. A facility f is called a sig-

nificant facility of a partition P if it prunes at least one point

p ∈ P lying inside the bounding arc of P . We remark that p
is an arbitrary point in P and is not necessarily a data object.

Fig. 8 The shaded area is pruned Fig. 9 Lower arc

A facility that is not significant for a partition P is called

an insignificant facility for P . During the pruning phase, for

each partition P , we identify the set of its significant facil-

ities called sigList of P . Note that a user u ∈ P that lies

outside the bounding arc of P is pruned as stated in the pre-

vious section. Every other user u ∈ P can be verified by ac-

cessing only the facilities in sigList of P because sigList
contains every facility f that can possibly prune u. This not

only reduces the I/O cost because accessing the R*-tree is

not required but it also improves the computation cost be-

cause the sigList is kept sorted in a specific order to speed

up the verification (as we describe later). The expected size

of sigList is O(k) [44]. Hence, the verification cost of a

candidate is expected to be O(k).

Lemma 4 and Lemma 5 demonstrate how to identify the

insignificant facilities for a partition P . Before we formally

present the lemmas, we present a few other lemmas that do

not only lead to Lemma 4 and Lemma 5 but also help in

other aspects of the verification phase.

Lemma 2 A facility f cannot prune a point p ∈ P for

which dist(p, q) ≤ dist(f,q)
2 cos(θ) where θ = minAngle(f, P )

and 0◦ ≤ θ < 90◦.

Proof Fig. 9 shows a point p ∈ P for which dist(p, q) <
dist(f,q)
2 cos(θ) . Consider the triangle obtained by joining f , p and

q. Let the side lengths of the triangle be denoted as dist(f, p) =
a, dist(p, q) = b and dist(f, q) = c and angle(f, p) be de-

noted as α as shown in Fig. 9. To prove that f does not prune

p, we show that dist(f, p) ≥ dist(p, q), i.e., a ≥ b. The side

length a can be computed by the following equation.

a2 = b2 + c2 − 2bc · cos(α)

To prove a ≥ b, we need to show that c2− 2bc · cos(α) ≥ 0.

Since dist(p, q) (i.e., b) is at most c
2 cos(θ) , c2 − 2bc · cos(α)

is at least c2 − 2c2 cos(α)
2 cos(θ) = c2(1− cos(α)

cos(θ) ). Since α ≥ θ and

0◦ ≤ θ < 90◦,
cos(α)
cos(θ) ≤ 1. Hence, c2 − 2bc · cos(α) ≥ 0

which completes the proof. ⊓⊔

Lemma 3 A facility f cannot prune any point p ∈ P if

minAngle(f, P ) ≥ 90◦.
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Proof Consider Fig. 9 and assume that minAngle(f, P ) ≥
90◦. Since minAngle(f, P ) ≥ 90◦, α ≥ 90◦. The side

opposite to α is the largest side of the triangle △fpq be-

cause α is the largest angle of the triangle. This implies that

dist(f, p) > dist(p, q). Hence, f cannot prune the point p.

⊓⊔

Definition 6 Lower arc. Lower arc of a facility f w.r.t. a

partitionP is the arc centered at q with radius
dist(f,q)
2 cos(θ) where

θ = minAngle(f, P ). The lower arc is denoted as rLf :P (or

simply rL when the facility f and the partition P are clear

by context).

According to Lemma 2, a facility f cannot prune any

point p ∈ P that lies inside the lower arc.

Next, we show how to identify insignificant facilities.

Consider a partition P as shown in Fig. 10(a) (shown with

thick boundaries). Its bounding arc is also shown with radius

rB . Let M and N be the points where this arc intersects

the boundary of the partition P . The next two lemmas show

that a facility that lies outside the shaded area cannot be a

significant facility.

Lemma 4 A facility f ∈ P cannot be a significant facility

of P if dist(f, q) > 2rB .

Proof Since f lies in P , minAngle(f, P ) = 0. The radius

of its lower arc is rL = dist(f, q)/2 cos 0 = dist(f, q)/2.

Since dist(f, q) > 2rB , rL > rB . According to Lemma 2,

f cannot prune any point in p ∈ P that lies inside its lower

arc rL. Since rL > rB , f cannot prune any point that lies

inside the bounding arc. Hence, f is not a significant facility.

⊓⊔

In Fig. 10(a), f2 is not a significant facility. Next, we show

that f1 is also an insignificant facility.

(a) Facilities outside the shaded

area are insignificant

(b) Proof of Lemma 5

Fig. 10 Identifying insignificant facilities

Lemma 5 A facility f /∈ P cannot be a significant facility

if dist(M, f) > rB and dist(N, f) > rB where M and

N are the points where the bounding arc of P intersects the

boundary of P (see Fig. 10(b)).

Proof Fig. 10(b) shows a facility f for which dist(M, f) >
rB and dist(N, f) > rB (i.e., f lies outside the circles

centered at M and N with radius rB). We prove that the

radius of the lower arc of f is not less than the radius of

the bounding arc of P , i.e., rL ≥ rB . This implies that f
cannot prune any point that lies inside the bounding arc rB
and is an insignificant facility. Let θ = minAngle(f, P ). If

θ ≥ 90◦, the facility is not a significant facility because it

cannot prune any point p ∈ P (according to Lemma 3).

If θ < 90◦, the line that joins f and q intersects at least

one of the circles of radius rB centered at M and N (this is

because q lies at the boundary of these two circles). With-

out loss of generality, assume that the line fq intersects the

circle centered at N at a point C (as shown in Fig. 10(b)).

Now consider the triangle △NCq. Since NC = Nq = rB ,

∠NCq = ∠NqC = θ. The length of Cq can be obtained

by the following equation.

Cq
2
= r2B + r2B − 2r2B · cos(α) = 2r2B(1− cos(α))

Since α = 180◦ − 2θ, the following is obtained.

Cq
2
= 2r2B(1− cos(180◦ − θ)) = 2r2B(1 + cos(2θ))

Cq
2
= 4r2B cos2(θ)

Hence, Cq = 2rB cos(θ). Since dist(f, q) > Cq, we

have dist(f, q) > 2rB cos(θ). Recall that rL = dist(f,q)
2 cos(θ)

which implies that 2rL cos(θ) > 2rB cos(θ) or rL > rB .

⊓⊔

Lemma 4 and Lemma 5 demonstrate that the facilities

that lie outside the shaded area of Fig. 10 are not significant

facilities and are not required to verify any user u ∈ P . In

fact, it can be proved that a facility is significant if and only

if it lies in the shaded area of Fig. 10. We omit the proof due

to space limitations but it can be obtained using the similar

arguments.

3.5 Algorithm

Our algorithm has two phases: i) pruning; and ii) verifica-

tion. In the pruning phase, the algorithm prunes the search

space using the set of facilities. It also identifies the set of

significant facilities that are used later in the verification

phase. In the verification phase, the set of users that lie in

the unpruned area are identified. These users are then veri-

fied as RkNN if there are at most k − 1 facilities closer to it

than q.
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3.5.1 Pruning Algorithm

Algorithm 1 describes the pruning phase. The space around

q is divided into t equally sized partitions (t = 12 in our ex-

periments). In the conference version of this paper [44], we

provided a detailed theoretical analysis to study the effect

of t. The algorithm utilizes a min-heap h which is initial-

ized by inserting the root of the facility R-tree. The entries

are de-heaped iteratively from the heap. If the de-heaped en-

try cannot contain any significant facility for any partition,

we ignore it because it cannot prune space in any partition

(line 5). To check whether an entry e may or may not contain

a significant facility, we apply Lemma 4 and 5 for each par-

tition P . Specifically, if e lies completely outside the shaded

area shown in Fig. 10, e cannot contain a significant facility

for the partition P .

Algorithm 1: Filtering

1 Divide the space around q in t equally sized partitions;
2 Insert root of facility R-tree in a min-heap h;

3 while h is not empty do

4 deheap an entry e;
5 if e may contain a significant facility for at least one partition

then // apply Lemma 4 & 5 for each

partition P
6 if e is an intermediate node or leaf then

7 insert every child c in h with key mindist(q, c);

8 else // e is a data object

9 pruneSpace(e) //Algorithm 2

If e may contain a significant facility, it is processed as

follows. If e is an intermediate or leaf node, every child c
of e is inserted in the heap with its key set to mindist(q, c)
(line 7). The algorithm accesses the entries in ascending or-

der of mindist(q, c) because the facilities that are closer to

the query are expected to prune a larger area. If e is a data

object (i.e., a facility), it is used to prune the space by call-

ing Algorithm 2. The algorithm terminates when the heap

becomes empty.

Algorithm 2: pruneSpace(f )

1 for each partition P for which minAngle(f, P ) < 90◦ do

2 if maxAngle(f, P ) ≥ 90◦ then

3 rUf :P =∞;

4 else

5 rUf :P = dist(f,q)

2 cos(maxAngle(f,P))
;

6 Set rB:P to the radius of k-th smallest upper arc of P ;
7 if f is a significant facility of P then // use Lemma 4&5

8 insert f in sigList of P in sorted order of

rLf :P = dist(f,q)

2 cos(minAngle(f,P))
;

Algorithm 2 describes how the space is pruned using a

facility f . According to Lemma 3, a facility f cannot prune

any point p ∈ P if minAngle(f, P ) ≥ 90◦. Therefore, the

algorithm considers only the partitions that have minimum

subtended angle from f less than 90◦ (line 1). For each such

partitionP , the algorithm computes rUf :P , the upper arc of f ,

as described in the previous section. Then, the bounding arc

rB:P of the partition P is updated (line 6). Recall that the

bounding arc corresponds to the k-th smallest upper arc of

P . The algorithm uses a heap of size k to maintain k smallest

upper arcs. Hence, updating rB:P takes O(log k).
Finally, the facility is inserted in the sigList if it is a sig-

nificant facility of the partitionP (by applying Lemma 4 or 5

depending on whether f lies in P or outside it). sigList is

maintained in sorted order of rLf :P (line 8). The expected size

of sigList is O(k) [44]. Hence, the expected cost of line 8 is

O(log k). The worst case size of sigList is O(m) where m
is the number of facilities considered for pruning. Hence,

the worst case insertion cost is O(log m). Since t parti-

tions are considered, the total expected cost of Algorithm 2

is O(t log k) and the total worst case cost is O(t log m).
Since m is the total number of times Algorithm 2 is

called (at line 9 of Algorithm 1), the total time the algorithm

spends in pruning the space is O(tm log m) in the worst

case (while the expected cost is O(tm log k)).

3.5.2 Verification Algorithm

In the verification phase, the users that do not lie in the

pruned area are shortlisted and are called candidate users.

The verification algorithm iteratively accesses the nodes of

the user R-tree. If an entry e (the intermediate node, leaf

node or the user object) lies completely in the pruned area,

it is ignored. Otherwise, if e is an intermediate or leaf node,

its children are accessed iteratively. If e is a data object and

does not lie in the pruned area, it is called a candidate object

and is verified by calling isRkNN(u) (Algorithm 3).

Algorithm 3: isRkNN(u)

Output : Returns true if u is RkNN. Otherwise, returns false.

1 Let P be the partition in which u lies;
2 counter=0;

3 for each f ∈ sigList of P in ascending order of rLf :P do

4 if dist(u, q) ≤ rLf :P then

5 return true;

6 if dist(u, f) < dist(u, q) then

7 counter ++;

8 if counter ≥ k then

9 return false;

10 return true;

Algorithm 3 verifies a user u as follows. The algorithm

accesses the sigList of the partition P in which the user

u lies. The facilities in sigList are accessed in ascending

order of the radii of their lower arcs (i.e., rLf :P ) (line 3). A

counter is initialized to zero. This counter records the num-

ber of facilities that prune u and is incremented whenever

the accessed facility f is found to prune u, i.e., dist(u, f) <
dist(u, q) (line 7). If the counter is at least equal to k, the
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algorithm returns false because u is not RkNN of q (line 9).

At any stage, if dist(u, q) ≤ rLf :P for the accessed facil-

ity f , the user is confirmed as RkNN and the algorithm re-

turns true (line 5). This is because counter is less than k and

none of the remaining facilities can prune u (as implied by

Lemma 2). Also, if the counter remains less than k after pro-

cessing all facilities in sigList, the algorithm confirms u as

RkNN and returns true (line 10).

3.5.3 Answering Monochromatic Queries

Since a facility f cannot prune itself, we cannot prune a fa-

cility f if it lies outside the upper arcs of k facilities. How-

ever, we can safely prune a facility that lies outside k + 1
upper arcs, i.e., the bounding arc rB corresponds to the ra-

dius of (k + 1)-th smallest upper arc of a partition. Hence,

the pruning phase is called by setting k to k+1. In the veri-

fication phase, the facilities that lie inside rB are considered

the candidates. Each candidate f is verified by calling Al-

gorithm 3 with a minor change that the candidate facility f
is skipped from sigList (at line 3) because f cannot prune

itself.

4 Answering Spatial Reverse Top-k Queries

In this section, we present our algorithms to answer spatial

reverse top-k queries. First, we formally define the problem,

and introduce terms and notations in Section 4.1. Then, we

present a half-space based algorithm in Section 4.2 followed

by our techniques to answer spatial reverse top-k queries

using SLICE in Section 4.3.

4.1 Preliminaries

4.1.1 Problem Definition

Consider a set of users U and a set of facilities F . In addition

to location coordinates, each facility f ∈ F has d attributes

(e.g., price, rating) and the value of the i-th attribute is de-

noted as f [i]. The distance between a user u and a facility

f is denoted as dist(u, f). Since f [i] of a facility f remains

the same regardless of the user u, each f [i] is called a static

attribute of the facility. On the other hand, dist(u, f) may

be different for each user u. Therefore, the distance is called

the dynamic attribute of a facility. We assume that each at-

tribute is normalized such that all the values are between 0
to 1.

Consider a (d + 1)-dimensional linear scoring function

W where each w[i] ≥ 0 and
∑d+1

i=1 w[i] = 1. Here, w[d+1]
is the weighting for the dynamic attribute (i.e., dist(u, f))
andw[i] (for 1 ≤ i ≤ d) is the weight for each static attribute

f [i]. The score of a facility f w.r.t. a user u is denoted as

score(u, f) and is computed as follows.

score(u, f) = w[d + 1] · dist(u, f) +

d∑

i=1

w[i] · f [i] (1)

Top-k facilities. Given a scoring function W , the top-k fa-

cilities of a user u are the k facilities having the smallest

scores w.r.t. the user u. In other words, a facility f is one

of the top-k facilities for a user u if there are less than k
facilities that have a score smaller than score(u, f).
Spatial reverse top-k (SRTk) query. Given a query facility

q and a scoring function W , a spatial reverse top-k query

returns every user u for which the query facility is one of its

top-k facilities.

Remark. This definition differs from traditional reverse top-

k queries (e.g., [34]) that assume that the users may have

different scoring functions. Our definition is inspired by the

existing work on spatial reverse top-k query [21] where the

query defines a scoring function that is assumed to be the

same for all users. Although we intend to investigate it in

future, in this paper, we do not focus on the definition that

assumes unique scoring functions for the users mainly due

to the following reason.

While the locations of the users are easily obtainable,

their preferences (i.e., scoring functions) are not well de-

fined and are usually unknown to the system. Even if all

users are able to define suitable scoring functions and the

system manages to obtain these, it cannot be guaranteed that

the users will use the same scoring functions in future, e.g.,

a user who usually gives higher weighting to price compared

to the distance may give a higher weighting to distance when

he is in hurry. Since the essence of reverse queries is to an-

alyze the potential influence of a query facility as compared

to the other facilities in the system, our definition allows

the query facility to analyze its impact without requiring the

scoring functions of all the users. If required, the query fa-

cility may further analyze the influence by issuing different

queries each using a different scoring function.

4.1.2 Terms and notations

Static score of a facility. The static score of a facility f
(denoted as fs) is

∑d

i=1 w[i] · f [i]. It is called static score

because it remains the same for every user and does not de-

pend on the distance between f and users.

Note that score(u, f) can be computed by rewriting Eq. (1)

as follows.

score(u, f) = fs + w[d+ 1] · dist(u, f) (2)

Although our proposed techniques can be applied on any

branch-and-bound data structure, we assume that both the

sets of facilities and users are indexed by two different R*-

trees. The tree that indexes the users is called the user R*-

tree and the tree that stores the facilities is called the facility
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Notation Definition

f [i] i-th attribute of a facility

w[i] weight of i-th dimension

fs
∑

d
i=1 w[i] · f [i] (static score of f )

score(u, f) fs + w[d+ 1] · dist(u, f)
∆f (qs − fs)/w[d+ 1]
e an entry of the facility R*-tree

e.min[i] minimum value of e in i-th dimension

e.max[i] maximum value of e in i-th dimension

emin
s

∑
d
i=1 w[i] · e.min[i]

emax
s

∑
d
i=1 w[i] · e.max[i]

∆min
e (qs − emax

s )/w[d+ 1]
∆max

e (qs − emin
s )/w[d+ 1]

Table 3 Notations used for reverse top-k queries algorithms

R*-tree. The user R*-tree is a 2-dimensional R*-tree that in-

dexes the location coordinates of the users. The facility R*-

tree is a (d+2)-dimensional R*-tree that indexes d static at-

tributes and two location coordinates for each facility f . We

remark that converting the d static attributes of each facility

to a one dimensional static score using the scoring function

W and indexing in a 3-dimensional R*-tree (two location

coordinates and one static score) is not a feasible solution

because such an index would not support queries involving

a different scoring function W ′.

Static scores of a facility entry. Let e be an entry (interme-

diate or leaf node) of the facility R*-tree. We denote e.min[i]
(resp. e.max[i]) to denote the minimum (resp. maximum)

value of e for the i-th static attribute. The minimum (resp.

maximum) static score of an entry e is denoted as emin
s

(resp. emax
s ) and emin

s =
∑d

i=1 w[i] · e.min[i] and emax
s =∑d

i=1 w[i] · e.max[i].

Given a point p, maxdist(p, e) (resp. mindist(p, e))
corresponds to the maximum (resp. minimum) possible Eu-

clidean distance between the entry e and the point p (con-

sidering only the location coordinates). Table 3 summarizes

the terms and notations used throughout this section.

4.2 Half-space based solution

In this section, we present a solution based on the half-space

based approach used to answer RkNN queries. The perpen-

dicular bisector based pruning used for RkNN queries is not

applicable for the reverse top-k query. However, we note that

the half-space based pruning can be still applied using a hy-

perbola instead of perpendicular bisector. The details of hy-

perbola based pruning are presented in Section 4.2.1. We

also note that certain new optimizations are possible for the

spatial reverse top-k queries and we present the details of

these optimizations in Section 4.2.2 and Section 4.2.3.

4.2.1 Hyperbola based pruning

In this section, we show how to extend the half-space based

pruning for spatial reverse top-k queries. We say that a user

u is pruned by a facility f if score(u, f) < score(u, q).
Note that a user u cannot be the reverse top-k of a query q
if it is pruned by least k facilities. We say that a user u is

filtered if it is pruned by at least k facilities.

Let fs and qs denote the static scores of two facilities f
and q, respectively. Since a user u is pruned by the facility

f if score(u, f) < score(u, q), we write this inequality as

follows.

fs + w[d + 1] · dist(f, u) < qs + w[d+ 1] · dist(q, u)

This inequality can be re-written as below.

dist(f, u)− dist(q, u) <
qs − fs
w[d + 1]

Let ∆f = qs−fs
w[d+1] be called the static score gap between

q and f . A facility f prunes a user u (i.e., score(u, f) <
score(u, q)) if the following inequality holds.

dist(f, u)− dist(q, u) < ∆f (3)

When the facility f is clear by context, we denote ∆f as

∆. The above inequality shows that score(u, f) < score(u, q)
if the difference between dist(f, u) and dist(q, u) is smaller

than ∆, the static score gap between q and f . In other words,

q can only have a better score than f if the difference be-

tween dist(f, u) and dist(q, u) is larger than ∆.

Corollary 1 A facility f prunes a user u (i.e., score(u, f) <
score(u, q)) if and only if dist(f, u)− dist(q, u) < ∆.

Example 2 Consider the example of Fig. 11 that shows two

facilities f and q and a user u. The distances between the

facilities and user are shown above the broken lines. Assume

that the facilities have only one static attribute, e.g., price.

Let f [1] = 2, and q[1] = 8. Assume that both the price and

distance have the same weighting, i.e., w[1] = w[2] = 0.5.

The static scores of the facilities are fs = 2 × 0.5 = 1 and

qs = 8 × 0.5 = 4. ∆ = 4−1
0.5 = 6. Since dist(f, u) −

dist(q, u) = 4− 7 = −3 is less than ∆, the user u is pruned

by the facility f . It can be confirmed that score(u, f) <
score(u, q), i.e. score(u, f) = 3 and score(u, q) = 7.5.

Note that the inequality of Eq. (3) defines a space that

is bounded by a hyperbola dist(f, u) − dist(q, u) = ∆f .

This hyperbola can be used for pruning, i.e., the space where

dist(f, u)−dist(q, u) < ∆ is bounded by the hyperbola and

every user u that lies in the hyperbola can be pruned. The

half-space that can be pruned using a facility f is denoted as

Hf :q.
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Fig. 11 u is pruned by f Fig. 12 Hyperbola based pruning

Example 3 Fig. 12 shows four facilities q, a, b and c. To il-

lustrate the properties of hyperbola based pruning, the three

facilities (a to c) are assumed to have the same location.

First, we show the space pruned using the facility a. As-

sume that q[price] = 4, a[price] = 2, and w[price] =
w[distance] = 0.5. Hence, ∆a = 2−1

0.5 = 2. Fig. 12 shows

the area that can be pruned using the hyperbola for the facil-

ity a (see the shaded area).

Now consider the facilities b and c that have the same

location as the facility a and assume that b[price] = 4 and

c[price] = 6 (i.e., ∆b = 0 and ∆c = −2). The hyperbola

Hb:q in this case is defined by the perpendicular bisector

similar to the traditional traditional RkNN queries (see the

half-space that lies above the dotted line in Fig. 12). This is

because the facility b and the query have equal static scores

(i.e., ∆b = 0) and their final scores are decided solely based

on distances. The hyperbola Hc:q prunes the half-space that

lies above the hyperbola shown in the broken line. Note that

this example shows that the facility that has smaller static

score (i.e., larger ∆f ) prunes larger area, e.g., the facility a
prunes a larger area than the facilities b and c. This is in-

tuitive because the facilities that have better static attributes

are expected to prune more users.

Extending TPL to answer reverse top-k queries. Extend-

ing InfZone [7] and FINCH [40] using the hyperbola based

pruning is non-trivial mainly because computing the unpruned

polygon (or influence zone) using the hyperbolas is non-

trivial. However, TPL [28] can be easily extended to answer

reverse top-k queries by using hyperbolas for pruning in-

stead of the perpendicular bisectors. As shown in the ex-

ample above, the facilities that have smaller static scores

prune larger area. Also, the facilities that are closer to the

query point are expected to prune larger area. Hence, the

TPL algorithm accesses the facilities in increasing order of

w[d+ 1] · dist(q, f) + fs. The rest of the details are similar

to the original TPL algorithm except two possible optimiza-

tions briefly described below.

We note that there are some problem characteristics spe-

cific to reverse top-k queries that can be exploited to further

improve the performance. Firstly, we observe that there may

be some queries that cannot have any reverse top-k user re-

gardless of the users’ locations. Such queries are called fu-

tile queries. For the futile queries, the algorithm can return

empty results without even accessing the user R*-tree. Sec-

ondly, there may be some un-necessary facilities that can be

completely ignored to correctly compute the results. In Sec-

tion 4.2.2, we present observations to identify if a query is

futile or not. If a query is futile, the algorithm terminates

and returns empty results. In Section 4.2.3, we show how

to identify the un-necessary facilities that can be ignored by

the algorithm to improve the performance.

4.2.2 Identifying a futile query

We say that a facility f prunes the whole data space if it

prunes every point in the data space. The next lemma iden-

tifies the facilities that prune the whole data space.

Lemma 6 A facility f prunes the whole data space if dist(f, q)
< ∆.

Proof Let u be an arbitrary user located anywhere in the

data space. Due to the triangular inequality, dist(f, u) −
dist(q, u) ≤ dist(f, q). Since dist(f, q) < ∆, we have

dist(f, u)−dist(q, u) < ∆. Hence, u is pruned by f (Corol-

lary 1). ⊓⊔

Example 4 Consider the example of Fig. 11 where dist(q, f)
= 5 and ∆ = 6. Regardless of the location of u, every user

u can be pruned by f . This is intuitive because if two facil-

ities are reasonably close to each other and one facility (say

f ) has a significantly better static score than the other (say

q) then every user will prefer f over q.

Note that a query q cannot have any reverse top-k users

if there are at least k facilities that satisfy Lemma 6 (i.e.,

dist(f, q) < ∆ for each such facility). The algorithm main-

tains a counter that records the number of facilities that prune

the whole data space. The algorithm terminates and returns

empty results if the counter reaches k.

Next, we extend Lemma 6 to an entry of the facility R*-

tree. First, we extend the notion of static score gap ∆ for an

entry of the facility R*-tree. Let e be an entry of the facility

R*-tree and emax
s and emin

s be the maximum and minimum

static scores (as defined in Section 4.1), respectively. The

following two equations define the maximum static score

gap ∆max
e and minimum static score gap ∆min

e between q
and e.

∆max
e =

qs − emin
s

w[d + 1]
(4)

∆min
e =

qs − emax
s

w[d+ 1]
(5)

It is easy to show that for every facility f ∈ e, ∆min
e ≤

∆f ≤ ∆max
e . The next two lemmas extend Lemma 6 for an

entry e of the facility R*-tree.
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Lemma 7 Every facility f ∈ e prunes the whole data space

if maxdist(q, e) < ∆min
e .

Proof Since f ∈ e, dist(f, q) ≤ maxdist(q, e) and ∆f ≥
∆min

e . Hence, dist(f, q) < ∆f which implies that f prunes

every user u (Lemma 6). ⊓⊔

Let |e| denote the number of facilities indexed in the subtree

rooted at e. If e satisfies the condition in Lemma 7 then at

least |e| facilities prune the whole data space. In this case,

the algorithm increments the counter by |e| and ignores the

entry e (i.e., its children are not accessed).

Lemma 8 There exists at least one facility f ∈ e that prunes

the whole data space if MinMaxDist(q, e) < ∆min
e where

MinMaxDist(q, e) is the upper bound on the minimum

dist(f, q) for every f ∈ e as defined in [23].

Proof By definition of MinMaxDist(q, e), there exists a

facility f for which dist(q, f) ≤ MinMaxDist(q, e). Since

∆f ≥ ∆min
e for every facility f ∈ e, we have dist(q, f) <

∆f which implies that f prunes the whole data space. ⊓⊔

If there is an entry e that satisfies the condition in Lemma 8

the algorithm increments the counter by 1 and its children

are inserted in the heap to be processed later.

Note that applying Lemma 8 and Lemma 6/7 together

may incorrectly update the counter. For example, assume

that an entry e has only two facilities f1 and f2 and e satis-

fies Lemma 8, f1 satisfies Lemma 6 and f2 does not satisfy

the condition of Lemma 6. The correct counter after process-

ing the entry e is one because there is only one facility that

prunes the whole data space. However, when e is processed

the counter is incremented by one. When its child f1 is ac-

cessed the counter is incremented again which is incorrect.

We avoid this issue as follows.

We maintain a list that records the entries that satisfy

Lemma 8 and the list is kept sorted on IDs of the entries

for logarithmic search. If a facility f or an entry e satis-

fies one of the Lemmas 6, 7 and 8, we check whether its

parent e′ is present in the list or not. If its parent e′ is not

present in the list, the algorithm increments the counter as

described above (depending on which of the three lemmas

are applicable). However, if its parent e′ is found in the list

then the counter is first decremented by one and then incre-

mented accordingly (depending on the applicable lemma).

The counter is decremented by one to avoid incorrectly in-

crementing the counter twice for the same facility. The par-

ent e′ is then deleted from the list because the counter has

been correctly updated (and this should not be repeated for

the other children of e′).

4.2.3 Discarding un-necessary facilities

We observe that there may be some facilities (and the en-

tries of facility R*-tree) that are not required to compute the

results, i.e., the results can be correctly computed without

considering these facilities. In this section, we present ob-

servations to identify such facilities. A facility f , for which

score(u, q) ≤ score(u, f) for every user u (regardless of

the location of u), can be safely discarded because f cannot

prune any user u. Such a facility f is called an un-necessary

facility. The next lemma identifies un-necessary facilities.

Lemma 9 A facility f is an un-necessary facility if dist(f, q)
≤ −∆.

Proof Let u be an arbitrary user. Due to the triangular in-

equality, dist(q, u)−dist(f, u)≤ dist(f, q). Since dist(q, f)
≤ −∆, we have dist(q, u) − dist(f, u) ≤ −∆. In other

words, dist(q, u) − dist(f, u) ≤ − (qs−fs)
w[d+1] . Hence, w[d +

1] · dist(q, u) + qs ≤ w[d + 1] · dist(f, u) + fs. Hence,

score(u, q) ≤ score(u, f), i.e., f is an un-necessary facil-

ity. ⊓⊔

Next, we extend this lemma for an entry e of the facility

R*-tree.

Lemma 10 Every facility f ∈ e is an un-necessary facility

if maxdist(q, e) ≤ −∆max
e .

Proof For every f ∈ e, dist(q, f) ≤ maxdist(q, e) and

∆f ≤ ∆max
e . Hence, dist(q, f) ≤ −∆f for every f ∈ e.

Hence, f is an un-necessary facility (as per Lemma 9). ⊓⊔

During the execution of the algorithm, any facility entry

e that satisfies the condition in Lemma 10 is pruned.

4.3 SLICE: A Regions-based Solution

In this section, we extend SLICE to efficiently answer the

spatial reverse top-k queries. Our proposed solution follows

the same framework as SLICE for RkNN queries. However,

the underlying techniques (e.g., how to compute upper arc

and significant facilities etc.) are different. In Section 4.3.1,

we present our regions-based pruning techniques to prune

the search space using a facility f . Section 4.3.2 presents

the techniques to identify significant facilities. Finally, we

present the overall algorithm in Section 4.3.3.

4.3.1 Computing Upper, Lower and Bounding Arcs

As described in the previous section, a facility f prunes the

whole data space if dist(f, q) < ∆ (Lemma 6) and f does

not prune any point if dist(f, q) ≤ −∆ (Lemma 9). Next,

we present regions-based pruning rules for the facilities for

which dist(q, f) > |∆| where |∆| is the absolute value of

∆. Throughout this section, we limit our discussion to the

facilities for which dist(q, f) > |∆|.
We divide the search space into t equally sized partitions

(just like SLICE does for RkNN queries). In this section,
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we define the area of a partition Pi that can be pruned by

a given facility f . First, we present an observation to prune

the search space on a ray. Then, we extend it to prune the

space in a partition.

Consider a ray originating from q (see the arrow in Fig.

13). Let θ = ∠fqx for any point x on this ray. We denote

this ray as Lθ. Next, we introduce the concept of critical

point and critical distance for a ray.

Definition 7 Critical point/distance. We say that a point

pθ is a critical point on Lθ if the score of f and q are the

same for a user that is located at pθ, i.e., score(f, pθ) =
score(q, pθ). The distance dist(q, pθ) is called the critical

distance and is denoted as dθ .

Fig. 13 Critical point p

The next lemma identifies the critical point/distance on

a ray Lθ.

Lemma 11 Consider a facility f and a query q such that

dist(q, f) ≥ |∆|. For a ray Lθ, the critical distance is dθ =
dist(q,f)2−∆2

2(∆+dist(q,f) cos θ) .

Proof We abuse the notation and use p to denote pθ, the crit-

ical point on Lθ. Considering the triangle △pqf (with side

lengths a, b and c) in Fig. 13, we compute a = dist(p, f).

a2 = b2 + c2 − 2bc cos θ (6)

Recall that the scores of q and f are equal for a user u if

dist(f, u)−dist(q, u) = ∆. Since p is the critical point, we

have dist(f, p)−dist(q, p) = ∆, i.e., a−b = ∆. In Eq. (6),

we replace a with ∆+ b

(∆+ b)2 = b2 + c2 − 2bc cos θ

∆2 + b2 + 2b∆ = b2 + c2 − 2bc cos θ

2b∆+ 2bc cos θ = c2 −∆2

b(2∆+ 2c cos θ) = c2 −∆2

b = dθ =
c2 −∆2

2(∆+ c cos θ)
=

dist(q, f)2 −∆2

2(∆+ dist(q, f) cos θ)
(7)

⊓⊔

Eq. (7) can be used to to compute the critical distance dθ

for a facility f for which dist(q, f) > |∆|. We remark that

it is not necessary that every ray Lθ has a critical point on it,

i.e., it is possible that, for a ray Lθ, there does not exist any

point for which f and q have the same scores. Specifically, it

can be shown that a ray Lθ, for which ∆+dist(q, f) cos θ ≤
0, does not contain any critical point. Such rays are called

invalid rays and we assume dθ = ∞ for every invalid ray.

Next, we formally define a valid ray.

Valid ray. A ray Lθ is called valid if ∆+dist(q, f) cos θ >
0. This implies that a ray Lθ is valid if θ < cos−1( −∆

dist(q,f) ).

The next lemma shows that a user u lying on a valid ray Lθ

can be pruned if dist(u, q) > dθ (e.g., u in Fig. 13 can be

pruned).

Lemma 12 A user u that lies on a valid ray Lθ and has

dist(u, q) > dθ is pruned by f , i.e. score(u, f) < score(u, q).

Proof For the critical point p onLθ, we know that score(p, f)
= score(p, q) which implies that dist(p, f) − dist(p, q) =
∆. We add dist(u, p) to both of the terms on the left hand

side of this equation which gives

dist(p, f) + dist(u, p)− (dist(p, q) + dist(u, p)) = ∆

Note that dist(p, q) + dist(u, p) = dist(u, q) (see Fig. 13).

On the other hand, dist(p, f)+dist(u, p) > dist(u, f) (due

to the triangular inequality2). Hence, dist(u, f)−dist(u, q)
< ∆. Thus, according to the inequality (3), score(u, f) <
score(u, q). ⊓⊔

Lemma 13 A user u′ that lies on a rayLθ and has dist(u′, q)
≤ dθ cannot be pruned by f , i.e., score(u′, f) ≥ score(u′, q).

Proof For the critical point p onLθ, we know that dist(p, f)
−dist(p, q) = ∆. We subtract dist(u′, p) from both terms

in the above equation which yields

(dist(p, f)− dist(u′, p))− (dist(p, q)− dist(u′, p)) = ∆

Note that dist(p, q)−dist(u′, p) = dist(u′, q) (see Fig. 13).

On the other hand, dist(p, f) − dist(u′, p) ≤ dist(u′, f)
(due to triangular inequality). Hence, dist(u′, f)−dist(u′, q)
≥ ∆. Hence, score(u′, f) ≥ score(u′, q). ⊓⊔

Next, we present a property of the critical distance that

is utilized later in our pruning techniques.

2 Lemma 20 in appendix shows that dist(u, f) can never be equal
to dist(f, p) + dist(u, p)) even when f lies on the ray Lθ .
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Property 1 dθ increases as θ increases. Note that θ ≤ 180◦

for any ray originating from q. Since cos θ monotonically

decreases as θ increases from 0 to 180◦ and dist(q, f) cos θ+
∆ > 0 for valid rays, it is easy to see from Eq. (7) that dθ

increases as θ increases.

Based on Property 1, the next lemma defines the area of

a partition P that can be pruned by a facility f .

Lemma 14 Let θmax = maxAngle(f, P ) for a partition

P and f (see Definition 2) and θmax < cos−1(− ∆
dist(q,f) ).

Every user u ∈ P can be pruned if dist(u, q) > dθmax , i.e.,

dist(u, q) > dist(q,f)2−∆2

2(∆+dist(q,f) cos θmax)
.

Proof Fig. 14 shows a user u that lies in the partition P and

dist(u, q) > dθmax . Let α be the subtended angle of u, i.e.,

α = ∠fqu. Since α ≤ θmax, dα ≤ dθmax (Property 1).

Hence, dist(u, q) > dα. Furthermore, since α ≤ θmax <
cos−1(− ∆

dist(q,f) ), the ray Lα is a valid ray. According to

Lemma 12, u can be pruned by f . ⊓⊔

Based on Lemma 14, we describe how to compute the

upper arc for reverse top-k queries.

Definition 8 Upper arc. Upper arc of a facility f w.r.t. a

partition P is the arc centered at q with radius dθmax where

θmax = maxAngle(f, P ) and θmax < cos−1(− ∆
dist(q,f) ).

The radius of the upper arc is denoted as rUf :P (or simply rU

when the facility f and the partition P are clear by context).

If θmax ≥ cos−1(− ∆
dist(q,f) ), r

U
f :P = ∞.

Fig. 14 shows the upper arc of f for the partition P .

We say that a point lies outside (resp. inside) an arc of ra-

dius r if its distance from the center of the arc is greater

(resp. smaller) than r. According to Lemma 14, a facility

prunes area outside the upper arc of f for every partition P
for which θmax < cos−1(− ∆

dist(q,f) ). In Fig. 14, every user

that lies in the shaded area can be pruned by f .

Fig. 14 Pruning using upper arc Fig. 15 f is not significant

Recall that a user u cannot be the reverse top-k (i.e., it

can be filtered), if it is pruned by at least k facilities. In other

words, a user u can be filtered if it lies outside the upper

arcs of at least k facilities. To efficiently employ this filtering

rule, we maintain k-th smallest upper arc in each partition

which is called the bounding arc and is defined below.

Definition 9 Bounding arc. The k-th smallest upper-arc of

a partition P is called its bounding arc. Its radius is denoted

as rB:P (or simply rB when the partition is clear by con-

text). If there are less than k upper arcs in a partition P then

rB:P = ∞.

Next, we describe how to compute lower arc of a parti-

tion P w.r.t. a facility f .

Lemma 15 Let θmin = minAngle(f, P ) for a partition P
and f (see Definition 2) and θmin < cos−1(− ∆

dist(q,f) ). The

facility f cannot prune any user u ∈ P for which dist(u, q) <
dθmin .

Proof Let α be the subtended angle of u. Since u ∈ P , α ≥
θmin. Hence, dα ≥ dθmin (Property 1). Since dist(u, q) <
dθmin, we have dist(u, q) < dα. According to Lemma 13, u
cannot be pruned by f . ⊓⊔

Definition 10 Lower arc. Lower arc of a facility f w.r.t. a

partition P is the arc centered at q with radius dθmin where

θmin = minAngle(f, P ) and θmin < cos−1(− ∆
dist(q,f) ).

The radius of the lower arc is denoted as rLf :P (or simply rL

when the facility f and the partition P are clear by context).

If θmin ≥ cos−1(− ∆
dist(q,f) ), r

L
f :P = ∞.

Algorithm 4: pruneSpace(f )

1 if dist(f, q) > |∆| then

2 θ ← cos−1( −∆

dist(f,q)
);

3 for each partition P for which minAngle(f, P ) < θ) do

4 if maxAngle(f, P ) < θ then // otherwise rUf :P

is ∞
5 rUf :P ← dmaxAngle(f,P);

6 Set rB:P to the radius of k-th smallest upper arc of P ;

7 if f is a significant facility then

8 rLf :P ← dminAngle(f,P);

9 insert f in sigList of P in sorted order of rLf :P ;

Whenever we access a facility f , we prune the search

space by computing its upper arc for the relevant partitions

and updating the bounding arcs if required. Algorithm 4

shows the details of pruning the search space using a facil-

ity f . Since upper-arc can only be computed if dist(q, f) >
|∆|, the algorithm first ensures that dist(q, f) > |∆| (line 1).

Then, for each partition P for which minAngle(f, P ) <
cos−1(− ∆

dist(q,f) ), the algorithm computes the upper-arc rUf :P
and updates the bounding arc if required (lines 3 to 6).

The lines 7 to 9 are used to insert lower arcs of signifi-

cant facilities that are identified as described in the next sec-

tion. As we will show later, this significantly improves the

verification phase of the algorithm. For now, the readers can

ignore these lines.
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4.3.2 Identifying Significant Facilities

Recall that a facility f is called a significant facility of a

partition P if it prunes at least one point p ∈ P that lies

in the bounding arc of P , i.e., score(p, f) < score(p, q)
for at least one p ∈ P for which dist(p, q) ≤ rB:P . In

this section, we describe techniques on how to determine

whether an entry e may contain a significant facility or not.

The next lemma identifies a facility that is not a significant

facility for a partition P .

Lemma 16 A facility f is an insignificant facility for a par-

tition P if f lies inside the partition P and dist(q, f) >
2rB:P +∆.

Proof Consider the example of Fig. 15 that shows a partition

P , a facility f , the bounding arc rB:P (shown in solid line),

and an arc with radius 2rB:P+∆ (shown in broken line). We

prove that f is not significant by showing that score(u, f) ≥
score(u, q) for every user in P that lies inside the bounding

arc, i.e., for which dist(u, q) ≤ rB:P .

Fig. 15 shows a user u that lies inside the bounding arc.

Due to the triangular inequality, dist(u, f) ≥ dist(q, f) −
dist(u, q). Since dist(q, f) > 2rB:P +∆ and dist(u, q) ≤
rB:P , we have dist(u, f) ≥ (2rB:P +∆)− rB:P . This can

be rewritten as dist(u, f) − rB:P ≥ ∆. Since dist(u, q) ≤
rB:P , we have dist(u, f)−dist(u, q) ≥ ∆. Hence, f cannot

prune the user u (Corollary 1). ⊓⊔

Next, we extend this lemma for an entry e of the facility

R*-tree.

Lemma 17 Every facility f ∈ e is an insignificant facil-

ity for a partition P if f lies inside the partition P and

mindist(q, e) > 2rB:P +∆max
e .

Proof For every f ∈ e, ∆f ≤ ∆max
e and dist(q, f) ≥

mindist(q, e). Hence, we have dist(q, f) > 2rB:P + ∆f

for every f ∈ e. Hence, according to Lemma 16, f cannot

be a significant facility. ⊓⊔

The above two lemmas define the conditions to identify

whether a facility f that lies inside a partition P is a signifi-

cant facility or not. The next lemma defines the condition to

determine whether a facility that lies outside a partition P is

a significant facility of the partition P or not.

Lemma 18 Let M and N be the points where the bounding

arc intersects with the partition P (as shown in Fig. 16). A

facility f /∈ P cannot be a significant facility if dist(f,M) >
rB:P +∆ and dist(f,N) > rB:P +∆, i.e., if f lies outside

the two shaded circles of Fig. 16.

Proof To prove that f is not a significant facility, we show

that, for every user u ∈ P for which dist(u, q) ≤ rB:P ,

score(u, f) ≥ score(u, q). We prove this for the following

two cases: case 1) ∆ ≤ 0 (see Fig. 16); case 2) ∆ > 0 (see

Fig. 17).

Case 1: ∆ ≤ 0. We divide this further into two cases.

Case 1a: dist(u, q) ≤ −∆ (see Fig. 16(a)). If dist(u, q)
≤ −∆, the maximum (i.e., worst) possible score of q is

when u is furthest from q, i.e., dist(u, q) = −∆. In other

words, score(u, q) ≤ qs−w[d+1]·∆ or score(u, q) ≤ qs−
w[d+1] qs−fs

w[d+1] . Hence, score(u, q) ≤ fs. Since score(u, f)

≥ fs, score(u, q) ≤ score(u, f) which completes the proof

for this case.

Case 1b: dist(u, q) > −∆. Without loss of generality,

assume that dist(u, q) = −∆+y (see Fig. 16(b)). The score

of q is score(u, q) = qs +w[d+1](−∆+ y) = qs −w[d+
1] qs−fs

w[d+1] +w[d+1] · y. In other words, score(u, q) = fs +

w[d+1] · y. Since score(u, f) = fs +w[d+1] · dist(u, f),
we prove that score(u, f) ≥ score(u, q) by showing that

dist(u, f) ≥ y.

(a) Case 1a: dist(u, q) ≤ −∆ (b) Case 1b:dist(u, q) > −∆

Fig. 16 Lemma 18, Case 1 (∆ ≤ 0)

Since dist(u, q) = −∆ + y, u lies somewhere on the

dotted arc in Fig. 16(b). Since f lies outside the partition P ,

dist(u, f) is minimum when u lies on one of the end points

of the dotted arc (see Observation 1 in [5] 3). Without loss

of generality, assume that u lies on the line connecting q
and M (as shown in Fig. 16(b)). We draw a circle centered

at u with radius y (see the small circle in Fig. 16(b) drawn

in broken line) and show that f lies outside this circle (i.e,

dist(u, f) > y).

Since dist(u, q) ≤ rB:P (because u lies within bound-

ing arc) and dist(u, q) = −∆+y, we have rB:P ≥ −∆+y
which implies rB:P +∆ ≥ y. Since the radius of the circle

centered at M is rB:P + ∆ and y ≤ rB:P + ∆, the circle

centered at M completely contains the circle centered at u.

Since f lies outside the circle centered at M , it also lies out-

3 The observation 1 in [5] can be summarized as follows. For a
circle C centered at q, let x be the point such that dist(f, x) =
mindist(f,C) where mindist(f,C) is the minimum distance be-
tween f and any point of the circle C. Let u be a user located on the

perimeter of this circle. Then, dist(f, u) monotonically increases if
u moves along the circle in clockwise or counter clockwise direction
from x. Since f lies outside the partition, x also lies outside the parti-

tion and this implies that dist(u, f) is minimum when u is at one of
the end points of the arc.
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side the smaller circle centered at u. Hence, dist(u, f) > y
which completes the proof for this case.

Case 2. ∆ > 0 (see Fig. 17). Assume that dist(u, q) = y,

e.g., u lies on the dotted arc in Fig. 17. As argued earlier,

the minimum distance from f to u is when u lies on one of

the end points of this arc. Without loss of generality, assume

that u lies on the line connecting q and M . We draw a circle

centered at u with radius y + ∆ (see the circle in Fig. 17

shown in broken line). Since the circle centered at M has

a radius rB:P + ∆ and y ≤ rB:P , it is easy to see that the

circle centered at u (the broken circle) is contained by the

circle centered at M . Hence, dist(u, f) > y + ∆ because

f lies outside of the circle centered at M . So, the score of f
is score(u, f) > fs + w[d + 1] · (y +∆) or score(u, f) >
fs+w[d+1]·y+w[d+1] qs−fs

w[d+1] which gives score(u, f) >

qs+w[d+1] ·y. Since dist(u, q) = y, the right hand side of

this inequality is equal to score(u, q). Hence, score(u, f) >
score(u, q) which completes the proof for this case. ⊓⊔

Fig. 17 Lemma 18, Case 2

The next lemma extends Lemma 18 for an entry e of the

facility R*-tree.

Lemma 19 Let M and N be the points where the bound-

ing arc intersects with the partition P (as shown in Fig 16).

Every facility f ∈ e is an insignificant facility if f /∈ P
and mindist(e,M) > rB:P +∆max

e and mindist(e,N) >
rB:P +∆max

e .

Proof Since f ∈ e, dist(f,M) ≥ mindist(e,M) > rB:P+
∆max

e and dist(f,N) ≥ mindist(e,N) > rB:P +∆max
e .

Furthermore, for every f ∈ e, ∆f ≤ ∆max
e . Therefore,

dist(f,M) > rB:P + ∆f and dist(f,N) > rB:P + ∆f .

Hence, according to Lemma 18, f cannot be a significant

facility. ⊓⊔

4.3.3 Algorithm

Now, we are ready to present the algorithm to answer spatial

reverse top-k queries.

Filtering Algorithm. Algorithm 5 shows the details of the

filtering algorithm. The space is divided into t equal sized

partitions. A list is introduced to store intermediate nodes

and initialized to empty. A min-heap is initialized with the

root entry of the facility R*-tree. Since the entries that have

smaller static scores and are closer to the query are expected

to prune a larger area, each entry e is inserted in the heap

with key ∆max
e + w[d + 1] · mindist(e, q) (line 22). The

entries are iteratively deheaped from the heap until the heap

becomes empty. Each deheaped entry e is processed as fol-

lows.

Algorithm 5: Filtering

1 Divide the space around q in t equally sized partitions;
2 Initialize an empty list L;

3 Insert root of facility R*-tree in a min-heap h;
4 while h is not empty do

5 deheap an entry e;

6 if maxdist(e, q) < −∆max
e then // Lemma 10

7 continue;

8 if MinMaxdist(e, q) < ∆min
e then // Lemma 8

9 if parent of e exists in L then

10 k← k + 1;
11 remove parent of e from L;

12 if maxdist(e, q) < ∆min
e then // Lemma 7

13 k← k − |e|;
14 if k ≤ 0 then terminate algorithm and return empty;

15 continue;

16 else // satisfies conditions in Lemma 8

17 k← k − 1;

18 insert e in L;

19 if k ≤ 0 then terminate algorithm and return empty;

20 if e may contain a significant facility for at least one partition

then

//Lemma 17 & 19 for each partition

21 if e is an intermediate node or leaf then

22 insert every child c of e into the heap h with key
∆max

c + w[d+ 1]mindist(q, c);

23 else // e is a data object

24 pruneSpace(e) //Algorithm 4

In lines 6 to 19, we apply the observations presented in

Section 4.2.2 and Section 4.2.3. Below, we provide a quick

overview and the readers are referred back to these sections

for a detailed explanation of the ideas. If every facility f ∈ e
is an un-necessary facility (see Section 4.2.3), e is discarded

(line 7). The algorithm then checks whether the entry e con-

tains one or more facilities that prune the whole data space

by using Lemmas 7 and 8 presented in Section 4.2.2. Note

that an entry e can satisfy Lemma 7 only if it satisfies the

condition in Lemma 8. Therefore, we first check if the con-

dition in Lemma 8 is satisfied (line 8). To correctly update

the value of k, we first increment k by 1 if the parent of e
is present in the list L (line 10) and then delete its parent

from L (line 11). If all the facilities in f prune the whole

data space (i.e., e satisfies Lemma 7), then the value of k is

decremented by |e|. In this case, the entry can be discarded

because its children are not needed to be accessed (line 15).

On the other hand, if the entry e satisfies Lemma 8 but does

not satisfy the condition in Lemma 7, then the value of k is

decremented by one because there exists at least one facil-
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ity that prunes the whole data space (line 17). Such an entry

e is inserted in L to correctly update the value of k later

(line 18). At any stage, if the value of k is not greater than

zero (lines 14 and 19), the algorithm returns empty because

the query is a futile query.

The rest of the algorithm (lines 20 to 24) is quite similar

to the filtering algorithm (Algorithm 1) for RkNN queries.

Specifically, if an entry e may contain a significant facilities,

it is processed as follows. If e is an intermediate node or leaf

node, its children are inserted in the heap. However, if e is

an object (i.e., a facility), it is used to prune the search space

by using Algorithm 4.

Verification Algorithm. The verification algorithm is quite

similar to the verification algorithm for RkNN queries (Al-

gorithm 3). In the verification phase, the users that cannot be

filtered are shortlisted and are called candidate users. This

is done by iteratively accessing the nodes of the user R*-

tree and checking whether the node can be pruned by up-

per arcs of the relevant partitions or not. If not, its children

are inserted in a stack to be iteratively accessed later. If the

accessed entry is a data object (e.g., a user) and cannot be

filtered, it is a candidate object and is verified by calling Al-

gorithm 6.

Algorithm 6: isReverseTopk(u)

Output : Returns true if u is reverse top-k. Otherwise, returns
false.

1 Let P be the partition in which u lies;

2 counter=0;

3 for each f ∈ sigList of P in ascending order of rLf :P do

4 if rLf :P > dist(u, q) then

5 return true;

6 if score(u, f) < score(u, q) then

7 counter ← counter + 1;
8 if counter ≥ k then

9 return false;

10 return true;

Algorithm 6 presents the details of how to check if a

candidate user u is an answer or not. It first determines the

partition P in which the candidate user u lies. The algorithm

also initializes a counter to zero that records the number of

facilities that have a better score than q. Then, it iteratively

accesses the facilities in the sigList of the partition P in as-

cending order of rLf :P . For each accessed facility f , the algo-

rithm increments the counter if score(u, f) < score(u, q).
If the counter reaches k, the user u cannot be the reverse

top-k and the algorithm returns false (see lines 6 to 9). If

the counter does not reach k and all the facilities in the

sigList have been accessed the algorithm returns true indi-

cating that u is an answer (line 10). At any stage, if rLf :P
of the next accessed facility f is larger than dist(u, q), the

algorithm returns true (line 5), i.e., u is an answer. This is

because 1) f cannot prune u because rLf :P > dist(u, q)
(Lemma 15); and 2) since the algorithm accesses the facil-

Parameter Range

Number of facilities(×1000) 50, 100, 150 200

Number of users(×1000) 50,100, 150 200

Value of k 1, 5, 10, 15, 20, 25

Data distribution North America, Normal, Uniform

Buffer size(Six-region only) 2, 5, 10, 20, 40, 100

Table 4 Experimental settings (reverse k nearest neighbors queries)

ities in ascending order of rLf :P , no remaining facility can

prune the user u because for each such remaining facility

f ′, rLf ′:P > dist(u, q).

5 Experimental Evaluation

5.1 Reverse k Nearest Neighbors Queries

5.1.1 Experimental settings

We compare our algorithm with six-regions approach [26]

and InfZone [7] which is the state-of-the-art RkNN algo-

rithm. All algorithms are implemented in C++ and the ex-

periments are run on a 32-bit PC with Intel Xeon 2.40GHz

dual CPU and 4GB memory running Debian Linux.

The experimental settings are similar to those used in [7]

by our main competitor InfZone. Table 4 shows the detailed

settings and the default values are shown in bold. Specifi-

cally, we use both the synthetic and real data sets. The real

data set consists of 175, 812 points in North America [33]

and we randomly divide these points into two sets of almost

equal sizes. One of these sets corresponds to the facilities

and the other to the users. Each synthetic data set consists

of 50000 to 200000 points following either Uniform or Nor-

mal distribution. The default synthetic data set consists of

100000 points and follows Normal distribution unless men-

tioned otherwise. We vary k from 1 to 25 and the default

value of k is 15. For bichromatic RkNN queries, the num-

ber of users is the same as the number of facilities unless

specifically mentioned.

For six-regions approach, a buffer of 10 pages is used

which uses random eviction strategy. We remark that Inf-

Zone and SLICE do not require buffer because each node is

accessed only once by these algorithms. Thus, the buffer fa-

vors the six-regions approach (see Fig. 24 for more details).

Next, we compare the performance of the three algo-

rithms for both the monochromatic and bichromatic RkNN

queries. Six-regions [26] is shown as SIX and InfZone [7]

is shown as INF in the figures. The default number of par-

titions for SLICE is 12 which is chosen based on the the-

oretical analysis and experiments presented in our earlier

work [44]. The results reported in the figures correspond to

the average cost per query.
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Fig. 18 Monochromatic queries: effect of data set size (Normal Distri-
bution)
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Fig. 19 Bichromatic queries: effect of data set size (Normal Distribu-
tion)

5.1.2 Effect of data size

In Fig. 18 and 19, we study the effect of data size for monochro-

matic and bichromatic RkNN queries, respectively. For bichro-

matic queries, the number of users in each data set is the

same as the number of facilities. Fig. 18(a) and 19(a) show

the CPU cost of the three algorithms. Note that the dominant

cost for SLICE and InfZone is the pruning phase - the verifi-

cation phase has negligible cost. This is due to the effective

verification techniques employed by these two algorithms.

Fig. 18(b) and 19(b) show the number of I/Os for each

algorithm. As expected, the I/O cost of SLICE is slightly

larger than the I/O cost of InfZone because InfZone prunes a

larger area (hence, prunes more entries of the R*-tree). The

I/O cost of six-regions approach is much higher because it

calls range queries to verify the candidates.

Due to space limitations, in the rest of the experiments,

we focus on the CPU cost of the algorithms. The numbers

dislayed above the bars correspond to the number of I/Os

unless mentioned otherwise. Several existing works show

the total cost of the algorithms by penalizing each algorithm

for each I/O (e.g., average I/O cost for SSD disks is less

than 0.1ms [30] so each algorithm may be charged 0.1ms per

I/O). We do not follow this approach mainly because the I/O

cost is highly system specific (e.g., type of disk drive used,

workload etc.). Nevertheless, the interested readers can es-

timate the I/O cost by charging say 0.1ms for each I/O. We

remark that under our system settings, the I/O cost for each

algorithm is negligible as compared to its CPU cost.

5.1.3 Effect of k

In Fig. 20 and 21, we study the effect of k for monochro-

matic and bichromatic RkNN queries, respectively. The per-

formance of InfZone rapidly deteriorates as the value of k
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Fig. 20 Monochromatic queries: effect of k
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Fig. 21 Bichromatic queries: effect of k

increases. Recall that the cost of pruning the space for Inf-

Zone is O(km2). The value of m increases as k increases.

Hence, the pruning phase becomes quite expensive as can

be observed in Fig. 20 and 21. The number of I/Os for our

algorithm is larger than that of InfZone but is much lower as

compared to the number of I/Os for six-regions.

The CPU cost of SLICE is lower than InfZone except

when k = 1. This is because when k = 1, m is also small

and the pruning cost of InfZone is low. However, note that

SLICE scales much better than the other two algorithms and

is several times more efficient for larger k. In Fig. 21(b), we

show the results for Normal distribution using lines (instead

of bars) to clearly demonstrate how the three algorithms

scale with the increase in k.

5.1.4 Effect of data distribution

In Fig. 22, we study the effect of data distribution on each al-

gorithm. The data distribution of the facilities and the users

is shown as (Df ,Du) where Df and Du correspond to the

distribution of facilities and users, respectively. U, R and N

correspond to Uniform, Real and Normal distribution, re-

spectively. For instance, (U,N) correspond to the data set

where the facilities follow Uniform distribution and the users

follow Normal distribution. Since Real data set consists of

two sets each containing almost 87, 900 points, in this exper-

iment, the synthetic data sets also contain the same number

of points. Fig. 22 demonstrates that SLICE is significantly

faster than the other two algorithms for all different combi-

nations of data distribution.

5.1.5 Effect of number of users

In this experiment, we fix the number of facilities to 100, 000
and change the number of users to see the effect of change
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Fig. 22 Effect of data distribution
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in the relative size of the two data sets. The data set shown

as x% correspond to the case when the number of users is

x% of the number of facilities, i.e., the number of users

is 100000×x
100 . Fig. 23 shows that the cost of six-regions ap-

proach increases significantly with the increase in the num-

ber of users. On the other hand, the cost of InfZone and

SLICE is not significantly affected. This is because the num-

ber of candidates increases as the number of users increases.

Since the verification phase for the six-regions approach is

significantly more expensive, its cost is severely affected. In

contrast, InfZone and SLICE have much more efficient ver-

ification techniques. Therefore, the cost does not increase

substantially.

5.1.6 Effect of buffer size

As stated earlier, InfZone and SLICE do not require buffer

because these algorithms access each node at most once. On

the other hand, six-regions approach issues multiple range

queries and its I/O cost is significantly affected by buffer

size. In Fig. 24, we demonstrate the effect of buffer size on

six-regions. The I/O cost of six-regions decreases signifi-

cantly with the increase in the buffer size. However, the cost

remains unchanged when buffer size is 20 or larger. In all

cases, the I/O cost of six-regions is much higher than our

algorithm which does not require buffer.

5.2 Spatial Reverse Top-k Queries

5.2.1 Experimental Settings

Data sets and parameters. We use both synthetic and real

data sets. The real data set consists of 1, 000, 000 locations

in California [32]. Each facility location is assigned up to 3

static attributes that are obtained from House data set [31]

namely monthly owner costs, electricity cost, and property

Parameter Range

Number of facilities(×1000) 100, 1,000

Number of users(×1000) 25, 50, 100, 200, 400, 1,000

Number of static attributes 1, 2, 3

Value of k 1, 5, 10, 15

Location data distribution California, Uniform

Static data distribution House, Uniform

Table 5 Experimental settings (spatial reverse top-k queries)

taxes. We normalize the static attributes into a range of 0
to 1 and assume that the smaller values are preferred. For

default synthetic data sets, we generate locations following

uniform distribution or normal distribution. Due to the space

limitation, we only show the results for the uniform distri-

bution - trends are similar for the normal distribution. The

static attributes of the synthetic data sets are generated fol-

lowing uniform distribution. The default size of synthetic

data sets contains 100, 000 facilities and the number of static

attributes varies from 1 to 3. The size of synthetic user data

sets varies from 25, 000 to 400, 000. Unless mentioned oth-

erwise, the number of users are the same as the number of

facilities in each experiment. The cost shown in the figures

corresponds to average query cost. Table 5 summarizes the

data sets and parameters used in the experiments.

Competitors. We compare our algorithm with state-of-the-

art spatial reverse top-k algorithm [21] (called PCK) and

the extension of TPL that we presented in Section 4.2. For

SLICE and TPL, filtering phase and verification phase are

independent and the total cost is the sum of filtering cost

and verification cost. For PCK, filtering and verification are

blended and it is not possible to distinguish between the fil-

tering cost and verification cost. Therefore, while we dis-

play the filtering and verification cost for TPL and SLICE,

we only display the total cost for PCK.

Since PCK can only be applied for the settings when the

number of static attributes is 1 (i.e., d = 1) and k = 1,

we first compare our algorithm with both PCK and TPL for

k = 1 on the data sets containing only one static attribute.

Later, in Section 5.2.3, we compare our algorithm with TPL

for d ≥ 1 and k ≥ 1.

5.2.2 Performance evaluation for d = 1 and k = 1

The default scoring function W is set as w[1] = w[2] = 0.5.

Later, we show the results for varying the scoring function

by increasing w[2] from 0.1 to 0.9. As mentioned in Sec-

tion 4.2.2, the results for futile queries are empty and the al-

gorithm can be terminated as soon as the query is determined

to be futile. This also implies that the processing time de-

pends on the static attributes of queries. Specifically, a query

that has better static score is likely to have more reverse top-

k users and is expected to be more expensive. Therefore, we

first evaluate the effect of query quality on the performance

of the three algorithms.

Effect of query quality. In Fig. 25 and Fig. 26, we evaluate

the algorithms on different sets of queries where each query
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Fig. 25 Effect of query quality (real data set)

set contains 100 queries. Each query set is shown as x%
denoting the quality of queries in the set. A query set corre-

sponding to x% is selected as follows. First, all the facilities

in the data set are sorted in ascending order of their static

scores. Then, the first x% of these facilities are shortlisted.

Among these x% facilities, 100 facilities are uniformly cho-

sen and constitute the query set. For example, 0.1% query

set on the real data set consisting of 1, 000, 000 facilities is

chosen by first shortlisting top-1000 facilities according to

their static scores and then uniformly choosing 100 of these

top-1000 facilities as queries. Note that the query set corre-

sponding to 100% contains 100 queries uniformly selected

from all the facilities. Also note that smaller x corresponds

to better query quality, i.e., queries with better static scores.

As expected, Fig. 25 and Fig. 26 show that the query pro-

cessing cost of the algorithms decreases as the query quality

degrades. This is because the expected number of reverse

top-k users for a query decreases as the query quality de-

grades. Fig. 25 and Fig. 26 also display the average num-

ber of reverse top-k users for each query set (shown in line).

Note that the average number of results decreases from more

than a hundred to almost zero as the query quality degrades.

The average number of results in the real data set is larger

than the average number of results in the synthetic data set

mainly because real data set contains more users (1 Million)

than the synthetic data set (100, 000 users).

SLICE significantly outperforms the other two algorithms

both in terms of I/O cost and CPU cost. PCK performs better

than TPL in terms of CPU cost especially for high quality

queries. However, TPL is better in terms of I/O cost. This

is mainly because PCK needs to access the facility R*-tree

multiple times to confirm if a user is a reverse top-k or not.

In the rest of the experiments, we display the results on

two different types of query sets namely high quality queries

and mixed queries. For high quality queries, x = 5, i.e., 100
queries are uniformly chosen from top-5% facilities accord-

ing to their static scores. In mixed queries, we set x = 100.
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Fig. 26 Effect of query quality (synthetic data set)

Effect of scoring function. Next, we study the effect of the

scoring function on real data set by changing the weight of

distance criterion (i.e., w[2]) from 0.1 to 0.9 (recall w[1] =
1 − w[2]). Fig. 27 displays the results for mixed queries

whereas Fig. 28 displays the results for high quality queries.

SLICE consistently outperforms the other two algorithms by

several orders of magnitude in terms of both the CPU cost

and I/O cost.

Fig. 27 and Fig. 28 show that the CPU and I/O cost of

all algorithms increase as the weight for dynamic attribute

w[2] increases. This is mainly due to the following. Recall

that a facility f prunes the whole data space if dist(f, q) <
∆ (Lemma 6) and a facility f is an un-necessary facility

if dist(f, q) < −∆ (Lemma 9). Also, recall that |∆| =
|qs−fs|
w[d+1] and, for the case when there is only one static at-

tribute, |∆| = w[1]·|q[1]−f [1]|
w[2] . As w[2] increases (and w[1]

decreases), |∆| decreases. Consequently, there are fewer fa-

cilities on which Lemma 6 or Lemma 9 can be applied, i.e.,

there are fewer facilities that can prune the whole data space

and there are fewer un-necessary facilities. As a result, the

algorithm needs to process more facilities which results in

an increased query processing cost.

Effect of number of users. Next, we fix the number of fa-

cilities to 100, 000 and change the number of users to see

the effect of change in the relative size of the two data sets.

The data set shown as x% correspond to the case when the

number of users is x% of the number of facilities, i.e., the

number of users is 100000×x
100 .

Fig. 29 and Fig. 30 show the results for mixed queries

and high quality queries, respectively. As expected, both I/O

and CPU cost of all algorithms increase as the number of

users increases. This is because the number of candidate

users increases resulting in increased verification cost. In

terms of I/O cost, PCK scales worse as compared to the other

two algorithms. This is because PCK needs to access facil-

ity R*-tree every time a user is verified. SLICE consistently
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Fig. 27 Effect of increasing w[d+ 1] (mixed queries)

 0

 2000

 4000

 6000

 8000

 10000

0.1 0.3 0.5 0.7 0.9

P
C
K
TP

L
S
LIC

E

P
C
K
TP

L
S
LIC

E

P
C
K
TP

L
S
LIC

E

P
C
K
TP

L
S
LIC

E

P
C
K
TP

L
S
LIC

E

IO
 C

o
s

t

PCK

2
6

1
7 4

2
6

6

4
9

6
0

4
5

3
1

6
7

7
9Verification

Filtering

1
0

2
6

1
2

8
1

1
3

4
5

1
9

9
8

3 7 1
0

1
3

1
0

0

(a) I/O Cost

 0

 1000

 2000

 3000

 4000

 5000

0.1 0.3 0.5 0.7 0.9

P
C
K
TP

L
S
LIC

E

P
C
K
TP

L
S
LIC

E

P
C
K
TP

L
S
LIC

E

P
C
K
TP

L
S
LIC

E

P
C
K
TP

L
S
LIC

E

C
P

U
 C

o
s

t(
m

s
)

PCK

2
7

9
.5

9

5
7

6
.0

4

7
6

5
.3

4

7
2

5
.5

7

1
0

0
1

.0
7

Verification
Filtering

1
6

2
4

.3
2

1
6

5
4

.2
7

2
7

3
4

.1
6

2
9

8
8

.8
9

3
0

5
5

.1
8

0
.1

3

0
.1

7

0
.3

1

1
.7

5

2
3

.3
8

(b) CPU Cost

Fig. 28 Effect of increasing w[d+ 1] (high quality queries)
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Fig. 29 Effect of number of users (mixed queries)

outperforms the other two algorithms and also scales better

for both I/O and CPU cost.

5.2.3 Performance evaluation for d ≥ 1 and k ≥ 1

In this section, we compare TPL and SLICE for the spatial

reverse top-k queries for k ≥ 1 and on the data sets with

one or more static attributes. We vary k from 1 to 15 and the

number of static attributes d from 1 to 3. We choose d ≤ 3
because TPL could not compute the results for d > 3 even

after a few hours due to its very high CPU cost. The default

values are k = 10 and d = 2. The scoring function is set by

assigning equal weight to each attribute, e.g.,w[1] = w[2] =
· · · = w[d + 1] = 1

d+1 .

Effect of k. Fig. 31 and Fig. 32 show the effect of k on

real data set for mixed queries and high quality queries, re-

spectively. As expected, the I/O and CPU cost of both al-

gorithms increases with the increase in k. However, SLICE

significantly outperforms TPL and scales better. As shown

in the figures, both I/O cost and CPU cost of two algorithms

increase as k increases.

Effect of number of static attributes. Fig. 33 and Fig. 34

study the effect of number of static attributes on real data

set for mixed queries and high quality queries, respectively.

SLICE significantly outperforms TPL in all settings in terms

of both I/O and CPU cost. Fig. 33 shows that the I/O cost
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Fig. 30 Effect of number of users (high quality queries)
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Fig. 31 Effect of k (mixed queries)
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Fig. 32 Effect of k (high quality queries)
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Fig. 33 Effect of number of static attributes (mixed queries)

and CPU cost of both algorithms increases as the number

of attributes increases. Fig. 34 shows the same trend except

that the I/O cost for TPL decreases with the number of static

attributes. This anomaly in the trend for I/O cost is possi-

bly due to the different opposing factors that may contribute

positively or negatively towards the overall cost as explained

below.

The cost of algorithms is affected by several factors.

Firstly, as d increases, the weight of dynamic attribute de-

creases (recall, w[i] = 1
d+1 ) which contributes towards re-

ducing the overall cost (as explained earlier for Fig. 28).

On the other hand, as the number of attributes increases,

the size of R*-tree increases which contributes towards in-

creasing the overall cost. Also, as d increases, the difference

between the static scores between the query and facilities

decreases, i.e., |qs − fs| decreases. This is because as the

number of static attributes increases, it becomes less likely
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Fig. 34 Effect of number of static attributes (high quality queries)
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(b) SRTk query

Fig. 35 Effect of page size

that one facility is better than another facility on all static at-

tributes - this behavior is due to the same reason the size of

skyline grows for increasing dimensionality. Since the static

score gaps decreases, |∆| also decreases which contributes

towards increasing the overall cost.

5.3 Experiments in main memory

In this section, we evaluate the performance of the algo-

rithms for main memory data sets. Specifically, we vary the

page size of R∗-tree from 512 bytes to 4, 096 bytes and show

the effect on the algorithms in Fig. 35. Each numbers in

parenthesis corresponds to the fan-out of the tree for the

given page size.

Fig. 35(a) shows the results for RkNN queries (default

settings) and Fig. 35(b) shows the results for SRTk queries

using default synthetic data set and high quality queries. The

impact of page size on the CPU cost is not huge as can be

seen from the figures. In fact, the CPU cost of both the

region-based algorithms (e.g. Six-regions and SLICE) de-

crease as the page size increases. This is mainly because the

number of facilities m considered by SLICE increases as the

page size increases which results in a larger pruned area im-

proving the overall cost. Note that the pruning cost of region

based techniques is O(1) once dk has been computed. Al-

though the pruned area for the half-space based approaches

also increases as the page size increases, the overall cost also

increases or remains similar mainly because the pruning cost

also increases (recall the pruning cost is at least O(m) for

half-space based approaches).

6 Conclusion

In this paper, we present efficient algorithms for reverse k
nearest neighbors (RkNN) queries and spatial reverse top-

k (SRTk) queries. The research in the past has mainly fo-

cused on half-space pruning approach which is generally be-

lieved to be superior to regions-based pruning. In this paper,

we demonstrate that the regions-based pruning has certain

advantages and it may be quite effective if its limitations

are addressed appropriately. Based on several interesting ob-

servations, we rectify the weaknesses of regions-based ap-

proach and present efficient algorithms to compute RkNN

queries and SRTk queries. We conduct an extensive experi-

mental study on both real and synthetic data sets. The results

show that our proposed algorithm, SLICE, performs signifi-

cantly better than the existing RkNN algorithms in terms of

CPU cost and scales better as k increases. SLICE also out-

performs other SRTk algorithms by several orders of mag-

nitude.
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verse k-nearest neighbor search in dynamic and general metric
databases. In EDBT, pages 886–897, 2009.

2. R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest

neighbor and reverse nearest neighbor queries for moving objects.
In IDEAS, pages 44–53, 2002.

3. T. Bernecker, T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz,
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covering influential data objects over time. In Advances in Spatial

and Temporal Databases, pages 110–127. Springer, 2013.

15. C. Jin, R. Zhang, Q. Kang, Z. Zhang, and A. Zhou. Probabilistic
reverse top-k queries. In Database Systems for Advanced Appli-

cations, pages 406–419. Springer, 2014.

16. J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang.
Continuous evaluation of monochromatic and bichromatic reverse

nearest neighbors. In ICDE, pages 806–815, 2007.

17. F. Korn and S. Muthukrishnan. Influence sets based on reverse
nearest neighbor queries. In SIGMOD, pages 201–212, 2000.
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APPENDIX

Lemma 20 Consider a facility f , a ray Lθ , a critical point p on Lθ

and a user u that lies on Lθ and dist(u, q) > dθ . Then, dist(u, f) 6=
dist(f, p) + dist(p, u).

Proof Note that dist(u, f) ≤ dist(f, p) + dist(u, p) due to the tri-

angular inequality. Since p and u lie on Lθ , dist(u, f) = dist(f, p)+
dist(p, u) if and only if f also lies on Lθ (i.e., θ = 0◦) and p lies be-
tween u and f (see Fig. 36). We prove by contradiction that p cannot

lie between u and f .

Fig. 36 Lemma 20

Assume that p lies between u and f as shown in Fig. 36. Since

θ = 0◦, dist(p, q) = dist(q,f)2−∆2

2(∆+dist(q,f) cos 0)
= dist(q,f)−∆

2
. As

dist(q, f) > |∆|, we have dist(p, q) < dist(q,f)+dist(q,f)

2
. In

other words, dist(p, q) < dist(q, f). Furthermore, since dist(u, q) >
dθ (i.e., dist(u, q) > dist(p, q)), this implies that p cannot be be-
tween f and u which contradicts the assumption. ⊓⊔


