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Abstract. Of the main challenges to keep the edge computing dream
alive is to efficiently manage the energy consumption of highly resource-
limited nodes. Past studies have limited or often simplistic focus on en-
ergy consumption factors considering computation or communication-
only solutions, questioned by either costly hardware instrumentation or
inaccurate software-specific limitations. With this gap in mind and the
wide adoption of single-board computers (SBCs) such as Raspberry Pis
in edge, in this paper, we propose a novel holistic and accurate energy
measurement approach in edge computing. Exploring a Test and Learn
strategy, (1) we firstly perform a comprehensive analysis of identifying
factors affecting energy consumption of edge nodes; (2) we develop and
utilize WattEdge, a standard framework to evaluate the identified fac-
tors; (3) we conduct extensive empirical experiments on Raspberry Pis to
thoroughly and uniformly assess the significance of each factor, thereby
proposing an all-inclusive energy model. Wattedge is able to measure en-
ergy consumption factors such as CPU, memory, storage, a combination
of them, connectivity, bandwidth usage, and communication protocols,
as well as energy sources such as batteries. The results specifically warn
us of the necessity of considering previously underestimated factors such
as connectivity. A Smart Agriculture use case is implemented to validate
the performance of the energy model, demonstrating a 95% accuracy.

Keywords: Edge Computing· Energy Consumption· Measurement· Rasp-
berry Pi· Internet of Things (IoT)· Performance Evaluation

1 Introduction

With the ever-increasing growth of the Internet of Things (IoT), Cisco believes
that “the number of connected devices will exceed three times the global pop-
ulation by 2023 [1].” Edge (or Fog) Computing can bring the compute, storage
and network resources closer to IoT devices to address low latency requirements
of IoT applications [6]. Low power and small sized devices are intended to bring
those capabilities at the edge. Recently, Single-Board Computers (SBCs) have at-
tracted special attention and are entitled to realize the presumed edge nodes [23].
SBCs such as Raspberry Pis (Pis) or Odroids are highly power-constraint [13].
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The problem of efficient energy utilization for ultra low power edge nodes ap-
pears urgent [21, 5, 25, 22]. On the demand side, this is urgent because while edge
nodes struggle with their energy management for running heavy tasks (e.g., AI
tasks) [17, 16, 14], they are also expected to share their resources with peers [7,
20], known as task offloading. On the supply side also, the challenge of har-
vesting energy from the environment (solar, wind, or thermoelectric) became a
challenging issue. This, however, does not exclude line-powered edge platforms
from pressing environmental and economical side effects of high energy usage.

Given the exponential growth of IoT, a myriad of connected devices in in-
dustry, including agriculture, automobile, telecommunication, etc., will co-exist
in the near future which will increase energy consumption and the demand for
power supply. Such concerns warn the importance of intelligence about the en-
ergy consumption of IoT and its underlying platforms, so that optimization
actions become feasible. Basically, this intelligence cannot be achieved without
the knowledge of the major energy consumers and their impact on these plat-
forms [4].

The key questions to optimise the energy consumption on the edge devices is
what are the factors contributing to energy consumption? How significant each
factor could be? And more essentially, how to develop a practical holistic approach
for accurate estimation and measurements of these factors? With the current
state of the art literature [15, 23, 24, 8], however, answering these questions ap-
pears difficult since each work only measures an in-comprehensive list of factors.
Moreover, accumulating partial measurements from different studies such as [3,
9, 12] that employ dissimilar system under tests, cannot guarantee a reliable
outcome. More critically, they either perform software-based measurements that
present a restricted coverage to specific applications, or perform hardware-based
measurements that require costly hardware instrumentation [17]. Rigorous coun-
termeasures are required to first identify potential factors. Also, the significance
of each factor needs to be assessed under a similar setting and for a reasonable
duration so that accurate and reliable energy models can be built [13, 21, 5, 25].

Motivated by this gap in knowledge, we believe that a systematic and thor-
ough study is required to identify energy consumption factors and the degree
at which these factors affect energy consumption. To achieve this, the following
key contributions are made:

– Identifying potential factors impacting energy consumption of edge nodes;
– Proposing WattEdge, a standard framework for measuring energy consump-

tion of SBCs; WattEdge does not require costly hardware instrumentation
such as sensors, shunt, analog-to-digital converter, etc.

– Empirically evaluating various edge-related energy consumption factors us-
ing WattEdge, supplemented by an all-inclusive energy model; and

– Validating the model’s performance in Smart Agriculture domain using a
practical application and demonstrating a 95% accuracy.

The remainder of this paper is structured as follows. Section 2 discusses our
proposed holistic approach to identify major energy consumption factors for edge
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nodes. Then, we propose “WattEdge”, a standard framework for our empirical
experiments in Section 3. In Section 4, the factors are empirically studied under
the same settings to provide the basis for (a) accurate comparison, (b) acquiring
the significance thereof, and (c) an energy model. In Section 5, we validate the
energy model generated by WattEdge using a practical application in Smart
Agriculture domain on a cluster of Raspberry Pis Finally, we discuss the key
findings of this research in Section 6 and conclude in Section 7.

2 Related Work and Energy Consumption Factors

Identifying potential factors impacting energy consumption of edge computing
devices, the literature on measuring and modelling the energy consumption fac-
tors of edge computing is thoroughly reviewed. Our study uncovers nine factors
impacting the energy consumption of the edge nodes. A summary of the de-
gree at which those factors are considered in related work is provided in Fig. 1
(numbers in Fig.1 correspond to references).
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Fig. 1: Related work on energy
measurement and modelling:
red=major, yellow=moderate
and gray=minor effort.

To begin with, a baseline for measurements
is considered as an essential factor. Hence,
measuring energy consumption when the de-
vice is in idle state 1 seems unavoidable as
perceived by several studies [26, 23, 24, 11,
9]. Edge nodes host the IoT applications, de-
manding them to utilize computational re-
sources. Among them, of course, CPU 2
is fairly dominant [15], but other resources
such as memory 3 and storage 4 are also
worth considering for two reasons: firstly, edge
nodes are highly power-constrained and hence
sensitive to minor factors; secondly, certain
IoT applications (e.g. AI applications) heav-
ily rely on such resources. To the best of our
knowledge, only one work considers the mem-
ory [21], and none paid attention to the storage in edge. Hence, we also included
cloud-specific efforts [11, 26] in Fig. 1. Despite individual CPU, memory and
storage, the energy usage due to a bundle of resources 5 is a matter of concern
as well which is neglected to a large extent. However, calculating energy con-
sumption for individual resources and then accumulating them may not give an
accurate estimation, as their combination also alters the energy usage.

Connectivity is critical for edge nodes [19], where short-range connectivity
means 6 such as WiFi, Bluetooth, ZigBee, USB, HDMI, VNC, etc. play es-
sential role in Edge-IoT domain. Therefore, their effects on energy consumption
have to be considered. Notably, WiFi as a widely-used means of connectivity has
already gained a lot of attention [13, 24, 25, 5]. By connectivity, the communica-
tion comes into the play. The degree at which communication influences energy
consumption may vary which makes it worthy of consideration [2]. Industrial
IoT (IIoT) applications tend to send and receive continuous messages containing
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single-data points such as temperature and humidity, for instance, while images
sent by Traffic Control Cameras in a Smart City application utilize much more
network bandwidth [6]. Considering this, the network bandwidth utilization 7
and its impact on energy usage under different levels of data transmission must
be investigated [13, 24, 25]. Communications rely on underlying protocols 8 that
function in either a request/reply (e.g., HTTP or CoAP) or a publish/subscribe
(e.g., MQTT or DDS) fashion, whose impact is missed in the related work.

On the supply side, however, it is essential to understand the energy supply
limitations. Edge nodes have to rely on only limited capacity batteries or renew-
able energy sources harvested locally, other than or along with the grid. Given
that, the estimation of energy consumption would be practical only when the
behaviours of energy source and storage 9 such as battery are well understood.

Our proposed approach differs from the existing solutions as specified in the
following. Firstly, the works mentioned above tend to consider a selective list
of factors from only one [2, 7] to four [11, 18]. In contrast, our approach holis-
tically covers the nine identified factors to provide a fine-grained measurement.
Secondly, the accuracy in [26, 5, 25, 7] is doubted by not validating the proposal
using real use cases or by merely relying on simulations; hence, in addition
to extensive empirical studies, we validate our proposal in a realistic scenario.
Thirdly, to achieve reasonable accuracy, cutting-edge hardware instrumentation
used by [11, 25, 2, 3, 7, 14, 21] would not always be feasible due to its complex-
ity and cost. We try to avoid this by encouraging a lightweight and low-cost
Test and Learn strategy. Moreover, the lightness of the proposed framework for
resource-limited edge nodes appears critical, which is compromised in [21, 16,
20, 23, 12]. Finally, our proposed approach is accompanied with a framework for
reproducibility and extensibility, similar to [9] which provides an open-source
framework, while [2, 20, 18, 12, 25, 22, 7, 21] lack such features.

3 WattEdge: The Evaluation Framework

The WattEdge framework, open-sourced on GitHub3, is designed and imple-
mented on a real SBC-based testbed to measure the significance of all identified
factors (see Fig. 2). In brief (see Fig. 2), 1 an SBC edge node is prepared. 2
Simultaneously, a Stress Worker and System Monitor Agent on the main edge
node and 3 a Power Monitor Agent on the secondary Pi is invoked. 4 The
Stress Worker invokes the Stress Function 5 which triggers stress tools. 6 Sup-
plementary services and scripts are executed on the edge nodes. Finally, 7 the
Logger function collects and reports the monitored data.

Edge device: Emerging in 2012, Raspberry Pis have gained the momentum
in the race of IoT devices [5]. They are recently employed as a perfect option
for adopting edge computing, whether as standalone or even clusters of edge
nodes [23]. In Pi family, we find Raspberry Pi 3 Model B+ to be one of the
most utilized ones [7, 23, 3, 18]. This Pi features a 1.4Ghz Quad-Core Proces-
sor, a 1GB LPDDR2 SDRAM, a 40-pin GPIO header, 5v USB power adaptor

3 https://github.com/aslanpour/wattedge
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Fig. 2: WattEdge: The Proposed Edge Energy Measurement Framework.

with a 1200 mA current, and connectivity options such as WiFi, Bluetooth,
HDMI, and USB, all in an ARM architecture standing on a Raspberry Pi OS
platform. Comparative quad-core SBCs include: AML-S805X-AC (La Frite),4

UDOO BOLT V8,5 ASUS Tinker Board,6 and Odroid-C2.7 To obtain sufficiently
accurate measurements: (a) Pis are configured headless; (b) connectivity ports
such as USB and HDMI are disabled; (c) communication means such as WiFi
and Bluetooth are turned off (unless specified otherwise); (d) Pis are not re-
positioned to avoid environmental conditions; (e) reasonable cool-down times
are considered between each test; (f) tests last long enough and are repeated
several times, and average and standard errors are reported for reliability; (g)
certain tests are conducted at night to minimize network interference; and (h)
the Raspberry Pi OS is updated with minimal installations.

Testbed: Two Pis are needed to emulate edge nodes (see Fig. 2). The main
Pi runs the stress test program, i.e., Stress Worker, and the System Monitor
Agent in concurrent threads. While stressing the Pi, a fine-grained monitoring
agent continuously monitors and logs the whole system under test (e.g., CPU
usage). To obtain accurate measurements, a hardware-level approach is adopted
by employing a USB power meter model UM25C, which is highly accurate as
shown in [23]. The meter reports the power and energy data in millisecond
granularity via Bluetooth connection. Obtaining these measurements demands
Bluetooth connection which influences the actual energy consumed on the Pi
under test. Hence, the Power Monitor Agent, collecting the power and energy
data, lives on a secondary Pi and is invoked remotely. The agent is connected to
the power meter and reads the measurements during the stress tests.

4 https://libre.computer/products/boards/aml-s805x-ac/
5 https://www.udoo.org/docs-bolt/Introduction/Introduction.html
6 https://www.asus.com/au/Single-Board-Computer/Tinker-Board/
7 https://wiki.odroid.com/odroid-c2/odroid-c2
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Node Preparation: 1 prepares the edge node for a new stress test wherein
no interference exists. Actions include disabling services such as MQTT broker
which may have been employed for certain tests, disconnecting the Pi’s battery
and freeing up the memory, cache and swap. Disabling interfaces such as WiFi
and Bluetooth, USB chip, and HDMI output are confirmed as well. A hot CPU
can significantly influence the results, so a reasonable cool-down time is imposed.

Stress Worker: 2 is written in Python and lives on a thread on the main Pi.
It can run the specified test, e.g., CPU stress, for specific levels depending on
the test plan by invoking the Stress Function.

System Monitor Agent: 2 is run on a concurrent thread. It collects the mon-
itored data every single second and, at the end of test, saves it on the storage
(a 32GB micro SanDisk SDHC UHS-I card). The lightness, i.e., low overhead,
will be confirmed in our empirical studies. Measured metrics include: timestamp,
battery charge, CPU (usage, temperature, frequency, context switching and in-
terrupts), memory usage, disk (usage, I/O read/writes) and bandwidth (packet
sent/received). The psutils python module is employed to measure those metrics,
except for the battery charge level which is measured by the pijuice module. The
data is kept in memory until the end of test to avoid disk operations.

Power Monitor Agent: 3 is remotely invoked on the secondary Pi by Stress
Worker. It gets connected to the power meter through Bluetooth and reads the
power and energy data such as the wattage, current, volts, watt-hours etc. The
data is finally saved on a local file.

Stress Function: 4 executes the specified test to stress a resource by 5 eval-
uating the test plan. It interacts with the secondary Pi depending on the test
plan to run required services as well 6 . Such interactions happen for running
iperf server/client, HTTP server/client or MQTT publisher/subscriber.

Logger: 7 collects, merges and stores the data monitored by the two monitors.

4 Empirical Study

We use WattEdge to empirically analyze the 9 identified factors with a Test and
Learn strategy. Note that all tests are conducted for 15 minutes and repeated 3
times, and average and standard errors are reported. We believe that 15 minutes
is large enough for the purpose of building energy model and provides stable
results. In reporting energy consumption results, we present all the y-axes at the
same range, i.e., 0-1000mWh for the sake of easy comparison. We firstly obtain
energy usage in idle state as a baseline for drawing an analogy between the
impact of different factors. Then, each factor is analyzed by first reporting the
overall energy consumption of that stress test, then subtracting already identified
factors to obtain the actual energy consumption of the investigated factor.

Idle State Stress. To establish a baseline, a series of non-stress tests are
performed wherein the Pi is idle. The measurements are labeled as “idle” in
figures. The energy consumption, denoted as Eidle, was measured as a total
of 179.33mWh on average. The average CPU usage was observed at 1.56%,
confirming the lightness of WattEdge.
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CPU Stress. The Stress Function employs the widely used stress tool to stress
test the CPU [10] at full capacity and meanwhile it runs the cpulimit tool to
throttle the usage at certain percentages (see Fig. 3). Results show increasing
energy usage, starting from 179 to 699mWh (see Fig. 3). The upward slope
appears constant for CPU usages up to 50% while it gradually reaches a flat
plateau for usages above 70%. The reason for such behavior was found in the
CPU temperature. The temperature throttling for Pi 3 is capped at 60C◦ upon
which the CPU frequency is reduced automatically to avoid overheating. CPU
usage below 70% never reached this threshold. This also warns us that (a) the
long-running benchmark tests are more reliable and the accuracy of performance
evaluations that last for only a few seconds/minutes as in [5] is questionable; and
(b) the CPU frequency tends to be driven by the temperature in certain IoT use
cases such as Smart Farming wherein devices are exposed to the sunshine.

Energy Model: By fitting the collected data to a linear regression, we can model
the energy consumption driven by CPU usage as follows: Ecpu(u) = (22.9u +
107.6) × t where Ecpu stands for energy consumption in mW due to the CPU
usage percentage u and t is the duration of the experiment in hours (if 15 minutes,
t = 0.25). Given the interference of power management mechanism on the device,

for a pure CPU-dominant model, we use a sub-model as Êcpu(u) = (26.9u +
24.6) × t, measured by only considering CPU usages below 70% that gives the
R2 value of 99.7%. With the pure CPU model, a total energy model (E) is

modelled as E = Eidle + Êcpu.
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Memory Stress. To stress test the memory, the advanced version of stress tool,
stress-ng, is employed. This allows the workers to stress on specific percentage
of unused memory. A sample command is: stress-ng --vm 1 --vm-bytes 25%
−t 900s. That is, spawning 1 worker spinning on 25% of unused memory. Four
different tests stressing on 25, 50, 75 and 100% of unused memory are performed.

The true impact of memory load on energy consumption appears rather similar
for all memory loads (Fig. 4). Noticeably, a slight increase in energy consumption
for lower memory loads is observed. This is due to the overhead on CPU context
switching and interrupts. Technically, the stress-ng tool is continuously calling
mmap(2)/munamp(2) and writing to the allocated memory. If the allocated
memory is smaller (e.g., the 25% stress), the writing process is finished sooner
and since the experiment lasts for minutes, this happens more often. Such context
switching and interrupts appeared to be less for memory stress on higher loads.
Further analysis shows an average 26% CPU usage in all memory experiments.
The sole CPU stress at 26% constitutes for the energy consumption of 369mWh,
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which is 5% lower than the average energy consumption of 388mWh obtained in
memory experiment. In other words, the memory can impose 11% more energy
consumption (added to the idle) when under load which appears serious for
highly power-constrained edge devices, while neglected in related works.

Energy Model: A memory-bound energy usage, Ememory(m), here is equivalent
to Eidle × m

100 , where m is the memory impact and for a Pi 3 B+ m = 11.

Memory impact should be involved in the Êcpu sub-model when the edge node
is executing both CPU- and memory-bound IoT applications. This leads to an

aggregated formula as: E(u,m) = Eidle + Êcpu(u) + Ememory(m).

Storage Stress. The aim of this stress is to evaluate if there exists any dif-
ference in energy consumption of (a) read and write, as well as (b) combined
operations on storage and to what extent. This is evaluated using stress-ng
tool. Observations for storage stress in terms of individual read and write op-
erations for 15 minutes confirm that write operations (264mWh) consume more
energy than reads (235mWh). A 11% difference in energy usage between read
and write operations is seen. The main dichotomy in their performance can be
attributed to the 79% more context switching occurrences by write operations.
The question, however, is whether the increased energy usage is only due to the
disk operations or the impact of memory and CPU, i.e., over-fitting? If so, how
much? Given the 5% observed CPU usage, we ran a CPU stress at 5% to measure
the net energy usage. The WattEdge framework reported 218mWh energy usage
that means individual read and write operations can impose an extra energy
usage of 9% and 26%. This gives an energy model as: Estorager = Eidle × 9%
and Estoragew = Eidle × 26%, respectively. Having that, the Etotal(u,m) can be

updated to Etotal(u,m) = Eidle+ Êcpu(u)+Ememory(m)+Estorager +Estoragew .

In practice, the read and write operations are highly likely to exist simultane-
ously, whose energy usage pattern may be different. We ran the storage stress by
continuously writing, reading and removing files of different sizes of 1, 2, 4, and
8 MB (the experiments at KB scale are done by [11]). Simplistically, such file
sizes can resemble media files, ranging from image, to voice and video streams.
Fig. 5 confirms that combined operations’ energy usage will always be higher
than that of read-only operations (i.e., 235mWh) and also higher (file sizes >
2M) than write-only operations (i.e, 264mWh). The CPU usage again remains
similar to individual operations (u = 5%, equivalent to 218mWh energy usage).
At maximum, combined operations showed 278mWh energy usage. Excluding
the impact of CPU (218mWh) and memory (20mWh), the net value increases
due to storage is 278 − 218 − 20 = 40mWh, equivalent to 22% imposed energy
usage (added to the idle state) only due to combined storage operations which is
considerable. We also evaluated larger file sizes, but the usage would not increase
much further due to the SD card and CPU performance used in our testbed.

Energy Model: Involving CPU usage along with combined read and write op-
erations of storage, i.e., Estoragerw (at high intensity), we can estimate that
Estoragerw = Eidle × 22%. More precisely, the energy usage observed in Fig. 5
shows a linear pattern that can be formulated as: Estoragerw(l) = (42.2l−17.9)×t,
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where l stands for stress level: l = {1, 2, 4, 8}, and the accuracy is approxi-
mated at R2 = 92%. This insight leads the total energy model to E(u,m, l) =

Eidle + Êcpu(u) + Ememory(m) +
[
[Estorager + Estoragew ] ∨ [Estoragerw(l)]

]
.

Resources Bundle Stress. The stress-ng tool is able to stress all resources
simultaneously. Four different levels of stress are imposed to the edge devices.
The stress levels for CPU and memory are considered at 25%, 50%, 75% and
100% while the storage is undergoing simultaneous read and write operations at
the size of 1, 2, 4, and 8 MB. This also could be deemed a realistic application
which is not necessarily single-resource-bound.

Observations are shown in Fig. 6. The energy usage presents a considerable
increase over the idle mode. The slight decrease for the fourth level, compared
to the third level, once again has the root in the energy management mecha-
nism on Pi devices. In this series, the mechanism is automatically activated for
all levels, but at different points. It is also important to note that this mech-
anism was not activated for CPU usages below 70% in CPU-only stress while
in combined resources this happened for even 25% stress. The exact impact
of resource bundle needs further investigations. Take 25% stress as an exam-
ple. According to the obtained energy model, we expect a total energy us-

age of E(53.85,m, 1) = Eidle + Êcpu(53.85) + Ememory(m) + Estoragerw(1) =
179.33 + 368.6 + 20 + 6.83 = 574.76. This estimation is less than the observed
energy usage in Fig. 6 (i.e., 627mWh). Analysing all four stress levels, an average
extra usage of 8.4% for a resource bundle energy usage is obtained which may
have the root in increased context switching due to resource (CPU, memory and
storage operation) interference which causes this overhead.

Energy Model: The revised energy model, considering the impact of resource
bundle energy usage, i.e., Ebundle, can be equal to a constant (i.e., β, here
β = 8.4) value which is added to the total expected energy usage. This gives

Ebundle(u,m, l, β) =
(
Êcpu(u) +Ememory(m) +Estorage(l)

)
× ( β

100 ). The follow-
ing aggregated formula including the impact of resource bundle is hence gained:

E(u,m, l, β) = Eidle + Êcpu(u) +Ememory(m) +Estorage(l) +Ebundle(u,m, l, β).
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Connectivity Stress. In the literature [13, 14], WiFi and Ethernet connectivity
have gained more attraction due to highly adaptability to IoT domain. However,
the limitations of employing the Ethernet in many wide-area IoT use cases makes
it less worthy of consideration [19]. We redo experiments on CPU tests wherein
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WiFi is enabled, but no data transmission is occurred. The results for when
WiFi is off is used as a baseline for comparison. This study is essential since idle
state for edge nodes is highly likely, yet the consequences are left unattended,
particularly for connectivity impacts [14, 15, 18, 20].

Results in Fig. 7 reveal that the WiFi connectivity impact exists most of the
times even though insignificant overall. In details, the lower the resource uti-
lization, the higher the impact of the idle WiFi activities will be. Activities can
be seen as responding to the beacon signals sent by a router or peers. A slight
CPU temperature increase due to such activities was also reported by the Sys-
tem Monitor Agent. Precisely, an extra energy usage of between 0 and 17.38%
for idle state is observed. Not a linear trend is seen, hence the average impact
of WiFi enabled is considered here (7.82%). Further investigation is conducted
for connectivity means such as Bluetooth, USB, HDMI and VNC which unex-
pectedly showed 18, 128, 6 and 18% extra energy usage, respectively. This and
WiFi observations means that connectivity, at least for investigated means, can
impose a sum of 178% extra energy usage.

Energy Model: A constant c representing the influence of connectivity, i.e., sum
of WiFi-enabled (but idle), Bluetooth,USB, HDMI and VNC, can be involved as
Econnectivity(c) = Eidle × ( c

100 ). This finding leads the aggregated energy model

to the following: E(u,m, l, β, c) = Eidle + Êcpu(u) +Ememory(m) +Estorage(l) +
Ebundle(u,m, l, β) + Econnectivity(c).

Network Bandwidth Stress. Communications between edge nodes can be
categorized in upload and download actions, regardless of the data type. How-
ever, one cannot ignore the importance of data transfer rate. To study it, an
iperf3 client is invoked on the main Pi and an iperf3 server is invoked on the
secondary Pi. Then, the client sends data in TCP mode at different rates to the
server: {2, 4, 6, 8, 10, 12, 14, and 16 Mbps}. WattEdge measures the upload
impact on energy usage. Similarly, the opposite roles are given to the Pis also to
measure the impact of download operations.

Results, in Fig. 8, show the energy consumption due to upload and download
at particular transmission rates. It is obvious that the more the bandwidth is
utilized, the more the energy is consumed. Moreover, the upload (generating
and sending data) appears more influential than the download (receiving data).
There exists certain CPU usage, however, which needs to be taken into consid-
eration to discover the real impact of bandwidth utilization. The CPU usage
grows from 1.53% in idle state to 5% for the highest bandwidth utilization, i.e.,
16Mbps. Excluding the idle state and CPU usage, a maximum of 58% and 26%
increase in energy usage due to bandwidth utilisation for upload and download
operations, respectively, is observed. This understanding will help making a rea-
sonable decision for establishing or preventing communication in edge.

Energy Model: The bandwidth net effect, excluding CPU, is involved in the
Etotal, as the CPU effect is independently considered by Ecpu. It presents a lin-
ear pattern which in Pi 3 B+ is measured as: Ebandwidthu(r) = (14.8r+ 173)× t
for upload with R2 = 99% and Ebandwidthd(r) = (−0.9r + 172.2) × t for down-
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load with R2 = 92%, respectively, where r = {2, 4, 6, 8, 10, 12, 14, 16} stands for
the rate of data transmission in Mbps. This eliminates the need for calculat-
ing the connectivity solely, i.e., Econnectivity(c) as WiFi is under use. Involving

bandwidth in E, we have: E(u,m, l, β, r) = Eidle + Êcpu(u) + Ememory(m) +
Estorage(l) + Ebundle(u,m, l, β) +

[
Ebandwidthu(r) ∨ Ebandwidthd(r)

]
.

Communication Protocols Stress. In practice, as we observed in storage
analyses, the communication operations as upload and download are expected
to co-exist. Hence, this study evaluates the energy consumption due to commu-
nication protocol families: request/reply and publish/subscribe in a full cycle of
transmission. The WattEdge picks up the most popular ones from each cate-
gory in IoT domain, i.e., HTTP and MQTT, respectively. The test scenario for
HTTP is to send simple HTTP GET requests from a client to a server which
is a Python Flask HTTP server echoing the message. For MQTT, a publisher
sends messages to a subscriber on another node through a Mosquitto MQTT
broker. The subscriber receives messages and publishes its response to the origi-
nal publisher, similar to the HTTP study design for consistency. Note that in the
request/reply family only client and server live and consume the energy while in
the publish/subscribe there are publisher, subscriber and broker. The WattEdge
framework comprehends such differences and assigns each role to the main Pi
and the auxiliaries on the secondary Pi, depending on the test plan.

Tools such as Jmeter can be used as a client generating the load. Jmeter,
however, is unreasonably heavy for SBCs such as Pi 3 B+. Since we aim at both
considering the client and server impact of protocols, the WattEdge framework
benefits from a lightweight customized python script for load generations. For
the MQTT load test, the paho Python module is employed which efficiently
generates and publishes messages with imposing negligible overhead. The load
generator will concurrently send 10 to 90 requests/messages per second (in 9
tests) to the server in HTTP tests and to the subscriber in MQTT tests. This
is the maximum load a Pi 3B+ could generate according to our configurations.

HTTP: The difference between client and server’s impact appears insignificant
(Fig. 9). Energy consumption increases from 179mWh in idle mode to 192mWh
in WiFi-enabled and to 443 and 430mWh for maximum client and server stress,
respectively. To reveal the net value for energy usage, we exclude the idle state
and CPU usage obtained by the System Monitor Agent. More CPU usage was
seen for the client than server. The net value is as 22% and 35% additional
energy usage due to the HTTP client (Ehttpc) and server (Ehttps), respectively, at
maximum. The range of energy usage for different rates of concurrently, e.g., 10–
90, is narrow and no linear pattern with a reasonable accuracy is observed. Hence,
an average energy usage satisfies the inclusion of this factor which is observed
at 18% (cl) and 30% (se) energy usage for client, Ehttpc(cl) = Eidle × cl

100 , and
server, Ehttps(se) = Eidle× se

100 , respectively. The cl and se stands for client and
server’s impact which for Pi 3 B+ will be 18 and 30, respectively.

MQTT: The energy usage depends on three entities: publisher, broker and
subscriber. Fig. 10 shows that the MQTT mechanism adds to the energy us-
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age, but insignificant differences exist between entities. The slight difference is
seen, mostly for heavy loads (e.g., 80 and 90 messages), where the subscriber
was dominant and the broker consumed relatively less energy than others. Ex-
cluding the idle state and CPU usage (observed at < 5% for entities), the net
energy usage for publisher (Emqttp), subscriber (Emqtts) and broker (Emqttb) at
maximum load is measured as 28, 32 and 23% additional energy usage, respec-
tively. Similar to HTTP, the range of energy usage is narrow, and the interest
of simplicity, an average energy usage of 23 (pu), 26 (su) and 22% (br) for pub-
lisher, subscriber and broker is considered. This gives the following formulas:
Emqttp(pu) = Eidle× pu

100 , Emqtts(su) = Eidle× su
100 and Emqttb(br) = Eidle× br

100 .

HTTP vs. MQTT: Overall, entities in HTTP consume much more CPU and
energy than in MQTT. However, excluding CPU usage, the MQTT is imposing
further energy usage. It should not be neglected that a third-party entity as bro-
ker exists in MQTT scenario whose energy usage must be considered. With this
in mind, if we exclude the broker, the energy usage for both HTTP and MQTT
becomes comparable. Moreover, this considerable usage due to communication
raises the following question: “Is the task or data offloading, which requires com-
munication between nodes, in edge computing always affordable?” With this in-
sight, the total energy usage can consider finer-grained measurements based on
entities performance in each protocol as follows: E(u,m, l, β, cl, se, pu, su, br) =

Eidle + Êcpu(u) +Ememory(m) +Estorage(l) +Ebundle(u,m, l, β) +

[[
Ehttpc(cl) +

Ehttps(se)
]
∨
[
Emqttp(pu) + Emqtts(su) + Emqttb(br)

]]
.

Energy Sources Stress. With the widespread usage of the Lithium-ion bat-
teries as energy storage, WattEdge employs a PiJuice HAT (i.e., Hardware At-
tached on Top–HAT) installed on the Pi to supply battery power. The PiJuice
HAT features an on-board 1820mAh battery, original battery from Motorola
Droid 2 (A955), and communicates with the Pi through GPIO Pins. A remotely
controlled 5V Single Channel Relay Module handles the connection and discon-
nection of the charger.

The studies on the battery are to find out two behaviors: charging and dis-
charging. For the former, we keep charging the battery from 10% to 98% and
babysit the powering behavior. Fig. 11 shows energy usage during three hours.
Starting from 10% charge, the PiJuice software asked the battery to get higher
wattage. The wattage is reduced by reaching at the moderate charge level around
30-50%, increased at charge levels between 50-80% and then gradually decreased
the powering until fully charged (163 minutes). After that, the incoming wattage
is significantly reduced. This is evidencing that the battery software system con-
siderably influences the powering which is worth considering.

On the discharge side, we are concerned about the efficiency of batteries.
Hence, we drained a certain amount of the battery storage and measured how
much energy it needs to obtain same amount of energy again. This revealed that
the battery is returning 20% less energy. This is due to the internal resistance



WattEdge: Empirical Energy Measurements in Edge Computing 13

of the batteries. Also, the aging issue in Lithium-ion batteries deteriorates per-
formance and increases internal resistance, all warning us of the energy sources
considerations as well as energy consumers.
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Battery Charging

The Test and Learn strategy provides us with an understanding of energy
consumption factors in a practical measurement including: (1) idle state; (2)
computation such as CPU, memory, storage and resource bundle (the storage
is ignored for non-data-intensive applications); (3) connectivity if connectivity
means are enabled; and (4) communication if data need to be transferred between
the edge nodes using connectivity technology e.g. Wifi. For communication, if
merely data transmission is of interest, bandwidth usage is included, otherwise
only communication factors are included where specific protocols such as http or
mqtt are used. If one wants to use the proposed model in practice, parameters
of the model such as u, m, l, β, c, r, cl, se, pu, su, and br should be set based
on the specifications of the edge nodes and running applications. In the next
section, we validate the proposed energy model for an edge platform hosting a
real-world application from agricultural domain.

5 Validation

Fig. 12: A Pest Bird Deterrent
Application’s Workflow

An edge computing platform for Smart
Agriculture—A Bird Deterrent System—is
practically implemented, that under the hood
is a cluster of Pis. In this use case, a bird deter-
rent device utilizing motion and camera sen-
sors is equipped with a Pi to act as an edge
node (see Fig. 12). The edge nodes reside in a
local network and are connected to each other
using a wireless router. The IoT application
works as follows (Fig. 12): (1) a motion sen-
sor continuously senses the environment. (2) If
a motion is perceived, the camera sensor is activated to take a photo. A trigger
is pulled to call an object detection application on the device, for processing. (3)
We utilized a YOLO8 (Real-Time Object Detection) function running as a web
service using Flask (Python web framework) deployed on Docker containers for

8 https://pjreddie.com/darknet/yolo/
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such processing. (4) If a bird is detected in the image, the deterrent device is
activated for a certain time duration.

In a cluster of nodes, we assume nodes can share resources for computation
offloading (scheduling the YOLO object detection container on peers) to save
energy since fake owls are intended to be powered by batteries and solar panels.
The edge nodes form a Kubernetes (K3s) cluster (see Fig. 13). Given the event-
driven nature of the application, a Serverless platform, OpenFaaS, is employed
for deploying the core YOLO object detection function. Upon a photo taken
by the camera, the function’s endpoint is triggered and a request is sent to
OpenFaaS gateway on the master node. The gateway invokes the function, and
requests the photo from the Pi, generating the task.

Experiments are conducted in (A) local execution and (B) computation of-
floading scenarios to validate the energy model. We deploy the System Monitor
Agent of WattEdge on each Pi to monitor the actual energy consumption. Us-
ing profiling, we obtain parameters that the energy model requires, i.e., u and
l for estimations. Then we compare the energy consumption estimated by our
energy model to the actual usage measured by the WattEdge. A Poisson distri-
bution is used to generate task. Two Pis are involved in experiments: Worker 1
(task generator in both scenarios and task executor in scenario A) and Worker 2
(idle in scenario A and task executor in scenario B). A Master node (OpenFaaS
gateway) also exists that is not involved in task generation and executions and
only performs orchestration. Thus we do not discuss its energy consumption.
The monitor reads energy consumption from the USB Meter locally. Hence, for
accuracy, we include the Bluetooth-related energy usage in the model. Also, for
consistency, our experiments last for 15 minutes and are repeated 3 times.

Fig. 13: A cluster of Pis with
Kubernetes, OpenFaaS and
WattEdge.

(A) For local execution, the actual energy
usage of Worker 1 for the duration of test is re-
ported at 573 by the USB Meter (see Fig. 13).
This scenario involves computation: CPU (u),
memory (m), storage (l) and resource bun-
dle (β). Since the energy data is read locally,
the Bluetooth connection energy usage (c) is
considered in connectivity. In terms of com-
munication, although Worker 1 is both task
generator and executor, it still needs commu-
nication with Master node. This communica-
tion in Kubernetes is based on a request/reply
protocol, so the client (cl) and server (se) roles
must be considered for Worker 1. Hence, the
total energy usage will be E(u,m, l, c, cl, se).
The variables such as u = 41.43 and l = 1
are obtained through profiling and constants are already known for Pi 3 (see
Section 4). These two variables and other constants are used to estimate energy
consumption using our proposed energy model. The estimation using the energy
model results in total of 612.64mWh which demonstrates 93% accuracy com-
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pared to the actual energy consumption. Using the same method for Worker 2,
which was almost idle in this scenario, an accuracy of 91% is observed.

(B) For offloading execution, the actual energy consumption of Worker 1 is
reported at 316mWh (less than previous scenario). Applying the energy model
on the observed CPU utilization, storage and constant values, and comparing
the estimated value with the actual one, a 97% and 98% accuracy in energy
consumption estimation is obtained for Worker 1 and 2, respectively.

6 Discussion

Our findings show the significance of various factors in energy consumption of
power constrained edge devices.

– Major factors: Connectivity prompts to be a major factor, neglected to a
large extent by the literature. Confirming findings from previous studies (see
Fig. 1), our findings pinpoint that the CPU and idle state are also major
energy consumption factors.

– Moderate factors: Communication protocols and resource bundle are found
to be moderate factors. The request/reply protocols are shown to be more
power hungry compared to publish/subscribe models. The network band-
width utilization and energy sources factors have moderate impact on the
energy consumption.

– Minor factors: Impact of the memory and storage utilization appeared to be
less significant.

We believe that the novel Test and Learn strategy in WattEdge significantly
contributes to the literature by providing an accurate, low-cost, lightweight,
fine-grained/holistic, and extensible framework. The WattEdge approach pro-
vides accurate enough measurements missed in software-based approaches while
avoiding high-cost hardware instrumentation in hardware-based solutions. The
high accuracy was ensured by running a diverse workflow (CPU-, memory- and
storage-intensive as well as communication). The energy model developed based
on WattEdge framework measurements. Two use cases were evaluated to validate
the accuracy of energy models. An average accuracy of 95% are obtained in val-
idation tests. The WattEdge framework is designed to be sufficiently lightweight
as in practice it would not consume CPU usage of more than 1% as observed in
our empirical studies. It is sufficiently fine-grained to allow a realistic and accu-
rate measurement of a wide range of energy consumption factors: CPU, memory,
storage etc. Finally, while the obtained power model is dependent on Pis, the
WattEdge framework can be applied to other SCBs such as NVIDIA Jetson or
Odroid [7] to obtain hardware-specific power models. In other words, SBCs con-
siderably feature the same potential power factors but in different capacities.
The modular design of WattEdge allows simple extensions for such resources.
Besides, edge candidates other than SBCs can extrapolate the WattEdge idea.

7 Conclusions and Future Work

In this work, we conducted a comprehensive review to identify factors impacting
energy consumption of edge devices first. Then, a framework called WattEdge
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was proposed to evaluate energy consumption of edge devices through a 9-step
assessment using identified factors. These factors include: node’s idle state, CPU,
memory, storage, resource bundle, connectivity, network bandwidth, commu-
nication protocols and energy storage. WattEdge was implemented on a real
SBC-based edge computing testbed while several empirical experiments were
conducted. Based on the empirical analysis, an evolutionary all-inclusive energy
model was developed. Our findings confirms that, in addition to major energy
consumption factors such as CPU and idle state, connectivity uses significant
energy in edge devices. This highlights the need for low power connection tech-
nologies and energy efficient communication protocols for the edge. Using real-
world application in the smart agricultural domain, we validated our proposed
energy model demonstrating a 95% accuracy of the model. In future, we will
extend WattEdge to support a wider range of edge computing’s requirements.
This involves the study of: (a) renewable energy sources such as solar, (b) con-
nectivity means such as Lora, and (c) communications protocols such as DDS.
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